作者:王万祯; 王超; 孙嘉辉; 宋培兵膜结构膜材分类动力响应研究现状
摘要:BP神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,具有自学习、自组织与自适应性强的特点,已被广泛应用于水文预报领域中,属于利用算法学习并不断逼近预测值的预报模型;NAM模型是一种基于水文循环的物理结构以及经验性的公式来进行降雨产汇流计算的模型,属于典型的确定性、集总式、概念性模型。该文分别采用NAM模型和BP神经网络模型对西营水库入库径流进行模拟预报。结果表明:由于西营流域降雨较为稀少,依靠降雨数据驱动的NAM模型在西营流域适用性较差,不符合水文预报的精度要求。而采用降雨与径流数据作为预报因子的BP神经网络模型模拟精度较高,合格率可达90%以上。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
特别声明:本站持有《出版物经营许可证》,主要从事期刊杂志零售,不是任何杂志官网,不涉及出版事务,特此申明。
工信部备案:蜀ICP备09010985号-13 川公网安备:51092202000203 统一信用码:91510922MACX24HU41
© 版权所有:四川博文网络科技有限责任公司太和分公司
出版物经营许可证:射行审新出发2023字第016号 股权代码:102064