HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 变频技术

变频技术

时间:2023-05-29 17:34:02

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇变频技术,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

变频技术

第1篇

[关键词]水利工程;自动化;变频;供水;

中图分类号:TV 文献标识码:A

前言

随着自动化的快速发展和在各个领域的渗透,使基于自动化技术的水利工程建设和管理发展到了一个新的水平,并展示出了强劲的生命力和应用前景。特别是变频供水技术的成熟和迅速普及,给水利自动化提出了新的要求。近年来,伴随着大量供水输水工程的建设及改造,变频供水技术在水利工程中的运用越来越广泛。变频供水技术的广泛应用标志着水利行业技术水平随着时代的发展不断进步。

二、变频器简介

变频器的英文译名是VFD(Variable-frequency Drive),是应用变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。变频器之所以能实现对电动机的调速功能,主要是变频器能够将电源的三相(或单相)交流电,经整流桥整流为直流电(交—直变换),再把直流电经逆变器变为电压和频率可调的三相(或单相)交流电源(直—交变换)。其间电能不发生任何变化,而只有频率发生改变。三相异步电动机的转速计算公式为:

式中:n--转速; f1--供电频率; s--异步电动机转差率; p--磁极对数。

由上述公式可知,异步电动机调速的途经有改变磁极对数、改变转差率和调整供电频率。

三、变频与供水关系论述

在供水系统中,流量是最根本的控制对象。由水泵—管道供水原理可知,调节供水流量,原则上有二种方法;一是节流调节,开大供水阀,流量上升;关小供水阀,流量下降。调节流量的第二种方法是调速调节,水泵转速升高,供水流量增加;转速下降,流量降低,对于用水流量经常变化的场合(例如生活用水),采用调速调节流量,具有优良的节能效果。变频器控制水泵,主要是通过变频器控制水泵的转速来调节水的流量,在普通泵的基础上增加了变频器控制。其工作原理为:风机水泵类负载,电机能耗与转速的立方成正比,使用变频控制水泵较使用进、出口阀门调节水泵要更加节能。由于水泵的轴功率与转速的立方成正比,因此水泵用变频器来调节转速能实现压力或流量的自动控制,同时可获得大量节能。另外使用变频器控制还可以减少起动电流和对泵的冲击,泵停车时还可以通过参数设置来避免泵的水锤效应。

变频供水技术以其节能、安全、供水高品质等优点,在供水行业得到了广泛应用。变频供水系统实现水泵电动机无级调速,依据用水量的变化(实现上为供水管网的压力变化)自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今先进、合理的节能型供水系统。在实际应用中如何充分利用变频器内置的各种功能,对合理设计变频器速供水系统,降低成本、保证产品质量等有着重要意义。

四、变频供水的安全问题研究

(1)水锤效应的产生与消除

异步电动机在全电压启动时,从静止状态加速到额定转速所需要的时间只有0.25s。这意味着在0.25s的时间里,水的流量将从零猛增到额定流量。由于水具有动量和不可压缩性,因此,在极短时间内流量的巨大变化将引起对管道的压强过高或过低的冲击,并产生空化现象。压力冲击将使管壁受力而产生噪声,犹如锤子敲击管子一样,故称为水锤效应。在直接停机时,供水系统的水头将克服电动机的惯性而使系统急剧地停止。这也同样会引起压力冲击和水锤效应。由此可以看出,产生水锤效应的根本原因,是由于启动和制动过程中的动态转矩太大。

水锤效应具有极大的破坏性:压强过高,将引起管道的破裂,反之,压强过低又会导致管道的瘪塌。此外,水锤效应也可能破坏水泵、阀门和固定件,大大降低供水质量。采用了变频调速后,可以通过对升速时间的预置来延长启动过程,使动态转矩大为减小,在系统停机过程中,同样可以通过对降速时间的预置来延长停机过程,减小动态转矩,从而彻底消除水锤效应,大大延长了水泵及管道系统的寿命。

(2)供水电机及电网的保护

由于变频供水基本上都采用了变频软启动,启动频率低,启动电流小,因此,除了对供水机泵和供水管网有保护作用,还能有效地防止大电流对电机和电网的冲击,对供水电机和电网有良好的保护作用,供水系统电机直接启动与变频启动的对比表如下表所示。

五、对变频干扰的处理

凡是安装有变频器的测控系统一般都伴随着电磁干扰的问题。变频器的干扰问题一般分为变频器自身干扰;外界设备产生的电磁波对变频器干扰;变频器对其它弱电设备干扰3类情况。

变频器自身就是一个干扰源。变频器由主回路和控制回路两大部分组成,变频器主回路主要由整流电路,逆变电路,控制电路组成,其中整流电路和逆变电路由电力电子器件组成,电力、电子器件具有非线性特性,当变频器运行时,它要进行快速开关动作,因而产生高次谐波,这样变频器输出波形除基波外还含有大量高次谐波。所以对电源侧和输出侧的设备会产生影响。与主回路相比,变频器的控制回路却是小能量、弱信号回路,极易遭受其它装置产生的干扰。

如果变频器的供电电源受到来自被污染的交流电网的干扰,电网噪声也会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。另外,安装变频器的配电柜与动力配电室相距太近的话,如果配电室配电柜有大电流流过,将在电流周围行成较强磁场,同样会对变频器的控制回路造成影响。针对以上情况,一般处理方法是要保证良好的接地,接地线愈短愈好,而且必须接地良好;控制回路线使用屏蔽线,而且屏蔽线远端屏蔽层悬空近端接地,一定不能双端接地;根据产品要求合理布线,强电和弱电分离,保持一定距离,避免变频器动力线与信号线平行布线,应分散布线;增加抗无线干扰滤波器,变频器输入和输出抗干扰滤波器或电抗器;采取防止电磁感应的屏蔽措施,甚至可将变频器用金属铁箱屏蔽起来;适当降低载波频率;若用通讯功能,RS485通讯线应使用双绞线。

反过来说,变频器对电网来说也是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,当变频器输入或输出电路与其它设备的电路很近时,变频器的高次谐波信号可通过感应的方式耦合到其它设备中去。其中电流干扰信号主要以电磁感应方式传播,电压干扰信号主要以静电感应方式传播。在本系统试运行初期,最为明显的就是对液位变送,频率设定及反馈等模拟量4-20mA信号的干扰,数值跳动幅度大,以至于无法正常读取。对于这种形式的干扰,首先需要判断扰的对象,是4-20mA供电电源受干扰还是信号线,最好用示波器查看一下信号线波形,可用以下方法降低、避免干扰:4-20mA信号电源用隔离变压器供电;4-20mA信号线用屏蔽线,与变频器三相输入输出分开布线;在4-20mA信号线上加电容(无极性)接地或加信号滤波电感。

六、结束语

新型的变频供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论在设备的投资,运行的经济性,还是系统的稳定性和可靠性,自动化程序等方面,都是具有无法比拟的优势,而且具有显著的节能效果。变频供水系统的这些优越性,引起国内几乎所有供水设备厂家的高度重视,并向着高可靠性、全数字化微机控制、多品种的方向发展。追求高度智能化、系列化、标准化是未来供水设备适应城镇建设中网络供水调度和整体规划要求的必然趋势。

参考文献

第2篇

本次改造主要是根据企业电机系统设施的现状和存在的问题,针对电厂系统特点,对#3、#4、#5、#6锅炉引风机、一次风机、二次风机共计12台(电机总装机容量3900KW)6KV电机进行变频节电技术改造,采用高压变频调速技术,根据工况需要,控制电机的转速,来调节风量的变化,以替代落后的挡板调节方式,以减少电能损耗。同时,风量的变化由非线性改善为线性,使得炉膛的燃烧效能控制变得更及时、精确。从而达到节能降耗和提高自动化程度的双重目的。本次节电技术改造新建一座高压变频室、增加变频调速装置12台、DCS控制系统、、通风系统及配电设施。

1.1变频器选型

近年来已有很多大中型电厂采用变频技术进行节电技术改造的实例,实践证明不但节电效果明显,而且提高系统的安全性,不存在运行风险。此次节电技术改造设备选用原则,变频技术先进,成熟可靠。选择雷奇节能科技股份有限公司生产的LOVOL系列高压智能节电装置(变频器),该产品由移相变压器,功率单元和控制器组成。高压变频器采用模块化设计,互换性好、维修简单,噪音低,谐波含量小,不会引起电机的转矩脉动,对电机没有特殊要求。高压变频调速系统的结构图如下:

1.2电气改造方案

采用一拖一自动旁路控制,实现变频/工频自动切换。旁路柜在节电器进、出线端增加了两个隔离刀闸,以便在节电器退出而电机运行于旁路时,能安全地进行节电器的故障处理或维护工作。旁路柜主回路主要配置:三个真空接触器(KM1、KM2、KM3)和两个高压隔离开关K1、K2。KM2与KM3实现电气互锁,当KM1、KM2闭合,KM3断开时,电机变频运行;当KM1、KM2断开,KM3闭合时,电机工频运行。另外,KM1闭合时,K1操作手柄被锁死,不能操作;KM3闭合时,K2操作手柄被锁死,不能操作。自动旁路控制结构图如下:

1.3系统控制方案

(1)本地控制:利用系统控制器上的键盘、控制柜上的按钮、电位器旋钮等就地控制。(2)远程控制:变频器与DCS系统连接,进行数据通讯,使运行人员通过DCS系统画面对变频器的工作电流,运行状态及故障信息进行监控,由DCS实现控制。

1.4系统散热方案

设备自身发热量较大,运行环境的温度和湿度会影响设备的稳定性及功率元件的使用寿命,为了使变频器能长期稳定和可靠地运行,采用室内空调冷却方式,满足设备对温度和湿度的要求。

2变频改造效果分析

2.1节电效果

节电改造前,锅炉正常工况下引风机档板的平均开度在70-80%左右,二次风机在35-45%左右。采用落后的档板调节控制方式,用电量高居高不下,影响机组的经济运行质量。本次节电改造于2012年10月安装调试完毕,经过一段时间的运行测试,以3#锅炉引风机为例,原工频电流由平均49.5A下降到变频后的36-39A,功率因数由0.8左右提高到0.95左右。从12台改造后的风机运行情况看,完全能够满足锅炉运行工艺的要求(主要是风压、风量、加减风的速率等)。运行后一年的电表数据表明,经过变频改造后12台风机总计节电量为280万KWh,比挡板调节控制方式节能率达到23%,节能效果十分显著。并且电机在启动、运行调节、控制操作等方面都得到极大的改善。

2.2其它效果

(1)采用变频调速控制后,杜绝“大马拉小车”现象,既提高了电机效率,又满足了生产工艺要求;(2)采用变频调速控制后,由于变频技术装置内的直流电抗器能很好的改善功率因数,功率因数由0.8左右提高到0.95以上,提高了有功功率,减少了设备和线路无功损耗;(3)实现了电机的软启动,避免了对电网的冲击,提高了系统的可靠性,延长了设备的使用寿命;(4)减少风机叶片和轴承的磨损,延长大修周期、节省维修费用。风机、管网振动大幅减小,降低了噪声对环境的影响;(5)变频器的过载、过压、过流、欠压、电源缺相等自动保护功能,使系统的安全可靠性大大提高;(6)由于变频器具有工频/变频自动切换功能,变频器发生重故障时可在2-3秒内切换到工频运行,且在变频调速控制系统检修维护或故障时,工频控制系统照样可以正常运行,满足风机系统对电机高可靠性运行的要求;(7)实现了高压变频装置与主控室DCS系统连接,DCS系统能够满足实时性的要求,经过电厂运行的逻辑实现对变频器的控制,对各种数据的分析和判断,这也是电厂提高效率的关键环节之一。

3结语

第3篇

1变频技术的发展与原理

变频技术的诞生不仅在很大程度上改变了我们的生活,与此同时在工业生产上更是带来了巨大的便利。最初是因为调节电流频率的需要才促使了变频技术的产生,1960年后,电力电子器件大力发展,从最初的晶闸管到现代的绝缘栅双极型晶体管控制品闸管,经历了不断的更新历程,大大促进了变频技术的发展,到了1970后,开始研究(PWM)VVVF调速,这一研究引起了人们的关注。而在变频技术中PWM模式才是核心,直到20世纪80年代,相关专业人士开始对PWM模式的优化进行研究,这一研究项目引起了人们更多的关注进而得出了更多的优化模式。到了20世纪80年代中后期,一些发达国家将新研究出来的VVVF变频器投放到了市场,VVVF变频器凭借其更为优异的服务得到了各厂家的大力推广。而变频技术的操作原理指的是在电压不变的前提下,通过改变交流电频率的方式,来实现对设备的自动化控制。其中变频器是通过利用电力半导体器件的通断作用将频率无法改变的交流电转换成了可以改变的交流电,从而实现了变频调速。

2变频技术在煤矿机电设备中的应用

2.1变频技术在采煤机中的应用

采煤机在一定程度上代表了煤矿设备向现代化、机械化发展的里程碑。因此,在煤矿开采中显得特别重要。由于采矿机大多是在环境恶劣的条件下工作的,所以采矿机是一个比较复杂的系统,因此,提高采煤机的性能便显得尤其重要。采煤机在采煤工作中占据着主力位置,只要一发生故障就会导致整个采煤环节受到严重的影响,使采煤工作难以进行下去,对整个煤矿造成不小损失。由于采煤机的重要位置使得其功能不断改进,变得越来越强大,但是其出现的故障和问题也变得越来越强大,这也增加了维修难度,一旦采煤机出现问题就会大大降低工作效率。而随着变频技术的产生,将其用在采煤机中,成就了采煤机变频调速系统,随着该技术的不断发展,我国的采煤技术有了巨大的发展,变频器也得到了采煤业的广泛应用。煤矿企业大胆尝试,勇于创新,将能量回馈型四象限变频器运用到了电牵引采煤机的工作中,这一举措不仅将采煤机的科技含量进一步提高,同时还减少了采煤机的损坏,延长了设备寿命。

2.2变频技术在风机中的应用

在矿井不同的生产时期,矿井通风设计也不尽相同,甚至还会有巨大的差异。一般在矿井生产中期会重复不断更换风机来解决通风问题,但这种方式操作起来不仅显得累赘,并且还经常发生设备故障,增加了不少多余的维修量。与此同时,原来的风机也会被暂时搁置,这样会产生资源浪费,使设备的利用率大打折扣。但将变频技术应用到风机中就会解决这种困境,重复的更换任务也无需再进行,操作起来比较方便,不仅提高了设备性能,使风机资源中的浪费现象不断减少,同时也起到了很好的节能效果。通风问题也轻轻松松地解决了。

2.3变频技术在矿井提升运输设备上的应用

2.3.1变频技术在胶带输送机上的应用

作为煤矿煤流运输系统的主要设备之一的胶带运输机,在以工频进行拖动,液力耦合器进行传动的方式运行上一般采用交流电动机作为动力装置,但使用交流电动机会产生传动效率低、启动电流大以及机械冲击大等问题。同时输送机还存在运送负载重、距离长、倾角大的问题,常常发生带载或重载启停的情况,使胶带断带、跑带等安全生产事故发生的概率大幅度提升。但是将变频技术运用到胶带运输机之后,可以实现设备及系统的软启动功能,使设备及系统平稳启动运行。尤其是在变频控制的软启功能之后,彻底消除了之前存在的安全生产隐患,在根本上解决了这个困难。

2.3.2变频技术在矿井提升机上的应用

当前,PLC控制系统和高压变频调速控制系统是矿井提升机变频技术的主要应用。在矿井提升机高压变频调速控制系统设计中,通过对单元串联多电平能量回馈型四象限高压变频控制系统的应用来增强系统的安全性和抗干扰性,从而使提升全过程中的速度控制、位置控制、保护功能及动态画面监视等功能变得更加安全可靠,这一措施大大改善了提升机启动、运行、加速、减速等运行阶段的性能,使设备钢丝绳的机械冲击得到减少,提升系统的安全水平也得到大大提升。除此之外,还使高压回路与低压控制回路之间的通讯变得更加便捷。

2.4变频技术在泵中的应用

泵以抽送液体为目的,将机械能装换为液体能量。水泵不但能够用来进行输送液体,而且还可以实现液体增压,因此在矿区给液、给水中发挥着重要作用。在之前的工作运转中,泵拥有相对较长的空转时间,在频繁的起停工作中不仅耗费了大量的电能,并且也使相关的故障经常发生。将变频技术运用到泵中,可以使设备运行率得到有效提高,设备发生故障的情况大量减少,并且还显现了良好的节能效果,操作起来也十分容易。由中国矿业大学设计的煤矿井下排水泵站的监控系统在水泵性能提高方面具有极好的效果。其原理是把变频器应用到水泵中,水泵的起停减速可以得到有效控制,使井下液位达到稳定状态,减少了泵的空转时间,起到了显著的节能效果。

3结束语

第4篇

【关键词】自动化控制;变频器;技术改造

1 锅炉风机电机应用变频器调速控制

以DHL141.57/150/90AⅡ热水锅炉为例,每台锅炉配置引风机和鼓风机各六台,各电机主要技术参数如下:

型号 容量(KW) 电压(V) 额定电流(A)

引风机 Y280S4 75 380 139.7

鼓风机 Y200L4 30 380 57

在进行变频器改造以前,各风机在正常情况下的运行数据统计如下:

平均电流 最大电流 最小电流

引风机 142 145 139

鼓风机 59 63 57

首先选择在1#5#炉的鼓、引风机上进行改造尝试,并考虑到风机电机功率设计时配置,选择相匹配功率的变频器来控制电机,变频器的型号为ABB ACS51001157A4(引风机)、ZXBP30(鼓风机),电压等级为380V,通过一段时间的运行测试,引风机工频电流由原来的平均140(A)下降到现在的平均95―110(A),鼓风机工频电流由原来的平均57(A)下降到现在的平均30(A)节能效果相当显著,并且变频器技术性能完全满足锅炉运行工艺的要求(主要是风压、风量、加减风的速率等),电机在启动、运行调节、控制操作等方面都得到极大的改善。变频调速由安装在锅炉操作台上的启动、停机、转速调整开关进行远程控制,并可同DCS系统接口,通过DCS实现变频器的调速控制,变频调速装置还提供报警指示、故障指示、待机状态、运行状态、连锁保护等保护信息以及转速给定值和风机实际转速值等必要指示,以便操作人员进行操作控制。

2 补水泵、循环泵电机应用变频器进行调节控制

以2台补水泵、4台循环泵实际应用为例,其电动机的技术参数分别为:

序号 型号 功率 额定电流 流量

补水泵 1#泵 Y180M4 18.5 35.9 25

2#泵 Y180M4 18.5 35.9 25

循环泵 1#泵 Y315M14 132 237 630

2#泵 Y315M14 132 237 630

3#泵 Y315M14 132 237 630

4#泵 Y2315M4 132 240.4 630

正常补水时泵出力太大,紧急补水时一台泵又不能满足耗水需要,同时启动时出力又太大,连续供水补水效率高,效果也好。补水泵改用变频器调节补水,不仅仅在于考虑它对电机的节能效益,更重要的是从生产设备运行安全角度考虑,变频器选用富士FRN132P11S―4CX,电压等级为380V。

为充分利用变频器,采用1台变频器来实现两台电机的调速控制;2台补水泵均可实现变速、定速两种方式运行,变频器在同一时间只能作一台电机的变频电源,所以每台电机启动、停止必须相互闭锁,用逻辑电路控制,保证可靠切换,出口采用双投闸刀切换;2台补水泵工作时,其中一台由工频供电作定速运行,另一台由变频器供电作变速运行,同一台电机的变速、定速运行由交流接触器相互闭锁,即在变速运行时,定速合不上,如下图中,1C1与1C2及2C1与2C2不允许同时合上;为确保工艺控制安全、可靠,变频器及两台电机的控制、保护、测量单元全部集中在就地控制柜内,控制调节通过屏蔽信号电缆引接到控制室;

图1 补水泵电机变频器接线,虚框内为改造增加部分3 变频器调速改造中应注意的一些技术问题

锅炉的安全运行是全队动力的根本保证,虽然变频调速装置是可靠的,但一旦出现问题,必须确保锅炉安全供热,所以,必须实现工频――变频运行的切换系统(旁路系统),在生产过程中,采用手工切换如能满足设备运行工艺要求,建议尽量不要选用自动旁路,对一般的小功率电机,采用双投闸刀方式作为手动、自动切换手段也是比较理想的方法。

对于大惯量负荷的电机(如锅炉引风机),在变频改造后,要注意风机可能存在扭曲共振现象,运行中,一旦发生共振,将严重损坏风机和拖动电机。所以,必须计算或测量风机――电机连接轴系扭振临界转速以及采取相应的技术措施(如设置频率跳跃功能避开共振点、软连接及机座加震动吸收橡胶等)。

采用变频调速控制后,如果变频器长时间运行在1/2工频以下,随着电机转速的下降,电机散热能力也下降,同时电机发热量也随之减少。所以电机的本身温度其实是下降的,仍旧能够正常运行而不至温度过高。

变频器不能由输出口反向送电,在电气回路设计中必须注意,如在补水泵和循环泵变频器改造接线图中,要求1C1与1C2及2C1与2C2不允许同时合上,不仅要求在电气二次回路中实现电气的连锁,同时要求在机械上实现机构互锁,以确保变频器的运行安全。

低压变频器,由于体积较小,在改造中的安装地点选择比较容易些。选择变频器室位置,既要考虑离电机设备不能太远,又要考虑周围环境对变频器运行可能造成的影响。变频器的安装和运行环境要求较高,为了使变频器能长期稳定和可靠运行,对安装变频器室的室内环境温度要求最好控制在0-40℃之间,如果温度超过允许值,应考虑配备相应的空调设备。同时,室内不应有较大灰尘、腐蚀或爆炸性气体、导电粉尘等。

要保证变频器柜体和厂房大地的可靠连接,保证人员和设备安全。为防止信号干扰,控制系统最好埋设独立的接地系统,对接地电阻的要求不大于4Ω。到变频器的信号线,必须采用屏蔽电缆,屏蔽线的一端要求可靠接地。

随着电力电子技术的发展,变频器的各项技术性能也得到拓宽和提高,在热电行业中,风机水泵类负荷较多,充分应用变频器进行节能改造已经逐渐被大家所接受。对于目前低压变频器,投资较低、效益高,一年左右就可以收回投资而被广泛应用。随着目前国产变频器的迅速发展,使得变频器的性能价格比大大提高,为利用变频器进行节能技术改造提供了更加广阔的前景。

参考文献:

[1]王占奎.变频调速应用百例.北京:科学出版社出版,1999.4

[2]吴忠智,吴加林.变频器应用手册.北京:机械工业出版社,2002.7

第5篇

1在煤矿提升机中的有效应用

对于矿井提升机而言,其工作条件通常比较特殊,而且多数情况下是在较为复杂、繁重的运行条件下工作,因此对提升机设备的性能提出了更高的要求。一般而言,提升机在实际工作中要不断的启动、关闭,而且调速任务非常的重,因此也就大大提高了机电设备故障问题的发生率,加速了机电设备损害。变频技术在现代煤矿提升机中的有效应用,不仅可以提高工作效率,而且还可以实现对提升机自身的保护。提升机控制中的变频技术应用,有效的减少了调速电阻损坏,提升机运行能力也会随之提高,利用变频设备的内部软件可以实现对提升机速度的有效调节,减少提升机故障发生率,从而减少机电设备维修。变频技术在提升机中的应用,可有效节约电能,实现节能降耗之目的。实践中可以看到,随着变频技术在煤矿提升机中的有效应用与改进,一些新的技术设备不断出现,比如提升机专用变频器、风光提升机变频器等,他们的兼容性非常的好,而且设备性能也得到了非常大改进和,在煤矿机电及生产过程中的应用非常广泛。

2在煤矿空气压缩机上的有效应用

一般而言,煤矿风动机电运行动力基本上都来源于空气压缩机,并且通过交流电机来实现,因此电动机会一直处于全速工作状态下。对于空气压缩机而言,通常其采用上下两点控制模式实现压力控制,即交流电动机一直处于工频运行状,当空压机气缸压力与预设压力值基本一致时,就会关闭空压机进气阀,此时不会再产生压缩气体,电动机处于空载状态下;随着压力的不断下降,接近预设压力时,空压机气阀便随之打开,产生压缩空气,此时电动机处于重载状。实践中可以看到,因煤矿实际用气量与产气量之间不可能一致,所以就会导致空压机频繁加载、卸载,进而对电网、电动机以及空压机差生不利影响。对于变频技术而言,其通常具有控制精度高、易操作以及免维护等特性。若普通电动机应用变频技术来调速,可在其拖动负载过程中无需进行改动,但针对具体的生产工艺要求,应当对转速输出适当的调整。变频器驱动方式,从根本上改变了传统的空气压缩机加载与卸载供气控制方式,通过调整电机用气量的大小来实现转速自动调控,以确保供气压力自身的恒定性,这样电机就可以在低于额定转速的情况下依然连续的运转,从而使压缩机的启停次数减少。

3变频技术在皮带输送机上的有效应用

对于煤矿机电工程而言,其应用最多的运输装置即为皮带输送机。传统模式下,以交流电动机工频拖动为主,传动操作过程中需通过液力耦合器来实现,因此表现出启动电流冲击大、以及传动效率低等特点,液力耦合器、皮带等,会受到非常严重的磨损和影响,维修、维护成本会随之升高。当煤矿皮带输送机中应用变频器软启动设备和技术以后,皮带输送机系统可实现有效的软启动,减少皮带启动过程中产生的张力,进而减少皮带损伤。同时。还可以将运输速度按照输送量的大小进行实时的调整,以实现节约能源之目标。随着变频器的不断完善,其具有过流、过压、过载以及短路和欠压等方面的保护功能,可对接皮带输送机综合保护设备,比如瓦斯、煤位、跑偏、打滑、烟雾以及急停和纵向撕裂等方面的保护,从而使各项安全保护性能可以得到有效的实现。尤其是下运式皮带输送技术的应用,可以实现发电制动的电网回馈,节能效果更佳。

4结束语

近年来,随着变频技术的不断成熟和广泛应用,其节能效果日渐凸显,而且其调速性能也非常的稳定。本文主要分析了变频技术的基本原理,并在基础上就其在煤矿机电工程建设中的应用实践进行了分析,以期为变频技术的应用和推广,提供一些参考。

作者:王大雷 单位:开滦(集团)有限责任公司林南仓矿业分公司

第6篇

矿产开发时不注重开发方法,造成资源浪费严重威胁企业利益。我国虽然是资源大国,有着充足的矿产资源,但矿产资源的不可再生性要求企业在进行矿产开发时必须重视开发方法,减少资源浪费。近年来,我国矿产开发的强度越来越大,矿产开发作为土地资源利用的主要途径之一,对我经济发展有深远影响。但很多矿产企业人只要求进度,不重视开发水平。在利益的驱逐下,企业强化资源开发,矿产资源开发有很大的漏洞,很多矿产频发资源浪费的现象,损害企业效益,因此企业应提高矿产开发的质量,确保资源合理开发,提高企业效益[1]。

二、变频技术的应用

(一)变频技术的具体方法

科学家在实践中总结,变频技术有利于充分利用资源,与传统的技术相比,变频技术在实践中取得重大效果,不但有效减少资源的浪费,而且利于我国科学研究。变频技术在人们日常生活中非常常见,变频技术广泛应用于电力行业、机械行业和其他多个行业。在生产中,变频技术有显著的节能效果,因此受到各个业界的广泛应用。变频技术在矿产开发的过程中,节能效果更为显著。在矿产开发过程中良好利用变频技术,利于资源合理开发,从而为资源的可持续利用做出贡献。

(二)变频技术应用的必要性

我国矿产资源在世界排名居先,但人口压力过大,人均矿产资源占有量排名落后,因此只有合理的矿产资源才能适应我国国情。近年来,矿产资源过度开采,致使矿产资源的总量飞速减少[2]。我国经济飞速发展,使用矿产资源的公司日益加大,企业间的竞争激烈,对矿产资源的开发力度加大,但企业在开发过程中忽视资源的合理开发,造成资源浪费。变频技术能实现节能,在矿产资源开发过程中使用变频技术,从而实现对矿产资源有效节约。变频技术还可以降低矿产开采时造成的污染,这不但为我国环保事业做出贡献,更利于企业可持续发展。

(三)变频技术的使用意义

矿产资源在开发过程中的资源浪费是最严重的开采问题之一,资源浪费影响矿业发展,对能源可持续利用和企业发展造成严重危害,威胁国民经济发展,矿产资源开采主要问题是资源浪费,通过变频技术降低矿产开发时造成的矿产资源浪费,保证开发生产的顺利进行,提高了矿业生产效率,促进国民经济增长,合理的矿业开发也有效提高开发质量,避免资源浪费。我国作为人口大国,资源的合理利用非常关键。人是推动社会发展的核心,在生产和生活中只有提高人的主观能动性,才能为企业带来利润。科学的变频技术增强员工对矿产资源开发的热情,员工对工作的内容有认同感,提高员工工作积极性,有效提高生产力。矿产资源的是我国经济发展命脉,只有良好合理的矿产开发才能推动经济发展[3]。

三、结论

第7篇

【关键词】电梯变频器;电动机

随着科学技术的发展和计算机技术的广泛应用,人们对电梯的安全性、可靠性的要求越来越高。现在主流的电梯设计大致可分为绳索式电梯和液压式电梯两大类别。无论是哪一类电梯,基本上都是采用变频器进行调速控制的,并且为了满足系统控制质量及运行效率的要求,均采用PLC与变频器结合的最佳控制方法。同时,变频调速还使用了先进的SPWM技术,具有优异的调速性能和起制动性能,可以达到高效和节能的效果,因此得到广泛的应用。

1.变频调速电梯电路原理

1.1变频器的工作原理

把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作变频器,主要是利用变频器中电力半导体器件的通断作用来实现这一目的。现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元和微处理单元等组成。

1.2 整流与回馈电路

整流回馈电路能够将交流电网的电能变换为直流(整流),并在需要的时候进行逆变运行回馈能量。变频器在驱动某些负载时,可能会出现需要将能量从负载中抽出的情况,能量回馈就是设法将上述机械能量转化为电能回送电网,从而节能。在能量回馈过程中,电动机相当于处于发电状态,原来的逆变装置现在则处于整流状态,而原来的整流装置却被控制处于逆变状态,从而完成将电动机的机械动能回馈电网。因为主电路所用器件是IGBT或IPM模块,根据系统运行状态,既可作为整流器使用,又可作为有源逆变器使用。

1.3 变频调速的控制方式

为满足电梯的控制要求,变频调速系统通过与电动机同轴连接的旋转编码器,来完成对速度的检测及反馈,实现了闭环控制。控制系统主要由计算机或PLC组成,主要用于发出电气系统所需的各项指令,包括运行速度、电流以及位置控制等,同时产生PWM控制信号,并具有自诊断功能。PLC用于完成系统的逻辑控制,负责处理各种信号的逻辑关系,从而向变频器发出起、停等信号。同时,变频器也通过电流互感器、电位器等检测元件,检测变频输出电流、直流回路电压、电网同步信号等参数,并反馈给PLC,形成双向联络关系。

2.变频器的选用原则

由于变频的过载能力没有电机过载能力强,一旦电机过载,首先烧毁变频器,因此变频器的选用型号应根据使用要求仔细考虑。最基本的原则是变频器的额定输出功率和电流选择必须等于或大于被驱动电机的额定功率和电流。除此之外,还应考虑使用环境、电网电压等。环境温度应保持较低,除设置完善的通风冷却系统以保证变频器正常运行外,在选用上增大一个容量等级,以免变频器过热。

3.变频器的参数设置

变频器参数设置前,首先检查主回路及控制回路接线有没有错误,避免造成变频器损坏,检查变频器输出线UVW与电机的UVW一一对应,确认无误后开始变频器的参数设置。

首先将变频器初始化,再根据所选用的变频器参数设定表依次设定参数,主要有额定电压、额定电流、基本频率、加速时间、减速时间等。设置电机的基本参数:最高转速、基本转速、极数、额定电压及额定电流,电机的参数可根据电机铭牌设置进变频器,也可以通过变频器自学习功能直接学习进变频器,自学习时电机必须为空载状态。

4.电梯变频器软件的功能需求

电梯变频器软件系统采用递阶层次结构,即某一层只能被其上层调用,而每一层中的大模块组是平行的,同一层模块之间无耦合关系,从而实现软件功能的并行扩展。设计软件模块的基本准则是模块间尽可能无耦合关系。电梯变频器软件是实时多任务软件,基于DSP的硬件中断机制,通过中断优先级别的判断实现实时多任务调度与管理。这种方法的好处是能精确确定每个任务的执行时间,这对任务实时性必须精确到微秒级的电机控制软件是绝对必要的。

5.电梯工作过程

简单理解电梯的工作原理:它是将动力电能,通过变频装置向驱动装置供电,由驱动装置拖动曳引装置,再通过曳引装置上悬挂的钢丝绳拉动井道内轿厢做上下运行工作。整个电梯系统是由很多的电气装置、机械装置整合后实现的。电梯停候在某层时,当另一层按下外召唤时,指令通过井内电线传输到控制柜的主控制板,它收到信号瞬间再次触动控制板内的程序,执行响应的指令,分别输出至外呼灯亮及驱动装置,最后电机带动变速箱转动,通过钢丝绳与曳引轮的摩擦力带动轿厢运行。每层都有一个平层装置来采集电梯所处位置,当电梯快到目的层时,控制板通过程序来控制驱动装置,使电梯减速到目的层平层开门,实现外召指令。电梯运行过程中通过控制变频器的输出来控制电动机的转速,从而精确控制电梯的加减速,以达到乘坐舒适的目的。

6.电动机工作状态

对于使用交流异步电动机或永磁同步电动机作为驱动主机的电梯,其调速方式为变极调速、调压调速、变频调速等。无论采用哪种调速方式,电梯在起动加速和稳速时都工作于电动或再生状态。满载上行或轻载下行分别工作于正转和反转电动状态,电机从电网吸收电能转化为动能;满载下行或轻载上行分别工作于反转和正转再生状态,这时可以将电机的机械能通过变频器反馈回电网,实现节能的目的,或消耗于制动元件上。

7.结语

实践证明,PLC与变频器在电梯节能控制系统中的应用,通过合理的设备选型、参数设置和软件设计,有效的提高了电梯运行的可靠性和舒适感,并节约了电能。

参考文献:

第8篇

【关键词】高压变频技术 除尘风机 节能

1.概述。钢铁厂以其资源密集、能耗密集、生产规模大、物流吞吐量大等特点,长期以来一直被认为是烟尘排放量大、废弃物多、污染大的企业。而电炉炼钢是钢铁厂造成烟尘污染的主要来源之一。

电炉主要是通过用废钢、铁合金和部分渣料进行配料冶炼,然后熔制出碳钢或不锈钢钢水供连铸用。电炉炼钢时产生的有害物污染主要体现在电炉加料、冶炼、出钢三个阶段。吹氧过程的烟气量最大,含尘浓度和烟气温度高。因此,电炉除尘系统按照吹氧时期的最大烟尘排量进行设计。在系统最大风量需求的基础上增加1.1-1.3倍的安全阈度进行除尘风机选型设计。整个炼钢过程中吹氧时期占30-35%,此时风机处于较高负荷运行,而其余时间则处于较低运行工况。很显然,除尘系统的利用率很低且系统效率差。

长期以来,不论电炉处于哪一个运行阶段,产生的粉尘大小均使除尘风机全速运行,采用入口挡板开度调节,效率低、功率大,造成大量的电能浪费。随着市场竞争的不断深化,节能降耗提高生产效率成为企业发展提高竞争力的有效手段之一。

而在九十年代开始广泛应用的高压大功率变频调速技术则正是适应了市场的需求,在技术和应用领域上得到不断的进步和拓展。现在,已广泛应用于电力、石油化工、矿山、冶金、给排水、机车牵引等领域。

某炼钢厂正是在这种状况下,对电炉除尘系统进行高压变频技术改造研究的。电炉在冶炼过程中的粉尘主要通过炉顶烟道经沉降室沉积,水冷壁冷却后经除尘系统过滤排放;同时利用集尘罩将现场生产车间的粉尘和废气及时排走,以免危及电炉周边工作人员的安全,污染环境。除尘风机是将烟气吸收排放的主要设备。

2.系统技术方案研究。某炼钢厂#8电炉为扩容的70t ABB交流电炉。除尘器系统采用TFMC布袋式除尘器,设计过滤面积11985m2,最大除尘风量450000m3/h。

#8电炉的炼钢周期为70-85分钟,其中装料6-10%,送电熔化25-30%,吹氧30-35%,还原期15-20%,冲渣出钢6-8%。在不同的生产工艺阶段,电炉产生的烟气量和烟气温度不同,且差异较大。加料过程中,主要是装料时废钢及渣料产生的扬尘,需要的除尘风量不大,要求粉尘不扩散,不污染电炉周边工作环境为标准。送电过程中是原料送电拉弧加热,引发可燃废弃物燃烧产生废气。此时,电炉需要将炉料加热至熔化状态,要求烟尘能够及时排出,又不能过多地带走炉体热量以保证炼钢周期。而在吹氧期间,不仅要求除尘系统能够及时迅速地将废气和粉尘排走,又必须保证炉体有合适的吹炼温度,确保终点温度。因此,对除尘系统要求较高。进入还原期,吹氧告一段落,粉尘度再一次降低。在冲渣出钢时,主要排放物是冲渣产生的水蒸汽和少量废气。

通过对冶炼工艺的分析,电炉在炼钢过程的不同阶段对除尘风量大小的要求有明显的不同,以吹氧冶炼为最大,加料除尘为最低。鉴于电炉除尘系统中除尘风机的运行方式和设备特点,对除尘风机的控制制定如下方案。

不同工艺阶段的烟气温度有明显差异,因此温度的高低直接反映了电炉的运行工况。系统并没有采用检测电炉工作中粉尘浓度的方式来直接控制除尘风量,而是采集烟道温度作为系统调节的基本参量,通过非线性函数关系推导出不同运行工况下的除尘风量参与系统控制。从工程角度讲,温度变送器可以在恶劣的工业场合应用,抗干扰能力强、工作稳定性好、控制精度高、安全可靠、免维护且价格便宜。而粉尘浓度检测装置具有价格昂贵、稳定性差、故障率高、维护量大、现场检测点数据采集很难具有广泛代表性等缺点。基于上述原因,选用除尘烟道的烟气温度作为现场过程量。同时,以吹氧量和冷风门开度作为除尘风量的修整参量,从而提高系统响应速度,改善控制品质,达到良好的除尘效果,实现除尘风量自动控制、降低运行人员劳动强度、提高系统效率,达到最佳的节电效果。

为了保证系统的可靠性,另外增加了除尘风量手动控制回路,对除尘风量的控制采用分段调速的方式,由炉前操作台控制变频运行的频率点,从而实现不同运行工况下的风量调节。

实践证明:系统在设计了两套控制方案后大大提高了系统的实用性和可操作性,很好地满足了现场生产要求。同时,在改善现场工作环境、提高产品质量、降低吨钢能耗方面起到了积极作用。

3.系统特点。变频调速技术在电炉除尘系统中应用后,主要体现了以下几个特点:

①除尘设备功耗随电炉炼钢生产工艺变负荷运行,提高了系统效率,实现了除尘系统的最佳工况运行,取得显著的节能效果。

②大大有效降低了除尘系统负荷率,延长了除尘器、除尘风机、除尘电机、烟道等设备的使用寿命。

③对降低炉内热量损失、合理控制过程温度、确保终点温度起到一定的作用。

④对除尘系统进行变频改造,有助于改善炉内吹炼工况,缩短炼钢时间,提高钢产量,改善出钢品质。

⑤降低补炉期间的能耗和炉衬散热损失。

4.节能分析。为了对除尘系统变频改造后的效果进行评价,在系统投入正常运行一个月后对设备实际使用和节电情况进行了测定和数据分析。

随机抽取一个正常生产日,将系统切换至变频运行系统采用挡板控制调节风量。采用网侧有功电度表进行耗电量计量,见表1。然后,连续采集变频运行的7个正常生产日用电量进行变频运行工况下的单耗计算,以期变频运行的数据更接近真实运行工况,具体数据采样值见表1。

通过对上表原始数据的处理,可以得出:除尘系统在变频改造后较改造前,吨钢除尘电耗降低了17.390kW•h。设备节电率高达58.63%,节能效果显著。

5.结论。通过对某炼钢厂#8电炉除尘系统变频改造前后的技术分析,可以看出:在电炉除尘系统中应用高压变频调速技术不仅对有效改善现场生产状况、提高钢产量、降低吨耗有着重要的意义,而且每年可节约230万元左右的电费开支。在电炉除尘系统中应用高压变频调速技术是完全正确的。

参考文献

1 邱绍岐、祝桂华编著.电炉炼钢原理与工艺.北京:冶金工业出版社,1996

第9篇

论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。

一、引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

二、 能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

三、 回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。

四、新型制动方式(电容反馈制动)

1、主回路原理

整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。

(1) 电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2) 电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

2、系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态, 再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

3、主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。

随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。

第10篇

论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。

一、引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

二、能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

三、回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。四、新型制动方式(电容反馈制动)

1、主回路原理

整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

2、系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

3、主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。

随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。

第11篇

关键词 变频压缩机 变频调速系统 技术现状

1 引言

由于传统的制冷系统采用定速压缩机,因此人们对制冷系统及压缩机的研究重点一直是在名义工况和额定转速下稳态工作时的效率和其它工作特性上。传统的制冷系统采用定转速压缩机,实行开关控制,利用压缩机上附带的鼠笼式电动机驱动压缩机,从而调节蒸发温度。这种控制方式使蒸发温度波动较大,容易影响被冷却环境的温度。压缩机电机在工作过程中要不断克服转子从静止到额定转速变化过程中所产生的巨大转动惯量,尤其是带着负荷启动时,启动力矩要高出运行力矩许多倍,其结果不仅要额外耗费电能,而且会加剧压缩机运动部件的磨损。另外这种运行方式在启动过程中还会产生较大的振动、噪声以及冲击电流,引起电源电压的波动,因此应采用变频压缩机替代定转速压缩机,从而避免这种频繁的起停过程。

而变频调速技术主要由以下4个方面的关键技术组成:逆变器,微控制器,PWM波的生成以及变频压缩机的电机选择。

2 三种变频压缩机的研究状况

针对变频压缩机的研究,是从往复活塞机开始的,但由于其往复运动的特点,影响到变频特性的发挥;从而转到滚动转子式压缩机、涡旋压缩机等回转式压缩机上来,大大提高了压缩机的性能。总体说来,实验研究居多,而理论分析较少。

2.1 往复式活塞压缩机

日本东芝公司在1980年开发了往复式变频压缩机,又在1981年开发了转子式变频压缩机,文献[1]给出这两种机器的制冷量和总效率随频率变化的实验数据,从中可以看出往复式在频率为25~75Hz时,效率高;而转子式在30~90Hz时,效率高。并且两种机型均存在效率最高频率。在大于此频率时效率缓慢降低,小于此频率时,效率则下降很快。另外,Scalabrin测量一台可变速的开启式往复压缩机在不同转速下的制冷量和输入功率,他指出这台压缩机的容积效率在转速为1000rpm时最高,而等熵效率和制冷系数随转速的降低而增高[2]。Krueger讨论了BPM电机及变频器的设计,对转速在2000~5000rpm的冰箱和往复式压缩机进行了实验研究,得到压缩机的转速为3000~5000rpm时制冷系数最高;而文献[3]则给出了其对冰箱用往复式压缩机的性能试验和模拟计算结果,在其研究的转速范围内2000~4000rpm,制冷系数随转速的增加而降低。还有学者对往复式变频压缩机的热力性能进行了仿真研究,计算了压缩机内各部位的换热量和压力损失。

2.2 滚动转子式压缩机

在1984年,日本东芝公司的Sakurai和美国普渡大学的Hamilton建立了简单的滚动转子式压缩机的摩擦损失模型[4],并选取不同的边界摩擦系数和制冷剂在油中的溶解度计算了不同的转速下的摩擦功耗。其结果与实验值相比较,偏差较大。文献[5]叙述了日立公司1983年批量生产的变频转子压缩机在结构和材料上的改进。文献[6]研究了单缸和双缸转子压缩机的转速波动,讨论了电流频率减小时,压缩机性能降低的原因。文献[7]采用低密度和铝合金制作的滑片和转子以降低高转速时滑睡瑟转子间的接触力和转子轴承承载。文献[8]简单分析了适当降低滑片的质量和厚度可以提高变频转子压缩机的效率,并给出了气缸、转子和滑处的温度及应力分布的有限元分析结果。Liu和Soedel分析了变频转子压缩机的吸气和排气气流脉动[9,10]和吸气管气缸间的传热及压缩机的温度分布[11],讨论了影响变频转子压缩机容积效率和气缸压缩过程效率的因素,给出了他们用计算机模拟计算出的在不同转速下的容积效率和压缩过程效率,从实验数据和文献[1]的实验可以看出,其计算的容积效率随转速的增大而很快的增大。

2.3 涡旋式压缩机

涡旋式压缩机的原理早在1886年意大利的专利文献[12]论及到了,1905年法国工程师Creux正式提出涡旋式压缩机原理及结构,并申请美国专利[13]。涡旋式压缩机是一种新型的容积式压缩机,具有结构紧凑、效率高、可靠性强、噪声低等特点,尤其是用于变频控制运行。但由于没有数控加工技术和缺乏对轴向力平衡问题的妥善解决方法,因而长期未能完成其实用化。进入70年代,美国A.D.L公司完成富有成效的研究,首先解决了涡旋盘端部磨损补偿的密封技术。并在此基础上与瑞士合作开发了多种工质的涡旋式压缩机样机。涡旋式压缩机的真正规模生产始于日本。1981年日本三电(SANDEN)公司开始生产用于汽车空调的涡旋式压缩机,1983年日立公司开始生产2~5Hp用于房间空调的涡旋式压缩机。此外,在美国,自Copeland公司1987年建立涡旋式压缩机生产线推出其产品后,Carrier、Trane、Tecumseh等公司也分别设厂生产高质量的涡旋式压缩机。而变频涡旋压缩机已应用于柜式空调器上,节能效果明显,制冷系数提高20%左右,成为目前涡旋压缩机的一个研究热点。

3 变频调速技术的发展及现状

变频调速技术适应于节能降耗和舒适性的要求,目前已应用于新一代的空调器上,在90年代初进入国内空调市场,其核心是:逆变器、微控制器、PWM波的生成和变频压缩机的电机。

3.1 逆变器

变频空调的核心部件是变频器,其主要电路采用交-直-交电压型方式。交-直过程一般采用单相二级管不可控直接整流,直-交过程一般采用6管三相逆变器,另有一个辅助电源,一个逆变器控制器和相应的驱动电路。

早期的变频器采用分立元件构成,整流器采用单相倍压整流电路,逆变器由6只分立的功率晶体管(GTR)构成。这种电路复杂,可靠性差。目前大部分厂家采用的逆变桥由6个绝缘栅极晶体管(IGBT)组成,其综合了MOSFET和GTR的优点,开关频率高、驱动功率小。随着智能功率模块(IPM)技术的发展应用,IPM正在逐步取代普通IGBT模块。由于IPM内部既有IGBT的棚极驱动和保护逻辑,又有过流、过(欠)压、短路和过热探测以及保护电路,提高了变频器的可靠性和可维护性。另外,IPM的体积与普通IGBT模块不相上下,价格也比较接近,因此目前应用较为广泛。比较成功的产品如:日本三菱电机公司所生产的PM20CSJ060型以及日本新电元公司生产的TM系列IPM模块等。

功率因素校正(PFC)环节和逆变桥集成是新一代的空调器逆变电源技术。PFC技术的应用不但可以极大改善电网的工作环境,减少输电线的损耗,而且在变频工作时可以减小输入端电感和输出端电容器,减小模块体积。因此PFC环节和IPM逆变桥集成一体化是家用空调器发展的必然。

3.2 微控制器

微电子技术的发展使变频调速的实现手段发生了根本的变化,从早期的模拟控制技术发展数字控制技术。目前国外一些跨国公司的微控制器产品占据着主要的市场,如:Motorola公司的MC68HC08MP16、Intel公司的80C196MC、三菱公司的M37705等。这些公司的产品性能价格比较高、功能强大,如带有A/D转换器、PWM波形发生器、LED/LCD驱动等,且一般都有OTP产品以及功耗低可长期稳定的工作。微控制器目前主要由单片机向DSP(信号处理器)过渡。以目前应用比较广泛的TI公司的TMS320C240为例,其具有:50Ns的指令周期,544字的RAM,16K的EEPROM,12个PWM通道,三个16位计数器,两个10位A/D转换,WATCHDOG,串行通讯口,串行外围接口等,采用DSP,可使控制电路简单,而且控制功能强大。

3.3 PWM波的生成

在家用空调器中,目前国内大部分厂家采用常规的SPWM方法,在国外,在部分厂家以采用磁通跟踪型SPWM生成方法,该方法以不同的开关模式在电机中产生的实际磁通去逼近定子磁链的给定轨迹—理想磁通圆,即用空间电压矢量的方法决定逆变器的开关状态,以形成PWM波形,该方法电压利用率高,低频谐波转矩小,频率变化范围宽、运行稳定,具有比较好的控制性能。近期出现的PAM控制(Pulse Amplitude Modulation)不采用载波频率进行整流,而直接改变电压,减少了整流所需的能耗,提高了变频器的工作效率,满足了节电和降低高次谐波的要求,使供暖能力得到提高。

3.4 变频压缩机的电机

变频压缩机电机主要分为交流异步电动机和直流无刷电动机两种。目前国内一些大的压缩机生产厂家如:万宝、松下、上海日立、东芝万家乐等已有能力生产变频压缩机(包括交流机和直流机),交流电动机成本低,制造工艺简单,但其节能效果较差。直流无刷电机拖动由无刷电机本身,转子位置传感器和电子换向开关组成。转子磁极为永磁体,电枢绕组采用自控式换流,定子旋转磁场与转子磁极同步旋转,通常采用按转子磁场定向的定子电流矢量变换控制,既有普通直流电机良好的调速性能和启动性能,又从根本上消除了换向火花、无线电干扰的弊端,具有寿命长、可靠性高和噪声低,控制方便等优点。以1998年三菱电机公司开发的适用于空调压缩机的节能高效直流无刷电机为例,其具有:转子上安装了8块V字型永久磁体。磁体为埋入式,转子不会在不锈钢外壳中因涡流因而产生损耗;采用了新的压缩机电机驱动方式,效率比普通的无刷电机高,但是这种压缩机电机的价格较高。

第12篇

关键词:变频技术;煤矿机电设备;实际应用;探索

中图分类号:TD63 文献标识码:A 文章编号:2095-0802-(2016)06-0161-02

引言

煤炭行业的发展证明中国整体经济实力不断提高,相关技术与设备朝节能、高效、安全、经济等方向发展。以往煤矿生产环境较差,大功率设备非常多,影响工作效率,而且,设备损耗较高,与当下“建设环境友好型社会、实现绿色环保、节能减排”理念不符。变频技术无论在日常的生活中,还是在煤炭行业的发展中均发挥了重要作用,它的应用理应得到重视并进一步开发。

1变频技术相关理论

变频技术对于人们的生活来讲是一种提高,极大地改变了人们的生活品质,不仅如此,变频技术在工业领域更是起到了不可替代的作用,为其发展带来极大的便利。变频技术的产生主要是由于当时需要对电流频率进行调节,在20世纪60年代之后,电子器件得到发展,由晶闸管到绝缘栅双极型晶体管控制品闸管,这对变频技术的发展起到了促进作用。一直到70年代—80年代变频技术发展成为以PWM-VVVF调速模式为核心,并对此模式进行优化与研究,使得变频技术得到了完善[1]。变频技术的操作是在电压保持不变的基础上,改变交流电频频率,从而实现设备自动化操作。在整个操作过程中,变频器主要是利用电力半导体自身的通断作用,将原有的无法改变频率的交流电改变为可以变化的交流电,继而形成变频调速。变频器主要包含的元器件是键盘、电源板、主板、电机、电容器等[2]。变频器运行的技术原理见图1~图2。在传统的电气设备中,如果电流频率无法改变,那么运转时的转速也就无法改变,会缩短设备寿命,浪费大量能源。变频技术恰恰可以解决此类问题,改变设备运转速度,调节设备,保证运行的技术性与效率性。

2变频技术在煤矿机电设备中的应用

在煤矿生产工程中,变频技术的主要优势在于:a)调速。能对提升机的运行进行调速,保证机器运行稳定性,减少设备的受损情况;b)节能。变频技术可以调节风机、压缩机等设备流量,减少电能流失,从而起到节能效果;c)变频技术让生产更为标准,缩小机电设备的体积等。变频技术在煤矿机电设备中的具体应用在于以下几方面:a)在采煤机中应用变频技术。采煤机是矿井采煤的重要设备,其工作环境非常恶劣,主要特点就是粉尘四起、湿度较高、空间较小等。一旦采煤机发生故障直接会导致采煤工作“滞留”,产生经济损失。变频技术为采煤机的运行提供了变频调速的可能,从原始的“一拖二”转变成为“一拖一”,让能量回馈型四象限变频器成为应用的主角。这样不仅提高了采煤的科技性,更能减少机械设备的损耗,延长使用寿命,让整体操作趋于简便、安全、可靠[3];b)在胶带输送机中应用变频技术。胶带输送机本身具有高压、高功的特点,它的存在就是保证煤炭运输正常进行。在传统运输当中,很多胶带运输机都会处在空载、轻载等环境中,这样直接会造成资源浪费,启动时配合液力耦合器,导致启动电流过大,极易造成电机失控事故的发生。而且大电流还会对机械设备的内部造成冲击,瞬间提升设备温度,造成设备过热损耗[4]。变频技术的应用(四象限变频调速技术)直接保护输送机,保证电流输送稳定,这样可以有效防止失控现象的出现,提高运行效率,实现节能、安全等运行目标;c)在通风机中应用变频技术。通风机无法随机变频一直都是煤矿设备运行的困扰之一,变频技术的出现直接解决了此问题,降低了其工作强度,不仅减少了设备的损耗与故障维修率,更重要的是减少了电网设备的破坏,让通风机更趋于正常化运转。以忻州窑矿的通风机为例,该风机的型号为BDK40-6-No17,该矿对此风机进行变频改造。改造前,总风量为2970m3/min,输入功率154kW。经过测量,矿井在生产时只需要2100m3/min,使用风门进行调节可以将其调整到为2100m3/min,但是从实际角度出发,风门可节约15%能源,电机的输入功率高达132kW,每年所使用的电费为57.4×104元(理论值)。改造后,为在满足需求的基础上实现节能,该煤矿决定使用200kW的变频调速器进行调节。经测试,变频输出的频率大约为39Hz,输入电压约为400V,只要电流在输入时达到110A就能让风量达到2100m3/min。这个时候电机的功率大约为75kW,其数值大幅度下降,计算后得出每年消耗的电费约为32.8×104元,总体节约24.5×104元,即节约了43%的电能;d)在提升机中应用变频技术。由于提升机运行时的环境较为复杂,要求每一个参与生产的提升设备都要保持良好的性能,这样才能满足生产要求。提升机一般会高频率、高反复启动,相关的调速任务非常多,久而久之导致提升机故障率较高,寿命较短。变频技术的应用可以满足其运行要求,同时也可保护提升机本身。经过变频之后的提升机,可以减少在调速过程中电阻的损耗,而且位于减速器下方时,其电动机也会运行,将电能消耗情况传递给电网[5]。变频技术是提升设备性能的最佳方式,其内部软件可以帮助设备完成调速工作,降低故障率,实现节能化。目前,“风光提升机变频器”是最新的应用产品,它具有兼容性、安全性、经济性等特点,深受中国煤矿生产企业的欢迎;e)在水泵中应用变频技术。水泵的作用在于输送液体,在煤矿设备中还有一项功能是液体增压。在之前的运行中,水泵空转时间较长,在不断启用、停用过程中不仅耗能大,而且事故频繁。变频技术的应用让水泵转数有所下降,延长使用寿命的同时降低维修频率与维修费用。同时,变频器的使用还能减少电网冲击,当水泵出口阀处于全开状态时直接消除之前由于阀门节流产生的巨大的噪音,这也是对工作环境的一种改善。总体来看,变频技术确实可以提高其运行效率,减少事故的发生。中国矿业大学曾设计井下排水泵站监控系统,这有效地增强了水泵性能。其原理在于利用变频器控制水泵启停减速,保证井下液位稳定、不变,继而减少水泵的空转时间,这样既提高了其安全性,又实现节能的目标。通过对水泵进行变频改造,经过改造后的水泵,其功率由原先的260kW降至190kW,电流由开始的400A降至310A,频率从50Hz降至40Hz,以上数据充分证明其变频改造可以减少功率损耗。经过一段时间的测算之后,矿井每月平均可节约27%的电能,效果非常显著。

3结语

变频技术在煤炭领域的应用越发广泛,具有非常大的潜力。在提倡节能环保的现在,煤炭行业要实现绿色发展,获得长足进步,就必须灵活应用变频技术,提高机电设备的应用效率,为企业与社会提供更优质的服务,提高中国整体的效益水平。

参考文献:

[1]张华,龙坤.电气工程安全问题及质量控制探讨[J].中国新技术新产品,2010(18):148.

[2]张和平.变频技术在煤矿机电设备中的应用分析[J].技术与市场,2015(5):169.

[3]张鹏飞.变频技术在煤矿机电设备中的应用[J].能源与节能,2013(9):119-121.

[4]温勇.煤矿机电设备中变频节能技术的应用分析[J].河南科技,2013(8):117-118.