作者:胡婷鸿; 火忠; 刘太昂; 王飞; 万雷; 汪茂...法医人类学年龄测定骨骼腕关节体层摄影术x线图像识别深度学习维吾尔族青少年
摘要:目的将深度学习运用于维吾尔族青少年左手腕关节数字化X线摄影(digital radiography,DR)图像识别中,实现骨龄评估的自动化,探索该方法在法医骨龄鉴定中的应用价值。方法在我国新疆维吾尔自治区采集13.0~19.0岁维吾尔族男性青少年245例、女性青少年227例左手腕关节DR图像,将预处理后的图像作为研究对象,将AlexNet作为图像识别的回归模型。在上述总样本中分别选取男、女性60%左手腕关节DR图像样本作为网络训练集,10%的样本作为验证集,余30%作为测试集,获取与样本真实年龄误差范围分别在±1.0岁、±0.7岁以内的图像识别准确率。结果深度学习的内测结果:误差范围在±1.0岁及±0.7岁以内的网络训练集准确率,男性分别为81.4%和75.6%,女性分别为80.5%和74.8%。误差范围在±1.0岁及±0.7岁以内的测试集准确率,男性分别为79.5%和71.2%,女性分别为79.4%和66.2%。结论青少年左手腕关节骨龄研究与深度学习相结合,具有较高的准确性及较好的可行性,为躯体其余骨关节的骨龄自动化评估体系奠定研究基础。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
特别声明:本站持有《出版物经营许可证》,主要从事期刊杂志零售,不是任何杂志官网,不涉及出版事务,特此申明。
工信部备案:蜀ICP备09010985号-13 川公网安备:51092202000203 统一信用码:91510922MACX24HU41
© 版权所有:四川博文网络科技有限责任公司太和分公司
出版物经营许可证:射行审新出发2023字第016号 股权代码:102064