HI,欢迎来到学术之家股权代码  102064
0
首页 公文范文 物理小论文

物理小论文

发布时间:2022-03-06 10:56:11

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的1篇物理小论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

物理小论文

物理投影教学论文

最近几年来,由于投影教学深入到物理课堂中,给物理教学增添了新的活力。

因为投影手段具有生动形象的直观性,不受时空限制的再现性,运动变化的易控性和模拟性,色彩鲜艳的启发性,以及及时反馈等多种功能。在教学中,运用投影可以为学生提供大量的内容丰富的感性材料,展现各种物理现象和物理实验过程,从而突出和强化了初中物理教学的观察与实验机制。另外,投影能够调动学生的视觉、听觉的直感作用,提高学生兴趣,从而有利于学生能力的培养和智力的开发。因此,投影教学为物理教学改革,开辟了一条新途径。

一、运用投影教学的再现性功能,可调动学生的学习主动性

心理学表明:兴趣是主动学习的前提。针对目前初中学生对学习物理的畏难情绪和对物理现象缺乏感性认识的实际,运用投影将自然界、生产生活中的各种物理现象展现在学生面前,一方面丰富了学生的感知,另一方面增强了教学气氛。

对初中学生来讲,思维的积极性在很大程度上受课堂教学气氛的影响,活泼有趣的课堂气氛可以刺激学生积极思维,调动他们的学习主动性。

比如在讲《重力》一课时,教师用一抽拉片演示牛顿发现重力现象及自然界普遍存在重力现象的情景。由于比较形象生动地演示出苹果从树上落下,跳伞员在空中降落,河水从高处向低处流动这一画面,激起学生的兴趣,活跃了课堂气氛。教师抓住时机,以片设疑:苹果为什么会自己往下落?跳伞员为什么向下降落?向上抛出去的粉笔头为什么又落下来?……以现实生活中的许多重力现象,来丰富学生的感知。然后,以片引思:为什么在地球上的这些物体,只要它们离开支持物,最后总是落向地面;以及是什么力量使河水永不停息地流动?激发学生积极思维,主动获取知识。最后以片释疑:通过这些运动着的物理现象的表面,抓住实质:即这些现象都和地球有关,地球在吸引这些物体,从而得出地球对他们的这种吸引作用,我们就把它叫做重力。

这节课虽然只用了一幅抽拉投影片,但是它却为学生积极主动学习创设一种情景。再结合教师不失时机的引导、点播,激发起学生的学习兴趣。把一个抽象的物理概念生动形象地逐步表达出来。课后调查,学生觉得这种学习方法有趣、概念容易理解,记忆也很牢固。

二、运用投影手段模拟物理实验,揭示物理规律,强化物理教学的实验性

对初中学生来说,大多数缺乏较高的物理实验能力和分析、概括物理规律的能力。这也是造成初中学生学习物理知识困难的原因之一。因此,教师能否做好每个演示实验,对帮助学生掌握物理知识具有特别重要的意义。

比如在讲《惯性应用》一课时,应用惯性解释目常惯性现象是教学的难点。

学生往往由于物理现象瞬时性变化,又涉及力学和运动学中的几个概念,情况较复杂,难于理解,因而回答不清或回答不完整,感到难学。针对这一具体情况,在教学中,在实物演示的基础上,运用一框抽拉活动片模拟演示小车遇到障碍物的阻力而停止运动,而小车上的木块没有受到障碍物的阻力,由于惯性保持原来的运动状态仍向前运动。但是又由于木块底部与小车面的摩擦,使木块底部受到一个与运动方向相反的摩擦力的作用不能继续向前运动,因而木块倒向前方。这一物理现象虽然非常简单,但是解释清楚确不容易。我们就利用投影教学图像的可控性、分解性、再现性的功能,把这一具有瞬时变化的物理现象放“慢镜头”。

同时对小车、木块及两者之间的关系进行逐个分析,由于图像清晰,模拟逼真,便于教师讲解和学生观察、理解,因而收到事半功倍的效果。在此基础上再运用投影将其它几个有关应用惯性解释现象的题目投影出来,进行演示,并让学生照前面的讲述进行分析,进行解释。通过举一反三的强化训练,使学生很快掌握应用惯性解释物理现象的方法。再如大气压强、液压刹车的应用、杠杆平衡条件的应用、液体热传递中的对流现象等等都可以借助投影进行模拟,形象直观他说明问题,揭示物理规律,从而加强物理教学的实验性。

还有些物理实验,虽然可以在课堂上进行演示,但是由于教具小等原因,不便于全班学生观察,特别是复习阶段的重复演示,这时运用投影进行模拟物理实验,可以加强物理教学的实验性。

比如《测定小灯泡的电功率》是一节使用多种电学仪器的实验课,对学生的实验技能要求较高。往往由于学生平时对实验仪器接触较少,一节课使用多种电学仪器进行测量,有的学生就感到不知所措,经常出现电路连接错误,还出现忙了一节课连一个实验数据还没测量出来的情况。为了减轻学生实验的难度,让学生按步骤顺利做好实验,我们设计制做了一框测小灯泡电功率的抽拉、复合模拟实验过程的投影片,课前教师结合实物实验,分步演示,讲清仪器使用方法和实验步骤,省时省力,直观性、可操作性强,因而大大加快了学生实验速度和准确性。

三、运用投影教学加强信息反馈,教与学的双向交流,提高教学质量

教育学表明:教学过程实际上是一个完整的信息传输和控制过程。而控制过程又是通过信息反馈来实现的。因此,在教学过程中,如何加强信息反馈,也是提高教育教学质量重要措施之一。

比如将某些教学内容,根据教学目标的需要,制成填空、填图、填表,以及选择、判断、改错等等各种类型的标准化训练习题片。在教学中,根据教学的需要,把握时机,通过投影及时映出,学生可口答、笔答、讨论;有的还可以让学生把答案写在玻璃板上,或让学生到投影仪前将答案书写在投影片上,当即映出,进行讲评。其容量之大、题型变化之多,方法之灵活,出示之快捷,反馈之及时,作用之显著都是其它教学手段所不及的。

如在讲完《阿基米德定律》一节课之后,教师运用一框抽拉、复合投影片演示:①当同一物体浸没在不同密度液体之中,决定浮力大小的主要因素是什么?

②当体积不同的物体浸没在同一密度掖体之中,决定浮力大小的主要因素是什么?

③当同一物体浸没在同一液体的不同深处,浮力大小变化如何?④当一物体在逐渐浸入液体的过程中,浮力大小如何变化?以及不同体积的物体浸没在不同密度的液体中,浮力大小取决于两个因素的辩证关系等一系列问题,组织学生进行专题讨论。这时教师紧紧抓住阿基米德定律及公式,从物体浸入液体的密度、物体排开液体的体积,两个关键因素出发,借助投影的直观形象,将各种情况板书对比、比较、归纳总结,引导学生深刻理解阿基米德定律的内涵和分析问题的思维方法。从而让学生彻底明确浮力大小与什么因素有关。由于投影片的抽拉变化形象具体,启发思维效果良好。

教学实践证明:各种习题片,不仅制做简便,使用灵活,反馈及时,而且可根据知识的针对性、对比性、综合性特点,运用投影进行知识的归纳、分类、类比、比较、概括、总结等等。从而加强了教与学之间的信息交流。

四、运用投影进行实物演示,增强实验效果,扩大观察视野,培养学生的观察能力

方法在初中物理教学中,需做大量的演示实验,以具体的事实说明抽象的理论,或从中得出物理规律。这也是初中学生学习物理的主要方法之一。然而由于有的实验教具小,或变化不明显,实验不便于全班学生清晰池观察,而达不到预期的教学效果。在这种情况下,做实物投影实验,效果明显增强。

比如在讲《电流的磁撤一节课时,以往奥斯特实验是在讲桌上展示,由于小磁针发生的偏转,不便于全班学生观察,而影响教学效果。现改用实物投影做上述实验,将所发生的现象直观地放大投影到银幕上,学生看得一清二楚,从而增强了演示效果,同时这种新颖的方法,刺激了学生的感官,引起学生注意,比观察实物还认真,因而有助于学生观察能力的培养。

在初中物理演示实验中,有很多实验,如用透明刻度尺和三角板测圆的直径;不同刻度的刻度尺测小木块的长度,及刻度尺的使用方法是提高测量准确度的关键。小实验中,双金属片的弯曲实验、液体的扩散现象,磁体周围磁场的存在及磁场的分布情况等等,都可以通过实物投影进行演示。

物理课本培养论文

当今世界科学技术发展日新月异,发展速度迅猛,每年新的知识大量的涌现。一个人在学校得到的知识是很有限的,且很快会老化。学生如果没有自学能力,毕业后无论是升入高一级学校深造,还是走上社会劳动就业,势必很难进一步提高自己的科学文化知识水平,也就无法适应发展变化迅速的信息时代,么就有可能在社会的发展中被淘汰。因此,作为基础教育的中学物理教学,应以学生终身学习和终身发展奠定基础为宗旨,把教会学生会学习作为一项教育目标,古人曾提出过闪光的教育思想“受人以鱼不如授之以渔”。自学能力是一个人获得知识和更新知识的重要能力,也是一个人的一种基本素质。在中学时代教师就必须在平时的教学中,充分重视并不断地培养和增强学生的自学能力,教师不但要向学生传授知识,而且更要教给学生学习的方法,研究问题和解决问题的方法,增强学生自我获取知识的方法和能力。

九年义务教育初中物理教学大纲明确的指出:“自学能力对每个人都是终身有用的,阅读是提高自学能力的重要途径。培养学生的自学能力,应从指导阅读教科书入手,使他们学会抓住课文中心,能提出问题并设法解决,还应鼓励学生进行课外阅读。”可是在当前不少师生仍然不重视对课本的阅读,而是热衷于题海战术,特别是学生往往只凭课堂上听老师所讲的定律、公式就忙于做题目,造成基础知识不牢,缺乏分析问题和解决问题的能力的不良后果。在中学要培养学生独立思考,分析问题和解决问题的能力,就必须从指导学生阅读课本做起,从来人们都是谈学生到学校读书,而从没有人谈学生到学校“听书”,而教师在学校则是“教书”,而不是“讲书”。教就是引导学生怎样读书,怎样思考分析问题。下面谈一点平时怎样充分利用课本,指导学生阅读课文,培养学生自学能力和做法,仅供参考。

一、教师要为学生阅读教材创造条件。

一方面要经常对学生进行自学能力重要性的教育,使学生充分认识到有了自学能力,才能不断地充实和更新自己的知识,才能适应迅速发展变化的社会,才能不断攀登科学的高蜂,另一方面在乎时要多为学生阅读课本创造条件.学生自学必须要有时间的保证,现在中学的科目繁多,各科作业也很重,学生每天平均自习的时间只有2至3小时,学生感到做作业都来不及了,哪有时间去看书啊!这就要求我们教师一方面必须改革教学方法,改变那种填鸭式的“满堂灌”,一堂课如果一讲到底,学生便始终处于被动状态连思考余地都没有,有些问题即使上课讲了,学生也做了练习了,但一考查起来还是不懂,这说明只有教师的讲是不行的,还必须有学生的独立思考,自己消化才行,另一方面,作业题应少而精,题目是永远做不完的,重要的是精选典型习题指导学生深入探讨,独立思考,在分析习题过程中探索其规律,使自己在解题的实践中逐步地掌握其思路和方法。总之,教师在教学中要尽量少灌输,多诱导,使教学过程成为学生在教师的指导下自己学习和钻研问题的过程。例如在上《欧姆定律》这课时,教师只通过演示实验讲清电流跟电压的关系,至于电流跟电阻的关系以及归纳得出定律,就可以让学生自己通过实验进行分析比较、归纳和阅读课文后得出结论,然后教师加以小结.这祥既可以在课堂上有时间让学生阅读课本,又可使学生自己实验、思考、讨论和研究问题,更促使学生去认真钻研教材。

二、根据物理教材的特点,加强阅读指导。

物理课本中既有对现象的描述,又有对现象的分析,概括;既有定量的计算,又有要动手做的实验,在表述方面,既有文学“语言”,又有数学“语言”(公式、图象)还有图画“语言”(插图、照片)。看这样的书,既要懂得文字表述的意思,又要理解数学的计算及其含义,有时,还得面图等等。学生刚开始是不易读懂,也不习惯的,因此,一开始教师就必须用心的加以引导,要要求学生从头到尾地看,并给予指导,必要时,在课堂上还得边读边讲;重要的句子、结论要求学生用笔划出来,对一些叙述较复杂的段落还要予分析解释。例如:《阿基米德原理》这一节,学生通过阅读课文后,对课文提出的概念、定义和原理就有了一个初步的轮廓,对实验过程和现象也有所了解,并能作大致的分析,这时教师可通过提问和学生一起进行讨论研究,使之进一步理解,然后教师指出,并要求学生对阿基米德原理的理解,应特别明确:谁是受力物体,浮力和大小,方向以及在什么情况下才有浮力等,帮助学生理解“原理”的实质,而不致于去死背条文。物理公式是用数学“语言”来描述物理规律的一种数学表达式。初中学生不易看懂,也往往把它当作代数来看待;这就需要教师一开始就要帮助他们去弄清其含义。其实,数学“语言”和文字“语言”是一致的,因此,先要训练学生当“翻译”,经常要求他们将某一物理语言或数学语言“译”成文字语言或将文字语言“译”成物理语言或数学语言,例如将“钢的密度比铝大,比铅的小”,“译”成写成“P铅<P钢<P铅”;又如将欧姆定律I=U/R公式“译”写成“导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比”等等。然后求学生还要了解掌握公式的物理意义、适用条件、各物理量的单位以及单位公式的变形等,经常通过这样的训练,就能逐步的提高他们的阅读能力。此外,物理课本中还常是一些物理术语,如“属性”、“竖直”、“状态”、“路程”等等,初中学生也是不易理解的,也需要教师通过讨论、比较,帮助学生去认识、了解.

三、引导学生并成预习的习惯,逐步培养自学能力。

在初二开始上物理课时,我就向学生提出“以课本为主,课前要预习,要学会读书”的要求,为了帮助学生学会读物理书,我还特别向学生提出预习时应注意了解:①看完一节(或一段)课文后要了解这节(段)课文讲了什么物理现象?某个实验是怎样进行的,说明什么问题?②这一节(段)讲了几个什么物理概念和规律?这些概念和规律是什么意思?在日常生活、生产实际中有哪些实例?⑧在阅读课本过程中还要经常提些“为什么?”并要设法解决。④看完了课文后,有什么不懂,不理解的问题,并把不懂的,有疑问的问题记在记本上,以便上课时认真听讲,或向老师提问。除此之外,在开始时,我在课前还拟定了一些预习提纲,用小黑板写好,挂在班级上,供他们预习时参考。如上摩挟力》这一节课前列出以下提纲:①什么叫做滑动摩擦力?是否两个物体只要接触,就一定有摩接力?②在图9—11所示的实验中为什么要强调木块在木板上要做匀速运动?为什么弹簧称读出的拉力,就知道了木块和木板之间的摩擦力?⑧滑动摩接力的大小跟哪些因素有关?有什么关系?通过预习提纲引导学生边阅读边思考,帮助他们有的放矢的进行阅读课本,了解其课文的中心要点,并逐步学会提出问题,并设法解决,从而不断的提高阅读能力。最后,在每上完一个单元后,还要引导学生自觉认真的进行复习,要求他们再进行一次全面阅读,在阅读过程中指导他们通过前后联系,纵横对比,将知识系统化、条理化,形成完整的知识结构,并进一步地理解概念的内涵和外延,明确公式和定律的成立条件和适用范围,使之做到理解知识,并融会贯通。总之,培养自学能力是物理教学的战略任务之一,而提高阅读能力是培养自学能力的起点。因此,在平时的物理教学中就要充分调动学生阅读课本的积极主动性,加强指导他们阅读课本,让学生在自己的阅读中独立地感知,理解教材.通过经常性训练使学生逐步地学会自我学习的方法,研究问题和解决问题的方法,以及不断的提高自我获取知识的能力。

物理实验分析论文

所谓"实验导入"指的是运用实验导入新课。它是课堂实验教学的开端,与一切有目的的行为一样,良好的开端具有十分重要的意义。实验导入的主要任务是在学习者和新的学习课题之间创设理想的诱发情境,激发学生学习兴趣和愿望,使具有课题意识,明确学习目的,动员必要的已有经验和认识,运用学会的学习方法。

实验导入是物理课堂导入的最主要的方法。笔者在教学实践中主要采用了以下一些方法,现举例说明,与同行讨论。

1、惊奇现象导入法。这是一种相当普遍的实验导入方法。利用学生意想不到的奇特现象,唤起学生的注意,引起学生思考,从而产生强烈的求知欲望而导入新课。

例1:大气压强-覆杯实验导入

将一只玻璃杯灌满水,用一张塑料卡片盖在杯口上,再按住卡片把水杯倒过来。问,当把手移开后,会产生什么现象?松手后学生惊讶不已。从而激发了学生强烈的学习兴趣。

2、黑箱导入法。所谓"黑箱"是指内部结构和机制不清楚的系统,可以通过输入某种信息,从获得的输出信息中推断该系统的可能结构模式和机制。这种研究方法就称之为"黑箱方法"利用它创造的神秘感可以唤起学生的高度注意和积极思维,同时可以使学生得到科学方法的训练。

例2:能量的转换与守恒-魔筒导入。

这是一只金属圆筒,称之为"魔筒",我把它沿台面滚出去,看一看会有什么现象发生?演示后学生奇怪,滚出去的圆筒还会滚回来,而且还反复地滚来滚去?原来筒里面有二根橡皮筋中间拴着一个重物(如图)。为什么这样的结构就会产生这种奇特的运动?在运动过程中能量是怎样转换的?学习了下面的课题,这些问题就不难解决。

3、配合故事导入法。在物理学的发展过程中,充满着许许多多妙趣横生的故事和传说,如果在课堂教学中选用一些故事片断,并做一些模拟演示,就会创设出非常活跃的学习情境。

例3:大气压强-模拟马德堡半球实验导入。

这儿有两个橡皮半球,用力将它们挤压而合在一起,请两个力气大的同学上来,看他们能不能把两个半球拉开?他们费了九牛二虎之力都没有拉开,这是为什么?其实,早在十七世纪的时候,德国马德堡市长、科学家格里克就当众做了一个精彩的实验。他所用的黄铜半球直径约20厘米,抽气以后两边共用了十六匹马才把两个半球拉开。这就是轰动世界的马德堡半球实验。刚才的实验,我可以不费吹灰之力就把它拉开(演示)。谁知道我是怎样把它拉开的?——放气(学生笑了)。为什么抽气以后就拉不开呢?(板画)。球的周围有什么?空气。显然是空气对球施加了压力。这些实验生动地告诉我们,大气存在压强。

4、解决实际问题和实验竞赛导入法。创设一种解决实际问题的情境或者以双方竞赛来解决某一实际问题的形式导入新课,往往也能产生很好的效果。

例4:两力的合成-拉健身弹簧导入。

黑板前挂了一只健身拉力器,请一位同学上来拉弹簧的下端把手,要求拉到黑板上划线的位置(请一位力气小的女同学,没能拉到位)。这位同学费了很大的力气,但没能完成任务。谁能来帮她一把?(实验:两位小同学共同用力把弹簧拉到了线下)。哪位同学能独立地把弹簧拉到线下?(上来一位同学完成)。这位同学的力气不小,一个人就顶上了两个小同学的力气。换句话说,把弹簧拉到线下,他所施的力与两个小同学共同施力的效果相同。当一个力的作用效果和两个力的作用效果相同时,物理学上就把这个力叫做另两个力的合力。由于实际问题中一个物体往往受多个力的作用,从效果上用一个力来代替几个力,就会使问题得到简化,因此求合力是很有意义的。本节课我们就来研究一种最简单的情况——求同一直线上的两个力的合力。

例5:简单机械-撬木板导入。

在讲新课以前,请同学们帮我完成一件工作。谁能仅用自己的双手把钉在一起的两块木板扳开?(同学们纷纷举手,争先恐后地要求上台)。(请一个力气大的同学上台,但怎么也扳不开)。看来仅凭我们的气力是难以完成这一工作的。类似这样的工作很多,好在人类可以利用自己的智慧,创造出一定的工具来解决这些难题。谁能利用一把大的螺丝起子把这两木块分开?(请一位小的女同学上台,轻而易举地把木板撬开了)。这个同学使用的是一种最简单的机械,它有什么特点?为什么能轻而易举地把木板分开?它有哪些应用?这就是下面我们要讨论的内容。

5、实验复习导入法。利用实验复习,既可以创造一种直观的环境,又可以较好地起到承上启下的作用。

例6:阿基米德原理-复习浮力实验导入。

上节课我们学习了浮力的概念。请问,我们是怎样证明下沉的物体受到浮力的?(取出实验装置,回忆实验过程)。当我们把重物从空气中像电视慢动作一样地逐步放入水中,想一想,物体受到的浮力是怎样变化的?由此猜想一下浮力与什么因素有关。(演示、观察、回答:随着深度的增大而增加)。按照你们的说法,也就是浮力的大小与物体所处的深度有关,是吗?请再看一遍演示。当物体浸没水中后,浮力就不再改变,显然不能认为浮力与深度有关。那么,在上述的实验中,除了深度改变外,还有什么因素在改变呢?物体浸入水下的部分在改变。未浸入时浮力为零,随着浸入的部分变大,浮力也就变大;完全浸没以后,浸入的部分不再改变,浮力的大小也就不变。二千多年前,阿基米德为完成皇帝交给他的任务——辨别皇冠的真伪苦苦思索,当他洗澡的时候,无意中发现浴缸的水被溢出时,猛然想起了身体入水部分的体积跟排开的水的体积相等,他欣喜若狂地喊到:"我想出了,我想出了!"从这里我们能得到什么启发吗?——浮力与物体排开水的体积,或者说,与排水量有关。下面我们就用实验来研究这个问题。

实验导入的类型很多,同一个课题可以有许多不同的导入方法。选择的依据主要是教学内容的特点和学生的情况。一般在学习单元开始时或课题比较平直,可以考虑选择趣味性较强的演示法和故事法;如果学生存在着较顽固的错误概念,就需要选择能激起强烈思维冲突的方法;如果课题与前面所学知识的联系性较强,而学生的准备知识又不足,则选择复习导入的方法;应用性较强的课题,多引用联系实际的方法;对年龄较小的学生,可多用竞赛的方法。

实验导入的基本结构大体是:创设实验情境——激发思维冲突——明确学习目标——铺设达标阶梯。

1、在导入阶段创设实验情境,提供新颖、奇特、惊险、多变的现象,配合教师生动的语言、抑扬顿错的语调及运用其它对比鲜明的教学媒体,能够很好地唤起学生的无意注意,激发学生的直觉兴趣,但更重要的是,要依靠所创设的实验情境的内容和教师的引导将学生的无意注意转变为有意注意。增强趣味性的途径有两条:一是选择趣味性强的实验;二是巧妙设计实验教学程序,运用语言的艺术魅力,激其情又引其疑。

2、激发认知冲突,这是保持学生有意注意、激励学习动机最有效的途径。当新奇生动的现象出乎学生的意料之外时,好奇的心理驱使他们积极地思索,但不一定能趋向于教学的目标,也不一定会产生剧烈的认知冲突。需要教师精心地引导和组织,及时地抓住学生闪现出来的认知矛盾,掀起思维冲突的狂澜,使学生产生渴望解决问题,又感到仅用自己现有的知识无法解决问题的心理矛盾。这可以说是决定导入阶段成败最关键的一环,特别是那些学生存在顽固的前科学概念的课题。例如,学生中普遍存在"力是维持物体运动的原因"的观点,它是形成牛顿第一运动定律教学难点的根源。因此在该课题的教学中,应设法让学生的错误观点暴露出来,再加以击破。

3、明确目的,建立联系,这是导入定向的重要环节。在激起思维冲突以后,应当使学生明确学习的目标和解决问题的途径。

当然,这些导入的环节,并不是死板的模式,可以灵活多变地加以应用。在许多情况下,导入结构并非都是截然分开的四段。而且不同的整体课堂结构,要求有不同的导入结构。在导入阶段,可以有侧重地完成某一、二项任务,而其它的任务放在展开的阶段完成。

一般来说,优秀的课堂实验导入方案应做到以下几点:

(1)创设情境和谐,能引起学生的注意和兴趣;

(2)课题意识明确,能激发学生的学习欲望;

(3)衔接自然,能调动学生知识、方法上的准备;

(4)实验与语言的配合密切,能引导观察和积极思考;

(5)导入时间掌握得当,紧凑。

以上是笔者对于物理课堂实验导入设计的一鳞半爪的认识,难免有以偏概全之嫌,在此抛砖引玉,与同行共议。

物理实验复习分析论文

实验能力是高考物理科要考核的五大能力之一,它要求学生能在理解的基础上独立完成"知识内容表"所列的实验,明确实验目的,理解实验原理,控制实验条件;会运用这些实验中学过的实验方法;会正确使用在这些实验中用过的仪器;会观察、分析实验现象,处理实验数据,并得出结论。

由于实验的重要性,相信许多学生用在此方面上的时间与精力不会少,17个中学物理实验的实验目的、原理、步骤、注意事项、数据处理等等内容一遍遍重复,死记硬背,但这样的学法与当前高考出题的方向已是大相径挺。以2000年全国高考实验题为例,没有一个照搬课本中的实验,特别是考验证动量守恒定律的实验的题目(题目见本文附录),其C项是测量小球的直径的,按书本中的实验方法这一步是必须的,若守旧不创新,没有较强的迁移能力和独立解决问题的能力,则必然会选择错误选项C.那么怎样对待新高考中的物理实验复习呢?在教学中该采取什么样的应对措施呢?本人的体会是如下几个方面。

一、基本仪器的使用仍是实验的基础。

不管上一年度有无考到仪器的使用,我们对常用的物理仪器要熟练运用,这是实验的基础,是实验的工具,任何时侯都不过时。在这方面花些时间是必需的。常驻见的有十三种仪器,这十三种仪器是刻度尺、游标卡尺、螺旋测微器、天平、秒表、打点计时器、弹簧称、温度计、电流表、电压表、多用电表、滑动变阻器、电阻箱等等。这些工具的使用每本复习用书上都有很详细的说明,本文不再多言。

二、要以挑战者的眼光挑剔书本上的实验。

从2000年度的全国物理高考卷中,我们应感受到高考物理改革的方向了,这不是简单的照抄课本上的实验了,它给予的验证动量守

恒的实验装置是对书本上权威的经典装置的改进。这是对迷信权威者的嘲弄,是对创新者的呼唤。这给予了我们一个大胆的想象力,不要把书本上的实验奉若神明,要以挑剔的眼光重新审视我们书本上的老式实验方法。

其实在平时的学生分组实验中,在教学演示实验中,我们对教科书中设计的许多方面的差强人意是很不满的,比如动量守恒定律中的被碰球干吗一定要放在那很难立得住的小支柱子上;验证机械能守恒定律的实验没必要从第一点就开始计时(即没必要取第一和第二两点间长度为2mm),我们完全可以从后面的计数点中取两个点算出速度与高度来验证守恒定律,没必要管第一点准确与否……但总觉得高考它就按书本上实验装置考,不敢与它有所冲突,害怕学生高考会吃亏,但从目前的发展趋势看,这种担心是没有必要的,反而不利于学生的开放式思维的发展。

正是出于以上的考虑,我觉得实验的复习要打破常规,不应该再叫学生跟在书本的后面应该怎样做不应该怎样做,尽管我们不否认书本上的实验是专家学者智慧的结晶,但思维被圈在这当中不是现代教育的要求。要学生们学会找毛病——找设计原理上的毛病;找实验步骤上的毛病;找数据处理上的毛病,没毛病也要想想能否改进。这变学生从被动地接受灌输为主动要学的一招,既提高了学生的参与学习与研究物理实验的热情,又能迅速提高学生的实验设计水平与对物理学的理解程度,若找不到毛病也说明书本中的实验设计确实是出色的。当学生们摆脱对书本的依赖与迷信时,其独立性和创造力就被大大地激发出来了。这无论对当前的高考复习还是未来走向社会都是极大的财富。

当然学生们开始也许不适应这样的教学改革,但这不要紧,可以先提示他们,比如对牛顿第二定律的验证的实验原理设计有无问题,为什么不用弹簧称测拉力,弹簧称测拉力有何不妥;而为使小桶的重

力等于绳子的拉力,书本上要求小车的质量远远大于提供拉力的小桶的质量,这有无必要,我们是否可用学过的连接体的知识修正一下拉力的大小,从而摆脱这个限制。再比如对实验步骤的设定,每个实验都有可推敲之处,不应绝对化,死记硬背是没必要的,很多步骤的前后顺序是可以颠倒的(比如许多实验的准备工作中的先后次序),要让学生分析每一步骤在实验中的必然性,是属于准备阶段还是实验过程阶段或数据处理阶段,只要归门别类,前后顺序自然明晰。当然我们也会发觉还有一些步骤是不得打乱的(比如打点计时器是先打点后放手还是先放手后打点等等),这种开放式的讨论要比老师讲解给人的印象深刻得多了。当学生们适应这种学习方法时,学习将成为一种乐趣,因为他们不是书本的奴隶了,而是权威实验的挑战者,是评价实验设计优劣的法官,是成功的实验发明者。

三、以多种视角重新审视和组合实验板块。

学习贵在总结,在物理实验总复习中,我们不应孤立地看待一个个实验,而应该从这些实验的原理、步骤、数据采集与处理方式上的异同上,给这些实验分门别类,从而组成不同的实验板块。平时我们已经自觉或不自觉地把实验分成力学实验板块、电学实验板块、热学实验板块、光学实验板块。但这样的处理只是简单地重复了物理课本知识的体系,大多数情况下也是为了讲解的方便,没有多大的创意,对于学生思维的开发和对实验的科学思维方式的培养显得很不够的。

在此,我认为我们要在这些实验的组合板块中挖掘一些功能,培养学生一种实验的常规意识,比如对于力学板块,这是由验证力的合成与分解、打点计时器的使用和测匀变速直线运动加速度、验证机械能守恒定律、验证牛顿第二定律、验证动量守恒定律等实验组成的一个大的实验板块,现在让我们仔细去找找这些实验与其它实验板块的区别。我们会发觉这些力学实验无非就是在力F、速度V、加速度a、位移S、质量m这几个量上做文章而且已。然后我们看看这几个量是怎么测出来的,今后我们可以用同样的方式去处理类似的探索式力学

实验。毫无疑问,这些实验告诉我们:位移用尺子量(提示学生高精确度该用什么量),质量用天平(鼓励学生思考大物体质量用什么测),速度与加速度可用打点计时器测量,速度还可以用平抛的方式计算,而力的测定不能用弹簧称,因为不稳定,影响实验的准确度……。让学生们想想电学实验板块又能得到些什么呢?

我们还可以把视野再扩大一些,以各种角度重新组合新的实验板块,比如按测量型与验证型可把实验分成两大板块,按能进行图像处理数据和不能用图像处理数据又可以把实验分成两大板块。我们可以提示学生这样划分板块,但把一个具体实验归类于哪个板块,这要学生自已思考,比如说用图像法处理数据,学生们熟悉的是验证牛顿第二定律和测定电源电动势和内电阻的实验,不过画出的图形必须是直线,否则不好处理(验证牛顿第二定律的实验中加速度与质量成反比就是一个典型的例子,坐标轴改为质量的倒数,从而画出的是直线),这给予学生们思考的空间,其实还有许多实验也是可以这样处理的,它们都可以归类于用图像法处理数据,比如用单摆测重力加速度的实验,我们测的是周期T和摆长L,再由公式来计算,书本上采用的是多测几组再求平均值法,现在我们可以以L和T2/4л2为坐标轴,用测得的数据放入描点,画直线求斜率即是g.类似的还有一些,让学生们想想验证玻意耳定律是否也可这样处理。

四、注意可转为实验的习题。

在物理上,许多习题的设计与实验的设计是相通的,它们的区别只是出题的角度不同罢了,让学生们找一找,改一改,必能开窍。比如高一物理(心修本)第一章的课外习题部分,其第11、12、13题(273-274页)就很典型,而第17题(见本文附录)的设计思想更是与物理实验思路产生共鸣,它有效地克服了手拉弹簧称测拉力不准的弊病,事实上不论下面的长木板是匀速还是变速均不会影响弹簧称的

读数。其实物理课本中每一章的课后习题部分都有可探讨之处。几何光学那一章尤其如此。

五、实验也要融会物理思维方式在实验中常用的物理思想方法有等效法、累积法、控制某个变量法、留迹法、图像处理平均值法,这要学生们能够领会,并能在每个实验中找出到底用了什么物理思惟方式。比如在验证动量守恒定律的实验中就用了等效法(用位移代替速度)、累积法(重复打了许多点)、留迹法(用复写纸留下小球落地后的点)等物理思维方法。在实验复习中通过找各实验中的思维方法,能够让这些思维方法深入学生的脑海中,并用于那些可能遇到的探索型高考物理实验题。

物理做为一门建立在实验基础之上的学科,我想若在实验复习上有所突破必对学生整体物理水平的提高有很大的促进作用。当然以上只是我的一家之言,有不妥之处,望同行们指点。

物理现象实验分析论文

物理是一门以观察和实验为基础的学科。在教学中,有意识地引导学生联系生活实际,分析物理现象;利用身边物品,进行物理实验,都能激发学生的学习兴趣,加深学生体会。这里介绍一组与鸡蛋有关的物理现象和实验。

1、液体蒸发吸热

实验:把刚煮熟的蛋从锅内捞起来,直接用手拿时,虽然较烫,但还可以忍受。过一会儿,当蛋壳上的水膜干了后,感到比刚捞上时更烫了。

分析:因为刚捞上来的蛋壳上附着一层水膜,开始时,水膜蒸发吸热,使蛋壳的温度下降,所以并不觉得很烫。经过一段时间,水膜蒸发完毕。由蛋内部传递出的热量使蛋壳的温度重新升高,所以感到更烫手。

2、热胀冷缩的性质

实验:把煮熟捞起的蛋立刻浸入冷水中,待完全冷却后,再捞起剥落。

分析:首先,蛋刚浸入冷水中,蛋壳直接遇冷收缩,而蛋白温度下降不大,收缩也较小,这时主要表现为蛋壳在收缩。其次,由于不同物质热胀冷缩性质的差异性,当整个蛋都完全冷却时,组织疏松的蛋白收缩率比蛋壳大,收缩程度更明显,造成蛋白蛋壳相互脱离,剥蛋壳就更方便了。

3、验证大气压存在

实验:选一只口径略小于鸡蛋的瓶子,在瓶底热上一层沙子。先点燃一团酒精棉投入瓶内,接着把一只去壳鸡蛋的小头端朝下堵住瓶口。火焰熄灭后,蛋被瓶子缓缓“吞”入瓶肚中。

分析:酒精棉燃烧使瓶内气体受热膨胀,部分气体被排出。当蛋堵住瓶口,火焰熄灭后,瓶内气体由于温度下降,压强变小,低于瓶外的大气压。在大气压作用下,有一定弹性的鸡蛋被压入瓶内。

4、浮沉现象

实验:把一只去壳鸡蛋,浸没在一只装有清水的大口径玻璃杯中。松开手后,发现鸡蛋缓缓沉入杯底。捞出鸡蛋往清水中加入食盐,调制成浓度较高的盐溶液。再把鸡蛋浸没在盐溶液中,松开手后,鸡蛋却缓缓上浮。

分析:物体浮沉情况取决于所受的重力和浮力的大小关系。浸没在液体中的物体体积就是它所排开液体的体积,根据阿基米德原理可知物体密度与液体密度的大小关系可以对应表示重力与浮力的大小关系。因为蛋的密度略微比清水的密度大,当蛋浸入清水中时,所受重力大于浮力,所以蛋将下沉。当浸没在盐水中时,由于盐水密度比蛋的密度大,所受的重力小于浮力,所以蛋将上浮。

5、惯性、摩擦阻力现象

实验:选用外形相似的生鸡蛋、熟鸡蛋各一只,放在水平桌面上。用相同的力使它们在原处旋转。能迅速旋转的是熟鸡蛋,缓慢旋转几圈就停止的是生鸡蛋。

分析:生鸡蛋的壳内是液状的蛋清,外力作用在蛋壳上旋转时,蛋清由于惯性,继续保持静止状态,则它与蛋壳间存在摩擦阻力作用,使整个蛋只能缓慢转动。而熟鸡蛋内蛋清已凝固成蛋白,外力作用时旋转时,整个蛋就能迅速转动。

6、物体的稳定平衡

实验:选用一只生鸡蛋,在小头一端开个孔并清除干净壳内的蛋清蛋黄。沿小孔滑入一块重物。以蛋壳的大头端为底部,扶好蛋壳。点燃一只蜡烛,滴入烛油,把重物封存在蛋壳底部。烛油大约封存至整个蛋壳高度的四分之一即可。把制好的蛋壳推倒后,蛋壳能自动立起。制成一个“不倒翁”。

分析:在空蛋壳的底端封存的重物和烛油,使整个蛋体的重心移近蛋壳的底部,重心起低,稳定性越好。当蛋壳倾斜,偏离平衡位置时,使蛋体的重心升高。因为蛋壳底端是球形的,在蛋体的自身重力作用下,蛋体又恢复到原来的平衡位置上。

7、分子运动现象

实验:外壳完好的蛋,埋入食盐中腌制一段时间,可以制成一只咸蛋。虽然蛋壳仍然完好,但连内部的蛋黄都变咸了。

分析:因为物质的分子间存在间隙,而且分子不停地做无规则运动,所以食盐分子扩散到蛋黄中,使蛋黄也变咸。

物理复习要略研究论文

一、正确理解考试说明中的考试目标

根据普通高校对新生科学文化素质的要求,参照教育部颁布的《全日制中学教学大纲》,并考虑中学教学实际,可制定以下四项目标。

1.对自然科学基础知识的理解能力。重视能力和素质的考查是新一轮高考改革的一个特点,虽然在高考中强调了对能力的考查,但自然科学的基本知识仍然是基础。考能力离不开知识的载体作用,离开了知识的积累,能力就无法形成。强调对自然科学基本知识的考查,并不是要求学生死记硬背自然科学的某些专业名词、术语,而是要求学生能够解释和说明所学自然科学基本知识的含义,并能用适当的形式(如文字、图或表)进行表达。

2.设计和完成实验的能力。自然科学是实验性科学,科学概念、原理和规律都是由实验推导和论证的。教学过程中的实验有助于加深学生对自然科学概念、原理和规律的理解,实验能力也是学生将来从事工作研究的基础。自然科学的重要知识常伴有实验是现行高中教材的一个重要特点。

3.能读懂自然科学方面的资料。人们对自然界的各种现象和规律通常是用文字和图表来描述的。与文字相比,图表描述自然科学的研究成果更具有直观形象的特点,因此常被各类科研文章采用,要读懂自然科学方面的资料,能看懂图表所包含的信息,并能从中找出规律是非常重要的。

4.对自然科学基本知识的应用能力。学习自然科学的基本知识仅仅停留在理解上是不够的,还要能在理解的基础上,应用这些知识去指导自然科学的研究社会的生产和人类的生活,必须懂得自然科学知识的实用性和社会价值。

现实中人与自然、社会发生的联系,实际上都是综合性问题,所以整体或综合的思路非常重要。以笔者理解,“X”卷包含的知识点难度并不会比以往的要求更高,但要求全面地考查学生的阅读理解、综合思维、信息处理及表达能力。由此,中学学科教育也不妨受此启发,换换思路,重视知识的梳理和融合,鼓励课堂讨论增加实践机会。

二、打开图书馆、阅览室的“门”,打开学校的“门”

物理教学必须联系实际,在抓基本知识点教学的同时,有意识地联系生活、生产和科研实际,充分利用图书馆、阅览室的资料,组织学生课外阅读,拓宽知识面。开设讲座,讲物理史故事,讲现代科技新成就,如激光的广泛运用,全息照相的妙用,光纤在现代通信中的作用等,既激发学习兴趣,又增强现代意识,提高学生素质。

三、具体做法

第一,整体规划教学,打高考总体仗。对理科总复习,大体上分为三大阶段:(1)用80%左右的时间复习好本学科的知识。物理学科要根据学科的特点进行复习,抓好“必修课”和“选修课”。(2)用20%的时间,理化生三科教师坐在一起探讨,哪些可以作为切入点,分工合作,编写一些有一定综合性(2科、3科)的练习卷。(3)考前留有一定时间对学生进行考试心理训练教给他们一些应试技巧。

第二,讲练并重,精讲精练。要坚持讲解与练习有机结合的原则,既不能“以讲代练”,也不能“以练代讲”“精讲精练”,使学生能触类旁通、举一反三。

讲:针对性要强,除重点、关键外,侧重讲单元练习方法和应注意的问题。注意知识的综合交叉,突出能力的培养,培育应变能力。

练:以定时作业为主要形式,让学生在解题的能力、速度等方面适应高考的要求。

评:教师讲评练应突出重点,重在指导。不是重复重演一遍,不能以题论题。在讲课中,要注意知识的纵横联系和加大覆盖面的教材组织,努力达到举一反三灵活运用的目的,同时要突出规范表达的训练指导。

第三,组织专题讲座,进行学法、解法指导。在整个复习过程中,要求学生:(1)读书。在教师的指导下有重点地读书;读自己认为的缺漏部分;读高考说明》。(2)总结。自我归纳总结,及时反馈及时纠错,在心理方面为高考做准备。总结解题经验,探索解题规律,养成良好习惯,提高审题能力和综合分析解决问题的能力。

乡镇初中物理实验论文

1教师教学理念陈旧,教学方法僵化

任课教师有的满堂灌,有的满堂练,有的满堂问,单纯追求课堂气氛———假热烈,给人的印象视乎在表演作秀,没有体现学生的主体地位,忽视学生的学习兴趣培养.有的演示实验效果不明显,或没有结果,现象看不到,没有说服力.比如水沸腾实验,明明水还没有沸腾,教师就让学生站起立即说水在沸腾时有什么现象,教学效果可想而知.有的教师过分依赖仿真实验或者实验视频,一年做不了几个实验,经常利用电脑仿真代替演示学生实验,学生就没有经历动手动脑做实验的经历和体会.

2实验器材不足,有些实验没有条件做

有的学校多年不添置仪器耗材,实验器材数量明显不足,比如某校马德堡半球实验只有一套器材,平行班级有八个班,只能等一个班上完以后下一位教师才能使用,影响教学进度.有些学校在经费使用上也不愿意给实验教学上花费更多的钱财,几年甚至十几年也不添置器材,实验仪器匮乏.有的学校实验室器材虽然很多,但器材的型号数量配备很不合理,有的过多有的又太少,如某校弹簧秤量程为0~50N的数量多达100个,而量程为0~5N、0~10N的弹簧秤总共只有30个,给教学工作带来很多不便;有的学校在购置实验器材时不听取专业教师的意见和建议,领导拍脑袋想购啥器材就买回来,有的器材对初中物理实验用处不大,如适合高中教学用的有交流输出的学生电源在初中使用的时机很少.

3有些教师实验教学能力有限

可以说这是制约实验教学质量难以提高的关键,困扰着广大教师,其中存在的问题最多,也是需要我们特别引起重视的地方;比如有些演示实验操作不规范,甚至有些是错误的,有些学生实验教师不能很好地指导,发给学生实验器材后让学生自己乱动,学生想怎么用就怎么用,实验器材当成玩具,比如有的学生把砝码浸入盐水中,用量筒给水加热等,仪器损坏现象时有发生,课堂教学秩序混乱,实验效果明显降低;有些上课用语不规范,比如把溢水杯叫水桶,把烧杯叫玻璃杯,把导线叫电线等.有的教师不清楚滑动变阻器、电阻箱及电位器的适用条件,不分电路情况和实验精确度的要求任意使用,给学生一个错误的信息;有的教师不知道学生电源稳压和直流输出的特性,给学生讲在任何电路情况下可以随便使用没有区别,混淆视听.有的老师在讲授布朗运动和扩散时让学生在显微镜下观察悬浮花粉微粒或在无风情形观察空气中的烟粒、尘埃都会看到微粒的运动,墨汁撒在水中会迅速扩散,并且温度越高,运动越激烈,扩散也越快,于是老师解释到我们学生看到的微小花粉或烟粒是它们的分子在做无规则运动,墨汁扩散也是因为墨汁分子在运动等等,当解释到花粉微粒为啥会在某时刻瞬间不动时是由于水分子静止不动,试想水分子怎么能在某时刻静止不动呢?把布朗运动与扩散现象说成是同一种现象;凡此种种漏洞百出的解释都是老师没有吃透教材出现的错误;还有个别教师实验课后不打扫卫生,不整理清洗器材,不爱护公共财物,实验过程中浪费现象严重,对学生不进行良好实验品格的培养,态度情感价值观教育缺失;不重视总结得失,课后没有反思,不写实验报告、作业批改不认真.

4实验器材保管使用不当管理混乱

有些砝码生锈影响测量结果,有些开关,滑动变阻器接触不良导致电路不通,有些电池电量不足影响实验效果,有些砝码不用镊子取用而用手拿取,天平上的游码不用镊子拨动,也是用手直接滑动,有些电流表、电压表接线柱螺丝松动接触不良,实验时电路虽然连接正确但是电流表电压表指针不动,学生会认为电路错误,造成误解.有的实验室管理员非专业人员,又不经过培训对物理仪器不懂,张冠李戴,经常发生仪器搭配不正确现象,仪器摆放不规范,制度不健全,没有器材更新更换计划,不重视实验室建设,学校买啥仪器就保管啥仪器,充其量就是一个保管员的角色,没有报损赔偿制度管理混乱;有的实验室管理人员由物理教师兼职,教学任务重无暇顾及实验室工作,有的教师不愿意承担实验室工作,认为学校对实验室人员划入后勤服务人员,在评职称评先进绩效考核等方面低人一等;有的实验室装备精良,先进仪器高端,仪器价值成本较高,装饰豪华成了应付检查和学校装饰门面的工具,长期不使用,或使用率不高,不打扫卫生仪器器材上面灰尘一层,白白浪费了很多财政资金.

5缺少必要的教学挂图

有些当年很好很实用的教学挂图,由于经常使用,存在破损现象,没有及时修理或更换,教学的直观性打了折扣.比如船闸教学活动挂图,在长期使用后,闸室闸门损坏,如果能及时修理或更换新挂图,配上多媒体动画,教学效果会更好.有的学校近几年购置的教学挂图、图片、光盘都很少,课堂上老师可选用的教具数量少种类单一.

6没有充分利用好多媒体教学

有些课件与教学内容联系不十分紧密,或者课件表达的意思不明显,对学生知识的生成意义不大,有些课件或视频资料突出趣味性,知识性不足,忽视对学生知识的传授,顾此失彼.有的老师课件多少年都一成不变,不修改也不增加丰富新的内容,没有时代气息,很不适应现代学生的认知理解能力,课堂没有吸引力.有些老师上课只会演示课件,课堂俨然变成了课件展示会,离开课件就束手无策不会上课.

7教师自制教具能力弱

部分教师不能根据学情、校情独立制作教学用具,只会使用现有的教学用具,不会开发利用周围资源制作适合学生实际情况的教学用具.开发创新能力较弱,很难辅导学生的课外手工制作,对于学校或上级举办的手工制作大赛也是疲于应付,不能保证工作质量.

8课外实践活动开展不正常

学校不重视课外实践活动,学生外出参观学习机会很少.物理源自生活又应用于生活,理论知识必须与生产劳动想结合,比如在学习水能利用时,可以组织学生就近参观水电站发电设备,聘请工作人员讲解发电流程工作原理,学习汽油机柴油机时,有些老师很少组织学生去汽修厂参观,学生只能在课堂上看到汽油机柴油机模型,缺乏真实感.

9学校缺乏对学生的科技小制作小发明创作活动的重视

学生课后第二课堂活动缺乏吸引力,有些活动开展流于形式,做表面文章,只是为了应付学校或上级检查,活动课没有实效.总之,农村乡镇初中由于条件的限制,在实验课教学方面还有许多方面需要改进,还需要每位教师不懈的努力,继续加强学校管理,细化责任,改进教法学法,实验教学就会有改观。

物理学研究论文

摘要:对经典力学范围内现行的惯性观提出了不同的看法,认为对于惯性要区分:个别研究对象的性质与存在的性质;保持某种状态的性质与改变某种状态的性质;物理学规律的动力学特性与审美性。

关键词:惯性;存在;时间;空间

惯性是经典力学中的一个基本概念,同时它又是人们日常生活中的一个基础性观念,并且惯性问题也是经常被物理学界讨论的一个话题(1)。可是,尽管经典力学经过了漫长的发展时期,大部分的物理教师在此问题上还存在着很多的混乱性(2),本文试从几个方面对惯性进行了讨论,望引起大家的共识。

一、惯性的意义

大家知道,惯性是物体保持静止状态或匀速直线运动状态的性质(3)。一个物体,只要不受外力作用,原来静止的就会一直静止下去,而原来运动的则会一直作匀速直线运动。这里的问题在于:惯性是否是物体的性质?依据牛顿第一运动定律,任何物体均具有惯性。因而,看来惯性不是被研究物体的性质,因为这一性质是一切物体所具有的,也就是说它与物体的个别特征无关。因而,惯性只能是存在的一个特征,是被研究对象周围的环境在此对象上的表现。换一句话说,它是存在于物体周围的一种条件,一种约束。

二十世纪初,德国数学家诺特尔(4)证明了:空间平移对称性导致动量守恒、空间转动对称性导致角动量守恒、而时间均匀性导致能量守恒。事实上,物体的惯性是时间均匀性与空间对称性的必然结果。因而它与个别的特殊研究对象无关。惯性不是个别存在物的性质,个别存在物只是惯性的显现者,惯性的本质与个别存在物的特性无关。从而我们就不能用反映个别存在物性质的量(例如质量)来测度惯性。因为惯性作为存在的一种显现,并无大小可言,它只是存在之状态的表达。

二、惯性与物体运动状态变化的难易程度无关

通常认为质量是物体惯性大小的量度是据于这样的理由:质量大的物体在相同的力作用下其运动状态不容易改变。这是由牛顿第二定律所得到的基本结论。而事实上物体运动状态是否变化,物体运动状态的变化是难还是容易是与惯性无关的。惯性所揭示出的物体之性质不在于其使(或抗拒)物体运动状态的改变或代表改变的难易程度的能力,而在于它的保持某种特定状态(静止或匀速直线运动)的本领:在最相似的物之间,错觉说着最巧妙的谎;最小的罅隙是最难度(5)。因而惯性与物体的质量无关。倘若惯性与物体的质量有关的话,则我们也可以说力与惯性也有关系。因为对于相同质量的物体而言,力越小其运动状态就越难改变。因而,也即力越小物体的惯性越大。事实上,在惯性概念发展的最初时期,牛顿就将惯性与力进行等价的思考,当然现在大家知道牛顿的把惯性等同于力的思想是错的了。如果要说质量与惯性确有联系的话,作者以为也只能从这样的一个视角来看:惯性是由其表现物体周围存在着的与时空有关的天体质量分布情况决定着的性质。这是因为,根据广义相对论,空间的性质是由天体质量的分布所决定的。至于时间,自从奥古斯丁(6)提出“什么是时间?”以来,人们还没有认清它的真面目,也因而从更深的层次上而言,人们只认识到什么是惯性而还没有搞清惯性是什么。

惯性不是一种由个别物体自身所具备的原因(诚然,所有物体均会表现出惯性),它不是我们的一种吃力的、需要支撑的、痛苦感的反映,事实上,它是存在之美感的绽开。因而“惯性是物体对任何改变其运动状态的外来作用的阻抗的性质”(7)这样一种说法就是不当的。因为这一注释还是从对牛顿第二定律的基本分析而来的,在这一注释中已经隐藏了牛顿第二定律及对惯性与物体质量等价的认同感。其实,惯性是一种令人十分安全的、舒适的、和谐的存在之性质,它使物体的存在行为非常简单,而人们也往往由于常见到这种存在的简单性而忽视了它的深层含义。静止的永远静止,运动的永远作匀速直线运动,惯性就是将存在如此单调而重复地显现在人们眼前。凡是背离了这两种物体的存在情况而用惯性去解释其存在原因的,作者以为均属一种不当的诡辩行为。可是这种诡辩行为不仅麻木了人的脑神经而且充斥着各种各样的教科书(8),我们来看一些下面的例子。

例1.惯性也有不利的一面,高速行驶的车辆因惯性而不能及时制动常造成交通事故。所以,在城市的市区,对机动车的车速都有一定的限制,以利于行车安全。(9)

在这里,不能及时制动是由于惯性还是由于制动力不够大?略作思考,读者就可判断出是由于后者。将惯性看成一种破坏力是十分荒唐的。而发生交通事故的真正原因是,由于车辆质量较大,而相应的制动力在如此质量的物体上所产生的加速度很小,不能使车辆很快地减速,从而在短时间内停下来。倘若对于质量较大的车辆来说制动力也允许更大,那么作者认为还是可以在一定的时间内制动车辆的。

并且,这个例子中的“高速行驶的车辆”及“对机动车的车速都有一定的限制”的字句很容易使学生认为惯性和物体的运动速度有关。这对于初学者来说是一个很大的误导。

例2.把斧柄的一端在水泥地面上撞击几下,斧头就牢牢地套在斧柄上了,这是什么缘故呢?(10)

通常标准答案是这样的:开始斧头和斧柄同时向下运动,当斧柄遇到障碍物时突然停止,而斧头由于惯性保持原来的运动状态,这样斧头就牢牢地套在斧柄上了。

事实上,斧头在斧柄上套牢是由于斧头克服了阻力相对于斧柄运动了一段位移,而惯性不是克服某种阻力使斧头运动的原因。在此问题中的一个效果是斧头相对于斧柄产生了某种(克服一定力的)运动,因而我们必须以斧柄为参照系来考察此种运动的实质。当以斧柄为参照时,实际上斧柄在撞击的过程中是一个非惯性系,它相对于惯性系有一个向上的加速度。因而斧头在此参照系中必受到一个向下的“惯性力”,正是此力与斧头的重力克服了斧头与斧柄之间的弹力与摩擦阻力使斧头相对于斧柄前进了一段位移,从而使斧头在斧柄上套牢。如果一定要以地面为参照系来看斧头在斧柄上套牢的问题,那么可以这样认为:虽然斧头在斧柄上向下套牢的过程中没有受到除重力以外的向下的另外力,但相对于地面而言斧头具有一定的动能和重力势能,正是这个能量克服了阻力作功从而转化为内能。所以从效果上看,一是斧头相对于斧柄向下移动了一段位移,二是斧头与斧柄的接触面上在发热。

如果仅从动力学的角度来看,斧头在斧柄上套得牢不牢是由其受到的作用力大小与作

用时间(或所通过的位移)所共同决定的,也就是说它和斧头相对于斧柄的动能或动量变化有关。斧柄在“水泥地面”上“撞击”这两个条件只是使斧柄产生了相对于水泥地面的较大的动量变化率,从而也使斧头具有了相对于斧柄的惯性力。但是,虽然这个惯性力构成了斧头套牢在斧柄上的直接原因,可严格地说,斧头在斧柄上套得牢不牢的原因还和斧头的重力及斧柄的弹性和斧头与斧柄的摩擦力大小均有关系。并且斧头在斧柄上套得牢不牢和作用时间也大有关系,因而,撞击“几下”也是一个非常重要的条件。

例3.小车上竖直放置一个木块,让木块随小车沿着桌面向右运动,当小车被档板制动时,车上的木块向右倾倒。这是怎么回事呢?(11)

教科书上的答案是这样的:小车突然停止的时候,由于木块和小车之间的摩擦,木块的底部也随着停止,可是木块的上部由于惯性要保持原来的运动状态,所以木块向右倾倒。

事实上,本例中小车上木块的倾倒是由于力矩作用的缘故。若以地面为参照物,小车对木块的摩擦力对木块的重心而言有一个顺时针旋转的力矩,从而木块向右倾倒。若以小车为参照物,小车被档板制动时已是一个非惯性系,作用在木块(重心)上的“惯性力”对木块的底端也产生一个使木块作顺时针旋转的力矩。

需要指出的是,在上述例2和例3中,斧头在斧柄上套牢和木块在小车上倾倒已是一个涉及物体在非惯性系中的动力学的问题。其中例2是非惯性系中的质点动力学问题,而例3则是非惯性系中的刚体动力学问题。可是,在非惯性系中,我们通常意义上所论述的牛顿第一定律已不成立,从而也失去了此两例的代表意义。也就是说,这两个例子不仅是不准确的解释而且是不适当的例子。在涉及惯性的问题上我们必须分别那些是属于惯性现象,而那些则不属于惯性现象——即为动力学现象。牛顿的例子,毫无疑问是正确的(12),但我们许多的物理学工作者却将惯性对事物的解释范围作了相当随意而并不恰当的扩展或扭曲。其实在讲述惯性时,用不着举更新鲜的特别例子,倒是需指出惯性使我们对事物常态的存在方式太熟视无睹了。这里问题的关键在于,惯性不是使物体改变运动状态(使火车制动、使斧头套牢在斧柄上、使小木块倾倒)的原因。严格地说,这些原因和物体的惯性无关,只和力有关,而至于火车制动得及时不及时,斧头套在斧柄上牢不牢,小木块倾倒得快不快,则不仅与力有关,还和物体的质量、形体、初速度有关。但即使如此地与质量和初速有关却也与惯性无关。

惯性,这个我们通常认为是由物体内在因素决定的性质,其实是物体存在方式的一种条件性:“试取汽车为参考系统来研究‘当汽车急剧刹车的时候,车中乘客有向前倾倒的倾向’这个问题,在汽车急剧刹车前,相对于汽车而言,乘客是静止的,在汽车急剧刹车时,乘客突然向前倾,这就是说,以汽车为参考系统,乘客由静止而突然向前倾,并不保持其静止状态,并不表现出惯性”(13)。这个条件就是:物体要表现出惯性,它必须处于惯性参考系中。而“事物的存在顽强地延续维持不变,无论运动是快是慢抑或停止。”(14)也只在惯性系中才成立。在研究物体的运动学与动力学问题时,惯性系总有着特殊的地位。可是,这个特殊地位的存在并不单单是人类抽象理性的功劳,并不是人类贪懒和间集化的一个报应,惯性系的存在有其形而上的基础:自然之美的呈现及人对自然之美呈现体认的同一性。如果没有了存在的时间均匀性与空间对称性,我们选取的相对于地面作匀速直线运动的参考系对研究动力学问题而言也就将成为一个畸形的怪胎。惯性系不仅在计算上向人类提供了联系物体的相互作用与相对运动的便利方式,其更根本的是它使人与存在的关系成为审美性的。惯性定律给我们的启示是:存在是美的。而惯性系则是自然对人的一个馈赠。也因而,我们应当从审美的视角来看待惯性,而不应当将它看成一个恶魔或一件便宜货。

所有的老师都要求学生不要把惯性与惯性定律混为一谈,可是当我们的老师用动力学的观点来看待惯性——也就是说,把惯性与牛顿第二定律混为一谈的时候,对学生的这一期望是合适的吗?其实这是一个误区:当教完一些物理学的基本概念与规律以后,就要求学生用它们解释自然现象。事实上,物理学中有些基本概念与规律不是要求我们去解释自然现象,它没有这个功能,它只是告诉我们要去感受些什么,它提供给我们的不是一种推理的方式,而是一个判断的原则:它促成我们的判断更接近于自然之美的呈现。

三、惯性定律与牛顿第二定律的关系

当物体所受的合外力为零时,从牛顿第二定律可知物体处于静止状态或作匀速直线运动。可是,仅依据这一点却不能认为牛顿第一定律是牛顿第二定律的一个特例。因为这两个定律的论述对象其实是不一样的。牛顿第二定律的研究对象是一个物体,而牛顿第一定律论述的是整个存在的性质。惯性——这个任何物体均具有的性质其实不是我们的个别研究对象所具有的性质,因为这个“任何物体”,包括了天地间的万物,而万物的总称(15)即是宇宙:“四方上下曰宇,古往今来曰宙”.也即任何个别的物体都不可能无条件地具有惯性:惯性是存在的特性,是存在着的时空的特性,是宇宙的特性。

其次,牛顿第二定律是关于个别物体因果性的规律,而牛顿第一定律却与个别物体的因果性无关,它是存在之状态的表述,它的表述是与具体的特定的时间无关的、瞬时性的。正是这种非时间性(16)构成了牛顿力学的本质特征。也正是牛顿第一定律所成立的时间均匀性与空间对称性构成了惯性系的特殊地位,从而使我们可以在牛顿第二定律的意义上来研究物体的动力学关系。因为毫无疑问,物体的运动性质和规律与采用怎样的空间和时间来度量有着密切的关系(17)。由此可见,不仅牛顿第一定律不是牛顿第二定律和特例,恰恰相反,现行的动力学规律正是牛顿第一定律所揭示的存在之性在具体的个体事物上的展现。惯性定律比牛顿第二定律具有更强的基础性。也就是说,正是惯性现象,构成了牛顿动力学所以成立的操作平台。由于物体在不受外力作用下保持其速度不变,因而物体运动速度的变化才跟物体的受力相关。

最后,牛顿把惯性定律放在三个运动定律的首位也是与其对自然的信仰因素有关的。因为在文艺复兴之前的绝大部分思想家继承了亚里士多德关于物体运动内在决定论的观点。但在牛顿看来,基本的物质粒子

完全是惰性的,没有任何自发的运动,而电、磁、光这些‘非物质’的力量则成为神在自然中的行动的载体(18)。也就是说,惯性定律内隐含着牛顿否定亚里士多德运动观的内在目的论从而建立新力学的形而上基础。

四、惯性与具体物体的质量无关

从上面的讨论可以看出:“质量是物体惯性大小的量度”这个论题,在几个角度去看都是错误的。第一,质量不是物体惯性大小的量度。个别研究对象的质量与其所揭示的惯性毫无关联。因为这两者从数量上来看是一对无穷大的关系,从内容上来看是个体与存在的关系,在它们之间,人类的理性不可能找到逻辑上的因果链。第二,“物体(的)惯性”这样的说法缺乏依据,因为惯性不是物体的性质。物体只是作为惯性的表现者而存在的。第三,“惯性(的)大小”这样的说法也缺乏依据,因为惯性没有大小,惯性只是存在的一种表达方式,一种特定状态的显现。第四,既然惯性并无大小,我们也不可去进行量度,事实上,任何一本教科书上也没有指出惯性与质量的函数关系,因为这一函数关系并不存在,它只是人们的一个虚假的逻辑推测,谁也不能证明质量与惯性成正比或不成正比,更不能得出它们之间的比例系数,因为这些关系均是虚假的。因而,物理学界流传的物体的惯性等于它的质量(19)只是人们一个随心所欲的错误言说。

由于物体质量与惯性无关,所以,将牛顿第二定律中的质量称为惯性质量就是不当的,质量的确对物体运动状态的改变有一种象力一样的阻抗作用,质量在改变物体运动的状态上而言似乎有一种“消解”、“抗拒”力的性质。因而作者认为可将现行的“惯性质量”改称为物体的“抗性质量”。正如牛顿所说:“物体只有当有其他力作用于它,或者要改变它的状态时,才会产生这种力。这种力的作用既可以看做是抵抗力,也可以看做是推斥力。(20)”因为质量与物体运动状态的变化快慢有关,它事实上具有动力学特征,当一个物体的质量大时,它对运动状态改变的阻抗能力就越大。

从逻辑上而言,我们只有将惯性从物质的内在因素中解除出来,才能完全地克服牛顿时代的机械论自然观与牛顿第一运动定律之间存在着的深刻矛盾。也就是说,这样才能使牛顿第一定律恰如其分地建立在由文艺复兴所形成的机械论而不是亚里士多德的目的论的形而上学基础之上。

五、惯性定律的表述方式

牛顿第一定律是动力学定律的基础,但它本身并不表征物体的某种动力学性质,它是关于人类体认自然之美、自然之和谐的陈述。据于上面的论述,对牛顿第一定律的陈述方式作以下的要求是并不过分的:反映时间的均匀性,空间的对称性,及自然之美对人的呈现。可是,现行的许多教科书中对牛顿第一定律的陈述是很不一致的。当然,这种不一致性用老眼光来看是无伤大雅的,但以今天的眼光来看,这种差异性就成为值得商讨的了。

例如:一个物体,如果没有受到其他物体的作用,它就保持自己的静止状态或匀速直线运动状态(21)。这样的陈述可能离惯性定律的本义较远,因为这一陈述的方式是在动力学的维度上来进行的,陈述的对象是“一个物体”。这和牛顿第二定律的研究对象是一致的,这样方式的陈述毫无疑问地可以把惯性定律认为是牛顿第二定律的一个特例,因为“如果没有”这几个字就表达了陈述事件的某种特殊性。

另外一种常见的陈述方式是:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。(22)这样一种表述比前一种完整多了,它几乎就是牛顿的原义,但这里的“一切物体”应当换成“任何物体”(23)。因为在此论述中的“任何物体”实际上是对一切物体的否定,而“有外力”应当换成“其它物体的作用”,因为惯性定律是不涉及力的,操作意义上的力这个动力学的基本概念与惯性无关。

作者试着这样来陈述惯性定律:存在着的宇宙有这样一种性质,它使任何物体在没有受到其它物体作用的时候总保持静止状态或匀速直线运动状态。或许,这样的一种陈述方式是较明晰的陈述方式,它强调了惯性与惯性的表现者(个别研究对象)的严格区分,这个陈述的主语是性质,这样的陈述才可称为关于“惯性”的定律。而我们也应当将惯性定义为:使物体保持静止或匀速直线运动状态的性质。

六、人们误解惯性的来源

人们在惯性问题上所犯的错误认识,既来源于历史上人们对于和惯性概念相联结的力与物体运动关系的一贯表达方式,又来源于牛顿的表述与对于牛顿力学理解上的偏差。“事实上,牛顿似乎注定要被人误解”。(24)

在牛顿所陈述的第一定律中:(25)“每个物体都保持其静止、或匀速直线运动的状态,除非有外力作用于它迫使它改变那个状态(Everybodypersistsit’sstateofrestorofuniformmotioninastraightlineuntilitiscompelledbysomeforcetochangethatstate.)”。牛顿对“除非有外力作用于它迫使它”作出了对应的理解,即认为保持其静止或匀速直线运动状态的物体是由内部原因的,这个内部原因即称为惯性:“visinsita,或物质固有的力,是一种起抵抗作用的力,它存在于每一个物体当中,大小与该物体相当,并使之保持其现有的状态,或是静止,或是匀速直线运动”。(26)在牛顿时代,作出这样的判断是无可厚非的:“一个物体,由于其物质的惰性(现称惯性——译者注),要改变它的静止或运动状态就极其不易。因此这种固有的力可以用一个最确切的名称‘惯性’或‘惰性力’来称它。”(27)因为在牛顿时代是无法判定惯性的本质的。从牛顿的这一段话我们大致可以判断出,他几乎是在第二定律的意义上来领会惯性的,因而他才认为(惯性)大小与该物体的运动和质量有关。

这一观点可以追踪到亚里士多德,它影响了包括牛顿在内的一大批科学家的思维方式。在牛顿之前的开普勒也就惯性说过(29):“如果天体不赋有类似于重量的惯性,要使它运动就不需要力,最小的动力就足以使它有无限的速度,但由于天体公转需要用一定的时间,有的长些,有的短些,因此非常明显,物质必须具有能说明这些差别的惯性”;“惯性,或对运动的阻力是物质的一种特性,在给定的体积中,物质的量愈多,惯性愈强。”由此我们也可见,在开普勒那里已经有惯性等同于力与质量的观点了。

从上面的论述可以看出,人们对于惯性的错误理解主要是由历史原因所造成的,这个原因主要在于:人们普遍地认为事物外在的状态是有其内在原因的。当人们

在物体之外找不到令人信服的可感觉的原因的时候,就只能把它归因于物体的内部。牛顿将惯性归因于物体的内部,把惯性看成阻碍物体改变其静止或匀速直线运动状况的内力,他假设的惯性非常接近布里丹的冲力——即:惯性作为一个内力,在缺乏外部动力或阻力时,会引起无定限的直线运动(30),另一方面,牛顿的惯性观又来自于他对古希腊关于自然具有灵魂观念的继承,我们可以从他的著作中强烈地感到,他具有自然界的物体与人一样会在受到作用时产生反作用这样一种强烈的思想意向。显然,在现代人看来,自然界的物体是与人具有本质区别的。

在牛顿以后,欧拉则将牛顿关于visinsita的比较隐晦的注释作了同牛顿之前的有些科学家的直感一样的有一定危险性的表白:“惯性是物体保持静止或保持匀速直线运动的能力.....惯性的大小与质量成正比例。”(31)可是现在看来,这种危险性中是带有错误的。从那以后到现在,人们对于惯性的理解基本上是庸俗性质的。随着现代物理学的发展,特别是诺特尔之后,我们可以认识到使物体保持静止状态或匀速直线运动状态的原因并不在物体的内部、也跟力无关,而是由于物体所处的时间均匀性与空间对称性。也就是说,我们必须对牛顿意义上的惯性作出更开放性与发展性的理解,牛顿的visinsita(惯性是一个消极的本原,靠此本原物体维持它们的运动或静止,按照作用力的大小接受运动,按照受到阻力的大小抵制运动。(32))可以深入为两个层面的结论:在没有外力的作用下,一个物体,它能保持静止状态或匀速直线运动是由于惯性,即时间均匀性与空间对称性;在同样大小的力的作用下,一个物体它的运动状态较难改变是由于它的动力学特性——抗性,即它的质量较大。

物理学研究论文

摘要:对经典力学范围内现行的惯性观提出了不同的看法,认为对于惯性要区分:个别研究对象的性质与存在的性质;保持某种状态的性质与改变某种状态的性质;物理学规律的动力学特性与审美性。

关键词:惯性;存在;时间;空间

惯性是经典力学中的一个基本概念,同时它又是人们日常生活中的一个基础性观念,并且惯性问题也是经常被物理学界讨论的一个话题(1)。可是,尽管经典力学经过了漫长的发展时期,大部分的物理教师在此问题上还存在着很多的混乱性(2),本文试从几个方面对惯性进行了讨论,望引起大家的共识。

一、惯性的意义

大家知道,惯性是物体保持静止状态或匀速直线运动状态的性质(3)。一个物体,只要不受外力作用,原来静止的就会一直静止下去,而原来运动的则会一直作匀速直线运动。这里的问题在于:惯性是否是物体的性质?依据牛顿第一运动定律,任何物体均具有惯性。因而,看来惯性不是被研究物体的性质,因为这一性质是一切物体所具有的,也就是说它与物体的个别特征无关。因而,惯性只能是存在的一个特征,是被研究对象周围的环境在此对象上的表现。换一句话说,它是存在于物体周围的一种条件,一种约束。

二十世纪初,德国数学家诺特尔(4)证明了:空间平移对称性导致动量守恒、空间转动对称性导致角动量守恒、而时间均匀性导致能量守恒。事实上,物体的惯性是时间均匀性与空间对称性的必然结果。因而它与个别的特殊研究对象无关。惯性不是个别存在物的性质,个别存在物只是惯性的显现者,惯性的本质与个别存在物的特性无关。从而我们就不能用反映个别存在物性质的量(例如质量)来测度惯性。因为惯性作为存在的一种显现,并无大小可言,它只是存在之状态的表达。

二、惯性与物体运动状态变化的难易程度无关

通常认为质量是物体惯性大小的量度是据于这样的理由:质量大的物体在相同的力作用下其运动状态不容易改变。这是由牛顿第二定律所得到的基本结论。而事实上物体运动状态是否变化,物体运动状态的变化是难还是容易是与惯性无关的。惯性所揭示出的物体之性质不在于其使(或抗拒)物体运动状态的改变或代表改变的难易程度的能力,而在于它的保持某种特定状态(静止或匀速直线运动)的本领:在最相似的物之间,错觉说着最巧妙的谎;最小的罅隙是最难度(5)。因而惯性与物体的质量无关。倘若惯性与物体的质量有关的话,则我们也可以说力与惯性也有关系。因为对于相同质量的物体而言,力越小其运动状态就越难改变。因而,也即力越小物体的惯性越大。事实上,在惯性概念发展的最初时期,牛顿就将惯性与力进行等价的思考,当然现在大家知道牛顿的把惯性等同于力的思想是错的了。如果要说质量与惯性确有联系的话,作者以为也只能从这样的一个视角来看:惯性是由其表现物体周围存在着的与时空有关的天体质量分布情况决定着的性质。这是因为,根据广义相对论,空间的性质是由天体质量的分布所决定的。至于时间,自从奥古斯丁(6)提出“什么是时间?”以来,人们还没有认清它的真面目,也因而从更深的层次上而言,人们只认识到什么是惯性而还没有搞清惯性是什么。

惯性不是一种由个别物体自身所具备的原因(诚然,所有物体均会表现出惯性),它不是我们的一种吃力的、需要支撑的、痛苦感的反映,事实上,它是存在之美感的绽开。因而“惯性是物体对任何改变其运动状态的外来作用的阻抗的性质”(7)这样一种说法就是不当的。因为这一注释还是从对牛顿第二定律的基本分析而来的,在这一注释中已经隐藏了牛顿第二定律及对惯性与物体质量等价的认同感。其实,惯性是一种令人十分安全的、舒适的、和谐的存在之性质,它使物体的存在行为非常简单,而人们也往往由于常见到这种存在的简单性而忽视了它的深层含义。静止的永远静止,运动的永远作匀速直线运动,惯性就是将存在如此单调而重复地显现在人们眼前。凡是背离了这两种物体的存在情况而用惯性去解释其存在原因的,作者以为均属一种不当的诡辩行为。可是这种诡辩行为不仅麻木了人的脑神经而且充斥着各种各样的教科书(8),我们来看一些下面的例子。

例1.惯性也有不利的一面,高速行驶的车辆因惯性而不能及时制动常造成交通事故。所以,在城市的市区,对机动车的车速都有一定的限制,以利于行车安全。(9)

在这里,不能及时制动是由于惯性还是由于制动力不够大?略作思考,读者就可判断出是由于后者。将惯性看成一种破坏力是十分荒唐的。而发生交通事故的真正原因是,由于车辆质量较大,而相应的制动力在如此质量的物体上所产生的加速度很小,不能使车辆很快地减速,从而在短时间内停下来。倘若对于质量较大的车辆来说制动力也允许更大,那么作者认为还是可以在一定的时间内制动车辆的。

并且,这个例子中的“高速行驶的车辆”及“对机动车的车速都有一定的限制”的字句很容易使学生认为惯性和物体的运动速度有关。这对于初学者来说是一个很大的误导。

例2.把斧柄的一端在水泥地面上撞击几下,斧头就牢牢地套在斧柄上了,这是什么缘故呢?(10)

通常标准答案是这样的:开始斧头和斧柄同时向下运动,当斧柄遇到障碍物时突然停止,而斧头由于惯性保持原来的运动状态,这样斧头就牢牢地套在斧柄上了。

事实上,斧头在斧柄上套牢是由于斧头克服了阻力相对于斧柄运动了一段位移,而惯性不是克服某种阻力使斧头运动的原因。在此问题中的一个效果是斧头相对于斧柄产生了某种(克服一定力的)运动,因而我们必须以斧柄为参照系来考察此种运动的实质。当以斧柄为参照时,实际上斧柄在撞击的过程中是一个非惯性系,它相对于惯性系有一个向上的加速度。因而斧头在此参照系中必受到一个向下的“惯性力”,正是此力与斧头的重力克服了斧头与斧柄之间的弹力与摩擦阻力使斧头相对于斧柄前进了一段位移,从而使斧头在斧柄上套牢。如果一定要以地面为参照系来看斧头在斧柄上套牢的问题,那么可以这样认为:虽然斧头在斧柄上向下套牢的过程中没有受到除重力以外的向下的另外力,但相对于地面而言斧头具有一定的动能和重力势能,正是这个能量克服了阻力作功从而转化为内能。所以从效果上看,一是斧头相对于斧柄向下移动了一段位移,二是斧头与斧柄的接触面上在发热。

如果仅从动力学的角度来看,斧头在斧柄上套得牢不牢是由其受到的作用力大小与作

用时间(或所通过的位移)所共同决定的,也就是说它和斧头相对于斧柄的动能或动量变化有关。斧柄在“水泥地面”上“撞击”这两个条件只是使斧柄产生了相对于水泥地面的较大的动量变化率,从而也使斧头具有了相对于斧柄的惯性力。但是,虽然这个惯性力构成了斧头套牢在斧柄上的直接原因,可严格地说,斧头在斧柄上套得牢不牢的原因还和斧头的重力及斧柄的弹性和斧头与斧柄的摩擦力大小均有关系。并且斧头在斧柄上套得牢不牢和作用时间也大有关系,因而,撞击“几下”也是一个非常重要的条件。

例3.小车上竖直放置一个木块,让木块随小车沿着桌面向右运动,当小车被档板制动时,车上的木块向右倾倒。这是怎么回事呢?(11)

教科书上的答案是这样的:小车突然停止的时候,由于木块和小车之间的摩擦,木块的底部也随着停止,可是木块的上部由于惯性要保持原来的运动状态,所以木块向右倾倒。

事实上,本例中小车上木块的倾倒是由于力矩作用的缘故。若以地面为参照物,小车对木块的摩擦力对木块的重心而言有一个顺时针旋转的力矩,从而木块向右倾倒。若以小车为参照物,小车被档板制动时已是一个非惯性系,作用在木块(重心)上的“惯性力”对木块的底端也产生一个使木块作顺时针旋转的力矩。

需要指出的是,在上述例2和例3中,斧头在斧柄上套牢和木块在小车上倾倒已是一个涉及物体在非惯性系中的动力学的问题。其中例2是非惯性系中的质点动力学问题,而例3则是非惯性系中的刚体动力学问题。可是,在非惯性系中,我们通常意义上所论述的牛顿第一定律已不成立,从而也失去了此两例的代表意义。也就是说,这两个例子不仅是不准确的解释而且是不适当的例子。在涉及惯性的问题上我们必须分别那些是属于惯性现象,而那些则不属于惯性现象——即为动力学现象。牛顿的例子,毫无疑问是正确的(12),但我们许多的物理学工作者却将惯性对事物的解释范围作了相当随意而并不恰当的扩展或扭曲。其实在讲述惯性时,用不着举更新鲜的特别例子,倒是需指出惯性使我们对事物常态的存在方式太熟视无睹了。这里问题的关键在于,惯性不是使物体改变运动状态(使火车制动、使斧头套牢在斧柄上、使小木块倾倒)的原因。严格地说,这些原因和物体的惯性无关,只和力有关,而至于火车制动得及时不及时,斧头套在斧柄上牢不牢,小木块倾倒得快不快,则不仅与力有关,还和物体的质量、形体、初速度有关。但即使如此地与质量和初速有关却也与惯性无关。

惯性,这个我们通常认为是由物体内在因素决定的性质,其实是物体存在方式的一种条件性:“试取汽车为参考系统来研究‘当汽车急剧刹车的时候,车中乘客有向前倾倒的倾向’这个问题,在汽车急剧刹车前,相对于汽车而言,乘客是静止的,在汽车急剧刹车时,乘客突然向前倾,这就是说,以汽车为参考系统,乘客由静止而突然向前倾,并不保持其静止状态,并不表现出惯性”(13)。这个条件就是:物体要表现出惯性,它必须处于惯性参考系中。而“事物的存在顽强地延续维持不变,无论运动是快是慢抑或停止。”(14)也只在惯性系中才成立。在研究物体的运动学与动力学问题时,惯性系总有着特殊的地位。可是,这个特殊地位的存在并不单单是人类抽象理性的功劳,并不是人类贪懒和间集化的一个报应,惯性系的存在有其形而上的基础:自然之美的呈现及人对自然之美呈现体认的同一性。如果没有了存在的时间均匀性与空间对称性,我们选取的相对于地面作匀速直线运动的参考系对研究动力学问题而言也就将成为一个畸形的怪胎。惯性系不仅在计算上向人类提供了联系物体的相互作用与相对运动的便利方式,其更根本的是它使人与存在的关系成为审美性的。惯性定律给我们的启示是:存在是美的。而惯性系则是自然对人的一个馈赠。也因而,我们应当从审美的视角来看待惯性,而不应当将它看成一个恶魔或一件便宜货。

所有的老师都要求学生不要把惯性与惯性定律混为一谈,可是当我们的老师用动力学的观点来看待惯性——也就是说,把惯性与牛顿第二定律混为一谈的时候,对学生的这一期望是合适的吗?其实这是一个误区:当教完一些物理学的基本概念与规律以后,就要求学生用它们解释自然现象。事实上,物理学中有些基本概念与规律不是要求我们去解释自然现象,它没有这个功能,它只是告诉我们要去感受些什么,它提供给我们的不是一种推理的方式,而是一个判断的原则:它促成我们的判断更接近于自然之美的呈现。

三、惯性定律与牛顿第二定律的关系

当物体所受的合外力为零时,从牛顿第二定律可知物体处于静止状态或作匀速直线运动。可是,仅依据这一点却不能认为牛顿第一定律是牛顿第二定律的一个特例。因为这两个定律的论述对象其实是不一样的。牛顿第二定律的研究对象是一个物体,而牛顿第一定律论述的是整个存在的性质。惯性——这个任何物体均具有的性质其实不是我们的个别研究对象所具有的性质,因为这个“任何物体”,包括了天地间的万物,而万物的总称(15)即是宇宙:“四方上下曰宇,古往今来曰宙”.也即任何个别的物体都不可能无条件地具有惯性:惯性是存在的特性,是存在着的时空的特性,是宇宙的特性。

其次,牛顿第二定律是关于个别物体因果性的规律,而牛顿第一定律却与个别物体的因果性无关,它是存在之状态的表述,它的表述是与具体的特定的时间无关的、瞬时性的。正是这种非时间性(16)构成了牛顿力学的本质特征。也正是牛顿第一定律所成立的时间均匀性与空间对称性构成了惯性系的特殊地位,从而使我们可以在牛顿第二定律的意义上来研究物体的动力学关系。因为毫无疑问,物体的运动性质和规律与采用怎样的空间和时间来度量有着密切的关系(17)。由此可见,不仅牛顿第一定律不是牛顿第二定律和特例,恰恰相反,现行的动力学规律正是牛顿第一定律所揭示的存在之性在具体的个体事物上的展现。惯性定律比牛顿第二定律具有更强的基础性。也就是说,正是惯性现象,构成了牛顿动力学所以成立的操作平台。由于物体在不受外力作用下保持其速度不变,因而物体运动速度的变化才跟物体的受力相关。

最后,牛顿把惯性定律放在三个运动定律的首位也是与其对自然的信仰因素有关的。因为在文艺复兴之前的绝大部分思想家继承了亚里士多德关于物体运动内在决定论的观点。但在牛顿看来,基本的物质粒子

完全是惰性的,没有任何自发的运动,而电、磁、光这些‘非物质’的力量则成为神在自然中的行动的载体(18)。也就是说,惯性定律内隐含着牛顿否定亚里士多德运动观的内在目的论从而建立新力学的形而上基础。

四、惯性与具体物体的质量无关

从上面的讨论可以看出:“质量是物体惯性大小的量度”这个论题,在几个角度去看都是错误的。第一,质量不是物体惯性大小的量度。个别研究对象的质量与其所揭示的惯性毫无关联。因为这两者从数量上来看是一对无穷大的关系,从内容上来看是个体与存在的关系,在它们之间,人类的理性不可能找到逻辑上的因果链。第二,“物体(的)惯性”这样的说法缺乏依据,因为惯性不是物体的性质。物体只是作为惯性的表现者而存在的。第三,“惯性(的)大小”这样的说法也缺乏依据,因为惯性没有大小,惯性只是存在的一种表达方式,一种特定状态的显现。第四,既然惯性并无大小,我们也不可去进行量度,事实上,任何一本教科书上也没有指出惯性与质量的函数关系,因为这一函数关系并不存在,它只是人们的一个虚假的逻辑推测,谁也不能证明质量与惯性成正比或不成正比,更不能得出它们之间的比例系数,因为这些关系均是虚假的。因而,物理学界流传的物体的惯性等于它的质量(19)只是人们一个随心所欲的错误言说。

由于物体质量与惯性无关,所以,将牛顿第二定律中的质量称为惯性质量就是不当的,质量的确对物体运动状态的改变有一种象力一样的阻抗作用,质量在改变物体运动的状态上而言似乎有一种“消解”、“抗拒”力的性质。因而作者认为可将现行的“惯性质量”改称为物体的“抗性质量”。正如牛顿所说:“物体只有当有其他力作用于它,或者要改变它的状态时,才会产生这种力。这种力的作用既可以看做是抵抗力,也可以看做是推斥力。(20)”因为质量与物体运动状态的变化快慢有关,它事实上具有动力学特征,当一个物体的质量大时,它对运动状态改变的阻抗能力就越大。

从逻辑上而言,我们只有将惯性从物质的内在因素中解除出来,才能完全地克服牛顿时代的机械论自然观与牛顿第一运动定律之间存在着的深刻矛盾。也就是说,这样才能使牛顿第一定律恰如其分地建立在由文艺复兴所形成的机械论而不是亚里士多德的目的论的形而上学基础之上。

五、惯性定律的表述方式

牛顿第一定律是动力学定律的基础,但它本身并不表征物体的某种动力学性质,它是关于人类体认自然之美、自然之和谐的陈述。据于上面的论述,对牛顿第一定律的陈述方式作以下的要求是并不过分的:反映时间的均匀性,空间的对称性,及自然之美对人的呈现。可是,现行的许多教科书中对牛顿第一定律的陈述是很不一致的。当然,这种不一致性用老眼光来看是无伤大雅的,但以今天的眼光来看,这种差异性就成为值得商讨的了。

例如:一个物体,如果没有受到其他物体的作用,它就保持自己的静止状态或匀速直线运动状态(21)。这样的陈述可能离惯性定律的本义较远,因为这一陈述的方式是在动力学的维度上来进行的,陈述的对象是“一个物体”。这和牛顿第二定律的研究对象是一致的,这样方式的陈述毫无疑问地可以把惯性定律认为是牛顿第二定律的一个特例,因为“如果没有”这几个字就表达了陈述事件的某种特殊性。

另外一种常见的陈述方式是:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。(22)这样一种表述比前一种完整多了,它几乎就是牛顿的原义,但这里的“一切物体”应当换成“任何物体”(23)。因为在此论述中的“任何物体”实际上是对一切物体的否定,而“有外力”应当换成“其它物体的作用”,因为惯性定律是不涉及力的,操作意义上的力这个动力学的基本概念与惯性无关。

作者试着这样来陈述惯性定律:存在着的宇宙有这样一种性质,它使任何物体在没有受到其它物体作用的时候总保持静止状态或匀速直线运动状态。或许,这样的一种陈述方式是较明晰的陈述方式,它强调了惯性与惯性的表现者(个别研究对象)的严格区分,这个陈述的主语是性质,这样的陈述才可称为关于“惯性”的定律。而我们也应当将惯性定义为:使物体保持静止或匀速直线运动状态的性质。

六、人们误解惯性的来源

人们在惯性问题上所犯的错误认识,既来源于历史上人们对于和惯性概念相联结的力与物体运动关系的一贯表达方式,又来源于牛顿的表述与对于牛顿力学理解上的偏差。“事实上,牛顿似乎注定要被人误解”。(24)

在牛顿所陈述的第一定律中:(25)“每个物体都保持其静止、或匀速直线运动的状态,除非有外力作用于它迫使它改变那个状态(Everybodypersistsit’sstateofrestorofuniformmotioninastraightlineuntilitiscompelledbysomeforcetochangethatstate.)”。牛顿对“除非有外力作用于它迫使它”作出了对应的理解,即认为保持其静止或匀速直线运动状态的物体是由内部原因的,这个内部原因即称为惯性:“visinsita,或物质固有的力,是一种起抵抗作用的力,它存在于每一个物体当中,大小与该物体相当,并使之保持其现有的状态,或是静止,或是匀速直线运动”。(26)在牛顿时代,作出这样的判断是无可厚非的:“一个物体,由于其物质的惰性(现称惯性——译者注),要改变它的静止或运动状态就极其不易。因此这种固有的力可以用一个最确切的名称‘惯性’或‘惰性力’来称它。”(27)因为在牛顿时代是无法判定惯性的本质的。从牛顿的这一段话我们大致可以判断出,他几乎是在第二定律的意义上来领会惯性的,因而他才认为(惯性)大小与该物体的运动和质量有关。

这一观点可以追踪到亚里士多德,它影响了包括牛顿在内的一大批科学家的思维方式。在牛顿之前的开普勒也就惯性说过(29):“如果天体不赋有类似于重量的惯性,要使它运动就不需要力,最小的动力就足以使它有无限的速度,但由于天体公转需要用一定的时间,有的长些,有的短些,因此非常明显,物质必须具有能说明这些差别的惯性”;“惯性,或对运动的阻力是物质的一种特性,在给定的体积中,物质的量愈多,惯性愈强。”由此我们也可见,在开普勒那里已经有惯性等同于力与质量的观点了。

从上面的论述可以看出,人们对于惯性的错误理解主要是由历史原因所造成的,这个原因主要在于:人们普遍地认为事物外在的状态是有其内在原因的。当人们

在物体之外找不到令人信服的可感觉的原因的时候,就只能把它归因于物体的内部。牛顿将惯性归因于物体的内部,把惯性看成阻碍物体改变其静止或匀速直线运动状况的内力,他假设的惯性非常接近布里丹的冲力——即:惯性作为一个内力,在缺乏外部动力或阻力时,会引起无定限的直线运动(30),另一方面,牛顿的惯性观又来自于他对古希腊关于自然具有灵魂观念的继承,我们可以从他的著作中强烈地感到,他具有自然界的物体与人一样会在受到作用时产生反作用这样一种强烈的思想意向。显然,在现代人看来,自然界的物体是与人具有本质区别的。

在牛顿以后,欧拉则将牛顿关于visinsita的比较隐晦的注释作了同牛顿之前的有些科学家的直感一样的有一定危险性的表白:“惯性是物体保持静止或保持匀速直线运动的能力.....惯性的大小与质量成正比例。”(31)可是现在看来,这种危险性中是带有错误的。从那以后到现在,人们对于惯性的理解基本上是庸俗性质的。随着现代物理学的发展,特别是诺特尔之后,我们可以认识到使物体保持静止状态或匀速直线运动状态的原因并不在物体的内部、也跟力无关,而是由于物体所处的时间均匀性与空间对称性。也就是说,我们必须对牛顿意义上的惯性作出更开放性与发展性的理解,牛顿的visinsita(惯性是一个消极的本原,靠此本原物体维持它们的运动或静止,按照作用力的大小接受运动,按照受到阻力的大小抵制运动。(32))可以深入为两个层面的结论:在没有外力的作用下,一个物体,它能保持静止状态或匀速直线运动是由于惯性,即时间均匀性与空间对称性;在同样大小的力的作用下,一个物体它的运动状态较难改变是由于它的动力学特性——抗性,即它的质量较大。

物理课堂提问论文

启发式教学是物理教学中经常应该运用的一条原则,运用启发式,常常要提问(当然提问不等于启发式)。怎样提问,是当前教学中值是研究的一个重要问题。下面就物理教学中的提问谈一些情况和看法。

一、提问要有明确的目的,不要搞为提问而提问,提问的目的,归纳起来,主要有四个:

1.检查、巩固已学的知识。学过的东西该记的是否记住了,理解是否正确,是否完整,通过提问,常常可以发现教和学两方面存在的问题,便于及时予以补救。

2.引导学生接受新知识。为了便于学生接受新知识,通过提问唤起旧知识也是很重要的,教学的成败,和师生的思维活动是否协调一致,关系极大。否则尽管都是言之谆谆,学生仍然听之藐藐。每堂课的重点、难点、一般说教师是心中有数的,但在学生来说却不一定。如果在关键处向学生提问,引起学生重视,是很必要的,问的结果,不外乎两种情况:一是答得来,这当然好,再一是答不来,也有好处,便于引起学生注意,使他对接受新知识作好思想准备(当然不是每个新知识必须提问,也可设问,或用其它方法唤起注意)。

3.培养学生的物理语言应用能力,表达能力。

总之,提问一个问题之前,教师一定要明确:为什么要问这个问题,估计学生的答案会出现那些情况,每种情况的问题在哪里。否则乱问一通,看起来好像课堂气氛很活跃,但对于培养学生分析问题,解决问题能力没什么作用,还有可能问的学生晕头转向,给教学设下障碍。

二、问题要提得确切,不能信口提问。有的问题,提得含糊,学生摸不清意图,不好回答。有的问题,答案范围过大,也不妥当。为便于学生思考,每个问题,都应该象出考试题一样,一字一句都要斟酌好。使所提问题的逻辑要严密,语言要简炼、清楚、确切。切忌出现科学性错误,使学生心理受压,影响正常的思路展开。

三、要启发,不要暗示。教学中我发现有的提问是带暗示性的,暗示的结果,不是培养了真正的分析问题,解决问题的能力,而是盲从。当然“是非问”有时是必要的,遇到一个问题,学生很可能答错时,“是非问”还是可以的。

四、对学生的答案要有着、有落。教学中常见这样的现象,学生回答了老师的问题后,教师一下子拿出自己的答案,而对学生的回答却不置可否,实际上把提问当成了一个没意义的过场,特别是对不确定的或错误的答案,尤其不能放过,缺了什么,错了什么,应该落实下来,这本身就是解决问题,分析问题能力的培养过程。而且在这教师学生活动中,还可以把方法论问题穿插在其中,故要引起足够的重视。

有的教师怕被学生的答案打乱了自己的教学计划,我认为(一)教学计划不是不可以改变的。(二)发现意外答案是好事。而不是坏事(当然希望学生全能答对,但不现实)由于问题暴露出来,教学就会更有针对性。有经验的教师常常会有意识地让暴露问题。再说出现了相互矛盾的两种答案,更便于启发学生思维,这种相互矛盾的答案正是教师事先想找而找不出来的。为使学生明确一个物理概念,教学中常用比较法,这种意外答案正是很好的比较材料。(三)有意外答案,教师觉得不对.但又一下子说不来道理,这情况是常有的,武断他说不对,不行,怎么办?要实事求是,可告学生:“这个问题,马上不好解决,咱们下去继续考虑”。这佯做,表面上好像会丧失教师的尊严,实质上,在向学生提倡一种知之为知之,不知为不知的好学风,经过研究再向学生解答,比武断、不置可否强得多。教师满可以坦率地告诉学生,教师并非无所不知(当然教师要尽力将自己所教范围的内容理得清一些,钻研得深一点)。

五、提问对象要注意普遍性,比较简单的应尽量让中、下学生回答,较难的也可让中等学生回答,然后再让基础较好的学生补充,解答,这样上、中、下三个层次的学生都有回答机会。