HI,欢迎来到学术之家股权代码  102064
0
首页 公文范文 自动化控制论文

自动化控制论文

发布时间:2022-04-18 11:42:41

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的1篇自动化控制论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

自动化控制论文

自动化控制论文:人工智能技术电气自动化控制论文

1人工智能技术的特点和优势

人工智能技术是人类科学技术不断发展进步的必然结果,也是工业发展过程中,促进工业自动化科学化发展的重要推动力量。在人工智能技术的发展中,科技的发展和工业技术的进步会促进人工智能技术的发展;反之,人工智能技术的进步,可以完成那些人类自身无法办到、技术条件效果不好的生产技术操作。当前的人工智能主要是计算机技术的发展结果,随着计算机技术的飞速发展,通过对计算机信息特点和操作性能的了解和设计,使计算机操作系统具有更多更先进的人工化反应,并在实际的信息技术处理过程中,通过其系统内部的人工化、智能化识别和处理系统,对电气自动化控制和其他工业技术领域在运行中的问题进行自主解决。如今,人工智能技术已经取得了较大的进步,其研究发展项目也越来越多,越来越先进,实用性越来越强。人工智能技术已经广泛运用与工业自动化、过程控制和电子信息处理等先进的技术领域。人工智能技术通过模糊理论算法、遗传算法和模糊神经算法等方式,可以在电气自动化控制中,采取更灵活多变的控制方式,对电气自动化设备运行中的不稳定因素和动态变化进行自主的调整,从而保障其运行的准确和高效,减少出错率。人工智能技术的运用,可以大大减少在电气自动化控制等领域的人力成本,并且能够解决一些工作人员无法有效监控和解决的问题,做到及时有效。

2人工智能技术在电气自动化控制中的应用

2.1人工智能控制实现了数据的采集及处理功能

在电气设备的运行过程中,数据的采集和处理是了解电气设备自动化控制情况,发现运行过程中的问题和提出解决办法的重要依据。在传统的自动化控制中,由于技术水平和实际运行中的动态变化,数据的采集和传输无法做到准确和稳定,保存数据容易出现丢失的情况。人工智能技术的使用,可以保障电气自动化运行过程中对动态信息的及时收集和稳定传输,对相关数据的保存工作也更安全,这就提高了电气自动化的控制水平,充分保障了电气运行中的安全性和稳定性。

2.2人工智能控制实现了系统运行监视机报警功能

电气自动化控制是用电气的可编程控制器,控制继电器,带动执行机构,完成预期设计动作的过程。在此过程中,系统内部各部分之间的运行都要严格按照设计模型和函数计算的基础上进行,如果系统中的一点出现问题,就会造成整个自动控制系统的故障。在以往的自动化控制系统运行中,对系统内部各部分之间的运行数据和运行状态进行实时监测,对运行中的特殊情况进行及时的报警处理,帮助自动化系统及时处理可能出现的故障,提醒电气管理人员加强对电气系统的管理。

2.3人工智能控制实现了操作控制功能

电气自动化控制的主要特征之一就是通过计算机的一键操作,就可以实现对电气系统的整体控制,保障电气自动化运行符合现实的需要。传统的自动化系统的操作,需要靠人工对系统各个环节进行人工操作,从而促进自动化系统内部的协调和配合,这种方式既降低了自动化运行的效率,也增加了自动化系统的故障发生频率。人工智能技术对电气自动化系统的控制,是通过各种先进的算法,按照电气自动化的需求,对自动化系统进行自动化和智能化设计,从而实现对电气自动化控制系统的同时操作,大大提高了自动化控制的效率,减少了单独指令操作中容易出现的不协调情况的发生。

3人工智能技术在电气自动化控制中的控制方式

3.1模糊控制

模糊控制以模糊推理和模糊语言变量等为理论基础,并以专家经验作为模糊控制的规则。模糊控制就是在被控制的对象的模糊模型的基础之上,运用模糊控制器,实现对电气控制系统的控制。在实际控制设计过程中,通过对计算机控制系统的使用,使电气自动化系统形成具有反馈通道的闭环结构的数字控制系统,从而达到对电气自动化系统的科学控制。

3.2专家控制

专家控制是指在进行电气自动化控制过程中,利用相关的系统控制理论和控制技术的结合,通过对以往控制经验的模拟和学习,实现电气自动化控制中智能控制技术的实施。这种控制方式具有很强的灵活性,在实际运行中,面对控制要求和系统运行情况,专家控制可以自觉选取控制率,并通过自我调整,强化对工作环境的适应。

3.3网络神经控制

网络神经控制的原理就是基于对人脑神经元的活动模拟,以逼近原理为依据的网络建模。神经控制是有学习能力的,属于学习控制,对电气自动化控制中出现的新问题可以及时提出有效的解决办法,并通过对相关技术问题的分析解决,提高自身的人工智能水平。

4结语

人工智能技术是科技发展到一定程度的必然结果,也是促进科技继续发展和工业自动化技术更加进步的重要推动力量。电气自动化控制的操作要求使人工智能在电气自动化中的运用越来越广,随着人工智能技术的发展,电气自动化控制技术也将逐渐提高,系统运行效率也会不断增强。

作者:姜关胜 单位:75240部队

自动化控制论文:智能技术电气自动化控制论文

一、智能技术的优势

与传统的自动化技术相比,智能控制无模型运转,提高了电气系统的管控效率。同时,智能技术的精度更高,减少了设计中的不可预测问题。因而设计对象模型阶段中便会存在不能估量或是预测的问题。人工智能技术实现了系统的实时调节,利用鲁棒性变化和响应时间提高其工作能力,实现自动化过程。智能技术已经成为现代企业管控的必然趋势,与传统的管控装置相比具有先进性,满足电气自动化工程建设的需求。针对不常见的数据,传统的自动化控制技术无法完成评估工作,但智能技术的出现解决了这一问题,实现了对系统录入信息的有效很快速处理。针对不同的对象,智能技术可显示不同的管控效果,使管控的效果具有针对性。但在目前的智能技术发展程度下,多种控制对象问题无法解决。因此,应从技术方面对智能技术进一步剖析和研究,促进该技术的完善,才能对我国工业以及相关行业的发展起到积极作用。

二、人工智能技术应用

基于电气自动化的复杂性,其操作过程应精细且注重细节。一旦操作失误,将导致系统故障甚至造成安全事故。因此,人工智能技术应用的优秀技术在于程序化问题,将复杂化的程序通过智能手段转化为简便化。通过系统日常资料的分析,对设备故障采取积极的应对措施。在具体应用过程中,人工智能技术主要表现为以下几个方面。

(一)智能化设计分析

人工智能技术关系到电力工程以及电路的设计。在传统的设计模式下,工作人员的工作量大,需要大量的试验验证,并且对不合理部分进行改进。因此常出现考虑不周全的问题,处理问题的效率较低,对于难度较大的问题,传统的处理方案无法解决。这使得智能化设计成为必然。现阶段,电力企业逐步实现了智能化设计,全面考察了问题的难度,提高了处理问题的能力和效率。但同时,智能设计对于操作人员提出了更高的要求,要求其掌握专业知识和智能系统操作技巧,并且操作人员还应具有与时俱进的精神,对智能系统进行适当的改良设计。利用人工智能设计,可有效提高数据分析的准确性,将复杂问题简单化。

(二)PLC技术应用

随着电力企业规模的扩大,电力生产对于技术具有更高的要求,基于此的PLC技术成为企业生产和建设的重要目标。PLC技术是一种常见的人工智能技术,目前主要应用于工业、电力企业,具有良好的效果。其是在继电控制装置基础上发展起来的智能技术,该系统的主要作用在于优化了系统工艺流程,从而根据企业需求对运营现状进行调整,确保其运营的协调性。PLC技术以自动控制系统为主,手动控制技术为辅。对于提高电力系统生产实践具有重要作用。在电力生产中,PLC人工智能化技术的使用还实现了自动化目标切换,继电器逐渐代替了实物元件,不但提高而来管控效率,还确保了系统的运行安全。

(三)智能诊断和CAD技术应用

智能诊断系统的出现是电气运行复杂化的结果。该诊断系统要求操作人员具有较多的实践经验,改善了传统模式的手工设计方案,充分体现了信息时代的优势。科技的发展也使得CAD技术逐渐实现了智能化,缩短了产品设计实践。智能化技术优化了CAD技术,对产品设计质量的提高具有积极作用。目前,在电力系统中,遗传算法是人工智能技术的重要表现之一,通过科学的计算方法,提高了数据统计和计算的精确度。基于遗传算法的重要作用,应得到企业的重视。在电力系统运行过程中,如何区分故障和征兆是一个难题,智能化技术通过专家系统和神经网络系统可快速有效的分析出系统故障和安全隐患,并提供一定的解决办法,确保了电力系统的运行问题。

(四)神经网络技术应用

神经网络系统是智能技术的重要体现之一,其作用在于分析和处理系统故障。可对系统故障进行准确定位,并且减少了定位时间。同时,还可完成对非初始速度及负载转矩的有效管控。神经系统设计具有多样性,具有反向学习功能。利用神经网络系统的两个子系统,可实现对机电参数转子速度和电子流的评判和管控。目前,智能神经网络系统主要应用于分析模式和信号处理上。由于其包含非线性函数估算装置,因此对于电气自动化控制具有积极作用。其主要优势在于无需对控制对象建立数学模型,因此工作效率高,噪音小。

三、总结

随着科技的不断发展,电气自动化控制系统逐渐实现了数字化和智能化。智能技术的使用提高了自动化控制的效率,基于人工智能理论的智能技术是电力企业发展的必然。智能技术不仅是计算机技术的重要组成部分,也对计算机技术具有一定的依附性。但目前,智能技术的应用尚存在一定的缺陷,甚至存在一定的错误。基于此,应提高操作人员对智能控制化技术的认识,以保证智能化技术的可持续发展。

作者:许武文 单位:海南师范大学

自动化控制论文:智能化技术下电气工程自动化控制论文

1智能化技术的理论基础

从20世纪50年代开始,一直到现在的几十年探索中,人工智能化已经可以像人一样进行感应与行动,凭借着高效率、高精度以及高协调性等特点超越来传统的控制技术。随着计算机技术的不断发展,对人的思维能力进行模拟的构想现在已经得到了实现,后来在程序语言编制上,智能化模拟的可实施性也得到而来增加。随着电气工程自动化控制技术的不断发展,智能化技术的市场得到不断拓宽,这种技术的应用不仅可以使电气工程的工作速度得到提高,同时还在电气工程中节约了大量的人力与物力[1]。智能化技术在整个电气自动化控制行业中主要是利用不断实践来进行的,其中包含的内容十分广泛并复杂。智能化技术属于计算机高端技术的一种,因此要想很好的掌握其应用,那么必须要具备专业性计算机理论知识。智能化技术不仅有效有提升了电气自动化控制的工作效率,同时也也很大程度上降低了工作人员的压力,优化了资源配置,促进了电气工程自动化系统的稳定运作。

2智能化技术的主要特点分析

对于很多人来说,智能化技术是一个陌生的词汇,然而它却与我们的生活息息相关,下面我们就对它的主要特点进行阐述,帮助大家深入理解智能化技术。作为电力系统中的关键环节,电气工程自动化控制对电力系统的正常运行存在着决定性的作用,为了保证电气工程的顺利发展,从而有效提升恒业的整体水平,对智能化技术进行应用是大势所趋。

2.1高精度与高效率

在电气工程自动化控制中,精度与效率是两项重要指标,在智能化技术指导留下,对多个CPU与高速CPU芯片进行使用,电气工程控制工作效率与精度得到了显著的提高。

2.2多系统控制

智能化技术的应用可以有效减少相关工序,同时还能使工作效率得到显著提高,目前该项技术在电气工程自动化控制中的实际应用正朝着系统控制的方向发展着。

2.3科学计算的可见性

在电气工程自动化控制中,智能化技术的应用可以对数据进行有效的处理,不仅可以通过文字和语言进行信息交流,同时还能利用图形与动画实现信息交流,这在很大程度上提升了工作的效率。

3智能化技术在电气工程自动化控制中的应用

在电气工程自动化控制系统中应用智能化技术,有效提升了系统的工作效率,降低了工作人员的压力,对于电气工程自动化控制中智能化技术的应用主要体现在三个方面:(1)怎样将智能化技术应用到电气工程中对病因的诊断与维修之中;(2)如何对电气产品与设备进行优化设计;(3)通过怎样的形式对电气工程智能化控制进行实现。

3.1对电气工程自动化控制中的病因进行诊断

利用传统的人工方式对电气工程系统中的病因进行诊断是非常复杂的,同时对工作人员的要求也非常高,而且也不能对病因进行准确的诊断。在电气工程自动化控制中难免会发生一些设备和数据问题,依靠人工诊断方式往往不能对病因进行及时的诊断与处理。而智能化技术的应用不仅可以使病因诊断的效率得到明显提高,同时还可以使定时检测与诊断得到实现,在这一过程中很多问题的出现都会得到避免。

3.2对电气工程设计进行优化

在传统电气工程设计中,往往需要通过工作人员在工作过程中进行反复的实验才能完成。在这一过程中工作人员很有可能不会考虑到一些具体情况。如果真的出现复杂性的问题,也不能对其进行及时的解决,在这种情况下,工作人员不仅要掌握大量的专业设计知识,同时还要很好的将自己已经掌握的理论知识运用到实际应用中。智能化技术得到应用以后,设计人员就可以利用计算机网络和相应的软件对电气工程自动化控制进行设计,这样一来,设计数据的准确性得到而来增加,同时设计样式也非常丰富,另外,还能对一些复杂问题进行及时的处理,电气工程自动化控制的顺利运行就得到而来有效的保证。

3.3对整个电气工程进行自动化控制

电气工程控制系统中存在着很多控制环节,智能化技术的应用正好可以使对整个电气工程的自动化控制得到实现。智能化技术在应用过程中通过神经网络与模糊控制等方式实现对电气工程的自动化控制。其中,神经网络控制的应用是非常关键的,它可以进行反向的算法,同时具有多层次的结构。在神经网络控制的子系统中,其中的一个子系统可以结合系统参数对转子的速度进行调控与判断,而另一个子系统就可以按照以上参数对转子的速度进行判断与控制。目前神经网络控制已经在识别模式以及信号处理等方面得到了广泛的应用。智能化手段的应用使电气工程的远距离与无人操控自动化控制得到了实现,通过公司局域网的帮助,智能化技术的应用使得对电气系统各环节的实际运行情况进行了详细的反馈分析。

4结语

综上所述,电气工程自动化领域中智能化技术的应用已经取得了显著的成就,同时智能化技术还会逐渐在其他各领域中得到广泛应用。在目前激烈的市场环境中,对电气自动化控制的要求逐渐升高,在这种情况下,需要相关工作人员在目前理论研究的基础上进行深入的分析和研究,不断增强电气工程中自动化控制的性能,只有这样,才能使电气系统的工作效率得到进一步提高,进而使人们的各种需求得到满足,最终促进企业的市场地位得到显著的提升。

作者:张华平 单位:泰州机电高等职业技术学校

自动化控制论文:灌区闸门远程自动化控制系统

摘要:本文以国内某大型灌区为例,在灌区远程测报系统的基础上进行了闸门自动控制研究,通过无线调制解调器连接上位机(PC机)与下位机(单片机),将下位机采集到的数据传输到上位机,根据用户要求的流量控制闸门的开度和时间,为灌区的运行和管理提供保证,为提高系统的可靠性,采用了一些可供类似工程借鉴的可行技术。

关键词:远程自动化控制 闸门 单片机

闸门调节是灌区工程中经常采用的手段,闸门控制的研究对于节约能源、确保水利工程的正常运行、提高水资源的利用效率和节约用水具有重要的意义。目前国内大部分灌区已基本实现流量数据的自动采集和监测,并把数据传输到管理部门,但是在根据有关数据进行远程自动监测和控制方面成熟的经验非常少。国外特别是欧美等先进国家在这方面已经达到较高的水平,如美国的SRP灌区自动化灌溉系统,可以同时采集100多点的水位、闸门开度和其他信息,通过计算机处理后,控制几百座闸门、150多处泵站的运行。本文以国内某大型灌区为例,对闸门的自动监控进行了研究。

1、系统的总体设计

本系统采用无线数据传输技术,分一个主站和若干个子站,通过无线调制解调器构成一个无线通讯网络,对多个断面的数据信息进行采集、传输、处理和控制。系统的总体结构图如图1所示。下位机中的传感器把引水渠中的水位值和各闸门的开度值经转换后送给编码器,编码器对水位及闸门开度信号进行编码,在通过避雷器将编码信号传给数采仪,数采仪将数据进行初步加工和处理后由无线调制解调器传给上位机,上位机即系统主站,可分别与不同的子站建立联系,查询各测点的数据,并按照用户的要求对各闸门进行控制,下位机中的控制箱接收到此信息,经过计算,发出控制信号自动控制闸门到一定的开度,达到自动控制的目的。

图1 闸门远程自动监测与控制结构图

2、下位机系统设计

设计下位机重点在于闸门自动控制箱的设计,本文提出闸门的运行控制模式,并进行可靠性处理,然后利用无线传输设备与上位机进行通讯,传输数据。

2.1 下位机硬件电路设计

本系统采用AT89系列单片机,采用矩阵式键盘进行输入数据,键盘提供切换键、时间设置键、控制键三个按键,通过三个按键显示水位、流量、闸门开度、日期和时间。切换键实现上述四个功能的转换,时间设置键用于修改日期和时间,控制键用于对电机启停进行控制。

2.2 闸门控制系统设计

本系统下位机接收到上位机传来的要求流量值(或水位值),当要求的流量值(或水位值)与系统所测的流量值(或水位值)不一致时,单片机启键闭合,闸门电动装置控制箱自动启动电机,提升或下降闸门,当所要求的流量值(或水位值)与当前所测流量值(或水位值)相等时,单片机闭键闭合,电机自动停止,达到自动控制的目的。

闸门的运行控制模式有实时型控制模式和定时型控制模式两种,在实时型控制模式中,上位机根据用户要求的流量,利用流量—水位关系曲线把要求的流量换算成要求的水位,然后和下位机联系,下位机接到信号后,由电动装置控制箱控制电机的正反转,达到要求时停止转动。定时控制模式要求用户输入所期望的流量值和要求闸门动作的时间,下位机的控制箱在规定的时间里自动开启和关闭闸门,进行控制。

2.3 无线通讯设备SRM6100调制解调器

SRM6100无线调制解调器原是美国Data-Linc Group公司生产的军用产品,现应用于民用。它提供最可靠和最高性能的串行无线通讯方法,在2.4GHz-2.483GHz频段应用智能频谱跳频技术,在无阻挡物的情况下,两调制解调器之间的通讯距离可达32.18公里, 可实现PLC(可编程控制器)和工作站之间的无线连接。SRM6100应用跳频,扩频和32位误码矫正技术保证数据传输的可靠性。无需昂贵的射频点检测技术。射频数据传输速率为188kbps。并且不需要FCC点现场许可证。SRM6100支持多种组态,包括点对点通讯和多点通讯。多点通讯对子站数目无限制。并且SRM6100可做为中继器工作,以达到扩展通讯距离或克服阻挡物通讯的目的。

2.4 下位机可靠性处理

为了精确控制电动闸门的关闭,避免电动闸门在工作中出现过载破坏或关闭不严的现象,本系统在电动轴上安装了转矩传感器,用来监测闸门输出轴的转动力矩,以判断闸门是否关严、是否被卡住。闸门电动装置用于检测和控制闸门的开度,本系统在转动轴上安装了光电码盘,考虑到闸门可能出现频繁的正反转交替,为了避免错位和丢码,采用双光耦技术,光耦输出的两路信号经74221双单稳触发器进行整形,89C51的INT0和INT1对其进行计数、计时,并判断转动方向,计算闸门开度。电动闸门在工作中若出现异常现象,系统会自动报警,切断电机电源并显示故障情况。

2.5 下位机软件设计

下位机的软件设计分为闸门自动装置控制箱程序设计和串行口中断服务程序设计两部分。闸门自动装置控制箱程序设计主要完成数据采集、存储、显示、按键操作等功能,串行口中断服务的程序完成下位机向上位机数据的传送和用户设定参数的接收。控制箱程序的主框图如下:

3、上位机设计

上位机的软件部分采用VB6.0为开发工具,将各个功能模块化,分别解决相应问题,再将各个模块组装,构成上位机软件系统的优秀,上位机软件系统的结构如图3所示,通信模块位于最底层,其余模块功能的实现都直接或间接建立在此模块的基础上,本文利用VB的API函数编写串口通讯程序,程序的框图如图4所示。数据管理模块的主要作用就是为水位、流量、闸位等建立数据库,并对其进行管理。

4、结语

本文以国内某灌区为例,全面分析了灌区闸门自动化控制系统的整体结构及其设计,对其软件开发和硬件选择作了全面阐述,并总结了提高自动化系统可靠性的经验,为提高灌区现代化管理水平提供了有利的工具,具有较高的使用价值和广泛的应用前景。

自动化控制论文:上海闵行水厂排泥水处理的自动化控制

摘要:目前在全国自来水行业中,几乎没有一家自来水厂对排泥水处理自动化控制进行系统的研究和应用。前几年上海市自来水公司在对水厂排泥水处理工艺研究的基础上,在闵行水厂一车间(净水能力7×104m?3/d)进行了排泥水处理生产性研究。为了能与国际接轨,同时与目前水厂的自动化相适应,在确定合理的处理工艺后配以高度的自动化,使系统在PLC中央控制下达到自动运行的程度,为今后水厂排泥水处理自动控制提供了有益的设计依据和参数。

关键词:排泥水处理 自动控制 水能力

1 排泥水处理的自动控制

针对上述工艺,要实现自动运行,必须解决下列问题:

① 排泥水截留池如何自动控制;

② 如何自动排放浓缩池的浓缩污泥;

③ 平衡池的污泥量如何控制;

④ 如何自动配制PAM溶液;

⑤ 如何对离心脱水机的PAM加注进行自动控制;

⑥ 当某泵发生故障时,如何保证系统继续运行;

⑦ 作为一个排泥水处理工程,如何协调整个系统的运行。

2 各单体的自控原理与设计

2.1 截留池的运行控制模式

截留池主要用来收集沉淀池排泥水和离心脱水机的分离水,而后由输送泵将排泥水从截留池输送至浓缩池。水厂采用了智能化泵吸—虹吸排泥方式,排泥时间和排泥水量都随原水的浊度和泥沙沉降特性而变化。在截留池中安装一个液位仪,一个搅拌器(用于均匀池中的泥水浓度,不使泥沙沉淀下来)。通过截留池液位的高和低来控制输送泵和控制池中搅拌器的开和停。为了对进入浓缩池的排泥水量进行控制,在排泥水输送管道上安装了一个流量计,用来反映进入浓缩池的排泥水水量,并且采用变频器实施对输送泵的流量控制,达到对浓缩池进水流量的控制。

2.2 浓缩池的自控设计

浓缩池的作用是将较低浓度排泥水变成较高浓度的污泥水,而后送到平衡池。如何对较高浓度的污泥进行自动排放是浓缩池能否自动运行的关键。由于浓缩池运行时间和进浓缩池的排泥水水量具有不确定性,故定时排放污泥行不通;由于浓缩池液位稳定,故也不能用液位仪。这里唯一变化的是浓缩污泥的浓度,所以在浓缩池中设计安装一个浓度计,用污泥浓度数值的高和低来自动控制排泥泵的开和停,即浓缩污泥的排放。通过对开始排泥和终止排泥的污泥浓度值进行设置,可达到:①使浓缩池始终高效运行;②控制平衡池的污泥浓度。

2.3 平衡池的自控设计

平衡池是一个缓冲池,主要作用是保证进离心脱水机的污泥浓度稳定。对它的控制主要有两点:①池中污泥要均匀;②池中污泥水不能溢出,也不能排空,所以在池中安装一个液位仪和一个搅拌器。搅拌器的作用是均匀池中浓缩污泥浓度,不使泥沙沉淀下来。液位的高低则决定浓缩池排泥泵、离心机进泥泵和搅拌器的开和停。

2.4 配制自动化

高分子絮凝剂一般为颗粒状或粉末状固体,不能直接投放到污泥水中,必须采用一配制系统。该系统可分为五部分:①粉末储存器,用以储存足量的PAM固体;②螺旋投加器,由两支小型螺旋输送杆组成,用以均匀地将PAM固体送入斗型输送器,它的出口开启、关闭受一时间继电器控制;③斗型输送器与水射器,用来承接PAM固体,并使之与水均匀混合而后送至搅拌熟化池;④搅拌熟化池,用以搅拌PAM与水的混合液,让PAM与水充分混合熟化;⑤投加池,用以承接搅拌熟化池来的PAM溶液,以供PAM投加泵投入离心机中。整个配制系统应能如下运行:首先确定配制浓度,计算出投加固体量和投加时间,而后通过时间继电器确定投加时间。一旦固体投入漏斗后,则自来水将与固体料混合,并由压力水通过水射器送至搅拌池搅拌熟化,搅拌池溶液达到某液位时,水源自动关闭。当投加池PAM溶液用到某低液位时,系统将自动打开搅拌池的投放出口,配制好的PAM溶液由搅拌池送至投加池,然后系统自动再配制溶液,整个系统能周而复始自动配制溶液以用于离心脱水机的PAM絮凝剂投加。

2.5 离心脱水机及加药量的自控

离心脱水机的作用是将浓缩污泥进行固液分离,是固液分离好坏的关键脱水机械。要使泥与水能很好地分离,除了离心机的转速、差速控制因素之外,PAM投加量的自动控制是至关重要的。投加量的控制涉及到进泥量、进泥浓度、加注量和加注率的选定。对这些问题的设计思路是:①对进泥浓度进行监测,在平衡池中安装了一个污泥浓度计,以显示进入离心机的浓缩污泥浓度;②对进泥量进行监控,在进泥管道上安装一个流量计,在污泥泵上加一个变频器控制,以控制进泥量;③加注量则采用计量加注泵来控制PAM絮凝剂的加注,PAM絮凝剂则完全由PAM自动配制系统供应,这样能完美地实施离心脱水机和加药量的自动控制。

2.6 泵的故障排除

对每一环节中的泵都配备一台备用泵,并对每一污泥泵安装流量传感器,设置流量报警,对进离心机的污泥泵设置压力报警,同时每个泵给出一个运行状态信号,一旦某泵发生故障,备用泵能自动切换。泵的轮番使用通过PLC进行。

2.7 全系统的控制

系统采用了SLC 500小型可编程控制器族作为中央控制,它具有一个固定的控制器以及模块化控制器,模块化控制器在系统配置方面相当灵活,配以各类继电器就能设计一个用于本系统的控制器系统,使各单位协调运作,以达到运行的自动化。

与此同时也采用Panelview 550扁平面板终端设备提供快速和直观的显示。整个系统控制灵活、显示直观、设置简便、操作容易。

3 系统的运行自控

3.1 截留池的运行

沉淀池排泥水经管道流入截留池,池中液位开始上升。PLC接收来自截留池液位仪的信号,当达到某一高度后,PLC发出指令,开启输送泵,排泥水由输送泵送至浓缩池,输送量则由流量计显示并反馈到PLC,PLC可通过变频器对输送泵进行流量控制。

在实际运行中,设置输送泵启动液位为1.5m,停止液位为1.0m;搅拌器的启动为1.0m,停止为0.5m;输送的排泥水量为80~150m3/h。

3.2 浓缩池的运行

浓缩池一旦进水即开始运行。池中的浓度计连续监测池中某点位污泥浓度的变化,信号随时反馈给PLC。当达到某一浓度后,PLC发出指令开启浓缩池至平衡池的排泥泵,较高浓度的浓缩污泥就被送入平衡池积蓄起来。

沉淀池停止排泥之后,截留池的水位会慢慢下降,PLC收到截留池低液位信号后发出指令,停止输送泵运作,浓缩池也停止运行。但排泥泵的运行会降低浓缩池内污泥浓度,PLC在收到浓缩池浓度计的低浓度信号后即发出指令,停止排泥泵运行。

在实际运作中,将排泥泵的启动设置在池内污泥浓度为1.0%,停止浓度为0.1%。

3.3 平衡池的运行

平衡池的运行主要通过对浓缩池排泥泵的限定设置以及对离心机进料污泥泵的限定设置来控制。?

在实际运作中,设置排泥泵的启动液位为3.0 m,停止为3.5 m。这样,整个排泥水的收集、浓缩、积蓄就在PLC控制下周而复始,自动运行,无人操作。

3.4 离心机污泥脱水的运行

PLC收到离心机开启信号后,延时发出指令,自动开启离心机进泥泵、PAM加注计量泵和螺旋输送器,并接受来自进泥流量计和加注计量泵的信号。根据平衡池污泥浓度计的数值、进泥流量计的数值、PAM配制浓度、最佳加注率,就可以确定计量投加泵的流量,并通过PLC设置。这样PLC自动控制PAM加注泵变频器的设定频率值以控制投加量,离心脱水机对浓缩污泥的固液分离就可自动进行。

在实际运行中,PAM投加量的确定须依据进泥量和进泥浓度而定,加注率一般设定在1.0~1.5 kg/t干泥。

对所有泵都配有报警装置和备用泵并通过PLC控制,一旦运行泵发生故障,报警信号发至PLC,则PLC会自动控制切换备用泵运行,以保证在对故障泵进行维修时不影响系统的连续自动运行。

4 结论

综上所述,采用PLC作为中央控制,配以液位仪、浓度计、流量计作为一级仪表组合,自动连续监测运行状况,并将监测值实时送到PLC。PLC发出指令,指令会通过中间开关继电器和变频器,对系统的泵等设备进行开停、流量变化等控制,以达到运行的高度自动化。?

通过PLC的终端显示面板,也可以随时对运行参数进行重新设置,以达到最佳运行条件。在整个系统的运行中,达到了无人操作的程度。

自动化控制论文:水工业自动化控制技术的发展趋势

摘要:工业自动化领域的发展趋势:控制系统的智能化、分散化、网络化及管理控制一体化。

关键词:水工业 自动化控制技术

1 控制系统的智能化、分散化、网络化

工业自动化领域的发展趋势之一是控制系统的智能化、分散化、网络化,而现场总线的崛起正是这一发展趋势的标志。

1.1现场总线的崛起

半个多世纪以来,工业自动化领域的过程控制体系历经基地式仪表控制系统、电动单元组合式模拟仪表控制系统、集中式数字控制系统、集散控制系统(DCS)等4代过程控制系统,当前我国水工业自动化的主流水平即处于以PLC为基础的DCS系统阶段。这里要说明一点,DCS既是一个过程控制体系的名称,有时也表示为由制造厂商出售的一个起完整作用而集成的集散控制系统产品,这种DCS系统相对较为封闭,而目前水工业自动化的DCS系统多数是由用户集成的,因此相对较为开放。

与早期的一些控制系统相比,DCS系统在功能和性能上有了很大进步,可以在此基础上实现装置级、车间级的优化和分散控制,但其仍然是一种模拟数字混合系统,从现场到PLC或计算机之间的检测、反馈与操作指令等信号传递,仍旧依靠大量的一对一的布线来实现。这种信号传递关系称之为信号传输,而不是数据通信,难以实现仪表之间的信息交换,因而呼唤着具备通信功能的、传输信号全数字化的仪表与系统的出现,从而由集散控制过渡到彻底的分散控制,正是在这种需求的驱动下,自20世纪80年代中期起,现场总线便应运而生,并通过激烈的市场竞争而不断崛起。

现场总线是应用在生产现场的全数字化、实时、双向、多节点的数字通信系统。现场总线技术将专用的CPU置入传统的测控仪表,使它们各自都具有了数字计算和通信能力,即所谓“智能化”;采用可进行简单连接的双绞线、同轴电缆等作为联系的纽带,把挂接在总线上作为网络节点的多个现场级测控仪表连接成网络,并按公开、规范的通信协议,使现场测控仪表之间及其与远程监控计算机之间实现数据传输与信息交换,形成多种适应实际需要的控制系统,即所谓“网络化”;由于这些网上的节点都是具备智能的可通信产品,因而它所需要的控制信息(如实时测量数据)不采取向PLC或计算机存取的方式,而可直接从处于同等层上的另一个节点上获取,在现场总线控制系统(FCS)的环境下,借助其计算和通信能力,在现场就可进行许多复杂计算,形成真正分散在现场的完整的控制系统,提高了系统的自治性和可靠性。

FCS成为发展的趋势之一,是它改变了传统控制系统的结构,形成了新型的网络集成全分布系统,采用全数字通信,具有开放式、全分布、可互操作性及现场环境适应性等特点,形成了从测控设备到监控计算机的全数字通信网络,顺应了控制网络的发展要求。

1.2现场总线的现状和标准化问题

目前,国内、外的现场总线有60几种之多,由于这一新技术所具有的潜在而巨大的市场前景,在商业利益的驱动下,导致了近年来制订现场总线国际标准大战。在市场和技术发展需要统一的国际标准的呼声下,修改后的IEC 61158.3~6标准最终于2000年1月4日获得通过。该标准包括了8种类型的现场总线子集,它们分别是:①基金会现场总线FF(原有的技术规范IEC 61158);②Control Net;③Profibus;④P—Net;⑤FF HSE;⑥Swift Net;⑦Word FIP;⑧Intferbus。这8种现场总线中,④、⑥是用于有限领域的专用现场总线;②、③、⑦、⑧是由PLC为基础的控制系统发展而来,本质上以远程I/O总线技术为基础,通常不具备通过总线向现场设备供电和本征安全性能;①、⑤则由传统DCS控制系统发展而来,具有总线供电和本征安全功能;①、⑧属于现场设备级总线,②、⑤属于监控级现场总线;③、⑦则是包括两个层次的现场总线。

以上8种类型的现场总线采用完全不同的通信协议,例如:Profibus采用的是令牌环和主/从站方式;FFHSE是CSMA/CD方式;WordFIP是总线裁决方式。因此,要这8种现场总线实现相互兼容和互操作几无可能。面对这种多总线并存的局面,系统集成将面临更为复杂的任务,系统集成技术也将会有很大的发展。

1.3现场总线的新动向—工业以太网

长期以来的标准之争,实际上已延缓了现场总线的发展速度。为了加快新一代系统的发展,人们开始寻求新的出路,一个新的动向是从现场总线转向Ethernet,用以太网作为高速现场总线框架的主传。以太网是计算机应用最广泛的网络技术,在IT领域已被使用多年,已有广泛的硬、软件开发技术支持,更重要的是启用以太网作为高速现场总线框架,可以使现场总线技术和计算机网络技术的主流技术很好地融合起来。为了促进Ethernet在工业领域的应用,国际上成立了工业以太网协会,开展工业以太网关键技术的研究。此外,开发设备网供应商协会(ODVA)已经了在工厂现场使用以太网的全球性标准——以太网/IP标准。该标准使用户在采用开放的工业应用层网络的同时,能利用可买到的现成的以太网物理介质和组件,也即由多个供应商所提供的可互操作的以太网产品。随着网络技术的发展,以太网应用于工业领域所要面对的网络可确定性问题、环境适应性问题、包括总线供电和本征安全问题都会迅速得到解决。

2 管理控制一体化

工业自动化领域的另一个发展趋势是管理控制系统的一体化。

2.1何谓管控一体化

在市场经济与信息时代的飞速发展中,企业内部之间以及与外部交换信息的需求不断扩大,现代工业企业对生产的管理要求不断提高,这种要求已不局限于通常意义上的对生产现场状态的监视和控制,同时还要求把现场信息和管理信息结合起来。管控一体化就是建立全集成的、开放的、全厂综合自动化的信息平台,把企业的横向通信(同一层不同节点的通信)和纵向通信(上、下层之间的通信)紧密联系在一起,通过对经营决策、管理、计划、调度、过程优化、故障诊断、现场控制等信息的综合处理,形成一个意义更广泛的综合管理系统。

2.2现场总线为管控一体化铺平了道路

企业信息网络是管控信息集成的基本条件,没有信息网络就不可能实现企业横向和纵向信息的沟通和汇集,建网的目标在于实现全企业范围内的信息资源共享,以及与外部世界的信息沟通。

水工业和一般企业网络大致可分为3层,即企业管理层,过程监控层和现场控制层。

管控一体化解决方案中的现场控制层由现场总线设备和控制网段构成,把传统的集散系统控制站(如水处理企业的PLC分站)的功能分散到了现场总线设备,此时的控制站实际是一个虚拟的控制站。现场总线技术与产品所形成的底层网络,充分发挥其使测控设备具有通信能力的特点,为控制网络与通用数据网络的连接提供了方便。企业信息网络是管控一体化的基础,现场总线则为构建管控一体化网络铺平了道路;过程监控层由局域网段以及连接在局域网段的担任监控任务的工作站或控制器组成,现场总线网络通过现场总线接口与过程监控层相连,或者监控层直接由现场总线来担当;监控站可以完成对控制系统的组态,执行对控制系统的监控、报警、维护及人机交互等功能;企业管理层由各种服务器和客户机等组成,用于集成企业的各种信息,实现与Internet的连接,完成管理、决策和商务应用的各种功能。

2.3管控一体化的支持环境与系统集成

基于系统之间横向数据交换及控制系统与管理层和现场仪表间纵向数据交换日益增加,现场总线的应用越来越广泛,制造厂商的产品也日益开放。由于多种总线并存已成定局,管控系统建立统一的数据管理、统一的通信、统一的组态和编程软件的一体化解决方案受到了各厂家的重视。同时,采用分布式网络系统,采用C/S或B/S结构,可以在实现企业各层次功能模型的同时,实现网络连接在结构上的简化,从而形成以实时和关系数据库为中心的数据集成环境,为实现数据资源共享的目标奠定了基础。

如前所述,在多总线并存的局面下,系统集成成为实现管控一体化信息系统的中心任务。系统集成是要按照一定的方法和策略将相同或不相同厂商的现场总线产品相互连接,并使上层应用与下层现场设备之间完成双向数据沟通,使之成为一个可以满足用户需求的整体。因此,系统集成既包括硬件产品的集成,也包括软件产品的集成。对硬件集成来说,需要借助网桥、网关沟通总线接口。一般同种总线的网段采用中继器实现网段的延伸,采用网桥实现不同速率网段之间的连接;不同类型的总线网段之间以及现场总线与以太网等异构网络之间采用网关实现互连,如公司与生产厂或其他部门距离较远时,采用公共数据网或电话网来实现局域网的连接,这在水工业的城市污水处理和截流系统、自来水厂站之间及供水管网调度系统等方面也是经常会遇到的问题。因此可以预计,今后这类通信接口产品将会变得很热门,从软件集成来说,通过OPC、ODBC等技术使得不同系统之间的准确、高速、大量的数据交换得以实现,能将实时控制、可视化操作、信息分析、系统诊断等功能集成到一个紧凑的软件包中,具有很大的硬件灵活性,并且可以提供与多种管理软件的连通性,从而可较为经济地解决管控系统之间的连接。

目前各个国家都在竞相开发自己的现场总线技术与产品,形成以现场总线为基础的一体化解决方案下的企业信息系统。现在已经推出产品的如西门子公司以Profibus总线为基础的PCS7、罗斯蒙特公司的基于FF总线的Plantweb等,管控一体化软件则有美国信肯通公司的Think&DO、Lntellntion公司的iFIX等。

3 对水工业自动化发展的思考

综上所述,现场总线技术的发展,引起了自动化系统结构和自动化控制概念的变革,进一步推动了管控一体化企业信息系统的建立,它集计算机技术、信息技术和自动化技术为一体,成为流程工业自动化发展的趋势。随着市场经济的发展和加入WTO的临近,工业企业面临前所未有的发展机遇和愈加严峻的挑战,对企业的生产经营管理提出了更高的要求。管控一体化企业信息系统的建立,将是增强企业竞争力的重要途径,问题是对于水工业来说,这种必要性到底有多大?水工业尽管有自己的特殊性,但在实现生产过程和经营过程的整体优化,在保障运行安全的前提下获取最大的经济效益上与其他工业应是相同的。特别是信息技术的不断发展,网络的普及,将会使管控一体化的重要性日益显露出来,由以PLC为基础的集散型控制系统向以现场总线为基础的管控一体化分布式网络信息系统过渡是必然的。

要构建管控一体化网络,必先以现场总线所形成的底层网络为基础,但目前国内对现场总线技术的应用还比较迟缓,原因之一是观望和等待一个单一的现场总线国际标准的确立,但客观事实是IEC通过了8种总线标准,估计这种多总线并存的局面在短时间之内也不会改观;原因之二是现场总线在系统集成上存在困难,条件还不成熟,尤其是由国家支持研制开发的FF总线,其OEM产品的开发和应用也还要假以时日;此外还存在总线产品互操作性的认定和可靠性等方面的问题。因此在目前情况下,一方面要密切关注现场总线标准的新的发展动态,同时还应结合水工业的具体条件,对诸如如何保护和利用现有资源,对原来的DCS系统进行改造,选用何种总线以及如何组网和系统集成等问题加以研究和讨论,并建议国家城市给水排水工程技术研究中心成立一个机构,像建设部、科委下属智能建筑技术推广中心的LonWorks现场总线协作网一样,负责跟踪现场总线技术的发展、信息技术交流,指导行业对这一新技术的推广和应用,以促进水工业自动化发展的进程。

自动化控制论文:论长寿排水公司污水处理厂自动化控制

摘要:本文介绍了长寿污水处理厂实施自动化控制的实践,论证了自动化系统对污水处理运行管理的重要作用,提出了智能化是自控系统发展方向的观点。

关键词:污水处理厂 自动化控制 设备改造

1.污水处理可能对三峡库来说还算是一个新星的行业,在三峡库区新建的污水处理厂中,大部分设置了自动化控制系统,力求对整个污水处理过程实行全面监控。但由于这项工作尚处在实践摸索阶段,与国外水平相比存在较大差距,主要问题是:

(l)主要控制设备功能不稳定,特别是在线仪表的准确性和稳定性来看,不能完全达到由计算机控制的要求。

(2)自控水平低,距智能化自动控制还有很大差距。

(3)运行条件变化范围大,某些工艺环节尚在不断调整。

(4)运行操作人员尚不能对工艺进行全方位控制操作。

由于以上条件限制,大多数污水处理厂的自控系统只能发挥监视和对部分设备进行远程控制的功能。长寿污水处理厂针对以上问题,自2003年5月试运行到现在来看,根据实际运行,并通过对部分设备的改造和完善,加之对现场运行操作人员的技术培训,使中控室具有集中控制、监视、现场故障报警等功能。操作人员可在中控室进行操作,为安全稳定运行提供了保障。

2. 长寿排水公司自控概况

长寿污水处理厂处理长寿区20万人生活污水及工业废水,我厂监控系统采用工业以太网集中控制系统。此系统包括1个监控中心(中控室)、6个现场PLC站(模拟屏PLC0、配电间站PLC1加药间站PLC2、脱水间PLC3、PLC4站和紫外光PLC5站)。配电间站主要控制提升泵站、格栅井、沉砂池、氧化沟、二沉池、回流泵站、剩余泵站、贮泥池的自动运行;模拟屏站主要对模拟屏的数据处理控制;加药间站主要是对加药间的自动控制;脱水间2个站分别对1号和2号脱水机进行自动控制,紫外光站是对紫外光消毒系统进行控制。中控室则对全厂设备的控制操作及监视。现场分站采用的PLC可编程控制系统是美国AB公司以太网系统。

3. 对设备的改造与完善

长寿污水处理厂从试运行以来,由于现场电气及机械设备存在一些问题,直接影响了自控系统的正常运行。根据存在的问题,结合实际运行情况及工艺要求,对自动化控制系统的现场控制设备进行了部分技术改造。

3.1 对现场一些设备进行改造

由于我厂增加了一台脱水机和PLC柜,为了把新增的这台脱水机PLC柜的运行信号联到中控室,避免重新进行布线。使用交换机联接两台脱水间PLC柜,通过一根信号线接到中控室交换机。改造现场和配电机曝气机的二次控制回路,解决了中控室不能控制曝气机启停的问题。

1号2号氧化沟的变频曝气机由于控制转换开关处在开关柜

控制和机旁控制方式时,变频器模拟量4~20mA电流输入电路断开,使得不能输入变频器运行频率,变频器控制失效,不能运行。经考虑,短接模拟量电流输入的转换开关控制回路。

变频器频率信号(模拟量)、运行信号(开关量)没有输出给

PLC,使得上位机无法判断曝气机是否运行。过后经自动化人员改进后,只给出变频器频率信号(模拟量),运行信号可有可无(开关量)。

3.2 对PLC源程序的修改、优化

试运行中,我厂由于采用的是巡检制度,将各分散值班点集中到中心控制室值班操作。所以必须对比较重要的报警参数根据实际情况做进一步的修改。通过对PLC可编程控制器的源程序进行修改、编译,主要是启停液位、报警液位、逻辑控制、出水流量、加药间液位、提升泵站液位差等。不仅实现了设备按工艺流程运行的要求,而且机械设备运行的准确性、安全性有了很大提高,电气故障大为减少。故障点检查也很方便,大大降低了电气设备的故障率,使现场自动运行更加稳定。更主要的是为自动化控制的顺利实现创造了条件。

另外对高压配电系统和一套独立的监控系统,如出现任何故障不仅有指示灯光报警,而且还配有语音报警系统,使值班人员一目了然,可清楚地判断故障发生的部位并做及时处理,避免事故的发生。

3.4 安装视频监视系统的

为了让操作人员真正在中控室控制全厂、监视全厂、管理全厂,长寿污水处理厂于2002安装了BAXALL系列摄像机视频监视系统。它配合原有的自控仪表,对进水粗格栅、细格栅、提升泵、排砂泵、搅拌机、砂水分离机、氧化沟曝气机、二沉池、回流泵站、剩余污泥泵站、脱水间、办公室等10多个场所的现场情况,进行24小时全天候监视。

这套视频监视系统运行可靠。在中控室里,通过对摄像机的遥控。可以监视全厂20多个部位工艺设备的运行情况。如果按工艺流程在现场巡查一遍,需要30分钟左右,而通过视频监视系统,几分钟就可以对全厂工况浏览一遍,大大提高了工作效率。

3.5 提升泵站和格栅井的控制

污水提升泵站安装两台潜水泵一用一备,在上位机设定常用/备用,按如下原理进行控制:

当泵站内水位达到1.70m时,一台泵启动 ;

当水位降至0.80m时,水泵停机,并发出报警信号。

粗、细格栅分别有时间控制/液位差控制,2种控制方法,我厂现在用的是时间控制。

格栅井安装粗、细格栅机两台,运行依据其前、后超声波液位差计测得的水位差进行控制。

当粗格栅机前,后超声波液位差计测得的水位差超过20cm,粗格栅机、皮带轮输送机自动开机。

当粗格栅机前,后超声波液位差计测得的水位差降至10cm,粗格栅机、皮带轮输送机自动停机。

当细格栅机前,后超声波液位差计测得的水位差超过30cm,细格栅机、螺旋输送机,压榨机自动开机。

当细格栅机前,后超声波液位差计测得的水位差降至20cm,细格栅机、螺旋输送机,压榨机自动停机。

粗格栅、细格栅还可以通过在上位机设定运行、停止间隔时间的方式定时开启停止。当格栅每运行15分钟后停15分钟。皮带输送机、螺旋输送机与格栅联动,及格栅运行时,同时运行。

两组涡流沉砂池,每组涡流沉砂池内安装一台搅拌机和排砂泵,搅拌机长期运行。排砂泵把池底的污物抽送至砂水分离器。排砂泵每运行10分钟后停20分钟,时用,砂水分离器与排砂泵同时工作,以上设备均可在中心控制室监控。

3.6 氧化沟的自动控制

本工程氧化沟设两组,日处理污水能力40000m3/d,每组氧化沟设计日处理能力2万m3/d。每组氧化沟PDSL-325(C)型倒伞型表面曝气机三台,其中1#,3#机组为恒速,逆时钟方向运转,单台机组充氧量为119kgO2/h;2#机组为变频调速,顺时针方向运转,单台机组充氧量为23~119kgO2/h,电机功率均为55KW;每组氧化沟安装两台溶解氧检测仪(DO仪)和一台污泥浓度检测仪(MLSS仪),一台DO仪和MLSS仪安装在接近出水口处,另一台DO仪安装在缺氧区。另一组氧化沟设备与该组氧化沟对称,倒伞型表面曝气机的运行按照氧化沟内溶解氧值(DO值)进行自动控制,其DO值以接近出水口处的DO仪的测定值为准。

当DO值在0.2mg/L< DO值<1.2mg/L范围内时三台电机都开启;当DO值在1.2mg/L<DO值<3.0mg/L范围内时开一台恒速机和一台变频调速机;其中变频调速机的调速频率分为五段(频率随着DO值减小而增大);当DO值在3.0mg/L<DO值<4.0mg/L范围内时只开一台恒速机。如果DO值不在以上范围内那么开一台恒速机和一台变频调速机(频率固定)。

氧化沟内设一台污泥浓度(MLSS)测定仪,将MLSS测定仪测定值传送至中控室,用于调节活性污泥回流泵站及电动套筒阀的运行。

氧化沟内安装的各检测仪器(如DO仪、MLSS仪)的数据,由PLC1进行采集。然后PLC1将采集的数据通过控制层网络送至中控室用于控制相关设备运转。

3.7 回流泵站的自动控制

污泥回流泵站安装潜水轴流泵两台,按如下原理进行控制:

在泵站出水侧及吸水侧(套筒阀井处)各设一台超声波水位计,出水侧设两个水位,一个正常水位7.8m,一个报警水位8.4m,吸水侧设四个水位,一个正常水位5.30m,一个启动水位5.00m,一个高限报警水位5.80m,一个低限报警水位4.40m;

当两个氧化沟的污泥浓度同时高于3000mg/L时,开启1台污泥回流泵,如果其中任何一个氧化沟的污泥浓度低于3000mg/L时只开启2台污泥回流泵。

本控制程序能使两泵交替工作(统计工作时间),负荷均等,从而延长二泵工作寿命。

3.8 剩余泵站和贮泥池的自动控制

本泵站安装100QW70-7-3型潜水排污泵一台,其工作原理如下:

当贮泥池液位低于2.0m时,剩余污泥泵自动开启。当贮泥池液位高于4.5m时,剩余污泥泵站剩余污泥泵根据液位计信号自动停止运行,贮泥池液位在中心控制室显示及报警。另外,当贮泥池水位计超过贮泥池设定的最高水位或最低0.5m时,水泵亦由中控室控制自动切断水泵电源,泵站停止工作。

贮泥池安装超声波液位计,当液位为1.5m时,向脱水间PLC发出污泥泵停泵停止运行信号。

3.9 加药间的自动控制

溶解、溶液池为两组,每组2 m;每组内安一台搅拌机,和超声波液位计一套,工况一用一备;

溶解池加料加水后,搅拌机工作15分钟,搅拌机停车,溶液池的液位预报警(液位现场确定);

当一格溶解池最低液位时(液位现场确定),自动关停药液输出电磁阀同时开启另一溶液池的电磁阀;

FeCl3液按照出水流量计信号自动调节频率,手动调节冲程控制投加量,使其出水水质达到国家一级排放标准。

3.10 紫外光的自动控制

紫外光消毒采用的是德国威得高系统,控制方式采用的是液位控制,并由液位控制出水的电动阀门自动行动,使液位始终保持在1.7m,紫外光灯启动±5%左右。

3.11 脱水间的自动控制

脱水间加药池设有一液位探头,当液位低于设计标准时,脱水机停止。

脱水机的控制主要还是以人工控制为主,操作人员在PLC柜在启停各个设备。

3.12 现场仪表的控制

我厂的主要仪表有:液位计、进水PH值、溶解氧、污泥浓度、COD在线仪、浊度仪、出水流量计(其中大部分的在线仪表都自带得有温度计)。 显示的具体形式以具体数值显示为主,操作人员可直观地读取各种数据。

3.13 高压配电系统监视功能

此功能主要是对高压配电及供电系统的开关是合是断,通过在上住机(CRT)显示来提示有关人员。具体显示以示意图的形式实现。

3.14 时间累计、故障次数和报警功能

主要功能是对所有设备运行的时间进行统计。报警功能是对设备运行出现的故障都有灯光和声音提示,准确及时地提示操作人员哪台设备出现了故障。故障出现时,运行设备立即停止运行。此部分功能的实现,为有关人员确定设备大修时间及日常保养次数提供了依据。

4. 自控系统的使用效果

4.1 快速准确地反映运行异常情况

当现场现出任何的异常情况,可通过监控系统和上位机系统一目了然的看出问题。有设备出现故障、上位机同时报警并停止该设备的运行,相应地计算机作故障情况记录,方便设备故障排除、管理、维护等。

4.2 促进了职工技求素质的提高

实行自控,运行人员合并值班操作,对职工素质的要求也相应地变为复合型,这就进一步激发了职工特别是青年职工学文化、学技术的积极性。

4.3 为降低运行成本创造了条件

5. 自控系统的发展前景是智能化

从长寿排水公司自动化控制水平看,只是完成了人对设备简单的机械性能的操作,这种系统在智能化高度发达的今天显得很粗糙。因为污水处理的可变因素很多,有水量、浓度、温度、气量、微生物状态、系统配水情况。供电情况、机械运行情况等等,是一个非常复杂的系统,只靠预先设定的简单程序就想控制好生产全过程是不可能的。我们需要一种更高级的控制系统,使之能对生产过程出现的各种数据给予采集、计算、分析,得出目前运行状态是否正常的结论,并能给操作人员以有益的提示,从而使自动化控制能够真正实现智能化。

自动化控制论文:滴灌系统的自动化控制的研究

摘要:本文介绍了引进的以色列先进的滴灌技术,同时从滴灌系统、节水效果到滴灌的自动化控制作了详尽阐叙,并对百果园第二期工程建设提出了滴灌系统的设想,以此范例,作出了在我国果园灌水实现滴灌自动化的一般方法和建议。

关键词:计算机 自动化 电磁阀

1 简介

是国家果茶良种场XX省优质果茶良种繁育场,是国家“九五”种子工程在湖南实施的重点项目,建于1998年8月,1999年三月由农业部授名为“国家(湖南)果茶良种场”。

厂址位于XX市西郊雷锋大道7公里处,占地面积620亩。为加速实施全省农业结构的调整,先后从美国?法国?埃及?日本及国内10多个省市科研育种单位引进优质果茶品种资源158个,优质果茶种苗40多万株,建成果茶母本园150亩。每年可向社会提供优质果茶苗木200多万株,果茶母(接)穗1万公斤以上,生产优质果茶产品1000吨以上。

果茶场也是省城第一座以品茶、园艺、垂钓为主题的农业观光园。这里空气清新,景色怡人。春有草莓、樱桃、“明前”茶;夏有枇杷、苹果、葡萄、桃、李、杨梅、无花果与瓜类;秋有板栗、柿、枣、梨、猕猴桃;冬有柑桔、橙类等。一年四季。百果飘香,是个名副其实的“百果园”。

该厂第二期工程将于2003年完成,面积将扩至1000多亩。年生产优质果茶苗木将达到1000万株,优质果茶产品产量也将成倍增加,更多的农业高新技术将落户该场。果茶苗木和产品的生产、检测、采后处理、加工和多种农业观光设施将全部完善和配置。届时,一个全新的高科技生态农业示范、观光园将会展现在你的面前。

百果园是农业高科技的结晶,而滴灌系统是其中的重中之重。百果园现建成的620亩果园,全部由从以色列引进的先进滴喷灌系统控制,该园地势起伏较大,最高处海拔达86.60m,最低处64.72m,传统灌水方式很难进行,而先进的滴灌系统由于对地形的适应能力强,而且特别适应山地丘陵地区,所以滴灌正好大施其能,由低处水库中取水,经过过滤加压,然后由遍布全园的各种管道把带有肥料、除虫剂的水准确地送到每片需水地园中,保证果树的正常需水。不过其系统自动化程度不高,全园仅能使用微机控制电磁阀的开启,不能精确实现作物的轮灌、对灌水时间和灌水量还不能实现有效的控制,有望进一步提高。

2 滴灌系统

滴灌就是滴水灌溉技术,它是利用低压管道系统,使滴灌水成点滴地、缓慢地、均匀而又定量地浸润作物根系最发达的区域,使作物主要根系活动区的土壤始终保持在最优含水状态。滴灌不同于传统的地面灌溉湿润全面积土壤,因此滴灌有节约灌溉用水量、促进作物生长和提高产量的作用,是一种很有发展前途的局部灌水技术。

百果园主要种植柑桔、葡萄、水蜜桃、茶等低矮果树,如果采用其它灌水方法,不仅浪费水资源,而且很难保证满足果树的需水量,而滴灌具有省水节能、省工省地省肥、操作简单,易于实现自动化、对土壤地形适应性强、保护和保持生态环境等优点,所以滴灌成为了百果园地首选。

2.1百果园滴灌系统的组成

百果园滴灌系统主要由水源、首部枢纽、输配水管网和尾部设备灌水器以及流量、压力控制部件和测量仪表等组成,如图所示。全园滴灌系统组成示意图:

1.水源 2.水泵 3.供水管 4.蓄水池 5.逆止阀 6.施肥开关 7. 灌水总开关 8.压力表

9. 主过滤器 10. 水表 11. 支管 12. 微喷头 13. 滴头 14. 毛管(滴灌带、渗灌管)

15.滴灌支管 16.尾部开关(电磁阀) 17.冲洗阀 18.肥料罐 19.肥量调节阀 20.施肥器 21.干管

2.1.1 水源

江河、湖泊、水库、井、渠、泉等水质符合微灌要求的均可作为水源,百果园采用从园中的水库中取水。

2.1.2 首部枢纽

百果园的首部枢纽包括泵组、动力机、肥料罐、过滤设备、控制阀、进排气阀、压力表、流量计等。其作用是从水库中取水增压并将其处理成符合微灌要求的水流送到系统中去。百果园中采用五级加压式离心泵,在水库中取水,现取现用,计划建一水塔蓄水。

2.1.3 输配水管网

输配水管网的作用是将首部枢纽处理过的水按照要求输送分配到每个灌水单元和灌水器。包括干、支管和毛管三级管道,毛管是微灌系统末级管道,其上安装或连接灌水器。微灌系统中直径小于或等于63毫米的管道常用聚乙烯(PE)管材,大于63毫米的常用聚氯乙烯(PVC)管材。百果园中干、支管采用PVC管和UPVC管,毛管采用PE管。

2.1.4 尾部设备

尾部设备是微灌系统的关键部件,包括微管和与之相联的灌水器(小微管、滴头、微喷头、滴灌带、渗灌头、渗灌管等)插杆等。灌水器将微灌系统上游所来的压力水消能后将水成滴状、雾状等施于所需灌溉的作物根部或叶面。

2.2 百果园滴灌灌溉系统

灌溉系统的第一期工程是由以色列的普拉斯托公司负责承建,全园采用先进的滴、喷灌相结合的微灌节水技术,是我国南方发展节水农业的典范,其具体情况见下:

2.2.1 设计原则

滴灌灌溉系统设计除了满足节水、节能、省力等之外,通常应遵循以下主要原则:

①必须满足果园果树生长对水分的要求;

②灌溉系统设计应结合耕作实际,便于操作;

③应使所选择的灌水方法既能满足作物的灌溉要求,又不因灌溉而造成病害、虫害的发生;

④在尽可能的情况下,灌溉系统设计时应考虑施肥及喷药装置;

⑤在尽可能的情况下,应使灌溉系统在满足灌溉要求的同时,工程建设的综合造价最小。

2.2.2 设计步骤

2.2.2.1资料的收集在系统设计时,必须掌握以下资料:

①地形资料:根据实际情况测绘大比例尺地形图,其中包括果园的平面布置、道路、水源位置、高差等。

②土壤资料:主要是土壤理化性质、地下水埋藏深度和土层厚度等。土壤理化性质主要包括土壤类别、干容重、含盐情况、土壤田间持水率等。

③气象资料:区域年均降雨量及季节分布、平均气温、极端气温(包括最高、最低气温)、最大冻土层深度、无霜期、蒸腾蒸发资料等。

④水源资料:水源属性(个人或集体)、种类、水源位置、水质、含沙情况、水位、供水能力、利用和配套情况等。若水源为机井时,还应调查机井的静水位和动水位,当地下水水位较浅时,一定要调查清楚地下水位及其周年变化规律。若水源为渠水时,应调查清楚水源的含泥沙种类、含沙量、水位、供水时间、可能的配水时间等。同时,还应特别注意水源的保证率问题,不论是只用于果园的水源还是与周围大田混用的水源,都应考虑这个问题。

⑤百果园作物种植资料:其中包括作物的种类、种植密度(其中最主要的是行距和株距)等。

⑥百果园的环境资料:包括百果园周围的地形、交通和供电等。

2.2.2.2 灌水方法的选择灌水方法选择适当与否,除了影响工程投资外,还直接影响着灌溉系统的效益发挥和灌溉保证率。因此,应根据作物种类、作物的种植制度、种植季节、水源情况、果园设施情况、工程区社会经济情况等,合理地选择相对投资较省、灌溉保证率较高且有利于果园果树生长的灌水方法。百果园灌溉系统的灌水方法采用以滴灌为主,滴喷灌相结合的方式。

2.2.2.3 滴灌系统布置,百果园滴灌系统的管道分干管、支管和毛管等三级,布置时干、支、毛三级管道要求尽量相互垂直,以使管道长度和水头损失最小。通常情况下,园内一般出水毛管平行于种植方向,支管垂直于种植方向。

2.2.2.5 滴灌系统控制灌溉面积大小的计算在灌溉水源能够得到充分保证的条件下,滴灌面积的大小取决于管道的输水能力。对于水源流量不能满足整个区域需要时,滴灌面积为

2.2.2.6 管网水力计算滴灌系统各级管道布置好以后,即可从最末端或最不利毛管位置开始,逐级推算各级管道的水头损失(包括沿程水头损失和局部水头损失)。在设计中,同一条支管上的第一条毛管最前端出水孔处水头与最末一条毛管最末端出水孔处水头之间的差值,不超过滴头设计工作压力的20%,流量差值不超过10%;对于采用压力补偿式滴水器时,仅要求区域内滴头流量差值不超过10%,并据此确定支、毛管的最大设计长度;在滴灌中,由于管网中水流压力通常小于0.3兆帕,所以多选用PVC塑料管道。 管道中水流在运动过程中的压力损失通常包括沿程阻力损失和局部阻力损失。工程设计中塑料管道的沿程阻力损失常选用式(4-1 6)、(4-17)计算,局部阻力损失常用式(4-18)计算。 ①沿程阻力损失hf

当管道有多个出水口时,管道的沿程阻力应考虑多口出流对沿程阻力的折减问题,多口出流折减系数k,对应计算公式

工程设计中为了计算方便,局部阻力损失也常按沿程阻力损失hf的10%估算。

2.2.2.7 管道系统设计包括各级管道的管材与管径的选择、各级固定管道的纵剖面设计、管道系统的结构设计。

① 管材的选择:可用于灌溉的管道种类很多,应该根据滴灌区的具体情况,如地质、地形、气候、运输、供应以及使用环境和工作压力等条件,结合各种管材的特性及适用条件进行选择。一般情况下,对于地理固定管道,可选用钢筋混凝土管、钢丝网水泥管、石棉水泥管、铸铁管和硬塑料管。钢管易锈蚀和腐蚀,最好不要选用。随着材料工业的发展,地埋管道多选用塑料管。选用塑料管时一定要注意,不同材质的塑料管在几何尺寸相同的情况下可承受的工作压力相差甚远,特别是在使用低密度聚乙烯管(PE管)时,一定要注意管壁的厚度是否达到了能承受系统所要求压力的厚度,若没有达到,千万不能使用,否则将会埋下隐患,造成运行时管道发生爆破,甚至导致整个管道系统瘫痪。用于滴灌地埋管道的塑料管,最好选用硬聚氯乙烯管(UPVC管)。对于口径150毫米以上的地埋管道,硬聚氯乙烯管在性能价格比上的优势下降,应通过技术经济分析选择合适的管材。塑料管经常暴露在阳光下使用,易老化,缩短使用寿命。因此,地面移动管最好不采用塑料管。

② 管径的选择:当轮灌编组和轮灌顺序确定之后,各级管道在每一轮灌组所通过的流量即可知道。通常选用同一级管道在各轮灌组中可能通过的最大流量,作为本级管道的设计流量,依据这个设计流量来确定管道的管径。若某一级管道,其最大流量通过的时间占管道总过水时间的比例甚小,也可选取一个出现次数较多的次大流量,作为管道的设计流量来确定管径。同一级管道的不同管段通过的最大流量不同时,可分段确定设计流量。(a)支管管径的确定:支管是指直接安装竖管和滴头的那一级管道。支管管径的选择主要依据灌溉均匀的原则。管径选得越大,支管运行时的水头损失就越小,同一支管上各滴头的实际工作压力和灌水量就越接近,灌溉均匀度就越接近设计状况。但这样增大了支管的投资,对移动支管来说还增加了拆装、搬移的劳动强度。管径选得小,支管投资减少,移动作业的劳动强度降低,但由于运行时支管内水头损失增大,同一支管上各滴头的实际工作压力和灌水量差别增大,结果造成果园各处受水量不一致,影响滴灌质量。为了保证同一支管上各滴头实际出水量的相对偏差不大于20%,国家标准GBJ85-85规定:同一支管上任意两个滴头之间的工作压力差应在滴头设计工作压力的20%以内。显然,支管若在平坦的地面上铺设,其首末两端滴头间的工作压力差应最大。若支管铺设在地形起伏的地面上,则其最大的工作压力差并不见得发生在首末滴头之间。考虑地形高差Z的影响时上述规定可表示为

许的水头损失即为从式(4-20)

可以看出:逆坡铺设支管时,允许的hw的值小,即选用的支管管径应大些;顺坡铺设支管时,因Z的值本身为负值,其允许的hw的值可以比0.2hp大些,也就是说因支管顺坡铺设时,因地形坡降弥补了支管内的部分水力坡降,选用的支管管径可适当的小些。 当一条支管选用同管径的管子时,从支管首端到朱端,由于沿程出流,支管内的流速水头逐次减小,抵消了局部水头损失,所以计算支管内水头损失时,可直接用沿程水头损失来代替其总水头损失,即h'f=hw,式(4-20)可改写为

滴头选定后,满头的设计工作压力可从滴头性能表中查得。两滴头进水口高程差(实际上就是两滴头所在地的地面高差)可以从系统平面布置图中查取。则h'f即可求出。利用公式h'f=FfLQm/db,在其他参数已知的情况下反求管径d,d就是该支管可选用的最小管径的计算值。因管材的管径已标准化、系列化。因此,还需按管材的标准管径将计算出的管径规范取整。对滴灌系统的支管,考虑到运行与管理的方便,最大的管径一般不超过100毫米,并且应尽量使各支管取相同的管径,至少也需在一个作业区中统一。对于固定管道式滴灌系统,地理支管的管径可以不同,但规格不宜太多,同一条支管一般最多变径两次。 (b)支管以上各级管道管径的确定:一般情况下,这些管道的管径是在满足下一级管道流量和压力的前提下按费用最小的原则选择的。管道的费用常用年费用来表示。随着管径的增大,管道的投资造价(常用折旧费表示)将随之增高,而管道的年运行费随之降低。因此,客观上必定有一种管径,会使上述两种费用之和为最低,这种管径就是我们要选择的管径,称之为经济管径。经济管径中对应的流速称为经济流速。图4-7就是用最小年费用法计算经济管径的原理示意图。用这种方法确定管径概念清楚,但计算相当繁琐,往往需要分别计算出多种管径的年投资和年运行费,比较后再确定。随着科学技术的进步,计算机技术的飞速发展,许多优化设计方法,如微分法、动态规划法等已在管道灌溉管网的设计中得到应用,具体方法可参阅有关书籍。 对于规模不太大的滴灌工程,也可用式(4-22)、式(4-23)的经验公式估算管道的直径:

容是确定各级固定管道在平面上的位置及各种管道附件的位置。管道的纵剖面应力求平顺,减少折点,有起伏时应避免产生负压。

ⅰ 埋深及坡度:地埋管的埋深指管径距地面的垂直距离,埋深应根据当地的气候条件、地面荷载和机耕要求确定。一般管道在公路下埋深应为0.7~1.2米;在农村机耕道下埋深为0.5~0.9米。地埋管的坡度主要视地形条件而定,同时也应考虑地基好坏及管径大小。一般在地形条件许可的情况下,管径小、基础稳定性好的管道坡度可陡一点;反之应缓些。总的来说,管道坡度不得超过1:1,通常控制在1:1.5~1:3以下。

ⅱ 管道连接及附件:地埋管道的连接多采用承插或黏接的形式,转向处用弯头,分水处用三通或四通接头,管径改变处采用异径接头,管道末端用堵头。为方便施工和安装,同类管件应考虑其规格尽量统一。

为了按计划进行输水、配水、管道系统上应装置必要的控制阀。白果园中为了实现灌水的有效控制,设置了30多个电子阀.而且各级管道的首端还设了进水阀或水分阀;当管道过长或压力变化过大时,设置节制阀。为保证管道的安全运行,还安装一些附设装置。自压系统的进水口和各类水泵吸水管的底端应分别设置拦污棚和滤网,管道起伏的高处应设排气装置,自压系统进水阀后的干管上设高度高出水源水面高程的通气管,管道起伏的低处及管道末端设泄水装置,管道可能发生最大水锤压力处设置安全阀。

2.3 评价

从整体上来看,XX白果园的滴灌系统是建设的比较完善的一套滴水灌溉系统,设计施工都符合现代滴灌的要求,是一套先进的现代化滴水灌溉系统,而且产生了很好的经济效果。不过当时考虑到经济条件的限制,其毛管采用了单行直线布置,灌水均匀度不高,鉴于对多种毛管布置形式的比较分析,笔者认为百果园应改进为双行毛管平行布置;而且其控制系统自动化程度不高,全园仅能使用微机控制电磁阀的开启,不能精确实现作物的轮灌、对灌水时间和灌水量都不能实现有效的控制,故需进一步对其控制系统加以设计改进。正在建设的二期工程应该吸收一期工程中的好的经验,改进一期工程中的不足,特别是应该实现灌水的全自动控制。

3 灌溉自动化控制系统

灌溉中的滴灌系统,能很方便实现自动化控制,灌水的自动化控制能有效的实现节水灌溉,也是农业实现现代化的要求。对微灌的自动化控制,根据控制系统运行的方式不同,一般可分为手动控制、半自动控制和全自动控制三类:

①手动控制系统

系统的所有操作均由人工完成,如水泵、阀门的开启、关闭,灌溉时间的长短,何时灌溉等等。这类系统的优点是成本较低,控制部分技术含量不高,便于使用和维护,很适合在我国广大农村推广。不足之处是使用的方便性较差,不适宜控制大面积的灌溉。

②全自动控制系统

系统不要人直接参与,通过预先编制好的控制程序和根据反映作物需水的某些参数可以长时间地自动启闭水泵和自动按一定的轮灌顺序进行灌溉。人的作用只是调整控制程序和检修控制设备。这种系统中,除灌水器、管道、管件及水泵、电机外,还包括中央控制器、自动阀、传感器(土壤水分传感器、温度传感器、压力传感器、水位传感器和雨量传感器等)及电线等。

③半自动控制系统

系统中在灌溉区域没有安装传感器,灌水时间、灌水量和灌溉周期等均是根据预先编制的程序,而不是根据作物和土壤水分及气象资料的反馈信息来控制的。这类系统的自动化程度不等,有的一部分实行自动控制,有的是几部分进行自动控制。

为了对先进的滴灌自动化控制系统有具体认识和了解,下面我们将对滴灌的自动化控制作详细介绍:

3.1 滴灌首部控制枢纽

滴灌自动化系统的基本控制方法有:时间控制、水量控制和反馈控制三种。时间控制系统是按预定好的时间放水或关水;水量控制系统是按照设计的配水量放水或关水;反馈控制系统是根据灌区内湿度感受器的反应,然后将信号传送到首部控制枢纽部分来关水或放水。滴灌系统更便于完全实现自动化,这在地多人少、劳力紧张的边远地区,沙漠地带的防护林区,铁路路基沿线,经济力量雄厚的城郊蔬菜种植区显得特别重要。目前,国外发达国家在滴灌区普遍使用了计算机管理系统,并通过专用的滴灌系统软件来控制和检测作物生长、土壤状况和气象趋势,取得了良好的效果。大大提高了现代化的土壤水分、作物生长测定技术的可能性和实用性,具有农艺上的综合性,为人们充分利用现代化仪器设备在滴灌系统中应用提供了巨大的潜力。滴灌系统软件根据作物对水分的需求和土壤墒情制定出合理的灌溉计划和作物管理计划。

3.2 作物生产管理计划制定

控制软件系统应能提供一套科学的管理系统,它通过提高作物产量和品质以及减少用水量来提高水分利用效率,能给农民及有关用户提供一套针对灌溉方案制定作物生产管理的先进、完善的管理系统,用户能够使用它获得他们的每一块农田的土壤水分状况图,方便的数据资料存取能够得到每一块农田的准确土壤水分含量,还能够确定准确的日水分利用量,能够给每块农田制定出合理的灌溉管理决策,能够根据每一块农田各自的灌水量需求对不同农田进行灌溉优先排序,以便制定优化灌溉计划使农场或用户获得整体最高产量。

控制软件系统应能允许灌溉管理者根据作物水分需求和作物对灌溉的反应制定合理的灌溉计划,作为一个完整的灌溉计划和作物生产管理软件包,它能够对灌溉决策的制定和作物管理进行数据资料存储、运算处理、显示输出。土壤水分数据资料主要由中子探测仪、石膏电阻块和张力计测定获得。天气数据资料由自动气象站获得,作物生长资料如籽粒大小(直径)、株高和叶片硝酸盐含量等可直接田间测定,根据相应的作物响应,作物生长资料结合土壤水分资料能够制定出合理的灌溉计划,通过实际调查能够提高作物产量、品质和水分利用效率的管理技术能够详细地验证作物生长、土壤水分和气候之间的关系,因此能很好地解决一些灌溉管理和作物生长问题,其中包括过量灌溉导致的灌溉水排渗问题、肥料向根部以下淋溶损失问题以及为了达到高产稳产目标的籽粒重和穗粒数或结果率的控制管理问题。

3.3 滴灌系统灌溉计划制定

滴灌系统灌溉计划一般是指确定何时进行灌溉及应该的灌溉量,灌溉计划的应用可消除代价巨大的不可预测的农业灾害,如在作物生长临界期由于土壤类型和作物自身生长能力,不同的农田具有不同的土壤水分亏缺量和日水分利用量,因此不同的农田需要不同的灌溉计划。农民通过土壤水分测定技术利用软件处理和显示不同层次土壤水分特征,能加深对发生于土壤内的各种过程的理解,以便进行更精细的灌溉计划和灌溉管理决策的制定,以确保土壤水分总是保持作物生长所需的最佳含水量。

当土壤水分和被作物利用的水分的准确数量被测定后,通过软件可以计算下一次滴灌的日期和准确的灌水量,它将考虑当前每天水分利用状况、天气变化和历史资料来帮助管理者制定以后的灌水计划。它把农田从最干到最湿分为不同等级。了解需要灌溉补充的水量有助于协调不同用户之间和同一用户内部的水分供给,充分了解雨后何时开始灌溉能使农民最大限度地利用自然降水,而把灌水过多和灌水不及造成地危险减到最小。

3.4 土壤水分时间图和深度图的应用

3.4.1 时间图 时间显示某一指定土壤容积含水量、根区土壤含水量或作物响应随时间的变化。时间图的基本显示:直线表示根区土壤含水量的饱和点和需灌溉补充点;供给的和有效的灌溉和降雨情况;箭头指示预测的灌溉日期;关于水分饱和点、需灌溉补充点、当前和过去的土壤水分测定值及计划安排的灌水日期和灌水量的总结表;作物生长及其对灌溉管理技术措施的响应;该软件所做的时间图可进行大小调整,通过调整纵坐标轴上的最大值和最小值及横坐标上的日期范围能够把图形中用户想要的区域或作物生长期内的某特定阶段的图形放大。图形能够进行叠加来同时比较不同地点的田块或不同年份的数据。当季和前季的作物的生长,土壤水分和天气资料的叠加图形比较灌溉管理达到高度的协调一致。用户可以选择任何关键数据来建立相互作用关系图。

3.4.2 深度图 深度图显示土壤容积含水量沿土壤剖面随深度的变化而变化的情况,通过该软件和现代化仪器结合能够迅速直接测定和分析土壤水的剖面分布情况。根区吸收水分模式可以在深度图中看到,对深度图分析能使农民确定每一种农作物包括块根作物在土壤剖面中被研究的土壤体积范围和土壤剖面的每一深度层的作物利用的水分数量、土壤紧实度、土壤质地变化、高石灰岩含量、地下水位和盐分等问题能够通过对根部活动的仔细分析而发现。深度图也可以用来确定渗入和排出土壤剖面的水分的运动状况及深度和数量,从中能够给定灌溉饱和点和需灌溉补充点的准确设计值。灌溉或降水后从土壤的根区排出的水分数量能够通过深度图准确测定,根据可以调节灌溉所用时间以避免水分从土壤剖面排出而损失,控制土壤剖面排出水的数量将防止地下水水位地升高和土壤养分的淋溶损失,同时也将降低灌水及滴灌水及抽水的成本。深度图是一个非常有用的工具,能够解决在不同类型土壤中灌溉水的水平和垂直运动的关键问题,通过分别绘制灌溉前和灌溉后距滴管不同距离的各个点的土壤水分含量图可比较灌溉水的运动状况,用户能够利用研究所得的结果来减少水分和肥料排渗,同时确保作物根系能够一直得到适量的水分。

3.5 软件的程序特点

3.5.1程序结构 滴管软件的数据存储于一个树状结构,这使得制定灌溉方案是查询数据资料非常方便。管理人员可能负责管理几个农场或几块农田,每个农场或农田可能有许多检测点,每一个检测点都有一套不同时间收集的实际测定的读数记录。输入的数据经过计算机软件处理,能显示有关每一单个田块的详细资料,还能够向农民分别显示每一年的作物种植的详细资料。能够显示农场的每个监测田块或某一年份的每一监测点的情况,指明灌溉饱和点和需灌溉补充点,当前作物日水分使用情况,土壤水分平衡和预测出的三次灌溉的日期,土壤水分含量和作物日用水量的测定值,对未来作物在整个生长季节的长期的用水量作出估算。显示某一具体的时期的每一深度层的土壤水分含量的读数记录和根区的总水分含量,同时显示土壤水分需要量,中子仪测定并估算的日水分使用量。利用滴灌软件可进行数据资料综合分析,从中总结重要的信息形成报告,以帮助制定每日的管理决策方案。同时也可以编辑出前几个生长季的作物生长、水分管理。土壤等数据资料,并进行综合分析,为以后的灌溉方案制定提出更合理更完善的评价标准。该软件程序的所以结构层次能为所选择的农场、监测点和某一日期建立报告。报告分为五种:深度图、时间图、记录读数报告。监测点报告和灌溉计划报告。用户可以根据自己的需要已及自己微机系统对程序进行修改编译,选择公制和英制计量单位进行数据资料综合分析,将田间测定得到的数据读数记录自动粘贴到没一个具体的农场栏、监测点栏和日期栏。每一个监测点的测定日期,时间及估计的水分日利用量能够在粘贴之前输入。

3.5.2 数据输入在读数记录屏幕中可以人工录入和显示田间实际收集的数据,如土壤水分张力计的读数、作物籽粒大小。有关作物的数据可以测定得到,作物生长参数与土壤水分含量相关联可以确定作物生长期的水分需求量。气候数据资料可以人工输入或由气象站自动装载。天气数据参数的个数没有限制,它可以与任一个作物生长测定值和任一水平的土壤水分含量相关联制作相互作用关系图。从气象数据资料中可以得到蒸发损失的总水分量的数据并且把它与测定的日水分使用量相比较来调整该地区的作物灌溉计划。

3.5.3 软件的数据处理利用滴管软件可以计算使土壤剖面达到灌溉饱和点所需的准确时间数。同时计算自从播种或其他生长时期(如发芽、开花等)以来的天数,使土壤水分能够与过去多年的作物生长资料数据参数同步分析,以确定作物水分利用效率。使用作物累积日水分方程。能够很好地评估作物总产量,尤其是对于玉米、小麦和棉花。可以通过作物-水分方程和气象资料估算理论产量。通过速率方程,计算作物生长速率。计算作物当前日水分利用量占整个生长季日水分利用量地比例。同时也可计算不同水分含量地土壤水分变化速率,这些速率地变化表明土壤紧实问题和土壤干旱地程度。滴灌软件可以分析某一作物在生长季内日水分利用状况地资料。结合现代先进地土壤水分测定仪器使用,该软件能够指导我们最有效地利用有限的水资源获得最大农业效益。例如能够确定每次灌溉的准确时间和灌水量。同时减小过量灌溉和水分不足对产量的影响。建立各种不同作物之间水分利用及水分利用效率的差异;建立如不同品种、土壤紧实情况、不同的耕作史等不同条件下水分利用及水分利用效率的差异;建立现代耕作技术和传统耕作技术条件下的水分利用效率的关系。确定灌溉和降水的利用效率,用以观察分析根系吸收水分模式。有助于合理管理地下水和盐化问题,能够减少土壤养分的淋溶损失问题。建立土壤水分含量、作物长势及天气状况的数据库以使作物产量和质量获得持续稳定的提高,使高效农业可持续发展。

3.6灌溉自动化控制系统

要实现灌水的自动化,必须有自动灌溉控制器,该装置由土壤湿度传感器、控制器和电磁阀组成,能够按土壤墒情和作物需水特性实施自动灌溉(沟灌、喷灌、滴灌、渗灌),达到高产、高效、和节水的目的。适用于庭院花圃、苗圃、果园、菜地和农地。随着经济发展,庭院花圃、苗圃水分的自动灌溉倍受欢迎。它能省水省事,使花木生长更好。一亩庭院花圃、苗圃地投资1.0-1.5万元,可以建立自动灌溉控制系统。自动灌溉控制系统可以实现科学灌溉,节能、省水,使菜地和农地产量和质量明显提高。智能化,精准化灌溉技术是伴随着计算机应用技术、传感器制造技术、塑料工业技术的提高而逐步实现的

自动化计算机灌溉控制系统大约在80年代初由雨鸟公司、摩托罗拉等几家公司开发、研制成功,并投入使用。由于技术复杂、应用难度大,价格高昂,这种控制设备最早应用于高尔夫球场灌溉系统的控制上。90年代,计算机工业的硬件、软件飞速发展,使得灌溉系统中央计算机系统操作难度越来越小,功能越来越丰富,价格也逐渐降了下来。这种系统在园林绿化上用得也越来越多了起来,雨鸟公司针对不同用途,研制、开发出了中央计算机控制系统:Maxicom

智能化灌溉中央计算机控制系统具有如下功能:

① 动采集各种气象数据,计算并记录蒸发蒸腾量ET;

② 根据前一天的ET值自动编制当天灌溉程序并实施灌溉;

③ 可由连接的土壤湿度传感器、风速传感器、雨量传感器等干涉程序,启动、关闭、暂停灌溉系统;

④ 连接流量传感器可自动监测、记录、警示由于输水管断裂引起的漏水及电磁阀故障;最大限度利用管网输水能力;

⑤ 运行程序而不起动灌溉系统(干运行),测试程序合理性,不合理时预先修改;

⑥ 自动记录、显示、储存各灌溉站的运行时间;自动记录、显示、储存传感器反馈数据,以积累资料,修改程序,修改系统等。

⑦ 频繁灌溉功能:可将设计好的灌水延续时间分成若干时段,以便提供足够的土壤入渗时间,减少坡地或粘性土地地面径流损失。

⑧ 一套中央计算机系统可控制无数台田间控制系统(称为卫星站),一套中央计算机控制系统可控制小到一个公园, 大到上百个公园,甚至全城的所有灌溉系统。

⑨ 储存数百套灌溉程序;一台田间控制器(卫星站)可使4个轮灌区独立灌溉或同时灌溉。

⑩ 手动干涉灌溉系统:可在阀门上手动启、闭系统,可在田间卫星站上手动控制系统,也可在计算机上手动启、闭任何一站,任何一个电磁阀。可控制灌溉系统以外的其它设备,如:道路或公共场所灯光,大门、喷泉、水泵等

自动化中央计算机控制系统主要由中央计算机,集群控制器(CCU),田间控制器(卫星站),电磁阀构成。中央计算机可装置在任何一个地方。比如:一套中央计算机系统控制50个公园的灌溉系统。中央计算机可安装在市园林局认为合适的位置。CCU安装在各个公园内。中央计算机与CCU之间的通讯,可采用有线连接(近距离),无线连接,电话线连接或移动通讯方法连接。一台CCU最多可连接28个田间控制器。CCU与田间控制器之间同样可选上述数种通讯方式。 由中央计算机到终端电磁阀的工作过程为:中央计算机编程,并将程序下达到CCU。CCU将各轮灌区灌溉控制程序再发到相关田间控制器。田间控制器依中央计算机制作的程序启闭各轮灌区电磁阀。如下图所示:

中央计算机上的初始程序由控制人员编制,之后,计算机每日自动收集由气象站采集的气象数据,计算ET值,并不断对原有程序自动修改。如遇传感器传来异常信息(如降雨,过分干燥,系统漏水...),自动中断或暂停程序,待异常情况排除后,继续恢复程序运行。

如果将智能泵站连接到中央计算机控制系统上,则效果会更好。这样从水泵到电磁阀之间复杂的系统将由一个高度智能化的系统管理起来,可做到最大限度地节水、节能,最大限度地保护系统设备运行,避免灌溉系统常发生的下列几种问题:

① 过量灌溉或灌水不足,浪费水资源或不能满足植物需水;

② 管网破裂,漏失水;

③ 系统运行压力不合理;

④ 水泵运行效率低下;

⑤ 地形起伏不平时或土壤入渗率低产生地面径流,浪费宝贵的水资源;

⑥ 降雨时,灌溉系统照常灌溉;

⑦ 管理、维护成本高。

3.7 百果园灌溉的自动化控制设计

百果园一期工程灌水基本实现了半自动化控制,可以使用电脑控制各电磁阀的开启。我们可在其基础上加以改进与提高,使其实现灌水的全自动化,具体见下:

3.7.1 控制原理

自动化控制采用电子技术对田间土壤温湿度、空气温湿度等技术参数进行采集,输入计算机,按最优方案,控制各个阀门的开启及水泵的运行状态,科学有效地控制灌水时间、灌水量、灌水均匀度,为项目区作物提供一个良好的地、水、肥、气、热条件,促使其高产、稳产。同时进行控制软件及优化灌溉制度的研究,最终形成灌溉专家决策系统。另外,通过变频器控制改变电机转速,调节管道压力,为管道、滴灌等其他灌溉工程的自动化提供依据。具体包括以下几个方面:

① 田间土壤含水量、盐分、地温、空气温度、湿度、降水、风速、管道压力等参数的自动化采集

② 自动化控制设计安装

③ 监控软件设计

④ 变频系统设计,通过改变水压力,为微喷、滴灌等工程的自动化提供依据

⑤ 系统运行管理模式评价,包括系统评价、灌水指标、灌溉制度等

3.7.2 控制系统的组成

欲实现真正意义上的全自动控制,需要控制田间参数及对象很多,例如土壤湿度、盐分、空气温度、相对湿度、降水量、风速、管道压力、阀门开启、水泵电机旋转等,都要送入控制器。考虑到要控制的对象较多,又要满足良好的人机界面要求,可以采用工业控制计算机作为整个控制系统的优秀,来协调各部分的工作。

系统的组成如下图所示,整个系统的工作主要工控机和变频器两部分来控制,其中变频器主要用于控制水泵电机的旋转,工控机主要用来采集田间土壤及气象指标,按照设定的程序,控制各地块中电磁阀的开启,并通过变频器控制电机的运行状态,协调整个系统的工作。

3.7.3 监控软件监控软件是工控机能够完成控制功能的重要基础,监控软件设计的好坏直接关系到整个系统的质量和可靠性。根据项目要求及滴灌的特点,笔者建议百果园采用雨鸟公司的“Maxicom”中央控制系统,该软件只需用户输入各地块种植作物种类及种植日期,系统便会自动计算当前作物所处生育期,确定出各自要求的土壤状况及气象信号,控制水泵电机的运行状态及阀门的开启,自动完成整个灌水过程,完全不需要人工干预,实现全自动控制。

该控制软件在此所完成的主要功能及特点如下:

① 自动采集田间数据:系统根据软件中所预先设定的时间,自动地采集土壤湿度、温度风速、雨量等参数,进行相应的处理后,实时显示在屏幕上。

② 作物生育期的判断:当管理人员输入各地块所种植的作物及种植日期后,系统便根据计算机时钟自动计算出各种作物已种植的天数,判断出作物所处的生育期,自动查找资料库中所存的原始资料,确定出当前作物最适宜的土壤含水量及灌水定额。

③ 滴灌的全自动控制:系统采集田间及气象数据后,将当前各地块土壤含水量与作物适宜含水量相比较,若土壤实际含水量小于作物要求下限值,便自动开启该地块的第一个电磁阀。进行灌溉。达到所需灌水定额后,自动关闭第一个电磁阀,同时开启下一个电磁阀,直到完成整个地块的灌溉任务。灌溉过程中,若出现温度过低、风速过大以及降雨过程等天气时,系统会自动暂停当前的灌溉任务,并保存当前状态。当气象条件满足时,继续进行未完成的任务。

④ 形式多样的控制方式:全自动控制外,系统还允许管理人员采用半自动、手动等控制方式。全自动方式只需运行人员输入各地块的作物信息,系统便会根据作物、土壤、气象等条件自动完成灌溉的全过程,无需人工干预。所谓半自动方式,是指系统允许用户根据实际情况控制开停机。用户可人为启动某个阀门,或某个地块,甚至是所有地块均轮灌一次。当然这些操作全部都是通过键盘或鼠标来完成的,而且在工控机屏幕上均有明显的提示。所谓手动方式是指人工去开启各个电磁阀,笔者建议百果园选用美国雨鸟公司生产的电磁阀:手动、电动两用阀门,既可手动,又可电动,使用非常方便。当手动打开某个电磁阀时,喷头出水,主干管道压力开始下降,系统会自动通过变频器升高水泵电机转速,维持管道压力的恒定,直到完成灌溉任务。

⑤ 丰富的办公自动化功能:系统在运行过程中,可自动生成各种定时、日、月、年报表,并通过打印机打印出来。其内容包括各种气象及土壤参数,可从各报表中得到土壤湿度变化曲线、日最高风速、月平均气温、全年总降水量等原始资料,为用户研究当地的气象及土壤变化情况提供翔实的依据。

⑥ 良好的可维持性:可维护性是衡量软件质量好坏的重要指标之一,在编写本系统时我们也充分考虑了这一点,例如用户在种植一类新作物时,可能系统的资料库中并没有该作物,便无法确定其适宜土壤含水量和灌水定额。此时,用户可按自定义按钮,通过鼠标各键盘输出这些参数,系统便会根据用户所定义的数值运行。另外,用户还可很方便地修改灌水定额、管道压力等参数,满足实际情况的需要。

⑥ 友好的人机界面:系统中大部分界面均为示意图形,实时显示各传感器送来的数值及系统当前的运行状态,一目了然。需要用户操作的部分全部为中文界面,工作人员无需学习便可完成所有操作。另外,在任一界面下,用户都可以通过按帮助按钮得到相应的提示,指导用户完成相应的功能。

3.7.4 效果

百果园通过增加自动化控制系统后,灌水时间、灌水量和灌溉周期等完全根据果树某些需水参数自动启闭水泵和自动灌溉,人的作用仅仅是调整控制程序和检修控制设备。既提高了水的有效利用率,又节省了人力,同时也提高了果树的产量,可以产生良好的经济效果。

3.8 第二期工程的设想

正在建设第二期工程计划今年完工,第二期工程的滴灌系统我建议基本上参照第一期工程建设,也采用滴喷灌相结合的方式,其水源计划应采用水塔蓄水,用以缓解枯水期水库少水的矛盾,该可以区采用先进的电脑全自动控制方式,实行精确灌水,管道布置采用固定式(干管、支管)和移动式(毛管)的有机结合。二期工程应该吸收一期工程中的好的经验,改进一期工程中毛管布置形式的不足,还特别是应该增加灌水的全自动控制部分,实现灌水的全自动化,精确控制作物的有效灌水。

4 存在的问题及建议

通过对滴灌系统的学习与认识,笔者系统的学习了滴灌这种先进的果园节水灌溉方法,在实践的基础上深化了理论,并对滴灌和滴灌系统有一些不成熟的认识与建议。

4.1 滴灌的优缺点

4.1.1 百果园滴灌的优点

4.1.1.1 水的有效利用率高,在滴灌条件下,灌溉水湿润部分土壤表面,可有效减少土壤水分的无效蒸发。同时,由于滴灌仅湿润作物根部附近土壤,其他区域土壤水分含量较低,因此,可防止杂草的生长。滴灌系统不产生地面径流,且易掌握精确的施水深度,节水效果达50%-90%。

4.1.1.2 环境湿度低,滴灌灌水后,土壤根系通透条件良好,通过注入水中的肥料,可以提供足够的水分和养分,使土壤水分处于能满足作物要求的稳定和较低吸力状态,灌水区域地面蒸发量也小,这样可以有效控制保护地内的湿度,使果园中作物的病虫害的发生频率大大降低,也降低了农药的施用量。

4.1.1.3 提高作物产品品质,由于滴灌能够及时适量供水、供肥,它可以在提高农作物产量的同时,提高和改善农产品的品质,使果园的农产品商品率大大提高,经济效益高。

4.1.1.4 滴灌对地形和土壤的适应能力较强,由于滴头能够在较大的工作压力范围内工作,且滴头的出流均匀,所以滴灌适宜于地形有起伏的地块和不同种类的土壤。同时,滴灌还可减少中耕除草,也不会造成地面土壤板结。

4.1.2 百果园滴灌的缺点

4.1.2.1滴灌的滴头很容易堵塞和磨损,产生灌水的不均,严重影响节水效果。

4.1.2.2滴灌的各管道的压力有所差异,会产生局部压力过高而使管道容易损坏,滴头的压力不均甚至会产生雾化,损坏滴头,浪费水资源。

4.1.2.3 滴灌一般仅润湿作物根系区土体的一部分,所以作物根系的发展可能限制在围绕每一滴头的湿润区,这样容易产生作物根系的腐烂,进而引起作物倒伏。

4.1.2.4 滴灌的管道布置要充分利用当地地势与地形,在原则的基础上加以灵活运用,如干管的布置、毛管的布置,取水方式等。

4.2 滴灌的建议

4.2.1 百果园应加强灌水的自动化控制,保证各种果树的精准灌水,实现精确的节水灌溉

4.2.2 滴灌的水量应该有保证,应该建一水塔蓄水,确保枯水期各种果树的需水要求

4.2.3 滴灌的毛管布置应采用单行带环形状态管布置和双行平行布置相结合,确保果树灌水均匀度。

4.2.4 滴灌技术的应用应该和其他节水灌溉技术相结合,互相补给,更好的发挥优势。

4.2.5 国家应鼓励进行滴灌技术的研究,加大科研推广投入的力度,研制开发经济实用的滴灌管材,解决滴头易堵塞的难题等,滴水灌溉技术应该在政府的规划安排下,由政府投资和农民出资相结的优惠政策下在全国范围鼓励推广发展。

5 结束语

滴灌是一种高效节能省水增产的微灌灌溉技术,它具有很多优点,适合我国的国情,具有很强的推广优势,而且很方便实现灌溉的全自动控制,滴灌将成为二十一世纪发展我国节水灌溉的重点,是加速我国农业实现节水灌溉、精准农业和设施农业的有效途径,将更好的促进我国农业的现代化!的滴灌自动化系统在经济上是合理的,技术上是可行的,将成为我国南方生态农业建设的典范!

自动化控制论文:1992lxm工业蒸汽锅炉的自动化控制过程与实现

摘要:本文叙述了工业锅炉控制系统的工作原理,具体阐述了锅炉控制中的几个重要的控制回路的控制算法,以及变频器在锅炉改造中的应用,提出了锅炉控制系统的基本设计思路和各个环节控制实现方法。

关键词:工业蒸汽锅炉 炉膛负压 蒸汽压力 变频控制 水位三冲量

一、引言 锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的1/3,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。提高热效率,降低耗煤量,降低耗电量,用微机进行控制是一件具有深远意义的工作。

工业锅炉采用微机控制和原有的仪表控制方式相比具有以下明显优势:

1.直观而集中的显示锅炉各运行参数。能快速计算出机组在正常运行和启停过程中的有用数据,能在显示器上同时显示锅炉运行的水位、压力、炉膛负压、烟气含量、测点温度、燃煤量等数十个运行参量的瞬时值、累计值及给定值,并能按需要在锅炉的结构示意画面的相应位置上显示出参数值。给人直观形象,减少观察的疲劳和失误;

2.可以按需要随时打印或定时打印,能对运行状况进行准确地记录,便于事故追查和分析,防止事故的瞒报漏报现象;

3.在运行中可以随时方便的修改各种运行参数的控制值,并修改系统的控制参数;

4.减少了显示仪表,还可利用软件来代替许多复杂的仪表单元,(例如加法器、微分器、滤波器、限幅报警器等),从而减少了投资也减少了故障率;

5.提高锅炉的热效率。从已在运行的锅炉来看,采用计算机控制后热效率可比以前提高5-10%,据用户统计,一台20T的锅炉,全年平均负荷70%,以平均热效率提高5%计,全年节煤800吨,按每吨煤380元计算每年节约304000元;

6.锅炉系统中包含鼓风机,引风机,给水泵,等大功率电动机,由于锅炉本身特性和选型的因素,这些风机大部分时间里是不会满负荷输出的,原有方式采用阀门和挡板控制流量,浪费非常严重。通过对风机水泵进行变频控制可以平均节电达到30%-40%;

7.锅炉是一个多输入多数出、非线性动态对象,诸多调解量和被调量间存在着耦合通道。例如当锅炉的负荷变化时,所有的被调量都会发生变化。故而理想控制应该采用多变量解偶控制方案。而建立解偶模型和算法通过计算机实现比较方便;

8.锅炉微机控制系统经扩展后可构成分级控制系统,可与工厂内其他节点构成工业以太网。这是企业现代化管理不可缺少的;

9.作为锅炉控制装置,其主要任务是保证锅炉的安全、稳定、经济运行,减轻操作人员的劳动强度。在采用计算机控制的锅炉控制系统中,有十分周到的安全机制,可以设置多点声光报警,和自动连锁停炉。杜绝由于人为疏忽造成的重大事故。

综合以上所述种种优点可以预见采用计算机控制锅炉系统是行业的大势所趋。下面我们来共同探讨锅炉控制系统的原理和结构。

二、锅炉控制系统的一般结构与工作原理 常见的工业锅炉系统如图1所示。首先除氧水通过给水泵进入给水调节阀,通过给水调节阀进入省煤器,冷水在经过省煤器的过程中被由炉膛排出的烟气预热,变成温水进入汽包,在汽包内加热至沸腾产生蒸汽,为了保证有最大的蒸发面因此水位要保持在锅炉上汽包的中线位置,蒸汽通过主蒸汽阀输出。空气经过鼓风机进入空气预热器,在经过空气预热器的过程中被由炉膛排出的烟气预热,变成热空气进入炉膛。煤经过煤斗落在炉排上,在炉排的缓慢转动下煤进入炉膛被前面的火点燃,在燃烧过程中发出热量加热汽包中的水,同时产生热烟气。在引风机的抽吸作用下经过省煤气和空气预热器,把预热传导给进入锅炉的水和空气。通过这种方式使锅炉的热能得到节约。降温后的烟气经过除尘器除尘,去硫等一系列净化工艺通过烟囱排出。

锅炉微机控制系统,一般由以下几部分组成,即由锅炉本体、一次仪表、PLC、上位机、手自动切换操作、执行机构及阀、电机等部分组成,一次仪表将锅炉的温度、压力、流量、氧量、转速等量转换成电压、电流等送入微机。控制系统包括手动和自动操作部分,手动控制时由操作人员手动控制,用操作器控制变频器、滑差电机及阀等,自动控制时对微机发出控制信号经执行部分进行自动操作。微机对整个锅炉的运行进行监测、报警、控制以保证锅炉正常、可靠地运行,除此以外为保证锅炉运行的安全,在进行微机系统设计时,对锅炉水位、锅炉汽包压力等重要参数应设置常规仪表及报警装置,以保证水位和汽包压力有双重甚至三重报警装置,以免锅炉发生重大事故。

微机控制系统由工控机、显示器、打印机、PLC、手操器、报警装置等组成,能完成对给水、给煤、鼓风、引风等进行自动控制,使锅炉的汽包水位、蒸汽压力保持在规定的数值上,以保证锅炉的安全运行,平稳操作,达到降低煤耗、提高供送汽质量的目的,同时对运行参数如压力、温度等有流程动态模拟图画面并配有数字说明,还可对汽包水位、压力、炉温等进行越限报警,发出声光信号,还可定时打印出十几种运行参数的数据。以形成生产日志和班、日产耗统计报表,有定时打印、随机打印、自定义时间段打印等几种方式。

锅炉控制系统的硬件配置,目前有几种,功能较好首推可编程序控制器PLC,适合于多台大型锅炉控制,由于PLC具有输入输出光电隔离、停电保护、自诊断等功能,所以抗干扰能力强,能置于环境恶劣的工业现场中,故障率低。PLC编程简单,易于通信和联网,多台PLC进行链接及与计算机进行链接,实现一台计算机和若干台PLC构成分布式控制网络,另外使用PLC加上位机的控制系统具有很好的扩容性,如需要增加控制点或控制回路只需添加少量输入输出模块即可,为以后的控制系统升级改造和其他功能的添加打下良好基础,也为以后一机多炉控制系统等其他工厂级自动化网络打下良好基础。虽然,从短期的角度看价格稍高,如果从长远观点看,其寿命长,故障率低,易于维修,值得选用。

三、锅炉控制系统中各控制回路的介绍 锅炉控制系统,一般有蒸汽压力、汽包液位、炉膛负压、除氧器水位、除氧器压力等控制系统。锅炉的燃烧控制实质上是能量平衡系统,它以蒸汽压力作为能量平衡指标,不断根据用汽量与压力的变化调整燃料量与送风量,同时保证燃料的充分燃烧及热量的充分利用。

3.1 锅炉给水控制回路

给水自动调节的任务是使给水流量适应锅炉的蒸发量,以维持汽包水位在允许的范围内。给水自动调节的另一个任务是保持给水稳定。在整个控制回路中要全面考虑这两方面的任务。在控制回路中被调参数是汽包水位(H),调节机构是给水调解阀,调节量是给水流量(W)。

对汽包水位调节系统产生扰动的因素有蒸发量D、炉膛热负荷(燃料量M),给水量(W)。

① 蒸发量D扰动作用下水位对象的动态特性

当给水流量不变,蒸发量忽然增加D时,如果只从物质不平衡角度来看,则反映曲线如图2(a)中的H1(t)所示,但由于蒸发量增加时,汽包容积增加,水位将上升,水位的反映曲线如图2(a)中的H2(t) 所示。H1(t)和H2(t)相结合,实际的水位阶跃反应曲线如图2(a)中的H(t)所示。

② 炉膛负荷扰动(燃料量M扰动)时水位对象的动态特性

燃料量增加M时,蒸发量大于给水量,水位下降。但开始是由于有虚假水位存在,水位线上升,然后再下降。如图2(b)中所示。

③ 给水流量(W)扰动时的水位对象的动态特性

当蒸发量不变,而给水量阶跃扰动时。汽包水位如图2(c)所示。在开始阶段。由于刚进入得水水温较低。使汽水混合物中的汽泡吞量减少。水位下降,如图2(c)中的H1(t)所示。而H2(t)反映了物质不平衡引起的水位变化,H1(t)和H2(t)相加得到了总的给水量扰动的阶跃反应曲线H(t)。

由于给水调节对象没有自平衡能力,又存在滞后。因此在一般锅炉控制系统中汽包液位回路采用闭环三冲量调节系统。所谓三冲量调节系统就是把给水流量W,汽包水位H,蒸汽流量D三个变量通过运算后调节给水阀的调节系统。具体调节过程方框图如图3所示。

先通过蒸汽流量变送器和给水流量变送器取得各自的信号乘以相应的比例系数,通过比例系数可以调节蒸汽流量或给水流量对调节系统的影响力度。通过差压变送器取得水位信号作为主调节信号H。如果水位设定值为G,那么在平衡条件下应有D*Dk-W*Wk+H-G=0的关系式存在。其中Dk为蒸汽流量系数 Wk为给水流量系数。如果再设定时,保证在稳态下D*Dk=W*Wk那么就可以得到H=G。此时调节器的输出就与符合对应,给水阀停在某一位置上。若有一个或多个信号发生变化,平衡状态被破坏,PI调节模块的输出必将发生变化。当水位升高了,则调节模块的输出信号就减小,使得给水调节阀关小。反之,当水位降低时,调节模块的输出值增大,使给水阀开大。实践证明三冲量给水单极自动调节系统能保持水位稳定,且给水调节阀动作平稳。

锅炉给水系统中还有一个比较重要的控制回路是给水压力回路,因为汽包内压力较高,要给锅炉补水必须提供更高的压力,给水压力回路的作用是提高水压,使水能够正常注入汽包。但在蒸汽流量未达到满负荷时,对给水流量的要求也不高。在老式的锅炉系统中一般采用给水泵一直以工频方式运转,用回流阀降低水压防止爆管,现在一般采用通过变频器恒压供水的方式控制水压,具体实现方式是:

系统下达指令由变频器自动启动第一台泵运行,系统检测给水管的水压,当变频器频率上升到工频时,如水压未达到设定的压力值,系统自动将第一台电机切换至工频直供电,并由变频器拖动第二台水泵运行,如变频器运行到工频状态时供水母管压力仍未达到设定压力值系统自动将第二台水泵切换至工频直供电,再由变频器拖动第三台运行,依次类推,直至压力达到设定值。若锅炉需要的给水量减少,变频控制系统可自动降低变频器的运行频率,如变频器的频率到零仍不能满足要求,则变频器自动切换至前一台水泵进行变频运行,依次类推。变频恒压供水控制系统的实质是:始终利用一台变频器自动调整水泵的转速,切换时间以管网的实际压力和设定压力的差值决定,同时保证管网的压力动态恒定。值得注意的是为了防止变频器报警停机或其他故障造成水泵不转会引起锅炉缺水,所以应该加反馈装置确保变频器正常工作。

除此之外锅炉的供水系统中还包括除氧器压力控制和除氧器水位控制,除氧器压力控制主要是为了保证除氧器口有足够的蒸汽压力用于将软化水除氧,这是一个单闭环控制回路,输入参数是除氧器压力输出参数控制除氧器进汽阀。除氧器水位控制主要是为了保证除氧器内有足够的水提供给锅炉,这是一个单闭环控制回路输入参数,是除氧器水位输出参数控制除氧器进水阀。

3.2 锅炉燃烧调节系统

燃烧过程自动调节系统的选择虽然与燃烧的种类和供给系统、燃烧方式以及锅炉与负荷的联结方式都有关系,但是燃烧过程自动调节的任务都是一样的。归纳起来,燃烧过程自动调节系统有三大任务:

① 维持汽压恒定。汽压的变化表示锅炉蒸汽量和负荷的耗汽量不相适应,必须相应地改变燃料量,以改变锅炉的蒸汽量。

② 保证燃烧过程的经济性。当燃料量改变时,必须相应地调节送风量,使它与燃料量相配合,保证燃烧过程有较高的经济性。

③ 调节引风量与送风量相配合,以保证炉膛压力不变。

燃烧调节系统一般有三个被调参数,汽压p、烟气含氧量a和炉膛负压pt。一般有3个调节量,他们是燃料量M,送风量F和引风量Y。燃烧调节系统的调节对象对于燃料量,根据燃料种类的不同可能是炉排电机,也可能是燃料阀。对于送风量和引风量一般是挡板执行机构或变频器。

燃烧调节系统是一个多参数变量调节系统。这种调节系统通常把它简化成互相联系,密切配合但又相对独立的3个单变量系统来实现。为便于分析,下面我们按3个系统来分别分析。这三个系统分别是以燃料量维持锅炉压力恒定的蒸汽压力调节系统,以送风量维持锅炉经济燃烧的送风调节系统,以引风量维持炉膛负压稳定的炉膛负压调节系统。

3.2.1 蒸汽压力调节对象的特性

引起蒸汽压力变化的主要原因是燃料量和用汽负荷发生变化。其动态特性如下。

① 燃料量扰动下的汽压变化特性

在用汽负荷不变的情况下,如锅炉燃料量(B)发生B的阶跃扰动,此时汽压的飞升曲线如图4(a)所示。此时对象没有自平衡能力,具有较大的迟滞和惯性。但如果锅炉出口的用汽阀门开度不变,那么由于汽压因燃料量扰动而发生变化时,蒸汽流量也将发生变化。由于汽压变化时,蒸汽流量增大自发地限制了汽压的变化,因此对象有平衡能力。此时汽压的飞升曲线如图4(b)所示。

② 用汽负荷扰动下的汽压变化特性

负荷阶跃扰动下,汽压变化的动态特性也有下列两种情况:当用汽阀门阶跃扰动时,对象表现出具有自平衡能力,没有延迟,但有较大的惯性,并有一个与阀门变化成比例的启始飞跃,飞升曲线如图4(c)所示;当用汽量阶跃扰动时,其飞升曲线如图4(d)所示,此时对象没有自平衡能力,如果不及时增加进入锅炉的燃料量,那么,汽压将一直下降。

3.2.2 送风自动调节对象的特性

送风调节系统的工作好坏,直接影响炉膛的空气过剩系数的变化也就是排出烟气的含氧量。引起空气过剩系数变化的主要扰动是燃料量和送风量配比。风量扰动下对象的动态特性具有较大的自平衡能力,几乎没有延迟和惯性,近似为一比例环节。而燃料量扰动时,需经过输送和燃烧过程而略有延迟。由于送风系统几乎没有延迟和惯性。所以在燃料充足的情况下送风量的大小将比较直接的反应在锅炉的蒸汽压力上。那么怎样才能保证股风量和燃料量的搭配适宜,这里我们引入了风煤比这个概念。风煤比就是在当前风量下所能燃烧的煤的最大值。在控制作用中风煤比主要是根据当前风量来限制炉排的转速,防止由于风量不够导致煤不能充分燃烧。该参数对节煤和环保都有很大意义。因为如果不能充分燃烧将会导致煤渣的含炭量增高,这样比较浪费煤,同时还会造成烟气含炭量增高影响排放。

3.2.3 炉膛负压自动调节对象的特性

炉膛负压自动调节对象的动态特性较好,但扰动通道的飞升时间很短,飞升速度很快。

根据以上对燃烧系统调节对象的分析,下面我们针对燃烧自动控制系统三个任务对控制采用的方案进行分析。

燃烧过程控制系统一般采用的控制流程图如图5(a)所示,先通过蒸汽压力变送器经滤波后取得信号,与设定蒸汽压力进行比较,判断出鼓风PI调节器调节的方向和大小,通过鼓风PI调节单元计算出鼓风变频器的输出大小。同时把该信号输出给风煤比计算单元,相应的算出在当时的风量下炉排的最大输出值。再把蒸汽压力的差值信号送给炉排PI调节器,通过炉排PI调节单元计算出炉排变频器的输出大小。经过风煤比限位,输出给炉排变频器。在实际调试过程中我们往往把鼓风PI调节中的比例系数设的比炉排PI单元的大,这样可以很好的保证鼓风系统对蒸汽压力的敏感度要高于炉排。实践证明通过该方法控制下锅炉的蒸汽压力稳定性好,在蒸汽负荷变化时相应程度高。灰渣含碳量低。

炉膛负压的大小对于节能影响很大。负压大,被烟气带走的热量大,热损失增加,煤耗量增大,理想运行状态应在微负压状态。它能明显增加悬浮煤颗粒在炉膛内的滞留时间,增加沉降,减少飞灰,使煤充分燃烧提高热效率。但由于负荷变化,需要改变给煤量和送风量,随之也要改变引风量,以保证炉膛负压的稳定,但由于系统有一定的滞后时间,为避免鼓风变化而引起炉膛负压的波动,系统中引入鼓风信号作为前馈信号对引风机进行超前调节。炉膛负压控制系统一般采用的控制流程图如图5(b)所示,调节原理比较简单属于单闭环调节系统,它的输入量是炉膛负压输出量是引风变频器,同时引入鼓风量作为前馈信号。

另外系统各回路中都设置了手自动两种操作方式,为了实现无扰动切换,系统引入了各控制对象的反馈值,在手动操作时PLC输出会自动跟踪控制对象的反馈,当切换到自动状态时可以进行无扰动切换,使系统平稳的过渡到自动状态。

四、锅炉控制系统组成结构 上面我们针对锅炉控制系统的各控制回路原理的做了简要分析,依据以上分析,我们知道构建一个可靠的、智能随动的智能控制系统是保证锅炉安全生产的基础。锅炉控制系统是典型的多变量、纯滞后、强耦合的控制系统,如果不能在控制策略和软件实现上很好地解决多变量解偶关系和滞后响应问题,那么,实施智能锅炉控制系统改造后同样也将无法实现预期的目标。

在控制系统设计上我们采用集中控制分散驱动(P—T方案)的集散控制思想,把控制系统分为三层:

a) 信息管理层:完成系统关键技术数据的设定、实时数据和运行状态的监视与控制、历史数据的查看、数据报表的记录与打印、报警与故障的提示处理等功能;主要由上位工控机(IPC)、组态开发软件、应用程序、通讯模块等组成;

b) 控制层:主要完成各种控制动作命令、实时数据的采样与处理、连锁动作的关联表达、控制算法的实现、异常现象的自动处理等功能;主要由可编程逻辑控制器(PLC)的开关量模块、模拟量模块、智能PID调节仪、变频器、PLC应用程序等组成;

c) 设备层:主要接受来自PLC的控制命令,执行相应的动作或提供相应的检测数据。主要由断路器、交流接触器、压力变送器、温度变送器、流量变送器、电动开关阀、模拟信号隔离分配器等组成。

五、结束语 综上所述,锅炉控制系统改造具有很好的市场发展空间和投资收益前景,值得广泛地推广。它不仅能够通过自动化控制技术实现安全生产的目的,还能够节煤节电并能使排放更环保,总之锅炉的计算机自动化控制是锅炉行业发展的大势所趋,也是一项利国利民的发展方向。

自动化控制论文:水工业自动化控制技术的发展趋势

摘要:工业自动化领域的发展趋势:控制系统的智能化、分散化、网络化及管理控制一体化。

关键词:水工业 自动化控制技术

1 控制系统的智能化、分散化、网络化

工业自动化领域的发展趋势之一是控制系统的智能化、分散化、网络化,而现场总线的崛起正是这一发展趋势的标志。

1.1现场总线的崛起

半个多世纪以来,工业自动化领域的过程控制体系历经基地式仪表控制系统、电动单元组合式模拟仪表控制系统、集中式数字控制系统、集散控制系统(DCS)等4代过程控制系统,当前我国水工业自动化的主流水平即处于以PLC为基础的DCS系统阶段。这里要说明一点,DCS既是一个过程控制体系的名称,有时也表示为由制造厂商出售的一个起完整作用而集成的集散控制系统产品,这种DCS系统相对较为封闭,而目前水工业自动化的DCS系统多数是由用户集成的,因此相对较为开放。

与早期的一些控制系统相比,DCS系统在功能和性能上有了很大进步,可以在此基础上实现装置级、车间级的优化和分散控制,但其仍然是一种模拟数字混合系统,从现场到PLC或计算机之间的检测、反馈与操作指令等信号传递,仍旧依靠大量的一对一的布线来实现。这种信号传递关系称之为信号传输,而不是数据通信,难以实现仪表之间的信息交换,因而呼唤着具备通信功能的、传输信号全数字化的仪表与系统的出现,从而由集散控制过渡到彻底的分散控制,正是在这种需求的驱动下,自20世纪80年代中期起,现场总线便应运而生,并通过激烈的市场竞争而不断崛起。

现场总线是应用在生产现场的全数字化、实时、双向、多节点的数字通信系统。现场总线技术将专用的CPU置入传统的测控仪表,使它们各自都具有了数字计算和通信能力,即所谓“智能化”;采用可进行简单连接的双绞线、同轴电缆等作为联系的纽带,把挂接在总线上作为网络节点的多个现场级测控仪表连接成网络,并按公开、规范的通信协议,使现场测控仪表之间及其与远程监控计算机之间实现数据传输与信息交换,形成多种适应实际需要的控制系统,即所谓“网络化”;由于这些网上的节点都是具备智能的可通信产品,因而它所需要的控制信息(如实时测量数据)不采取向PLC或计算机存取的方式,而可直接从处于同等层上的另一个节点上获取,在现场总线控制系统(FCS)的环境下,借助其计算和通信能力,在现场就可进行许多复杂计算,形成真正分散在现场的完整的控制系统,提高了系统的自治性和可靠性。

FCS成为发展的趋势之一,是它改变了传统控制系统的结构,形成了新型的网络集成全分布系统,采用全数字通信,具有开放式、全分布、可互操作性及现场环境适应性等特点,形成了从测控设备到监控计算机的全数字通信网络,顺应了控制网络的发展要求。

1.2现场总线的现状和标准化问题

目前,国内、外的现场总线有60几种之多,由于这一新技术所具有的潜在而巨大的市场前景,在商业利益的驱动下,导致了近年来制订现场总线国际标准大战。在市场和技术发展需要统一的国际标准的呼声下,修改后的IEC 61158.3~6标准最终于2000年1月4日获得通过。该标准包括了8种类型的现场总线子集,它们分别是:①基金会现场总线FF(原有的技术规范IEC 61158);②Control Net;③Profibus;④P—Net;⑤FF HSE;⑥Swift Net;⑦Word FIP;⑧Intferbus。这8种现场总线中,④、⑥是用于有限领域的专用现场总线;②、③、⑦、⑧是由PLC为基础的控制系统发展而来,本质上以远程I/O总线技术为基础,通常不具备通过总线向现场设备供电和本征安全性能;①、⑤则由传统DCS控制系统发展而来,具有总线供电和本征安全功能;①、⑧属于现场设备级总线,②、⑤属于监控级现场总线;③、⑦则是包括两个层次的现场总线。

以上8种类型的现场总线采用完全不同的通信协议,例如:Profibus采用的是令牌环和主/从站方式;FFHSE是CSMA/CD方式;WordFIP是总线裁决方式。因此,要这8种现场总线实现相互兼容和互操作几无可能。面对这种多总线并存的局面,系统集成将面临更为复杂的任务,系统集成技术也将会有很大的发展。

1.3现场总线的新动向—工业以太网

长期以来的标准之争,实际上已延缓了现场总线的发展速度。为了加快新一代系统的发展,人们开始寻求新的出路,一个新的动向是从现场总线转向Ethernet,用以太网作为高速现场总线框架的主传。以太网是计算机应用最广泛的网络技术,在IT领域已被使用多年,已有广泛的硬、软件开发技术支持,更重要的是启用以太网作为高速现场总线框架,可以使现场总线技术和计算机网络技术的主流技术很好地融合起来。为了促进Ethernet在工业领域的应用,国际上成立了工业以太网协会,开展工业以太网关键技术的研究。此外,开发设备网供应商协会(ODVA)已经了在工厂现场使用以太网的全球性标准——以太网/IP标准。该标准使用户在采用开放的工业应用层网络的同时,能利用可买到的现成的以太网物理介质和组件,也即由多个供应商所提供的可互操作的以太网产品。随着网络技术的发展,以太网应用于工业领域所要面对的网络可确定性问题、环境适应性问题、包括总线供电和本征安全问题都会迅速得到解决。

2 管理控制一体化

工业自动化领域的另一个发展趋势是管理控制系统的一体化。

2.1何谓管控一体化

在市场经济与信息时代的飞速发展中,企业内部之间以及与外部交换信息的需求不断扩大,现代工业企业对生产的管理要求不断提高,这种要求已不局限于通常意义上的对生产现场状态的监视和控制,同时还要求把现场信息和管理信息结合起来。管控一体化就是建立全集成的、开放的、全厂综合自动化的信息平台,把企业的横向通信(同一层不同节点的通信)和纵向通信(上、下层之间的通信)紧密联系在一起,通过对经营决策、管理、计划、调度、过程优化、故障诊断、现场控制等信息的综合处理,形成一个意义更广泛的综合管理系统。

2.2现场总线为管控一体化铺平了道路

企业信息网络是管控信息集成的基本条件,没有信息网络就不可能实现企业横向和纵向信息的沟通和汇集,建网的目标在于实现全企业范围内的信息资源共享,以及与外部世界的信息沟通。

水工业和一般企业网络大致可分为3层,即企业管理层,过程监控层和现场控制层。

管控一体化解决方案中的现场控制层由现场总线设备和控制网段构成,把传统的集散系统控制站(如水处理企业的PLC分站)的功能分散到了现场总线设备,此时的控制站实际是一个虚拟的控制站。现场总线技术与产品所形成的底层网络,充分发挥其使测控设备具有通信能力的特点,为控制网络与通用数据网络的连接提供了方便。企业信息网络是管控一体化的基础,现场总线则为构建管控一体化网络铺平了道路;过程监控层由局域网段以及连接在局域网段的担任监控任务的工作站或控制器组成,现场总线网络通过现场总线接口与过程监控层相连,或者监控层直接由现场总线来担当;监控站可以完成对控制系统的组态,执行对控制系统的监控、报警、维护及人机交互等功能;企业管理层由各种服务器和客户机等组成,用于集成企业的各种信息,实现与Internet的连接,完成管理、决策和商务应用的各种功能。

2.3管控一体化的支持环境与系统集成

基于系统之间横向数据交换及控制系统与管理层和现场仪表间纵向数据交换日益增加,现场总线的应用越来越广泛,制造厂商的产品也日益开放。由于多种总线并存已成定局,管控系统建立统一的数据管理、统一的通信、统一的组态和编程软件的一体化解决方案受到了各厂家的重视。同时,采用分布式网络系统,采用C/S或B/S结构,可以在实现企业各层次功能模型的同时,实现网络连接在结构上的简化,从而形成以实时和关系数据库为中心的数据集成环境,为实现数据资源共享的目标奠定了基础。

如前所述,在多总线并存的局面下,系统集成成为实现管控一体化信息系统的中心任务。系统集成是要按照一定的方法和策略将相同或不相同厂商的现场总线产品相互连接,并使上层应用与下层现场设备之间完成双向数据沟通,使之成为一个可以满足用户需求的整体。因此,系统集成既包括硬件产品的集成,也包括软件产品的集成。对硬件集成来说,需要借助网桥、网关沟通总线接口。一般同种总线的网段采用中继器实现网段的延伸,采用网桥实现不同速率网段之间的连接;不同类型的总线网段之间以及现场总线与以太网等异构网络之间采用网关实现互连,如公司与生产厂或其他部门距离较远时,采用公共数据网或电话网来实现局域网的连接,这在水工业的城市污水处理和截流系统、自来水厂站之间及供水管网调度系统等方面也是经常会遇到的问题。因此可以预计,今后这类通信接口产品将会变得很热门,从软件集成来说,通过OPC、ODBC等技术使得不同系统之间的准确、高速、大量的数据交换得以实现,能将实时控制、可视化操作、信息分析、系统诊断等功能集成到一个紧凑的软件包中,具有很大的硬件灵活性,并且可以提供与多种管理软件的连通性,从而可较为经济地解决管控系统之间的连接。

目前各个国家都在竞相开发自己的现场总线技术与产品,形成以现场总线为基础的一体化解决方案下的企业信息系统。现在已经推出产品的如西门子公司以Profibus总线为基础的PCS7、罗斯蒙特公司的基于FF总线的Plantweb等,管控一体化软件则有美国信肯通公司的Think&DO、Lntellntion公司的iFIX等。

3 对水工业自动化发展的思考

综上所述,现场总线技术的发展,引起了自动化系统结构和自动化控制概念的变革,进一步推动了管控一体化企业信息系统的建立,它集计算机技术、信息技术和自动化技术为一体,成为流程工业自动化发展的趋势。随着市场经济的发展和加入WTO的临近,工业企业面临前所未有的发展机遇和愈加严峻的挑战,对企业的生产经营管理提出了更高的要求。管控一体化企业信息系统的建立,将是增强企业竞争力的重要途径,问题是对于水工业来说,这种必要性到底有多大?水工业尽管有自己的特殊性,但在实现生产过程和经营过程的整体优化,在保障运行安全的前提下获取最大的经济效益上与其他工业应是相同的。特别是信息技术的不断发展,网络的普及,将会使管控一体化的重要性日益显露出来,由以PLC为基础的集散型控制系统向以现场总线为基础的管控一体化分布式网络信息系统过渡是必然的。

要构建管控一体化网络,必先以现场总线所形成的底层网络为基础,但目前国内对现场总线技术的应用还比较迟缓,原因之一是观望和等待一个单一的现场总线国际标准的确立,但客观事实是IEC通过了8种总线标准,估计这种多总线并存的局面在短时间之内也不会改观;原因之二是现场总线在系统集成上存在困难,条件还不成熟,尤其是由国家支持研制开发的FF总线,其OEM产品的开发和应用也还要假以时日;此外还存在总线产品互操作性的认定和可靠性等方面的问题。因此在目前情况下,一方面要密切关注现场总线标准的新的发展动态,同时还应结合水工业的具体条件,对诸如如何保护和利用现有资源,对原来的DCS系统进行改造,选用何种总线以及如何组网和系统集成等问题加以研究和讨论,并建议国家城市给水排水工程技术研究中心成立一个机构,像建设部、科委下属智能建筑技术推广中心的LonWorks现场总线协作网一样,负责跟踪现场总线技术的发展、信息技术交流,指导行业对这一新技术的推广和应用,以促进水工业自动化发展的进程。

自动化控制论文:上海闵行水厂排泥水处理的自动化控制

摘要:目前在全国自来水行业中,几乎没有一家自来水厂对排泥水处理自动化控制进行系统的研究和应用。前几年上海市自来水公司在对水厂排泥水处理工艺研究的基础上,在闵行水厂一车间(净水能力7×104m?3/d)进行了排泥水处理生产性研究。为了能与国际接轨,同时与目前水厂的自动化相适应,在确定合理的处理工艺后配以高度的自动化,使系统在PLC中央控制下达到自动运行的程度,为今后水厂排泥水处理自动控制提供了有益的设计依据和参数。

关键词:排泥水处理 自动控制 水能力

1 排泥水处理的自动控制

排泥水处理采用的工艺流程见图1。

针对上述工艺,要实现自动运行,必须解决下列问题:

① 排泥水截留池如何自动控制;

② 如何自动排放浓缩池的浓缩污泥;

③ 平衡池的污泥量如何控制;

④ 如何自动配制PAM溶液;

⑤ 如何对离心脱水机的PAM加注进行自动控制;

⑥ 当某泵发生故障时,如何保证系统继续运行;

⑦ 作为一个排泥水处理工程,如何协调整个系统的运行。

2 各单体的自控原理与设计

2.1 截留池的运行控制模式

截留池主要用来收集沉淀池排泥水和离心脱水机的分离水,而后由输送泵将排泥水从截留池输送至浓缩池。水厂采用了智能化泵吸—虹吸排泥方式,排泥时间和排泥水量都随原水的浊度和泥沙沉降特性而变化。在截留池中安装一个液位仪,一个搅拌器(用于均匀池中的泥水浓度,不使泥沙沉淀下来)。通过截留池液位的高和低来控制输送泵和控制池中搅拌器的开和停。为了对进入浓缩池的排泥水量进行控制,在排泥水输送管道上安装了一个流量计,用来反映进入浓缩池的排泥水水量,并且采用变频器实施对输送泵的流量控制,达到对浓缩池进水流量的控制。

2.2 浓缩池的自控设计

浓缩池的作用是将较低浓度排泥水变成较高浓度的污泥水,而后送到平衡池。如何对较高浓度的污泥进行自动排放是浓缩池能否自动运行的关键。由于浓缩池运行时间和进浓缩池的排泥水水量具有不确定性,故定时排放污泥行不通;由于浓缩池液位稳定,故也不能用液位仪。这里唯一变化的是浓缩污泥的浓度,所以在浓缩池中设计安装一个浓度计,用污泥浓度数值的高和低来自动控制排泥泵的开和停,即浓缩污泥的排放。通过对开始排泥和终止排泥的污泥浓度值进行设置,可达到:①使浓缩池始终高效运行;②控制平衡池的污泥浓度。

2.3 平衡池的自控设计

平衡池是一个缓冲池,主要作用是保证进离心脱水机的污泥浓度稳定。对它的控制主要有两点:①池中污泥要均匀;②池中污泥水不能溢出,也不能排空,所以在池中安装一个液位仪和一个搅拌器。搅拌器的作用是均匀池中浓缩污泥浓度,不使泥沙沉淀下来。液位的高低则决定浓缩池排泥泵、离心机进泥泵和搅拌器的开和停。

2.4 配制自动化

高分子絮凝剂一般为颗粒状或粉末状固体,不能直接投放到污泥水中,必须采用一配制系统。该系统可分为五部分:①粉末储存器,用以储存足量的PAM固体;②螺旋投加器,由两支小型螺旋输送杆组成,用以均匀地将PAM固体送入斗型输送器,它的出口开启、关闭受一时间继电器控制;③斗型输送器与水射器,用来承接PAM固体,并使之与水均匀混合而后送至搅拌熟化池;④搅拌熟化池,用以搅拌PAM与水的混合液,让PAM与水充分混合熟化;⑤投加池,用以承接搅拌熟化池来的PAM溶液,以供PAM投加泵投入离心机中。整个配制系统应能如下运行:首先确定配制浓度,计算出投加固体量和投加时间,而后通过时间继电器确定投加时间。一旦固体投入漏斗后,则自来水将与固体料混合,并由压力水通过水射器送至搅拌池搅拌熟化,搅拌池溶液达到某液位时,水源自动关闭。当投加池PAM溶液用到某低液位时,系统将自动打开搅拌池的投放出口,配制好的PAM溶液由搅拌池送至投加池,然后系统自动再配制溶液,整个系统能周而复始自动配制溶液以用于离心脱水机的PAM絮凝剂投加。

2.5 离心脱水机及加药量的自控

离心脱水机的作用是将浓缩污泥进行固液分离,是固液分离好坏的关键脱水机械。要使泥与水能很好地分离,除了离心机的转速、差速控制因素之外,PAM投加量的自动控制是至关重要的。投加量的控制涉及到进泥量、进泥浓度、加注量和加注率的选定。对这些问题的设计思路是:①对进泥浓度进行监测,在平衡池中安装了一个污泥浓度计,以显示进入离心机的浓缩污泥浓度;②对进泥量进行监控,在进泥管道上安装一个流量计,在污泥泵上加一个变频器控制,以控制进泥量;③加注量则采用计量加注泵来控制PAM絮凝剂的加注,PAM絮凝剂则完全由PAM自动配制系统供应,这样能完美地实施离心脱水机和加药量的自动控制。

2.6 泵的故障排除

对每一环节中的泵都配备一台备用泵,并对每一污泥泵安装流量传感器,设置流量报警,对进离心机的污泥泵设置压力报警,同时每个泵给出一个运行状态信号,一旦某泵发生故障,备用泵能自动切换。泵的轮番使用通过PLC进行。

2.7 全系统的控制

系统采用了SLC 500小型可编程控制器族作为中央控制,它具有一个固定的控制器以及模块化控制器,模块化控制器在系统配置方面相当灵活,配以各类继电器就能设计一个用于本系统的控制器系统,使各单位协调运作,以达到运行的自动化。

与此同时也采用Panelview 550扁平面板终端设备提供快速和直观的显示。整个系统控制灵活、显示直观、设置简便、操作容易。

3 系统的运行自控

3.1 截留池的运行

沉淀池排泥水经管道流入截留池,池中液位开始上升。PLC接收来自截留池液位仪的信号,当达到某一高度后,PLC发出指令,开启输送泵,排泥水由输送泵送至浓缩池,输送量则由流量计显示并反馈到PLC,PLC可通过变频器对输送泵进行流量控制。

在实际运行中,设置输送泵启动液位为1.5m,停止液位为1.0m;搅拌器的启动为1.0m,停止为0.5m;输送的排泥水量为80~150m3/h。

3.2 浓缩池的运行

浓缩池一旦进水即开始运行。池中的浓度计连续监测池中某点位污泥浓度的变化,信号随时反馈给PLC。当达到某一浓度后,PLC发出指令开启浓缩池至平衡池的排泥泵,较高浓度的浓缩污泥就被送入平衡池积蓄起来。

沉淀池停止排泥之后,截留池的水位会慢慢下降,PLC收到截留池低液位信号后发出指令,停止输送泵运作,浓缩池也停止运行。但排泥泵的运行会降低浓缩池内污泥浓度,PLC在收到浓缩池浓度计的低浓度信号后即发出指令,停止排泥泵运行。

在实际运作中,将排泥泵的启动设置在池内污泥浓度为1.0%,停止浓度为0.1%。

3.3 平衡池的运行

平衡池的运行主要通过对浓缩池排泥泵的限定设置以及对离心机进料污泥泵的限定设置来控制。?

在实际运作中,设置排泥泵的启动液位为3.0 m,停止为3.5 m。这样,整个排泥水的收集、浓缩、积蓄就在PLC控制下周而复始,自动运行,无人操作。

3.4 离心机污泥脱水的运行

PLC收到离心机开启信号后,延时发出指令,自动开启离心机进泥泵、PAM加注计量泵和螺旋输送器,并接受来自进泥流量计和加注计量泵的信号。根据平衡池污泥浓度计的数值、进泥流量计的数值、PAM配制浓度、最佳加注率,就可以确定计量投加泵的流量,并通过PLC设置。这样PLC自动控制PAM加注泵变频器的设定频率值以控制投加量,离心脱水机对浓缩污泥的固液分离就可自动进行。

在实际运行中,PAM投加量的确定须依据进泥量和进泥浓度而定,加注率一般设定在1.0~1.5 kg/t干泥。

对所有泵都配有报警装置和备用泵并通过PLC控制,一旦运行泵发生故障,报警信号发至PLC,则PLC会自动控制切换备用泵运行,以保证在对故障泵进行维修时不影响系统的连续自动运行。

4 结论

综上所述,采用PLC作为中央控制,配以液位仪、浓度计、流量计作为一级仪表组合,自动连续监测运行状况,并将监测值实时送到PLC。PLC发出指令,指令会通过中间开关继电器和变频器,对系统的泵等设备进行开停、流量变化等控制,以达到运行的高度自动化。?

通过PLC的终端显示面板,也可以随时对运行参数进行重新设置,以达到最佳运行条件。在整个系统的运行中,达到了无人操作的程度。

自动化控制论文:论长寿排水公司污水处理厂自动化控制

摘要:本文介绍了长寿污水处理厂实施自动化控制的实践,论证了自动化系统对污水处理运行管理的重要作用,提出了智能化是自控系统发展方向的观点。

关键词:污水处理厂 自动化控制 设备改造

1.污水处理可能对三峡库来说还算是一个新星的行业,在三峡库区新建的污水处理厂中,大部分设置了自动化控制系统,力求对整个污水处理过程实行全面监控。但由于这项工作尚处在实践摸索阶段,与国外水平相比存在较大差距,主要问题是:

(l)主要控制设备功能不稳定,特别是在线仪表的准确性和稳定性来看,不能完全达到由计算机控制的要求。

(2)自控水平低,距智能化自动控制还有很大差距。

(3)运行条件变化范围大,某些工艺环节尚在不断调整。

(4)运行操作人员尚不能对工艺进行全方位控制操作。

由于以上条件限制,大多数污水处理厂的自控系统只能发挥监视和对部分设备进行远程控制的功能。长寿污水处理厂针对以上问题,自2003年5月试运行到现在来看,根据实际运行,并通过对部分设备的改造和完善,加之对现场运行操作人员的技术培训,使中控室具有集中控制、监视、现场故障报警等功能。操作人员可在中控室进行操作,为安全稳定运行提供了保障。

2. 长寿排水公司自控概况

长寿污水处理厂处理长寿区20万人生活污水及工业废水,我厂监控系统采用工业以太网集中控制系统。此系统包括1个监控中心(中控室)、6个现场PLC站(模拟屏PLC0、配电间站PLC1加药间站PLC2、脱水间PLC3、PLC4站和紫外光PLC5站)。配电间站主要控制提升泵站、格栅井、沉砂池、氧化沟、二沉池、回流泵站、剩余泵站、贮泥池的自动运行;模拟屏站主要对模拟屏的数据处理控制;加药间站主要是对加药间的自动控制;脱水间2个站分别对1号和2号脱水机进行自动控制,紫外光站是对紫外光消毒系统进行控制。中控室则对全厂设备的控制操作及监视。现场分站采用的PLC可编程控制系统是美国AB公司以太网系统。

3. 对设备的改造与完善

长寿污水处理厂从试运行以来,由于现场电气及机械设备存在一些问题,直接影响了自控系统的正常运行。根据存在的问题,结合实际运行情况及工艺要求,对自动化控制系统的现场控制设备进行了部分技术改造。

3.1 对现场一些设备进行改造

由于我厂增加了一台脱水机和PLC柜,为了把新增的这台脱水机PLC柜的运行信号联到中控室,避免重新进行布线。使用交换机联接两台脱水间PLC柜,通过一根信号线接到中控室交换机。改造现场和配电机曝气机的二次控制回路,解决了中控室不能控制曝气机启停的问题。

1号2号氧化沟的变频曝气机由于控制转换开关处在开关柜

控制和机旁控制方式时,变频器模拟量4~20mA电流输入电路断开,使得不能输入变频器运行频率,变频器控制失效,不能运行。经考虑,短接模拟量电流输入的转换开关控制回路。

变频器频率信号(模拟量)、运行信号(开关量)没有输出给

PLC,使得上位机无法判断曝气机是否运行。过后经自动化人员改进后,只给出变频器频率信号(模拟量),运行信号可有可无(开关量)。

3.2 对PLC源程序的修改、优化

试运行中,我厂由于采用的是巡检制度,将各分散值班点集中到中心控制室值班操作。所以必须对比较重要的报警参数根据实际情况做进一步的修改。通过对PLC可编程控制器的源程序进行修改、编译,主要是启停液位、报警液位、逻辑控制、出水流量、加药间液位、提升泵站液位差等。不仅实现了设备按工艺流程运行的要求,而且机械设备运行的准确性、安全性有了很大提高,电气故障大为减少。故障点检查也很方便,大大降低了电气设备的故障率,使现场自动运行更加稳定。更主要的是为自动化控制的顺利实现创造了条件。

另外对高压配电系统和一套独立的监控系统,如出现任何故障不仅有指示灯光报警,而且还配有语音报警系统,使值班人员一目了然,可清楚地判断故障发生的部位并做及时处理,避免事故的发生。

3.4 安装视频监视系统的

为了让操作人员真正在中控室控制全厂、监视全厂、管理全厂,长寿污水处理厂于2002安装了BAXALL系列摄像机视频监视系统。它配合原有的自控仪表,对进水粗格栅、细格栅、提升泵、排砂泵、搅拌机、砂水分离机、氧化沟曝气机、二沉池、回流泵站、剩余污泥泵站、脱水间、办公室等10多个场所的现场情况,进行24小时全天候监视。

这套视频监视系统运行可靠。在中控室里,通过对摄像机的遥控。可以监视全厂20多个部位工艺设备的运行情况。如果按工艺流程在现场巡查一遍,需要30分钟左右,而通过视频监视系统,几分钟就可以对全厂工况浏览一遍,大大提高了工作效率。

3.5 提升泵站和格栅井的控制

污水提升泵站安装两台潜水泵一用一备,在上位机设定常用/备用,按如下原理进行控制:

当泵站内水位达到1.70m时,一台泵启动 ;

当水位降至0.80m时,水泵停机,并发出报警信号。

粗、细格栅分别有时间控制/液位差控制,2种控制方法,我厂现在用的是时间控制。

格栅井安装粗、细格栅机两台,运行依据其前、后超声波液位差计测得的水位差进行控制。

当粗格栅机前,后超声波液位差计测得的水位差超过20cm,粗格栅机、皮带轮输送机自动开机。

当粗格栅机前,后超声波液位差计测得的水位差降至10cm,粗格栅机、皮带轮输送机自动停机。

当细格栅机前,后超声波液位差计测得的水位差超过30cm,细格栅机、螺旋输送机,压榨机自动开机。

当细格栅机前,后超声波液位差计测得的水位差降至20cm,细格栅机、螺旋输送机,压榨机自动停机。

粗格栅、细格栅还可以通过在上位机设定运行、停止间隔时间的方式定时开启停止。当格栅每运行15分钟后停15分钟。皮带输送机、螺旋输送机与格栅联动,及格栅运行时,同时运行。

两组涡流沉砂池,每组涡流沉砂池内安装一台搅拌机和排砂泵,搅拌机长期运行。排砂泵把池底的污物抽送至砂水分离器。排砂泵每运行10分钟后停20分钟,时用,砂水分离器与排砂泵同时工作,以上设备均可在中心控制室监控。

3.6 氧化沟的自动控制

本工程氧化沟设两组,日处理污水能力40000m3/d,每组氧化沟设计日处理能力2万m3/d。每组氧化沟PDSL-325(C)型倒伞型表面曝气机三台,其中1#,3#机组为恒速,逆时钟方向运转,单台机组充氧量为119kgO2/h;2#机组为变频调速,顺时针方向运转,单台机组充氧量为23~119kgO2/h,电机功率均为55KW;每组氧化沟安装两台溶解氧检测仪(DO仪)和一台污泥浓度检测仪(MLSS仪),一台DO仪和MLSS仪安装在接近出水口处,另一台DO仪安装在缺氧区。另一组氧化沟设备与该组氧化沟对称,倒伞型表面曝气机的运行按照氧化沟内溶解氧值(DO值)进行自动控制,其DO值以接近出水口处的DO仪的测定值为准。

当DO值在0.2mg/L< DO值<1.2mg/L范围内时三台电机都开启;当DO值在1.2mg/L<DO值<3.0mg/L范围内时开一台恒速机和一台变频调速机;其中变频调速机的调速频率分为五段(频率随着DO值减小而增大);当DO值在3.0mg/L<DO值<4.0mg/L范围内时只开一台恒速机。如果DO值不在以上范围内那么开一台恒速机和一台变频调速机(频率固定)。

氧化沟内设一台污泥浓度(MLSS)测定仪,将MLSS测定仪测定值传送至中控室,用于调节活性污泥回流泵站及电动套筒阀的运行。

氧化沟内安装的各检测仪器(如DO仪、MLSS仪)的数据,由PLC1进行采集。然后PLC1将采集的数据通过控制层网络送至中控室用于控制相关设备运转。

3.7 回流泵站的自动控制

污泥回流泵站安装潜水轴流泵两台,按如下原理进行控制:

在泵站出水侧及吸水侧(套筒阀井处)各设一台超声波水位计,出水侧设两个水位,一个正常水位7.8m,一个报警水位8.4m,吸水侧设四个水位,一个正常水位5.30m,一个启动水位5.00m,一个高限报警水位5.80m,一个低限报警水位4.40m;

当两个氧化沟的污泥浓度同时高于3000mg/L时,开启1台污泥回流泵,如果其中任何一个氧化沟的污泥浓度低于3000mg/L时只开启2台污泥回流泵。

本控制程序能使两泵交替工作(统计工作时间),负荷均等,从而延长二泵工作寿命。

3.8 剩余泵站和贮泥池的自动控制

本泵站安装100QW70-7-3型潜水排污泵一台,其工作原理如下:

当贮泥池液位低于2.0m时,剩余污泥泵自动开启。当贮泥池液位高于4.5m时,剩余污泥泵站剩余污泥泵根据液位计信号自动停止运行,贮泥池液位在中心控制室显示及报警。另外,当贮泥池水位计超过贮泥池设定的最高水位或最低0.5m时,水泵亦由中控室控制自动切断水泵电源,泵站停止工作。

贮泥池安装超声波液位计,当液位为1.5m时,向脱水间PLC发出污泥泵停泵停止运行信号。

3.9 加药间的自动控制

溶解、溶液池为两组,每组2 m;每组内安一台搅拌机,和超声波液位计一套,工况一用一备;

溶解池加料加水后,搅拌机工作15分钟,搅拌机停车,溶液池的液位预报警(液位现场确定);

当一格溶解池最低液位时(液位现场确定),自动关停药液输出电磁阀同时开启另一溶液池的电磁阀;

FeCl3液按照出水流量计信号自动调节频率,手动调节冲程控制投加量,使其出水水质达到国家一级排放标准。

3.10 紫外光的自动控制

紫外光消毒采用的是德国威得高系统,控制方式采用的是液位控制,并由液位控制出水的电动阀门自动行动,使液位始终保持在1.7m,紫外光灯启动±5%左右。

3.11 脱水间的自动控制

脱水间加药池设有一液位探头,当液位低于设计标准时,脱水机停止。

脱水机的控制主要还是以人工控制为主,操作人员在PLC柜在启停各个设备。

3.12 现场仪表的控制

我厂的主要仪表有:液位计、进水PH值、溶解氧、污泥浓度、COD在线仪、浊度仪、出水流量计(其中大部分的在线仪表都自带得有温度计)。 显示的具体形式以具体数值显示为主,操作人员可直观地读取各种数据。

3.13 高压配电系统监视功能

此功能主要是对高压配电及供电系统的开关是合是断,通过在上住机(CRT)显示来提示有关人员。具体显示以示意图的形式实现。

3.14 时间累计、故障次数和报警功能

主要功能是对所有设备运行的时间进行统计。报警功能是对设备运行出现的故障都有灯光和声音提示,准确及时地提示操作人员哪台设备出现了故障。故障出现时,运行设备立即停止运行。此部分功能的实现,为有关人员确定设备大修时间及日常保养次数提供了依据。

4. 自控系统的使用效果

4.1 快速准确地反映运行异常情况

当现场现出任何的异常情况,可通过监控系统和上位机系统一目了然的看出问题。有设备出现故障、上位机同时报警并停止该设备的运行,相应地计算机作故障情况记录,方便设备故障排除、管理、维护等。

4.2 促进了职工技求素质的提高

实行自控,运行人员合并值班操作,对职工素质的要求也相应地变为复合型,这就进一步激发了职工特别是青年职工学文化、学技术的积极性。

4.3 为降低运行成本创造了条件

5. 自控系统的发展前景是智能化

从长寿排水公司自动化控制水平看,只是完成了人对设备简单的机械性能的操作,这种系统在智能化高度发达的今天显得很粗糙。因为污水处理的可变因素很多,有水量、浓度、温度、气量、微生物状态、系统配水情况。供电情况、机械运行情况等等,是一个非常复杂的系统,只靠预先设定的简单程序就想控制好生产全过程是不可能的。我们需要一种更高级的控制系统,使之能对生产过程出现的各种数据给予采集、计算、分析,得出目前运行状态是否正常的结论,并能给操作人员以有益的提示,从而使自动化控制能够真正实现智能化。

自动化控制论文:滴灌系统的自动化控制的研究

摘要:本文介绍了引进的以色列先进的滴灌技术,同时从滴灌系统、节水效果到滴灌的自动化控制作了详尽阐叙,并对百果园第二期工程建设提出了滴灌系统的设想,以此范例,作出了在我国果园灌水实现滴灌自动化的一般方法和建议。

关键词:计算机 自动化 电磁阀

1 简介

是国家果茶良种场XX省优质果茶良种繁育场,是国家“九五”种子工程在湖南实施的重点项目,建于1998年8月,1999年三月由农业部授名为“国家(湖南)果茶良种场”。

厂址位于XX市西郊雷锋大道7公里处,占地面积620亩。为加速实施全省农业结构的调整,先后从美国?法国?埃及?日本及国内10多个省市科研育种单位引进优质果茶品种资源158个,优质果茶种苗40多万株,建成果茶母本园150亩。每年可向社会提供优质果茶苗木200多万株,果茶母(接)穗1万公斤以上,生产优质果茶产品1000吨以上。

果茶场也是省城第一座以品茶、园艺、垂钓为主题的农业观光园。这里空气清新,景色怡人。春有草莓、樱桃、“明前”茶;夏有枇杷、苹果、葡萄、桃、李、杨梅、无花果与瓜类;秋有板栗、柿、枣、梨、猕猴桃;冬有柑桔、橙类等。一年四季。百果飘香,是个名副其实的“百果园”。

该厂第二期工程将于2003年完成,面积将扩至1000多亩。年生产优质果茶苗木将达到1000万株,优质果茶产品产量也将成倍增加,更多的农业高新技术将落户该场。果茶苗木和产品的生产、检测、采后处理、加工和多种农业观光设施将全部完善和配置。届时,一个全新的高科技生态农业示范、观光园将会展现在你的面前。

百果园是农业高科技的结晶,而滴灌系统是其中的重中之重。百果园现建成的620亩果园,全部由从以色列引进的先进滴喷灌系统控制,该园地势起伏较大,最高处海拔达86.60m,最低处64.72m,传统灌水方式很难进行,而先进的滴灌系统由于对地形的适应能力强,而且特别适应山地丘陵地区,所以滴灌正好大施其能,由低处水库中取水,经过过滤加压,然后由遍布全园的各种管道把带有肥料、除虫剂的水准确地送到每片需水地园中,保证果树的正常需水。不过其系统自动化程度不高,全园仅能使用微机控制电磁阀的开启,不能精确实现作物的轮灌、对灌水时间和灌水量还不能实现有效的控制,有望进一步提高。

2 滴灌系统

滴灌就是滴水灌溉技术,它是利用低压管道系统,使滴灌水成点滴地、缓慢地、均匀而又定量地浸润作物根系最发达的区域,使作物主要根系活动区的土壤始终保持在最优含水状态。滴灌不同于传统的地面灌溉湿润全面积土壤,因此滴灌有节约灌溉用水量、促进作物生长和提高产量的作用,是一种很有发展前途的局部灌水技术。

百果园主要种植柑桔、葡萄、水蜜桃、茶等低矮果树,如果采用其它灌水方法,不仅浪费水资源,而且很难保证满足果树的需水量,而滴灌具有省水节能、省工省地省肥、操作简单,易于实现自动化、对土壤地形适应性强、保护和保持生态环境等优点,所以滴灌成为了百果园地首选。

2.1百果园滴灌系统的组成

百果园滴灌系统主要由水源、首部枢纽、输配水管网和尾部设备灌水器以及流量、压力控制部件和测量仪表等组成,如图所示。全园滴灌系统组成示意图:

1.水源 2.水泵 3.供水管 4.蓄水池 5.逆止阀 6.施肥开关 7. 灌水总开关 8.压力表

9. 主过滤器 10. 水表 11. 支管 12. 微喷头 13. 滴头 14. 毛管(滴灌带、渗灌管)

15.滴灌支管 16.尾部开关(电磁阀) 17.冲洗阀 18.肥料罐 19.肥量调节阀 20.施肥器 21.干管

2.1.1 水源

江河、湖泊、水库、井、渠、泉等水质符合微灌要求的均可作为水源,百果园采用从园中的水库中取水。

2.1.2 首部枢纽

百果园的首部枢纽包括泵组、动力机、肥料罐、过滤设备、控制阀、进排气阀、压力表、流量计等。其作用是从水库中取水增压并将其处理成符合微灌要求的水流送到系统中去。百果园中采用五级加压式离心泵,在水库中取水,现取现用,计划建一水塔蓄水。

2.1.3 输配水管网

输配水管网的作用是将首部枢纽处理过的水按照要求输送分配到每个灌水单元和灌水器。包括干、支管和毛管三级管道,毛管是微灌系统末级管道,其上安装或连接灌水器。微灌系统中直径小于或等于63毫米的管道常用聚乙烯(PE)管材,大于63毫米的常用聚氯乙烯(PVC)管材。百果园中干、支管采用PVC管和UPVC管,毛管采用PE管。

2.1.4 尾部设备

尾部设备是微灌系统的关键部件,包括微管和与之相联的灌水器(小微管、滴头、微喷头、滴灌带、渗灌头、渗灌管等)插杆等。灌水器将微灌系统上游所来的压力水消能后将水成滴状、雾状等施于所需灌溉的作物根部或叶面。

2.2 百果园滴灌灌溉系统

灌溉系统的第一期工程是由以色列的普拉斯托公司负责承建,全园采用先进的滴、喷灌相结合的微灌节水技术,是我国南方发展节水农业的典范,其具体情况见下:

2.2.1 设计原则

滴灌灌溉系统设计除了满足节水、节能、省力等之外,通常应遵循以下主要原则:

①必须满足果园果树生长对水分的要求;

②灌溉系统设计应结合耕作实际,便于操作;

③应使所选择的灌水方法既能满足作物的灌溉要求,又不因灌溉而造成病害、虫害的发生;

④在尽可能的情况下,灌溉系统设计时应考虑施肥及喷药装置;

⑤在尽可能的情况下,应使灌溉系统在满足灌溉要求的同时,工程建设的综合造价最小。

2.2.2 设计步骤

2.2.2.1资料的收集在系统设计时,必须掌握以下资料:

①地形资料:根据实际情况测绘大比例尺地形图,其中包括果园的平面布置、道路、水源位置、高差等。

②土壤资料:主要是土壤理化性质、地下水埋藏深度和土层厚度等。土壤理化性质主要包括土壤类别、干容重、含盐情况、土壤田间持水率等。

③气象资料:区域年均降雨量及季节分布、平均气温、极端气温(包括最高、最低气温)、最大冻土层深度、无霜期、蒸腾蒸发资料等。

④水源资料:水源属性(个人或集体)、种类、水源位置、水质、含沙情况、水位、供水能力、利用和配套情况等。若水源为机井时,还应调查机井的静水位和动水位,当地下水水位较浅时,一定要调查清楚地下水位及其周年变化规律。若水源为渠水时,应调查清楚水源的含泥沙种类、含沙量、水位、供水时间、可能的配水时间等。同时,还应特别注意水源的保证率问题,不论是只用于果园的水源还是与周围大田混用的水源,都应考虑这个问题。

⑤百果园作物种植资料:其中包括作物的种类、种植密度(其中最主要的是行距和株距)等。

⑥百果园的环境资料:包括百果园周围的地形、交通和供电等。

2.2.2.2 灌水方法的选择灌水方法选择适当与否,除了影响工程投资外,还直接影响着灌溉系统的效益发挥和灌溉保证率。因此,应根据作物种类、作物的种植制度、种植季节、水源情况、果园设施情况、工程区社会经济情况等,合理地选择相对投资较省、灌溉保证率较高且有利于果园果树生长的灌水方法。百果园灌溉系统的灌水方法采用以滴灌为主,滴喷灌相结合的方式。

2.2.2.3 滴灌系统布置,百果园滴灌系统的管道分干管、支管和毛管等三级,布置时干、支、毛三级管道要求尽量相互垂直,以使管道长度和水头损失最小。通常情况下,园内一般出水毛管平行于种植方向,支管垂直于种植方向。

2.2.2.4 滴灌灌溉制度的拟定

①灌水定额:是指作为滴灌系统设计的单位面积上的一次灌水量,如果用灌水深度表示,可用式(4-8)计算,即

H——计划湿润层深度(米),一般蔬菜0.20-0.30米深根蔬菜或果树0.3-1.0米;

p——土壤湿润比,70%-90%。

②设计灌水周期:滴灌设计灌水周期是指按一定的灌水定额灌水后,在作物适宜土壤含水率的条件下,保障作物正常生长的可能延续时间T,用式(4-9)计算,即

③一次灌水延续时间:一次灌水延续时间是指把设计灌水定额水量,在不产生径流的条件下,均匀分布于果园田间所用的灌水时间,用式(4-10)计算,即

i. 轮灌区数目的确定:(a)对于固定式滴灌系统,轮灌区数目可按式(4-11)计算:(b)对于移动式滴灌系统,则有:

ii. 一条毛管的控制灌溉面积:(a)对于固定式滴灌系统,毛管固定在一个位置上灌水,控制面积为

f=SeL (4-13)

式中 f——每条毛管控制的灌溉面积(平方米)

L——毛管长度(米),移动式滴灌系统中为出流毛管长度。

(b)对于移动式滴灌系统,一条毛管控制的灌溉面积为

2.2.2.5 滴灌系统控制灌溉面积大小的计算在灌溉水源能够得到充分保证的条件下,滴灌面积的大小取决于管道的输水能力。对于水源流量不能满足整个区域需要时,滴灌面积为

2.2.2.6 管网水力计算滴灌系统各级管道布置好以后,即可从最末端或最不利毛管位置开始,逐级推算各级管道的水头损失(包括沿程水头损失和局部水头损失)。在设计中,同一条支管上的第一条毛管最前端出水孔处水头与最末一条毛管最末端出水孔处水头之间的差值,不超过滴头设计工作压力的20%,流量差值不超过10%;对于采用压力补偿式滴水器时,仅要求区域内滴头流量差值不超过10%,并据此确定支、毛管的最大设计长度;在滴灌中,由于管网中水流压力通常小于0.3兆帕,所以多选用PVC塑料管道。 管道中水流在运动过程中的压力损失通常包括沿程阻力损失和局部阻力损失。工程设计中塑料管道的沿程阻力损失常选用式(4-1 6)、(4-17)计算,局部阻力损失常用式(4-18)计算。 ①沿程阻力损失hf

当管道有多个出水口时,管道的沿程阻力应考虑多口出流对沿程阻力的折减问题,多口出流折减系数k,对应计算公式

②局部阻力hj

工程设计中为了计算方便,局部阻力损失也常按沿程阻力损失hf的10%估算。

2.2.2.7 管道系统设计包括各级管道的管材与管径的选择、各级固定管道的纵剖面设计、管道系统的结构设计。

① 管材的选择:可用于灌溉的管道种类很多,应该根据滴灌区的具体情况,如地质、地形、气候、运输、供应以及使用环境和工作压力等条件,结合各种管材的特性及适用条件进行选择。一般情况下,对于地理固定管道,可选用钢筋混凝土管、钢丝网水泥管、石棉水泥管、铸铁管和硬塑料管。钢管易锈蚀和腐蚀,最好不要选用。随着材料工业的发展,地埋管道多选用塑料管。选用塑料管时一定要注意,不同材质的塑料管在几何尺寸相同的情况下可承受的工作压力相差甚远,特别是在使用低密度聚乙烯管(PE管)时,一定要注意管壁的厚度是否达到了能承受系统所要求压力的厚度,若没有达到,千万不能使用,否则将会埋下隐患,造成运行时管道发生爆破,甚至导致整个管道系统瘫痪。用于滴灌地埋管道的塑料管,最好选用硬聚氯乙烯管(UPVC管)。对于口径150毫米以上的地埋管道,硬聚氯乙烯管在性能价格比上的优势下降,应通过技术经济分析选择合适的管材。塑料管经常暴露在阳光下使用,易老化,缩短使用寿命。因此,地面移动管最好不采用塑料管。

② 管径的选择:当轮灌编组和轮灌顺序确定之后,各级管道在每一轮灌组所通过的流量即可知道。通常选用同一级管道在各轮灌组中可能通过的最大流量,作为本级管道的设计流量,依据这个设计流量来确定管道的管径。若某一级管道,其最大流量通过的时间占管道总过水时间的比例甚小,也可选取一个出现次数较多的次大流量,作为管道的设计流量来确定管径。同一级管道的不同管段通过的最大流量不同时,可分段确定设计流量。(a)支管管径的确定:支管是指直接安装竖管和滴头的那一级管道。支管管径的选择主要依据灌溉均匀的原则。管径选得越大,支管运行时的水头损失就越小,同一支管上各滴头的实际工作压力和灌水量就越接近,灌溉均匀度就越接近设计状况。但这样增大了支管的投资,对移动支管来说还增加了拆装、搬移的劳动强度。管径选得小,支管投资减少,移动作业的劳动强度降低,但由于运行时支管内水头损失增大,同一支管上各滴头的实际工作压力和灌水量差别增大,结果造成果园各处受水量不一致,影响滴灌质量。为了保证同一支管上各滴头实际出水量的相对偏差不大于20%,国家标准GBJ85-85规定:同一支管上任意两个滴头之间的工作压力差应在滴头设计工作压力的20%以内。显然,支管若在平坦的地面上铺设,其首末两端滴头间的工作压力差应最大。若支管铺设在地形起伏的地面上,则其最大的工作压力差并不见得发生在首末滴头之间。考虑地形高差Z的影响时上述规定可表示为

许的水头损失即为从式(4-20)

可以看出:逆坡铺设支管时,允许的hw的值小,即选用的支管管径应大些;顺坡铺设支管时,因Z的值本身为负值,其允许的hw的值可以比0.2hp大些,也就是说因支管顺坡铺设时,因地形坡降弥补了支管内的部分水力坡降,选用的支管管径可适当的小些。 当一条支管选用同管径的管子时,从支管首端到朱端,由于沿程出流,支管内的流速水头逐次减小,抵消了局部水头损失,所以计算支管内水头损失时,可直接用沿程水头损失来代替其总水头损失,即h'f=hw,式(4-20)可改写为

滴头选定后,满头的设计工作压力可从滴头性能表中查得。两滴头进水口高程差(实际上就是两滴头所在地的地面高差)可以从系统平面布置图中查取。则h'f即可求出。利用公式h'f=FfLQm/db,在其他参数已知的情况下反求管径d,d就是该支管可选用的最小管径的计算值。因管材的管径已标准化、系列化。因此,还需按管材的标准管径将计算出的管径规范取整。对滴灌系统的支管,考虑到运行与管理的方便,最大的管径一般不超过100毫米,并且应尽量使各支管取相同的管径,至少也需在一个作业区中统一。对于固定管道式滴灌系统,地理支管的管径可以不同,但规格不宜太多,同一条支管一般最多变径两次。 (b)支管以上各级管道管径的确定:一般情况下,这些管道的管径是在满足下一级管道流量和压力的前提下按费用最小的原则选择的。管道的费用常用年费用来表示。随着管径的增大,管道的投资造价(常用折旧费表示)将随之增高,而管道的年运行费随之降低。因此,客观上必定有一种管径,会使上述两种费用之和为最低,这种管径就是我们要选择的管径,称之为经济管径。经济管径中对应的流速称为经济流速。图4-7就是用最小年费用法计算经济管径的原理示意图。用这种方法确定管径概念清楚,但计算相当繁琐,往往需要分别计算出多种管径的年投资和年运行费,比较后再确定。随着科学技术的进步,计算机技术的飞速发展,许多优化设计方法,如微分法、动态规划法等已在管道灌溉管网的设计中得到应用,具体方法可参阅有关书籍。 对于规模不太大的滴灌工程,也可用式(4-22)、式(4-23)的经验公式估算管道的直径:

容是确定各级固定管道在平面上的位置及各种管道附件的位置。管道的纵剖面应力求平顺,减少折点,有起伏时应避免产生负压。

ⅰ 埋深及坡度:地埋管的埋深指管径距地面的垂直距离,埋深应根据当地的气候条件、地面荷载和机耕要求确定。一般管道在公路下埋深应为0.7~1.2米;在农村机耕道下埋深为0.5~0.9米。地埋管的坡度主要视地形条件而定,同时也应考虑地基好坏及管径大小。一般在地形条件许可的情况下,管径小、基础稳定性好的管道坡度可陡一点;反之应缓些。总的来说,管道坡度不得超过1:1,通常控制在1:1.5~1:3以下。

ⅱ 管道连接及附件:地埋管道的连接多采用承插或黏接的形式,转向处用弯头,分水处用三通或四通接头,管径改变处采用异径接头,管道末端用堵头。为方便施工和安装,同类管件应考虑其规格尽量统一。

为了按计划进行输水、配水、管道系统上应装置必要的控制阀。白果园中为了实现灌水的有效控制,设置了30多个电子阀.而且各级管道的首端还设了进水阀或水分阀;当管道过长或压力变化过大时,设置节制阀。为保证管道的安全运行,还安装一些附设装置。自压系统的进水口和各类水泵吸水管的底端应分别设置拦污棚和滤网,管道起伏的高处应设排气装置,自压系统进水阀后的干管上设高度高出水源水面高程的通气管,管道起伏的低处及管道末端设泄水装置,管道可能发生最大水锤压力处设置安全阀。

2.3 评价

从整体上来看,XX白果园的滴灌系统是建设的比较完善的一套滴水灌溉系统,设计施工都符合现代滴灌的要求,是一套先进的现代化滴水灌溉系统,而且产生了很好的经济效果。不过当时考虑到经济条件的限制,其毛管采用了单行直线布置,灌水均匀度不高,鉴于对多种毛管布置形式的比较分析,笔者认为百果园应改进为双行毛管平行布置;而且其控制系统自动化程度不高,全园仅能使用微机控制电磁阀的开启,不能精确实现作物的轮灌、对灌水时间和灌水量都不能实现有效的控制,故需进一步对其控制系统加以设计改进。正在建设的二期工程应该吸收一期工程中的好的经验,改进一期工程中的不足,特别是应该实现灌水的全自动控制。

3 灌溉自动化控制系统

灌溉中的滴灌系统,能很方便实现自动化控制,灌水的自动化控制能有效的实现节水灌溉,也是农业实现现代化的要求。对微灌的自动化控制,根据控制系统运行的方式不同,一般可分为手动控制、半自动控制和全自动控制三类:

①手动控制系统

系统的所有操作均由人工完成,如水泵、阀门的开启、关闭,灌溉时间的长短,何时灌溉等等。这类系统的优点是成本较低,控制部分技术含量不高,便于使用和维护,很适合在我国广大农村推广。不足之处是使用的方便性较差,不适宜控制大面积的灌溉。

②全自动控制系统

系统不要人直接参与,通过预先编制好的控制程序和根据反映作物需水的某些参数可以长时间地自动启闭水泵和自动按一定的轮灌顺序进行灌溉。人的作用只是调整控制程序和检修控制设备。这种系统中,除灌水器、管道、管件及水泵、电机外,还包括中央控制器、自动阀、传感器(土壤水分传感器、温度传感器、压力传感器、水位传感器和雨量传感器等)及电线等。

③半自动控制系统

系统中在灌溉区域没有安装传感器,灌水时间、灌水量和灌溉周期等均是根据预先编制的程序,而不是根据作物和土壤水分及气象资料的反馈信息来控制的。这类系统的自动化程度不等,有的一部分实行自动控制,有的是几部分进行自动控制。

为了对先进的滴灌自动化控制系统有具体认识和了解,下面我们将对滴灌的自动化控制作详细介绍:

3.1 滴灌首部控制枢纽

滴灌自动化系统的基本控制方法有:时间控制、水量控制和反馈控制三种。时间控制系统是按预定好的时间放水或关水;水量控制系统是按照设计的配水量放水或关水;反馈控制系统是根据灌区内湿度感受器的反应,然后将信号传送到首部控制枢纽部分来关水或放水。滴灌系统更便于完全实现自动化,这在地多人少、劳力紧张的边远地区,沙漠地带的防护林区,铁路路基沿线,经济力量雄厚的城郊蔬菜种植区显得特别重要。目前,国外发达国家在滴灌区普遍使用了计算机管理系统,并通过专用的滴灌系统软件来控制和检测作物生长、土壤状况和气象趋势,取得了良好的效果。大大提高了现代化的土壤水分、作物生长测定技术的可能性和实用性,具有农艺上的综合性,为人们充分利用现代化仪器设备在滴灌系统中应用提供了巨大的潜力。滴灌系统软件根据作物对水分的需求和土壤墒情制定出合理的灌溉计划和作物管理计划。

3.2 作物生产管理计划制定

控制软件系统应能提供一套科学的管理系统,它通过提高作物产量和品质以及减少用水量来提高水分利用效率,能给农民及有关用户提供一套针对灌溉方案制定作物生产管理的先进、完善的管理系统,用户能够使用它获得他们的每一块农田的土壤水分状况图,方便的数据资料存取能够得到每一块农田的准确土壤水分含量,还能够确定准确的日水分利用量,能够给每块农田制定出合理的灌溉管理决策,能够根据每一块农田各自的灌水量需求对不同农田进行灌溉优先排序,以便制定优化灌溉计划使农场或用户获得整体最高产量。

控制软件系统应能允许灌溉管理者根据作物水分需求和作物对灌溉的反应制定合理的灌溉计划,作为一个完整的灌溉计划和作物生产管理软件包,它能够对灌溉决策的制定和作物管理进行数据资料存储、运算处理、显示输出。土壤水分数据资料主要由中子探测仪、石膏电阻块和张力计测定获得。天气数据资料由自动气象站获得,作物生长资料如籽粒大小(直径)、株高和叶片硝酸盐含量等可直接田间测定,根据相应的作物响应,作物生长资料结合土壤水分资料能够制定出合理的灌溉计划,通过实际调查能够提高作物产量、品质和水分利用效率的管理技术能够详细地验证作物生长、土壤水分和气候之间的关系,因此能很好地解决一些灌溉管理和作物生长问题,其中包括过量灌溉导致的灌溉水排渗问题、肥料向根部以下淋溶损失问题以及为了达到高产稳产目标的籽粒重和穗粒数或结果率的控制管理问题。

3.3 滴灌系统灌溉计划制定

滴灌系统灌溉计划一般是指确定何时进行灌溉及应该的灌溉量,灌溉计划的应用可消除代价巨大的不可预测的农业灾害,如在作物生长临界期由于土壤类型和作物自身生长能力,不同的农田具有不同的土壤水分亏缺量和日水分利用量,因此不同的农田需要不同的灌溉计划。农民通过土壤水分测定技术利用软件处理和显示不同层次土壤水分特征,能加深对发生于土壤内的各种过程的理解,以便进行更精细的灌溉计划和灌溉管理决策的制定,以确保土壤水分总是保持作物生长所需的最佳含水量。

当土壤水分和被作物利用的水分的准确数量被测定后,通过软件可以计算下一次滴灌的日期和准确的灌水量,它将考虑当前每天水分利用状况、天气变化和历史资料来帮助管理者制定以后的灌水计划。它把农田从最干到最湿分为不同等级。了解需要灌溉补充的水量有助于协调不同用户之间和同一用户内部的水分供给,充分了解雨后何时开始灌溉能使农民最大限度地利用自然降水,而把灌水过多和灌水不及造成地危险减到最小。

3.4 土壤水分时间图和深度图的应用

3.4.1 时间图 时间显示某一指定土壤容积含水量、根区土壤含水量或作物响应随时间的变化。时间图的基本显示:直线表示根区土壤含水量的饱和点和需灌溉补充点;供给的和有效的灌溉和降雨情况;箭头指示预测的灌溉日期;关于水分饱和点、需灌溉补充点、当前和过去的土壤水分测定值及计划安排的灌水日期和灌水量的总结表;作物生长及其对灌溉管理技术措施的响应;该软件所做的时间图可进行大小调整,通过调整纵坐标轴上的最大值和最小值及横坐标上的日期范围能够把图形中用户想要的区域或作物生长期内的某特定阶段的图形放大。图形能够进行叠加来同时比较不同地点的田块或不同年份的数据。当季和前季的作物的生长,土壤水分和天气资料的叠加图形比较灌溉管理达到高度的协调一致。用户可以选择任何关键数据来建立相互作用关系图。

3.4.2 深度图 深度图显示土壤容积含水量沿土壤剖面随深度的变化而变化的情况,通过该软件和现代化仪器结合能够迅速直接测定和分析土壤水的剖面分布情况。根区吸收水分模式可以在深度图中看到,对深度图分析能使农民确定每一种农作物包括块根作物在土壤剖面中被研究的土壤体积范围和土壤剖面的每一深度层的作物利用的水分数量、土壤紧实度、土壤质地变化、高石灰岩含量、地下水位和盐分等问题能够通过对根部活动的仔细分析而发现。深度图也可以用来确定渗入和排出土壤剖面的水分的运动状况及深度和数量,从中能够给定灌溉饱和点和需灌溉补充点的准确设计值。灌溉或降水后从土壤的根区排出的水分数量能够通过深度图准确测定,根据可以调节灌溉所用时间以避免水分从土壤剖面排出而损失,控制土壤剖面排出水的数量将防止地下水水位地升高和土壤养分的淋溶损失,同时也将降低灌水及滴灌水及抽水的成本。深度图是一个非常有用的工具,能够解决在不同类型土壤中灌溉水的水平和垂直运动的关键问题,通过分别绘制灌溉前和灌溉后距滴管不同距离的各个点的土壤水分含量图可比较灌溉水的运动状况,用户能够利用研究所得的结果来减少水分和肥料排渗,同时确保作物根系能够一直得到适量的水分。

3.5 软件的程序特点

3.5.1程序结构 滴管软件的数据存储于一个树状结构,这使得制定灌溉方案是查询数据资料非常方便。管理人员可能负责管理几个农场或几块农田,每个农场或农田可能有许多检测点,每一个检测点都有一套不同时间收集的实际测定的读数记录。输入的数据经过计算机软件处理,能显示有关每一单个田块的详细资料,还能够向农民分别显示每一年的作物种植的详细资料。能够显示农场的每个监测田块或某一年份的每一监测点的情况,指明灌溉饱和点和需灌溉补充点,当前作物日水分使用情况,土壤水分平衡和预测出的三次灌溉的日期,土壤水分含量和作物日用水量的测定值,对未来作物在整个生长季节的长期的用水量作出估算。显示某一具体的时期的每一深度层的土壤水分含量的读数记录和根区的总水分含量,同时显示土壤水分需要量,中子仪测定并估算的日水分使用量。利用滴灌软件可进行数据资料综合分析,从中总结重要的信息形成报告,以帮助制定每日的管理决策方案。同时也可以编辑出前几个生长季的作物生长、水分管理。土壤等数据资料,并进行综合分析,为以后的灌溉方案制定提出更合理更完善的评价标准。该软件程序的所以结构层次能为所选择的农场、监测点和某一日期建立报告。报告分为五种:深度图、时间图、记录读数报告。监测点报告和灌溉计划报告。用户可以根据自己的需要已及自己微机系统对程序进行修改编译,选择公制和英制计量单位进行数据资料综合分析,将田间测定得到的数据读数记录自动粘贴到没一个具体的农场栏、监测点栏和日期栏。每一个监测点的测定日期,时间及估计的水分日利用量能够在粘贴之前输入。

3.5.2 数据输入在读数记录屏幕中可以人工录入和显示田间实际收集的数据,如土壤水分张力计的读数、作物籽粒大小。有关作物的数据可以测定得到,作物生长参数与土壤水分含量相关联可以确定作物生长期的水分需求量。气候数据资料可以人工输入或由气象站自动装载。天气数据参数的个数没有限制,它可以与任一个作物生长测定值和任一水平的土壤水分含量相关联制作相互作用关系图。从气象数据资料中可以得到蒸发损失的总水分量的数据并且把它与测定的日水分使用量相比较来调整该地区的作物灌溉计划。

3.5.3 软件的数据处理利用滴管软件可以计算使土壤剖面达到灌溉饱和点所需的准确时间数。同时计算自从播种或其他生长时期(如发芽、开花等)以来的天数,使土壤水分能够与过去多年的作物生长资料数据参数同步分析,以确定作物水分利用效率。使用作物累积日水分方程。能够很好地评估作物总产量,尤其是对于玉米、小麦和棉花。可以通过作物-水分方程和气象资料估算理论产量。通过速率方程,计算作物生长速率。计算作物当前日水分利用量占整个生长季日水分利用量地比例。同时也可计算不同水分含量地土壤水分变化速率,这些速率地变化表明土壤紧实问题和土壤干旱地程度。滴灌软件可以分析某一作物在生长季内日水分利用状况地资料。结合现代先进地土壤水分测定仪器使用,该软件能够指导我们最有效地利用有限的水资源获得最大农业效益。例如能够确定每次灌溉的准确时间和灌水量。同时减小过量灌溉和水分不足对产量的影响。建立各种不同作物之间水分利用及水分利用效率的差异;建立如不同品种、土壤紧实情况、不同的耕作史等不同条件下水分利用及水分利用效率的差异;建立现代耕作技术和传统耕作技术条件下的水分利用效率的关系。确定灌溉和降水的利用效率,用以观察分析根系吸收水分模式。有助于合理管理地下水和盐化问题,能够减少土壤养分的淋溶损失问题。建立土壤水分含量、作物长势及天气状况的数据库以使作物产量和质量获得持续稳定的提高,使高效农业可持续发展。

3.6灌溉自动化控制系统

要实现灌水的自动化,必须有自动灌溉控制器,该装置由土壤湿度传感器、控制器和电磁阀组成,能够按土壤墒情和作物需水特性实施自动灌溉(沟灌、喷灌、滴灌、渗灌),达到高产、高效、和节水的目的。适用于庭院花圃、苗圃、果园、菜地和农地。随着经济发展,庭院花圃、苗圃水分的自动灌溉倍受欢迎。它能省水省事,使花木生长更好。一亩庭院花圃、苗圃地投资1.0-1.5万元,可以建立自动灌溉控制系统。自动灌溉控制系统可以实现科学灌溉,节能、省水,使菜地和农地产量和质量明显提高。智能化,精准化灌溉技术是伴随着计算机应用技术、传感器制造技术、塑料工业技术的提高而逐步实现的

自动化计算机灌溉控制系统大约在80年代初由雨鸟公司、摩托罗拉等几家公司开发、研制成功,并投入使用。由于技术复杂、应用难度大,价格高昂,这种控制设备最早应用于高尔夫球场灌溉系统的控制上。90年代,计算机工业的硬件、软件飞速发展,使得灌溉系统中央计算机系统操作难度越来越小,功能越来越丰富,价格也逐渐降了下来。这种系统在园林绿化上用得也越来越多了起来,雨鸟公司针对不同用途,研制、开发出了中央计算机控制系统:Maxicom

智能化灌溉中央计算机控制系统具有如下功能:

① 动采集各种气象数据,计算并记录蒸发蒸腾量ET;

② 根据前一天的ET值自动编制当天灌溉程序并实施灌溉;

③ 可由连接的土壤湿度传感器、风速传感器、雨量传感器等干涉程序,启动、关闭、暂停灌溉系统;

④ 连接流量传感器可自动监测、记录、警示由于输水管断裂引起的漏水及电磁阀故障;最大限度利用管网输水能力;

⑤ 运行程序而不起动灌溉系统(干运行),测试程序合理性,不合理时预先修改;

⑥ 自动记录、显示、储存各灌溉站的运行时间;自动记录、显示、储存传感器反馈数据,以积累资料,修改程序,修改系统等。

⑦ 频繁灌溉功能:可将设计好的灌水延续时间分成若干时段,以便提供足够的土壤入渗时间,减少坡地或粘性土地地面径流损失。

⑧ 一套中央计算机系统可控制无数台田间控制系统(称为卫星站),一套中央计算机控制系统可控制小到一个公园, 大到上百个公园,甚至全城的所有灌溉系统。

⑨ 储存数百套灌溉程序;一台田间控制器(卫星站)可使4个轮灌区独立灌溉或同时灌溉。

⑩ 手动干涉灌溉系统:可在阀门上手动启、闭系统,可在田间卫星站上手动控制系统,也可在计算机上手动启、闭任何一站,任何一个电磁阀。可控制灌溉系统以外的其它设备,如:道路或公共场所灯光,大门、喷泉、水泵等

自动化中央计算机控制系统主要由中央计算机,集群控制器(CCU),田间控制器(卫星站),电磁阀构成。中央计算机可装置在任何一个地方。比如:一套中央计算机系统控制50个公园的灌溉系统。中央计算机可安装在市园林局认为合适的位置。CCU安装在各个公园内。中央计算机与CCU之间的通讯,可采用有线连接(近距离),无线连接,电话线连接或移动通讯方法连接。一台CCU最多可连接28个田间控制器。CCU与田间控制器之间同样可选上述数种通讯方式。 由中央计算机到终端电磁阀的工作过程为:中央计算机编程,并将程序下达到CCU。CCU将各轮灌区灌溉控制程序再发到相关田间控制器。田间控制器依中央计算机制作的程序启闭各轮灌区电磁阀。如下图所示:

中央计算机上的初始程序由控制人员编制,之后,计算机每日自动收集由气象站采集的气象数据,计算ET值,并不断对原有程序自动修改。如遇传感器传来异常信息(如降雨,过分干燥,系统漏水...),自动中断或暂停程序,待异常情况排除后,继续恢复程序运行。

如果将智能泵站连接到中央计算机控制系统上,则效果会更好。这样从水泵到电磁阀之间复杂的系统将由一个高度智能化的系统管理起来,可做到最大限度地节水、节能,最大限度地保护系统设备运行,避免灌溉系统常发生的下列几种问题:

① 过量灌溉或灌水不足,浪费水资源或不能满足植物需水;

② 管网破裂,漏失水;

③ 系统运行压力不合理;

④ 水泵运行效率低下;

⑤ 地形起伏不平时或土壤入渗率低产生地面径流,浪费宝贵的水资源;

⑥ 降雨时,灌溉系统照常灌溉;

⑦ 管理、维护成本高。

3.7 百果园灌溉的自动化控制设计

百果园一期工程灌水基本实现了半自动化控制,可以使用电脑控制各电磁阀的开启。我们可在其基础上加以改进与提高,使其实现灌水的全自动化,具体见下:

3.7.1 控制原理

自动化控制采用电子技术对田间土壤温湿度、空气温湿度等技术参数进行采集,输入计算机,按最优方案,控制各个阀门的开启及水泵的运行状态,科学有效地控制灌水时间、灌水量、灌水均匀度,为项目区作物提供一个良好的地、水、肥、气、热条件,促使其高产、稳产。同时进行控制软件及优化灌溉制度的研究,最终形成灌溉专家决策系统。另外,通过变频器控制改变电机转速,调节管道压力,为管道、滴灌等其他灌溉工程的自动化提供依据。具体包括以下几个方面:

① 田间土壤含水量、盐分、地温、空气温度、湿度、降水、风速、管道压力等参数的自动化采集

② 自动化控制设计安装

③ 监控软件设计

④ 变频系统设计,通过改变水压力,为微喷、滴灌等工程的自动化提供依据

⑤ 系统运行管理模式评价,包括系统评价、灌水指标、灌溉制度等

3.7.2 控制系统的组成

欲实现真正意义上的全自动控制,需要控制田间参数及对象很多,例如土壤湿度、盐分、空气温度、相对湿度、降水量、风速、管道压力、阀门开启、水泵电机旋转等,都要送入控制器。考虑到要控制的对象较多,又要满足良好的人机界面要求,可以采用工业控制计算机作为整个控制系统的优秀,来协调各部分的工作。

系统的组成如下图所示,整个系统的工作主要工控机和变频器两部分来控制,其中变频器主要用于控制水泵电机的旋转,工控机主要用来采集田间土壤及气象指标,按照设定的程序,控制各地块中电磁阀的开启,并通过变频器控制电机的运行状态,协调整个系统的工作。

3.7.3 监控软件监控软件是工控机能够完成控制功能的重要基础,监控软件设计的好坏直接关系到整个系统的质量和可靠性。根据项目要求及滴灌的特点,笔者建议百果园采用雨鸟公司的“Maxicom”中央控制系统,该软件只需用户输入各地块种植作物种类及种植日期,系统便会自动计算当前作物所处生育期,确定出各自要求的土壤状况及气象信号,控制水泵电机的运行状态及阀门的开启,自动完成整个灌水过程,完全不需要人工干预,实现全自动控制。

该控制软件在此所完成的主要功能及特点如下:

① 自动采集田间数据:系统根据软件中所预先设定的时间,自动地采集土壤湿度、温度风速、雨量等参数,进行相应的处理后,实时显示在屏幕上。

② 作物生育期的判断:当管理人员输入各地块所种植的作物及种植日期后,系统便根据计算机时钟自动计算出各种作物已种植的天数,判断出作物所处的生育期,自动查找资料库中所存的原始资料,确定出当前作物最适宜的土壤含水量及灌水定额。

③ 滴灌的全自动控制:系统采集田间及气象数据后,将当前各地块土壤含水量与作物适宜含水量相比较,若土壤实际含水量小于作物要求下限值,便自动开启该地块的第一个电磁阀。进行灌溉。达到所需灌水定额后,自动关闭第一个电磁阀,同时开启下一个电磁阀,直到完成整个地块的灌溉任务。灌溉过程中,若出现温度过低、风速过大以及降雨过程等天气时,系统会自动暂停当前的灌溉任务,并保存当前状态。当气象条件满足时,继续进行未完成的任务。

④ 形式多样的控制方式:全自动控制外,系统还允许管理人员采用半自动、手动等控制方式。全自动方式只需运行人员输入各地块的作物信息,系统便会根据作物、土壤、气象等条件自动完成灌溉的全过程,无需人工干预。所谓半自动方式,是指系统允许用户根据实际情况控制开停机。用户可人为启动某个阀门,或某个地块,甚至是所有地块均轮灌一次。当然这些操作全部都是通过键盘或鼠标来完成的,而且在工控机屏幕上均有明显的提示。所谓手动方式是指人工去开启各个电磁阀,笔者建议百果园选用美国雨鸟公司生产的电磁阀:手动、电动两用阀门,既可手动,又可电动,使用非常方便。当手动打开某个电磁阀时,喷头出水,主干管道压力开始下降,系统会自动通过变频器升高水泵电机转速,维持管道压力的恒定,直到完成灌溉任务。

⑤ 丰富的办公自动化功能:系统在运行过程中,可自动生成各种定时、日、月、年报表,并通过打印机打印出来。其内容包括各种气象及土壤参数,可从各报表中得到土壤湿度变化曲线、日最高风速、月平均气温、全年总降水量等原始资料,为用户研究当地的气象及土壤变化情况提供翔实的依据。

⑥ 良好的可维持性:可维护性是衡量软件质量好坏的重要指标之一,在编写本系统时我们也充分考虑了这一点,例如用户在种植一类新作物时,可能系统的资料库中并没有该作物,便无法确定其适宜土壤含水量和灌水定额。此时,用户可按自定义按钮,通过鼠标各键盘输出这些参数,系统便会根据用户所定义的数值运行。另外,用户还可很方便地修改灌水定额、管道压力等参数,满足实际情况的需要。

⑥ 友好的人机界面:系统中大部分界面均为示意图形,实时显示各传感器送来的数值及系统当前的运行状态,一目了然。需要用户操作的部分全部为中文界面,工作人员无需学习便可完成所有操作。另外,在任一界面下,用户都可以通过按帮助按钮得到相应的提示,指导用户完成相应的功能。

3.7.4 效果

百果园通过增加自动化控制系统后,灌水时间、灌水量和灌溉周期等完全根据果树某些需水参数自动启闭水泵和自动灌溉,人的作用仅仅是调整控制程序和检修控制设备。既提高了水的有效利用率,又节省了人力,同时也提高了果树的产量,可以产生良好的经济效果。

3.8 第二期工程的设想

正在建设第二期工程计划今年完工,第二期工程的滴灌系统我建议基本上参照第一期工程建设,也采用滴喷灌相结合的方式,其水源计划应采用水塔蓄水,用以缓解枯水期水库少水的矛盾,该可以区采用先进的电脑全自动控制方式,实行精确灌水,管道布置采用固定式(干管、支管)和移动式(毛管)的有机结合。二期工程应该吸收一期工程中的好的经验,改进一期工程中毛管布置形式的不足,还特别是应该增加灌水的全自动控制部分,实现灌水的全自动化,精确控制作物的有效灌水。

4 存在的问题及建议

通过对滴灌系统的学习与认识,笔者系统的学习了滴灌这种先进的果园节水灌溉方法,在实践的基础上深化了理论,并对滴灌和滴灌系统有一些不成熟的认识与建议。

4.1 滴灌的优缺点

4.1.1 百果园滴灌的优点

4.1.1.1 水的有效利用率高,在滴灌条件下,灌溉水湿润部分土壤表面,可有效减少土壤水分的无效蒸发。同时,由于滴灌仅湿润作物根部附近土壤,其他区域土壤水分含量较低,因此,可防止杂草的生长。滴灌系统不产生地面径流,且易掌握精确的施水深度,节水效果达50%-90%。

4.1.1.2 环境湿度低,滴灌灌水后,土壤根系通透条件良好,通过注入水中的肥料,可以提供足够的水分和养分,使土壤水分处于能满足作物要求的稳定和较低吸力状态,灌水区域地面蒸发量也小,这样可以有效控制保护地内的湿度,使果园中作物的病虫害的发生频率大大降低,也降低了农药的施用量。

4.1.1.3 提高作物产品品质,由于滴灌能够及时适量供水、供肥,它可以在提高农作物产量的同时,提高和改善农产品的品质,使果园的农产品商品率大大提高,经济效益高。

4.1.1.4 滴灌对地形和土壤的适应能力较强,由于滴头能够在较大的工作压力范围内工作,且滴头的出流均匀,所以滴灌适宜于地形有起伏的地块和不同种类的土壤。同时,滴灌还可减少中耕除草,也不会造成地面土壤板结。

4.1.2 百果园滴灌的缺点

4.1.2.1滴灌的滴头很容易堵塞和磨损,产生灌水的不均,严重影响节水效果。

4.1.2.2滴灌的各管道的压力有所差异,会产生局部压力过高而使管道容易损坏,滴头的压力不均甚至会产生雾化,损坏滴头,浪费水资源。

4.1.2.3 滴灌一般仅润湿作物根系区土体的一部分,所以作物根系的发展可能限制在围绕每一滴头的湿润区,这样容易产生作物根系的腐烂,进而引起作物倒伏。

4.1.2.4 滴灌的管道布置要充分利用当地地势与地形,在原则的基础上加以灵活运用,如干管的布置、毛管的布置,取水方式等。

4.2 滴灌的建议

4.2.1 百果园应加强灌水的自动化控制,保证各种果树的精准灌水,实现精确的节水灌溉

4.2.2 滴灌的水量应该有保证,应该建一水塔蓄水,确保枯水期各种果树的需水要求

4.2.3 滴灌的毛管布置应采用单行带环形状态管布置和双行平行布置相结合,确保果树灌水均匀度。

4.2.4 滴灌技术的应用应该和其他节水灌溉技术相结合,互相补给,更好的发挥优势。

4.2.5 国家应鼓励进行滴灌技术的研究,加大科研推广投入的力度,研制开发经济实用的滴灌管材,解决滴头易堵塞的难题等,滴水灌溉技术应该在政府的规划安排下,由政府投资和农民出资相结的优惠政策下在全国范围鼓励推广发展。

5 结束语

滴灌是一种高效节能省水增产的微灌灌溉技术,它具有很多优点,适合我国的国情,具有很强的推广优势,而且很方便实现灌溉的全自动控制,滴灌将成为二十一世纪发展我国节水灌溉的重点,是加速我国农业实现节水灌溉、精准农业和设施农业的有效途径,将更好的促进我国农业的现代化!的滴灌自动化系统在经济上是合理的,技术上是可行的,将成为我国南方生态农业建设的典范!

自动化控制论文:楼宇自动化控制网络技术的新发展

摘要:简要介绍了楼宇自动化系统,分析了传统集散控制系统和新兴的现场总线控制系统优缺点以及应用,并介绍了楼宇自控领域中流行的4种现场总线。说明了以太网技术的发展以及在楼宇自控领域中的最新应用情况,对现场总线控制系统和以太网进行了比较

关键词:楼宇自动化控制网络 现场总线控制系统 以太网 楼宇自动化系统

目前日益流行的智能建筑(InteUigent Buidings)是建筑技术与计算机信息技术相结合的产物,是信息社会的需要,也是未来建筑发展的方向。智能建筑主要由楼宇自动化系统(Buiding Automation system,缩写为BAS)、通信自动化系统(CAS)和办公自动化系统(OAS)三大系统组成。其中,楼宇自动化系统是智能建筑中最基本和最重要的组成部分。楼宇自动化系统是利用计算机及其网络技术、自动控制技术和通信技术构建的高度自动化的综合管理和控制系统,将大楼内部各种设备连接到一个控制网络上,通过网络对其进行综合的控制,这些设备包括空调、照明设备、电梯、消防设备、安防设备等等。它确保建筑物内的舒适和安全的办公环境,同时实现高效节能的要求。

2 现场控制系统FCS的出现以及在楼宇自控中的应用

上个世纪七八十年代,伴随着计算机可靠性提高,价格大幅下降,出现了由多个计算机递阶构成的集中、分散相结合的分布式控制系统(Distributed ControlSystem,简称DCS)。DCS是利用计算机技术对生产过程进行集中监视、操作、管理和分散控制的一种综合控制系统。它的测量变送仪表一般是模拟仪表,因此它属于一种模拟数字混合控制系统,这种系统较以前的各种控制系统有了较大的进步。DCS在工业自动化控制领域获得了广泛的应用,也开始应用到楼宇自动化控制领域。但是DCS存在如下一些缺点:

(1)安装费用高。采用一台仪表、一对传输线的接线方式,导致接线庞杂、工程周期长、安装费用高、维护困难;

(2)可靠性差。模拟信号传输精度低,而且抗干扰性差;

(3)系统封闭。各厂家的产品自成系统,系统封闭、不开放,难以实现产品的互换与互操作以及组成更大范围的网络系统。

上个世纪90年代以来,随着控制技术、计算机技术、通信技术的发展,出现了基于现场总线的控制系统(FCS),FCS克服了DCS的缺点,它是一种全数字化的、全分散的、全开放、可互操作和开放式互连的新一代控制系统。目前,现场总线技术已经成为自动化技术中的一个热点,备受国内外自动化设备制造商与用户的关注。FCS极大地简化了传统控制系统繁琐且技术含量较低的布线工作量,使其系统检测和控制单元的分布更趋合理。与传统的DCS(分布式控制系统)相比,FCS具有可靠性高、可维护性好、成本低、实时性好、实现了控制管理一体化的结构体系等优点。现场总线的出现,为工业自动化带来了一场深层次的革命,从而开创了工业自动控制的新纪元,被誉为自动化领域的计算机局域网。鉴于FCS的许多优点,控制专家们纷纷预言“FCS将取代DCS成为2l世纪控制系统的主流。”现在,FCS已经被应用到楼宇自动化控制领域。

2.1应用于楼字自动化领域的几种现场总线

由于诱人的市场商机和不同的应用领域的存在,世界一些大公司或公司联盟纷纷提出自己的现场总线协议标准。据不完全统计,目前国际上有40种宣称为开放型的现场总线标准。这些协议根据国际标准化组织(ISO)的计算机网络开放式互连系统的OSI参考模型来制定的。大多数现场总线只是用其中的一、二和七层协议。于是现场总线呈现杂乱纷呈的局面。在这些现场总线中不乏优异的现场总线,如CAN、Modbus、Profibus、Lonworks、BACnet、DeviceNet等等。其中Lonworks、BACnet、CAN、EIB等现场总线在楼宇自动化领域获得了、较广泛的应用。尽管基于现场总线的Fcs克服了DCS的许多缺点,但还是有一些不如人意的地方,最明显的缺点:多种现场总线并存而互不兼容,导致FCS的可互操作性只能在同一种现场总线系统中实现。后面将对FCS的缺点做进一步说明。

(1)LonWorks

美国Echelon公司1991年推出了LON (Local 0penation Networks)技术,又称Lonworks技术。它得到了众多计算机厂家、系统集成商、仪器仪表以及软件公司的大力支持,已经在楼宇自动化、工业自动化、电力系统供配、消防监控、停车场管理等领域获得广泛应用。具体地说LonWorks具有以下优点:

①网络结构灵活、组网方便。它支持多种网络拓扑形式,包括总线型、星型、树型、自由拓扑型等,这样可适应复杂的现场环境,方便现场布线;

②支持多种传输介质。包括双绞线、同轴电缆、电力线、光纤、无线射频等;两种传输速率:78bps和1.25Mbps,最大传输距离由网络拓扑形式和传输介质决定,一般可从500m到2700m。可接人的节点最多为32385个;

③完善的珏发工具。提供完善的系统开发环境,采用开放的NEURON C语言,它是ANSI C语言的扩展;

④无主的网络系统。LonWorks网络中各节点的地位相同,网络管理可设在任一节点处,并可安装多个网络管理器;

⑤开发LonWorks网络节点的时间较短,也易于维护。LonWorks采用的LonTalk协议固化在Echelon公司的Neuron芯片中,这样可以节省开发LonWorks网络节点的时间,也方便维护。

同其它现场总线一样,LonWorks也有自身的缺点。首先,LonWorks的实时性、处理大量数据的能力有些欠缺;其次,由于LonWorks依赖于Echelon公司的Neuron芯片,所以它的完全开放性也受到一些质疑。尽管LonWorks存在一些不足,但是LonWorks的FCS还在楼宇自动化领域获得了广泛的应用。世界上有2万多家OEM厂商生产LonWorks相关产品,其中种类已达3500多种。目前世界上已安装有500多万个LonWorks节点,LonT~k协议也被接纳为欧洲CENTC247、CEN TC205的一部分。自1996年以来,LonWorks也开始在国内获得大量的应用。在建设部的支持下,国内一些研究所和企业开始陆续开发出基于LonWorks的楼宇自动化控制系统,并在一些新建智能大厦和建设部智能化小区试点工程中得到应用。

(2)BACnet

BACnet是作为世界上第一个楼宇自动控制网络的数据通信协议。它代表了智能建筑发展的主流趋势。BAcnet不是软件或硬件,也不是固件,严格地说,BAcnet并不是现场总线,而是一种网络协议,即通信规则。为不同商家产品的系统之间进行信息交流提供平台和支持。BACnet详细阐述了系统组成单元相互分享数据实现的途径、使用的通信介质、可以使用的功能以及信息如何翻译的全部规则。BACnet采用了Etherent、ARCNET、MS/TP、PTP、LonTalk五种网络技术进行通信。可根据系统通信是和通信速度选择不同的网络技术。相对其它现场总线,BACnet标准最大的优点是可以与Etherent、LonWorks等网络进行无缝集成。不过BACnet主要为解决不同厂家的楼宇自控系统相互间的通讯问题设计,并不太适用于智能传感器、执行器等末端设备。BACnet标准已在全球得到了广泛的应用,全球生产和经营楼宇设备和楼宇自控设备的主要厂商均支持BACnet标准。BACnet在不到10年的时间内就从一个行业学会标准迅速成为楼宇自控领域中唯一的ISO标准。虽然我国是WTO和ISO成员国,但是BACnet在我国建筑领域中的应用范围还是相对较小,而且在工程中采用的BACnet产品和技术也基本上全部是从国外引进的,还没有真正意义上的国产化BACnet相关产品。

(3)CAN

CAN总线最初是德国Bosch公司为汽车监控控制系统设计提出的,现在它已经成为一种国际标准,在电力、石化、空调、建筑等行业均有应用。CAN具有以下优点:

①采用8字节的短帧传送,故传输时间短、抗干扰性强:

②具有多种错误校验方式,形成强大的差错控制能力。而且在严重错误的情况下,节点会自动离线,避免影响总线上其它节点;

③采用无损坏的仲裁技术;

4 CAN芯片不但价格低而且供应商多。

CAN缺点是:CAN总线上最多可挂接110个节点,这不完全能满足整个智能建筑的需要。不过可以通过利用中继器进行扩展,相对其它一些现场总线,CAN总线技术比较简单,CAN相关产品的开发费用也远远低于其它现场总线技术产品的开发费用。因此,很早国内就有一些企业推出了基于CAN总线的楼宇自控的相关产品。如狮岛、索龙集团开发出了$2000楼宇自控系统。

(4)EIB

EIB是欧洲安装总线(European Installation Bus)的缩写。它在1990年被提出,经过十多年的发展,成为欧洲最有影响的建筑智能化现场总线标准,在欧洲得到了进300家厂商的支持。1999年EIB被引进中国的智能化建筑领域,并在上海同济大学建立了EIB认证技术培训中心。在短短的几年里,国内的会展中心、博物馆、办公大楼、别墅等场所的灯光、窗帘、空调等控制和安防系统方面获得了广泛应用,如厦门国际会展中心、大连国贸中心、浙江人民大会堂等。国内的EIB项目基本上被ABB公司和SIMENS公司所垄断。

3 以太网开始进入楼宇自控领域

以太网发展至今已有20年历程,作为局域网组网的主要技术,以其简单、价廉、高带宽、维护方便以及不断发展等优点一直在局域网领域中牢牢占据着统治地位。近年来,以太网技术获得了快速地发展。交换型和全双功以太网的出现,克服了传统以太网的共享公共传输媒体和半双功传输的弱点,实现了站点独占传输媒体并同时收发数据,也减少了网络上的数据碰撞。以太网的标准不断更新和扩展,目前的以太网不仅在物理层(包括拓扑结构、传输速率、传输媒体),并且在数据链路层与原来的传统以太网标准有了很大的进步,以太网标准系列已扩展成20余个。现在已太网不但由局域网向着接入网和城域网领域发展,同时开始进入工业控制和楼宇自控领域。新的IEEE802.3af标准开始对以太网供电作出了规定,它消除了以太网技术进入现场控制领域的一个严重障碍。目前,3Com、华为、DLINK等公司开始提供符合IEEE802.3af标准的交换机产品。另外,一些现场总线的协会或组织也开始提出基于其现场总线的开放式以太网标准,即工业以太网标准,如ODVA(开放DeviceNet供货商协会)和CI(ContolNet国际组织)的EtherNet/IP标准、FF(现场总线基金会)的HSE(Hig}l Speed Ethemet,高速以太网)、Profibus国际组织的ProfiNet。支持这些工业以太网标准的交换机、网卡等产品也开始出现,如MOXA公司的EDS-508系列工业以太网交换机(支持EtherNet/IP)、北京航天华辉自动化技术有限公司的AnyBus-S IO/100M(支持Ethemet/IP和Modbus/TCP)等。美国VDC(Venture Development Corp.)调查报告指出,Ethemet在工业控制领域中的应用将越来越广泛,市场占有率将从2000年的ll%增加到2005年的23%。

伴随着以太网技术在工业控制领域的成功应用,以太网技术也必将越来越多地渗透到楼宇自控领域。目前,以太网多用于基于现场总线的楼宇自控网络集成到智能建筑中的信息网(如图l所示),在一些新开发的楼宇自控系统中,以太网直接进入了控制层,如北京楼宇自动化中心开发的基于以太网的ENC-2001IP智能建筑测控系统。ENC-200liP控制系统的结构如图2所示。一般的空调、照明等系统通过ENC参量控制模块集成到以太网上;带有RS232或RS485接口的系统通过网关转换模块集成到以太网上;IP电话以及IP摄像机直接连接到以太网上。

在楼宇自控网络中采用基于现场总线的FCS的优点是:

①可靠性、实时性好。现场总线为工业控制设计

图1楼宇自控网络集成到信息网的,有屏蔽、接地与防爆等措施,同时其实时性也比采用CSMA/CD的以太网的时实性好;

②用户的投资成本低。现在,开放的现场总线技术已经比较成熟,有很多公司提供的相关产品可供选择。其缺点是:实现现场总线无缝接人以太网复杂,当多种现场总线共存在一个系统中时,集成起来更复杂,系统的扩展性差。

在楼宇自控网络中采用以太网的优点是:实现了从管理层(信息网)到现场设备控制层(控制网)的“一网到底”,即实现人们期望的通信协议的兼容和统一;这样系统扩展起来也比较方便;与智能建筑中其它系统(信息网通信自动化系统和办公自动化系统)集成起来更加容易。其缺点是:首先,目前开发基于以太网的控制系统产品的难度较大,开发费用和成本相对还是较高,用户可以选择的厂商也很有限,垄断利润较高,研发成本还没有被消化,这些都导致产品价格过高。其次,以太网的实时性、可靠性等方面还有待进一步完善。

4 结束语

就目前而言,不管是应用在楼宇自控网络中的基于现场总线的FCS还是以太网,都有其优点和缺点。随着时间的推移和技术的进步,它们也必将会被进一步完善。据统计,我国目前有从事楼宇自动化业务的企业3000家以上,产品供应商约3000家。另外,随着我国绍济的快速发展和人们生活水平的不断提高,建筑和社区的数字化建设正在兴起,FCS和以太网都必将在楼宇自控领域中获得更广泛的应用,在今后相当长的时间内,两者在竞争的同时也将继续并存。

自动化控制论文:灌区闸门远程自动化控制系统

摘要:本文以国内某大型灌区为例,在灌区远程测报系统的基础上进行了闸门自动控制研究,通过无线调制解调器连接上位机(PC机)与下位机(单片机),将下位机采集到的数据传输到上位机,根据用户要求的流量控制闸门的开度和时间,为灌区的运行和管理提供保证,为提高系统的可靠性,采用了一些可供类似工程借鉴的可行技术。

关键词:远程自动化控制 闸门 单片机

闸门调节是灌区工程中经常采用的手段,闸门控制的研究对于节约能源、确保水利工程的正常运行、提高水资源的利用效率和节约用水具有重要的意义。目前国内大部分灌区已基本实现流量数据的自动采集和监测,并把数据传输到管理部门,但是在根据有关数据进行远程自动监测和控制方面成熟的经验非常少。国外特别是欧美等先进国家在这方面已经达到较高的水平,如美国的SRP灌区自动化灌溉系统,可以同时采集100多点的水位、闸门开度和其他信息,通过计算机处理后,控制几百座闸门、150多处泵站的运行。本文以国内某大型灌区为例,对闸门的自动监控进行了研究。

1、系统的总体设计

本系统采用无线数据传输技术,分一个主站和若干个子站,通过无线调制解调器构成一个无线通讯网络,对多个断面的数据信息进行采集、传输、处理和控制。系统的总体结构图如图1所示。下位机中的传感器把引水渠中的水位值和各闸门的开度值经转换后送给编码器,编码器对水位及闸门开度信号进行编码,在通过避雷器将编码信号传给数采仪,数采仪将数据进行初步加工和处理后由无线调制解调器传给上位机,上位机即系统主站,可分别与不同的子站建立联系,查询各测点的数据,并按照用户的要求对各闸门进行控制,下位机中的控制箱接收到此信息,经过计算,发出控制信号自动控制闸门到一定的开度,达到自动控制的目的。

图1 闸门远程自动监测与控制结构图

2、下位机系统设计

设计下位机重点在于闸门自动控制箱的设计,本文提出闸门的运行控制模式,并进行可靠性处理,然后利用无线传输设备与上位机进行通讯,传输数据。

2.1 下位机硬件电路设计

本系统采用AT89系列单片机,采用矩阵式键盘进行输入数据,键盘提供切换键、时间设置键、控制键三个按键,通过三个按键显示水位、流量、闸门开度、日期和时间。切换键实现上述四个功能的转换,时间设置键用于修改日期和时间,控制键用于对电机启停进行控制。

2.2 闸门控制系统设计

本系统下位机接收到上位机传来的要求流量值(或水位值),当要求的流量值(或水位值)与系统所测的流量值(或水位值)不一致时,单片机启键闭合,闸门电动装置控制箱自动启动电机,提升或下降闸门,当所要求的流量值(或水位值)与当前所测流量值(或水位值)相等时,单片机闭键闭合,电机自动停止,达到自动控制的目的。

闸门的运行控制模式有实时型控制模式和定时型控制模式两种,在实时型控制模式中,上位机根据用户要求的流量,利用流量—水位关系曲线把要求的流量换算成要求的水位,然后和下位机联系,下位机接到信号后,由电动装置控制箱控制电机的正反转,达到要求时停止转动。定时控制模式要求用户输入所期望的流量值和要求闸门动作的时间,下位机的控制箱在规定的时间里自动开启和关闭闸门,进行控制。

2.3 无线通讯设备SRM6100调制解调器

SRM6100无线调制解调器原是美国Data-Linc Group公司生产的军用产品,现应用于民用。它提供最可靠和最高性能的串行无线通讯方法,在2.4GHz-2.483GHz频段应用智能频谱跳频技术,在无阻挡物的情况下,两调制解调器之间的通讯距离可达32.18公里, 可实现PLC(可编程控制器)和工作站之间的无线连接。SRM6100应用跳频,扩频和32位误码矫正技术保证数据传输的可靠性。无需昂贵的射频点检测技术。射频数据传输速率为188kbps。并且不需要FCC点现场许可证。SRM6100支持多种组态,包括点对点通讯和多点通讯。多点通讯对子站数目无限制。并且SRM6100可做为中继器工作,以达到扩展通讯距离或克服阻挡物通讯的目的。

2.4 下位机可靠性处理

为了精确控制电动闸门的关闭,避免电动闸门在工作中出现过载破坏或关闭不严的现象,本系统在电动轴上安装了转矩传感器,用来监测闸门输出轴的转动力矩,以判断闸门是否关严、是否被卡住。闸门电动装置用于检测和控制闸门的开度,本系统在转动轴上安装了光电码盘,考虑到闸门可能出现频繁的正反转交替,为了避免错位和丢码,采用双光耦技术,光耦输出的两路信号经74221双单稳触发器进行整形,89C51的INT0和INT1对其进行计数、计时,并判断转动方向,计算闸门开度。电动闸门在工作中若出现异常现象,系统会自动报警,切断电机电源并显示故障情况。

2.5 下位机软件设计

下位机的软件设计分为闸门自动装置控制箱程序设计和串行口中断服务程序设计两部分。闸门自动装置控制箱程序设计主要完成数据采集、存储、显示、按键操作等功能,串行口中断服务的程序完成下位机向上位机数据的传送和用户设定参数的接收。控制箱程序的主框图如下:

图2、闸门自动控制程序流程图

3、上位机设计

上位机的软件部分采用VB6.0为开发工具,将各个功能模块化,分别解决相应问题,再将各个模块组装,构成上位机软件系统的优秀,上位机软件系统的结构如图3所示,通信模块位于最底层,其余模块功能的实现都直接或间接建立在此模块的基础上,本文利用VB的API函数编写串口通讯程序,程序的框图如图4所示。数据管理模块的主要作用就是为水位、流量、闸位等建立数据库,并对其进行管理。

4、结语

本文以国内某灌区为例,全面分析了灌区闸门自动化控制系统的整体结构及其设计,对其软件开发和硬件选择作了全面阐述,并总结了提高自动化系统可靠性的经验,为提高灌区现代化管理水平提供了有利的工具,具有较高的使用价值和广泛的应用前景。

自动化控制论文:基于PLC井下主排水泵综合自动化控制的研究

摘 要:智能高效的地排放矿井涌水,对保障煤矿安全生产意义重大。本系统采用plc和组态软件对井下排水系统进行智能控制,中心控制器采用s7-300系列plc,利用传感器对各参数进行采集,通过软件编程等完成了避峰就谷、自动轮换等节能优化排水过程,本系统还具有故障监测和保护功能,主要包括过压、过流、漏电保护、水泵漏水保护、流量、压力保护。上位机使用组态王进行操作,可实现远程监控,实时显示信息,井下排水调试运行证明该系统提高了生产效率,节省能耗,降低了生产成本。

关键词:plc;组态;智能高效;远程控制

引言

现在许多煤矿采用传统的继电器控制方法代替煤矿工作人员的监测的方法是非常复杂的[1-3],并且需要一个相对繁重的人力消耗。为了满足矿井排水系统的需求,采用plc和组态软件结合设计自动化排水系统,通过工业以太网进行远程控制,不仅提高了水泵的运行和使用效率,更重要的是节省能耗,降低生产成本。同时,本系统具有故障监测和保护功能[4]。

1 排水系统的控制

1.1 排水系统的总体控制要求

(1)水泵自动运行原则;(2)“避峰填谷”原则;(3)系统保护原则:a.漏水保护;b.超温保护;c.过电流保护;d.两种工作方式切换;e.系统远程监控原则。

1.2 排水系统的控制策略

水泵房中水泵的运行主要是根据液位传感器提供的液位,结合自动控制程序,在保证安全条件下的水仓水位和水仓所能容纳的最大涌水量做出相应的判断,决定投入运行的水泵数量和运行时间。由于煤矿井下的水位条件非常复杂,无法建立精确的数学模型对涌水量进行准确的定量描述,所以,选择九点控制策略,通过对水位信号的实时采集,根据相邻两次采集的水位变化量和采集的时间间隔得到水位的变化率,并以此作为系统的控制依据水位的变化量和变化率,进而提高了排水系统应对不规则的涌水能力。

九点控制策略的基本原理如图1所示,该控制策略的优秀即为九点控制器。控制系统预先设定被控制量的基准值,此基准设定值与传感器检测的数值比较得到误差 ,此误差作为九点控制器的输入量。

在图1中,r即为系统预先设定的基准值;c为传感器检测的数值即为系统的输出量;e为控制参量的变化量,由系统设定的基准值 r与系统的被控量c之间的差值,即e=r-c。uc为九点控制器的输出量,是根据控制参量的变化量e和控制参量的变化率■的实际状态所决定的。

2 系统的硬件设计

2.1 排水系统的硬件结构

为满足上述基本要求,系统的控制部分硬件是以s7-300可编程控制器为优秀控制芯片。在此plc基础上,又扩展了模拟量输入模块、数字量输入模块、数字量输出模块、通信模块和上位机监控中心。图2为系统硬件整体框图。

图2 控制系统硬件整体框图

2.2 传感器的选择

2.2.1 井下水仓液位检测传感器。本系统采用投入式液位传感器,该传感器是一种测量液位的压力传感器,基于所测液体静压与该液体的高度成比例的原理,采用隔离型扩散硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,再经过温度补偿和线性修正,转化成标准电信号。

2.2.2 温度传感器。系统选择工业用的红外测温仪实时监测点击的轴温。原理是将物体发射的红外线具有的辐射能转变成电信号,红外线辐射能的大小与物体本身的温度相对应,根据转变成电信号大小,可以确定物体的温度。

2.3 排水管路系统的阀门选型

本系统所选用的电动闸阀是zb180-24/400型矿用隔爆型电动闸阀,并配有kxbc系列隔爆型控制箱,该控制箱是zb系列电动阀门的专用控制装置,具有短路保护、过载保护、欠压保护等功能,并设置了行程控制、远方/就地控制的切换功能,反馈到plc的到位等信号皆为无源点输出,有较强的抗干扰能力。电动球阀选用了qmb5型隔爆电动球阀,密封性好、动作速度快、动作可靠、故障率低。控制电压为dc24v,可由plc输出继电器直接驱动,采用霍尔传感器检测到位信号,比传统的机械触电更为准确,提高了控制精度。

2.4 水管流量监测

本系统选用lcz-803型超声波时差流量计,该流量计采用了先进的多脉冲技术、信号数字化处理技术及纠错技术,能够有效地抵抗来自变频设备的干扰、电磁场的干扰和系统流态的干扰。

2.5 真空度检测

r>

本系统选用kgy4型负压(压力)传感器,属于矿用本质安全型设备,可对管道中的气体的差力压进行连续监测,并实时的显示被测点的差压值。

2.6 水泵出口压力检测

本系统选用kgy7型压力传感器,属于矿用本质安全型设备,可对管道中的气体、液体的压力进行连续监测,并实时的显示被测点的表压值。

3 控制系统软件设计

该井下排水系统中的软件设计中要包括:主程序设计、水泵自动运行子程序设计、“避峰填谷”子程序设计、系统保护子程序设计、两种工作方式切换子程序设计和系统初始化子程序设计。系统软件设计框图如图3所示:

在系统开始运行后,首先需要是检查plc是否有故障,设备是否有故障,如果有故障,系统马上停止,等待工作人员检测排除故障。在主程序中,选择系统的运行方式,是手动运行还是自动运行,以及选择那个水泵那个管道记性具体的选择。

4 通信及上位机监控系统的实现

现在使用的是西门子的315-2pn/dp cpu,cpu本身集成了工业以太网接口,可以直接使用网线将现场的plc和工控机连接在一起。在工控机中安装simatic net作为opc服务器,组态软件中opc link作为标准的opc接口,这样上位机组态软件就可以和下位机plc进行数据交换了。

图5 远程监控总体示意图

本系统采用组态软件为“组态王”,该软件开放性好、易于扩展、经济、开发周期短等优点明显。根据实际的运行流程,本系统需要按照排水系统的具体要求画出如下操作画面:水泵房需监测的量主要有水位,水泵吸水管真空度,水泵出水口压力,水泵电机轴温度,电机定子温度,出水管流量等。其中总监视画面、手动画面、历史曲线画面如图6-图8所示:

5 结束语

文中针对煤矿井下排水设备自动化程度不高的现状,研究设计了plc 控制与上位机相结合的煤矿井下自动排水系统。系统选用s7-300 系列plc和“组态王”软件编制的自动监测程序,用其监视设备的运行情况及各个运行参数,实现了泵房无人值守、设备安全可靠运行,减少了人力投入,提高了工作效率。

作者简介:王军,本科生,电气工程及其自动化。

自动化控制论文:电气自动化控制系统的应用及发展趋势研究

【摘 要】随着我国改革开放的不断深入和国民经济的飞速发展,我国的工业化进程也不断地得到推进,而在现代的工业体系和社会发展中。电气自动化控制系统发挥着非常重要的作用。文章简要地介绍了电气自动化控制系统的功能、特点及应用,并对未来的发展趋势进行分析研究。

【关键词】电气自动化;系统;应用;发展趋势

电气自动化控制系统作为现代先进科学技术的优秀领域,引领着现代化工业的发展方向,对于社会和企业的全面发展都起到了不可估量的作用。首先电气自动化控制系统能够最大程度地减少劳动力成本和强度,提高检测的精确度,增强传输信息的有效性和实时性,确保了企业生产活动的顺利展开。另外,电气自动化控制系统大大地减少了事故的发生,保障生产设备的安全运行。在当今的电子时代,各项信息技术在我国各行各业的广泛的使用,电气自动化控制极大的推动了我国的信息化和智能化的发展,为我国工业向现代化方向发展奠定了坚实的科技基础。

1.电气自动化控制系统的功能及特点

1.1电气自动化控制系统的功能

依照单元机组运行特点,将厂用电源同变压器组都归入到ecs监控中,实现的功能主要有以下几个方面:a.实现lps系统与直流系统的监视;b.能够有效的控制发电机组;c.能够实现对柴油发电机组的控制和保护;d.220kv/500kv开关的手动同期并网和自动同期并网;e.控制和操作柴油发电机组及保安电源;f.实现对低压厂用电源的控制;g.实现了手动控制和自动化控制的并网;h.低压厂用电源的操作、监视和低压备自投装置控制。

1.2电气自动化控制的特点

首先电气自动化控制系统控制的信息采集对象较少、数量较小、操作频率低,但是要求快速和准确;其次对于电气装置必须要具有可靠性较高的保护系统,和强抗干扰性能,同时,需要程序动作速度要快;另外电气自动化控制系统以顺序控制和数据采集系统为主。所以机组电气系统归入dcs控制,需要控制系统具备较高可靠性。除了实现正常的起停与运行操作,更重要的是能够做到实时监测,显示运行状态异常及事故状态下的状态及数据,而且提供相对应的操作指导以及应急处理的措施方法,实现电气自动化系统在自控前提下的安全准确运行。

2.电气自动化技术的应用

随着计算机技术的普及和推广,我国的计算机控制技术被应广泛的用到各个环节,包含变电站发电、配电等各个不同的环节。同时也正是由于计算机技术的支撑,给我国电力系统的飞速的发展起到了巨大的推动作用。而最显著的就是下面几种技术的应用。

2.1智能电网技术

智能电网是指将计算机与自动化技术结合起来,从而对整个电力系统形成一个有效的控制技术,则被称为智能电网技术。该技术涵盖了电力系统的各个环节,包含从发电、配电等各个环节。其中的变电站的控制系统和稳定系统也被应用到计算机的系统中。电网技术的应用推动了电网技术一体化及其调度自动化的发展,而电网技术的一体化加强了电力系统中配电模型及高级软件等技术的发展,同时提高了数字信息技术处理能力。

2.2仿真技术

目前我国的电力系统自动化程度不断加强,它不仅能够呈现大量的实验数据,而且可以支持多项操作同时进行,同时能实施同步控制,并能够帮助实验人员测试新的装置,所以仿真技术为电力系统提供了较好的实验条件,有助于对电力系统实施动态监控及仿真建模等技术的应用,既有利于操作又易于控制。

2.3智能技术

电气自动化技术加强了电力系统的控制技术。不仅是在操作方面,在电网的监控方面也提供不少的帮助。例如:一个地方的电网出现故障,通过电脑的监控就可得知,以最短的时间通知电力部门修复,降低危险的发生。电力系统中自动化技术不需要人工的操作,可以自动的对电网中出现的问题及时反应在计算机上,自动化技术可以自动的对该故障进行解决。

2.4远程及现场监控的同时实现

远程监控系统要求现场总线的通讯速度不能太高,适用范围较窄。目前,全场电器自动化控制系统主要利用现场总线的监控形式。随着现场总线的不断发展,融入了很多智能化的电气自动控制系统。所以现代的现场监控的通讯总线主要利用了智能设备与自动化系统模式之间的数据交换,其中利用的串行电缆能够连接起主机、内部存储程序、中央处理器等智能设备,与此同时能够实现对远

程传输的vfd、起动电容、仪表、自动开关等设备。因此,大数据高容量的数据通过中央控制器进行采集会达到较好的效果。

3.未来发展趋势

3.1电气自动化控制系统的统一化

电气自动化控制系统对于产品的安装、调试、维护等功能的实现都起着重要的作用,减少了从设计到产品之间的时间,降低了生产成本。电气自动化控制系统的主要发展趋势就是能够把电气自动化系统通用化,电气自动化网络结构应该保障现场的设施、计算机的监管体系、企业工程的管理体系之间数据交流的畅通。

3.2电气自动化工程的生产将更加的安全

电气自动化工程控制系统的一个发展方向就是安全防范技术的集成化,重点就是如何保证系统的安全性,即人、机、环境三者的安全实现。在非安全状态时,用户要如何选择利用最低费用实现安全方案制定的问题。从硬件设备到软件设备,从公共设施层到网络层,对电气自动化控制系统的安全与防范设计进行全面的研究。

3.3电气自动化工程控制系统的创新技术

目前电气自动化控制系统的发展正在从单一设备转变成为向集成化多元化系统化的发展。电气自动化工业企业应该不断的提升自身的技术创新能力,对于具有自主知识产权的电气自动化工程控制系统加大科研的投入,为电气自动化的研究提供更加广阔的空间。而政府同样应该意识到电气自动化工程控制系统在经济发展当中的主导力量,加强政策上的扶持,建立和完善机制体系。企业应该打开自主创新的新局面,转变经济增长的模式,提高自主创新的实践能力。

3.4电气自动化控制系统的标准化接口

由于电气自动化控制系统采用了比较成熟的标准化技术,从而极大程度减少了工程的成本与时间,完成了多通道的数据交互。当企业在进行系统交互数据的过程中,需要采用微软操作系统。ip系统也被广泛运用在办公室通讯中,自动化控制与管理通过计算机系统建立连接。标准化的程序接口保证了厂家之间进行软硬件的数据交换,使通讯产生的困难真正的得到了解决。

4.结语

电气自动化在国民经济发展中发挥着极其重要的作用,能够有效提高行业领域整体的自动化水平,特别是行业的运行管理水平。并且电气化控制系统可以大大节省企业的成本,提高设备、生产线等的可靠性。当前的电气化自动控制系统已经在众多领域崭露头角并发挥重要作用,未来电气自动化控制系统也必将有长足的进步和发展,为企业和国民创造更多的经济、社会效益。

自动化控制论文:自动化控制在水泥工业中的应用分析

摘 要 自动化控制在从最初的单板机发展到单片机再到微型计算机和工业控制机,控制水平有了长足的发展,在水泥工业的应用中,国内的自动化控制有一定程度的滞后。水泥生产中逐步实现了生产全过程的自动化,对生产过程中各项指标进行检测监控,包括生料质量、游离氧化钙、水泥细度以及水泥回转窑筒体温度,促进水泥质量提升。

关键词 自动化;水泥;温度

1 自动化技术的应用状况分析

从20世纪80年代开始,立窑水泥生产中开始运用计算机技术,伴随着该技术的不断发展,其在水泥行业的应用也有了提升。从最开始垄断性质的8位微处理器单板机到单片机为优秀进行配料和成球控制,再到微型计算机以及工业控制机的应用,档次都在不断的提升,自动控制也取得了更佳的效果。相对于国外水泥行业的计算机控制应用情况,国内发展相对较慢,在技术方面相对于产品开发也存在滞后,计算机在水泥行业的推广会加速技术发展以适应需求。

水泥行业的自动化技术应用初期,主要是体现在自动化仪表,重点环节是生产配料,通过检测计量与仪表控制相配合来实现。随着配合预加水成球技术的发展,通过微机来实现对立窑煅烧过程进行自动控制,相对之前的自动控制达到了一个新的高度,但真正实现立窑水泥生产的权限自动控制还是在计算机新技术的应用后,通过集散式控制方式来对生产过程进行控制和监督管理。

对自动控制的发展过程分析可发现,随着技术的发展,控制环节增多、控制算法更高级、技术功能更充实和更全面的应用。早期的自动控制仅仅是实现了对生料和配料过程的控制,后期逐步实现对预加水成球及立窑等工序的控制,再到全程监控。控制的算法则是从单参数的pid控制逐步演变为如模糊逻辑控制等智能、综合控制。技术功能从单纯的显示和监控演变为对生产过程的全面自动控制。而自动控制的范围也发展到分析化验、生产调度和数据管理多个方面的控制网络。

2 生产过程的自动化控制

相对于单片机控制,20世纪90年代后期的可靠性更高的集散控制系统dcs可实现操作人员在总控室对全系统进行控制。工控机上的画面显示包括流程图、分组控制、分组启停、分组趋势记录以及报警等,通过这些画面能了解到全厂的生产情况,对于需要了解的详细内容页可以通过点击获取,鼠标点击就能对整个系统进行操作。水泥企业在产业结构调整中,dcs系统的应用能有效降低人工使用费用,提升设备效率而减少了成本。

集散型控制系统一般由管理命令系统mcs、过程控制单元pcu以及工程师工作站ews三部分组成,通过厂还环路来实现连接。mcs是操作人员调整参数、开停现场设备以及监控工况的系统,其实现主要是通过对pcu的操作来实现。pcu的部件有i/o供电电源、模件供电电源、i/o从端子模件、i/o从模件以及冗余多功能处理器模件mfc等。mfc为一种增强型控制处理器,具有多环路的批处理、模拟和顺序,在系统中,mfc都使用了冗余配置。i/o端子模件和从模件来间接mfc和现场设备之间的通信。模件总线负责pcu内模件之间的通信,总线接口模件和厂环接口模件负责pcu机柜之间的通信。ews主要是实现制作画面图像、设计组态程序以及对pcu主模件进行管理功能和检测系统参数,其组成为计算机接口单元和pc机组成。厂环通讯系统为双环冗余的可靠环路通讯,是无主次封闭系统。厂环实现了mcs、ews和pcu之间的连接以及各点的通讯。

3 检测技术探讨

水泥生产过程中的检测随着精密仪器、光学、粉体技术以及微电子学的发展而逐步提升,加强了再现性和可靠性,这里主要介绍下面5类。

3.1 计量装置与机电一体化

该技术主要是为了实现整体最佳化,初级系统为集成电路来提升机械设备的效率,高级系统则是通过计算机的应用来实现智能化生产,在现今水泥生产中,两类运用都较多。机电一体化系统通常包括五部分:机械装置、变送器和传感器、检测装置、驱动器和执行器、信息处理部分以及接口。常见的计量装置有冲击式流量计、电子皮带秤、天平式定量给料器和转子秤以及空气输送在线流量计等。这类装置都是具有较高的可靠性,能对信息进行检测和反馈到上级控制系统来完成生产过程的自动化。

3.2 生料质量控制系统

对于生料化学成分稳定性的检查收到的影响因

较多,包括人磨原料成分出现的波动、生料粉磨系统的滞后以及原料成分分析的不及时。而该控制系统的应用就能控制实时参数、虚拟校正以及固定批量校正,以此达到对原料配比的实时调控。该系统的组成包括x射线荧光粉成分分析仪、γ射线分析仪以及通讯接口装置,其中,γ射线分析仪主要是对原料成分进行检测,实现超前控制。

3.3 游离氧化钙的在线检测

水泥生产中一个非常重要的环节就是煅烧,以实现从生料到熟料的转变,对熟料的检测监控主要包括单位体积密度和fcao含量。国内的检测为离线检测,其测定是进行取样、粉磨和制样后采取化学分析法或x荧光分析仪来实现。为保证熟料质量,更好的方法是在线检测技术,在线检测仪的应用就是对信号进行测定,通过配套软件来对回转窑的煅烧进行优化控制。

3.4 水泥细度的在线检测

水泥颗粒在0.1 μm到100 μm,但决定其强度的颗粒主要集中在3 μm到30 μm,因此水泥的性能和其颗粒的粒度分布有很大关系。对于水泥细度的在线检测主要是以下几个方面:对水泥细度的测定为实时监控,对相关参数能随时打印,包括平均粒径和水泥比表面积;该技术能在监控水泥细度的基础上诊断粉磨系统的操作状态;在监控反馈信息的基础上,对选粉机操作参数进行调整来提升水泥品质。国内水泥行业在使用该技术上采用激光粒度仪来进行补充分析以保证更好的监控磨机状态。

3.5 水泥回转窑筒体温度检测和保护

窑筒体温度扫描检测系统可对生产情况进行监控,保证回转窑筒体不出现耐火砖烧坏脱落。该系统可对窑筒体温度进行不间断、长时间的监控,操作人员通过观察其反应的窑内状况来进行操作以提高运转率,系统的显示包括窑径向和轴向的温度曲线、温度的最大值和最小值以及温度分布的二、三维色相图。工业电视与比色高温计系统能实现和生产过程控制的系统联网,对窑内的煅烧情况进行电视监控。国内水泥行业在引进该技术后进行二次开发而更好的使用。

4 水泥行业中ethernet网络的应用

ethernet技术的应用更好的实现了现场设备的通讯。ethernet技术有着极高的通信速率,对于同等数据吞吐量,更高的速率则有着更低的网络负荷、更小的延时以及更低几率的网络碰撞。其次,采用星型网络拓扑结构,通过交换机划分网络。ethernet交换机有着存储和转发数据的功能,能实现输入、输出数据帧的缓冲而不出现碰撞,也可对数据传输过程进行过滤,保证在本地网段下进行各网段节点间的传输,这样不会经过主干网而降低网络负荷。而全双工通信保证了端口间双绞线在进行接收和发送时不出现冲突,与交换式集线器的使用减低碰撞几率的同时又不存在冲突域,使得ethernet通信具有更好的实时性和确定性。