HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 光纤通信论文

光纤通信论文

时间:2023-01-17 11:14:48

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇光纤通信论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

光纤通信论文

第1篇

论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。

1.光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

2.光纤通信技术的特点

(1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。

(2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

(3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

3.光纤通信技术在有线电视网络中的应用

20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用SDH+光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目。

有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网PSTN中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。

现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。

参考文献:

[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006,(4)

[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信,2004,(2)

第2篇

1.常规教学为基础

教学团队探究讲课艺术,改进课堂教学方法,提高授课的互动性,启发学生以“科学研究”的思维思考课本中的知识。教学内容上,注重教学内容的科学性、先进性、新颖性与启发性,及时更新充实教学内容;同时制作较高质量的多媒体课件,通过文字、图片以及动画等多种形式丰富课堂教学。

2.实例研讨作穿插

课堂授课适时引入生活中常见实例,如光纤入户、高清视频点播技术等,由此展开研讨式教学。通过对生活中实例的分析,把抽象的理论变成具体的实际,以此切入并开展课堂讨论,激发学生兴趣。同时,针对实例为学生提供课后实践,使其对问题的理解更深入。

3.热点问题当点缀

结合当前的光纤通信的热点问题,如光纤通信网的安全性、全光网等问题,对热点问题进行深入剖析,形成与课程相配套的实例资料集,对热点问题开展课堂讨论调动学生积极性,以小组为单位鼓励学生进行问题分析总结、讲解,并鼓励学生撰写小论文,以此激发学生的学习兴趣,提高学生自主学习和独立思考的能力。。通过研讨式教学,学生良好的思考习惯建立起来,学习态度由被动转为主动,实现了学习过程的立体化。

二、研讨式教学效果分析

相对于传统灌输式教学方式,研讨式教学建立了融洽的师生关系,激发了学生的创造欲望。研讨式教学为每一位学生发挥个性提供了良好的平台,学生的个性得到尊重,创新意识和能力得到解放,学生更加积极主动的观察思考。在师生关系上,实现了从主客关系到主主关系的转变;在教学目标上,实现从“授人以鱼”到“授人以渔”的转变;教学方式上,实现从“讲授式”到“研讨式”的转变;在教学形式上,实现从“一言堂”到“群言堂”的转变;在教学评价上,实现从“一张试卷定高下”到按学生的实际表现和能力来综合评定成绩的转变。研讨式教学实现了对学生各方面能力的全面培养,其中包括学生的自学能力、思维能力、表达能力、创新能力等等,达到真正提高学生综合素质的目的。

三、结语

第3篇

1光纤通信技术的定义。

电力通信中光纤通信技术,就是采取光导纤维作为传输介质对各种不同信号进行传输的形式,光纤通信技术承载量相当大,且安全可靠,在人们生活与生产中的应用效益足已证明其使用价值不可限量。光纤通信技术通常采用电气绝缘体进行制作,在制造过程中均采取多芯组成光缆,这样既可使通信的质量得到有效保证,又缩小了信息传输过程中所占据的空间。

2光纤通信技术的优势。

光纤通信技术同传统的通信方式进行相比,在技术方面有很多闪光点,同时在应用中也发挥着它不可代替的作用,光线通信技术在当前的应用中包括有三大类。

(1)波分复用技术

该技术主要是选取异同信道光波的形式。在进行实际操作过程中,通常绝大多数采取单模光纤损耗低区,然后与宽带资源相互结合,最终让其分成多个不同信道,在一般情况之下进行耦合与分离不同的光波时需要采取分波器。

(2)光纤传感技术

该技术在进行传输相应的信息时需要采取传感器,能够理解为传感器扮演着一个中介的角色,该种方式的能量消耗与传统方式相比之下,消耗相对较小,通常其包含有功能型与非功能型。

(3)光纤接入技术

该技术是目前实际应用中相对较广的一种,它能够对各种与窄带业务的问题与事故加以有效处理,而且该技术还可以非常高效地对各种不同的多媒体图像及数据信息进行有效解决。

二、光纤通信技术在电力通信系统中的实际应用

电力通信系统中应用光纤通信网是一个纷繁复杂、难度相当大的工程。随着社会经济的不断发展,电力通信水平也面临着一轮全新的挑战,而当前极具发展潜力的光纤技术被普遍应用于其中,其发挥的作用不言而喻。

1光纤复合相线。

光纤复合相线主要是指在输电线路相线中光纤单元复合的一种电力光缆。它可以预防架空线路遭受限制或阻碍,以此避免遭到雷击破坏,并且运行的相线也可更好地保证地线以绝缘方式正常运行,更加节省电力电能。

2光纤复合地线。

电力系统的传输过程中,在地线里带有部分光纤单元。不但它们可以尽情发挥地线的功能,也具有光纤材料的各种优点,无需特别的保护和维修,方便、稳定且安全。但是该种线路依然存在一些不足之处,就是要投入较大的建设成本。所以该种类型的光纤广泛应用于改造旧线路与建设新线路上。其能预防外界力量的破坏,可以对电线系统加以保护;再者也能够充分地利用传播中的数据信息,进而可实现架空地线的各种不同标准与需求。

3自承式光缆。

该种类型的光缆拥有异同的分类,比如:全介质自承式与金属自承式。全介质自承式光缆的质量小,直径小,密度也相对小,其构造具有全绝缘性,并且它的光学特征和功能还相对比较稳定,能在控制停电中所出现的损失有一定的优势,是一种拥有功能特殊的光纤原料。金属自承式的光缆结构比较简明又单纯,且所投入的成本也比较低廉,也不用把热容量或短路电流等问题纳入到整个系统运行中进行考虑,正由于该种类型的光缆具备诸多优点,所以使得它们被广泛地应用到实际中。

4电力特种光缆。

该种通信光缆属于特征与性能相对特别的一类,其支架的建设主要依靠线路杆塔资源作为基础。其含有的种类主要有:MASS/ADSS/OPGWOPAC等,其中ADSS/OPGW从目前来看应用方面相当普遍,这是由于自身构造与安装形态相对复杂、特殊,该种光缆可有效避免遭到外界力量的破坏。该种光缆自身的材料成本相对昂贵,但由于该种光缆是在沿着电力系统自身的线路杆塔上展开施工的,所在也可以有利于对成本投入的节约。ADSS类型的光缆可以在强电场与长跨距中得到很好的应用,不会给铁塔造成负面影响,而且是一种质量相对较轻的绝缘介质,该种光缆的优点是维修和维护相当方便,安装过程中无需切断电源。而OPGW光缆其安全系数相对较高,很难盗取,它的具体的优势在于使用周期长、传输信号的损耗度低,重建频率与维修率较低,而其不足之处表现于难以经受雷击。

三、光纤通信技术在电力通信中的发展方向

1新型光纤的应用。

目前IP的业务量节节攀升,电信网络也需不断创新与发展,而光纤正是其发展的根本所在。当前都是远距离信号传输,传输质量有很高的要求,原来的单模光纤很难满足发展需求,因此研究与开发新型光纤是电力系统迅速发展的需要。随着现在干线网要求的逐步提高与城域网建设的不断发展,无水吸收峰光纤与非零色散光纤该两种新型的光纤已经在社会各界得到广泛应用。

2使用光接入网。

随着网络技术的进步与创新,网络的传输与交换也逐渐推陈出新。而智能化网络具有数字化、高度集成、主宰网络的优势,其将是网络发展的必然趋势。在现在网络的接入通常采用双绞线,双绞线即便其传输质量表现较为卓越,可还是稍逊色于光纤的传输效果。若运用光接入网的话,就会降低维护与管理网络的成本,乃至能够开发光透明网络,让真正的多媒体得以实现。

3光联网的未来。

若光联网得到应用与发展,光网络将拥有巨大的容量、网络节点很多、网络范围非常广,并且网络的透明度也随之有所增加,可将各种不同的信号加以连接,提高网络的灵活性。部分欧美发达国家已在光联网上投入了很大的资金、人力与物力,我国目前也在该方向进行探索与研究。光联网在将来的通信中光联网将会发挥其巨大的效用,促进电力通信的迅猛发展。

四、结语

第4篇

1光纤接入网的拓扑构造

1.1有源光纤双星网——ADS在交换局给各用户以单一的星形网方法敷设光纤到达规定的距离后分别设置光纤的运程终端ODT,再用单一的星形网方法进行延伸到用户端,如图2所示。该构造是使用有源光纤传送设施呈现多路复用的运作方法,光纤的远程终端复用器进行复接,进而复用信号在光纤的远程终端以及交换局间的点对点传送线路传输,且运用线路终端进行每一端的终接。

1.2无源光纤双星网——PND无源光纤双星形与有源光纤双星形本质上的区别就是网络的自身不使用任何的有源电子器件,仅仅在用户线上通过无源的光分离器,这样就能够呈现交换局以及光网络单元间的点对多点的传送。所以,在网络上能够降低光纤的数量,且诸多的用户能够共享网络上的设施,业务呈透明形,还容易升级与扩容,与以后的宽带综合业务数字网络链接,业务较为灵活,能最大化地运用光纤的带宽,有很好的网管体系,维护与运营费用较低。如图3所示为无源光分离器简图。

1.3环形网络光纤有两个不同的物理路,是接入光节点将诸多的光节点进行有效的串联,且首位衔接,呈现环形的网络构造。有源光纤的接入设施跟同步的光纤设施都能够组成环形的网络构造形式,这样的构造可以增多光纤的接入网管理力度,且上下的支路较为灵活,组网便捷。环形网络的容量比较低,且绝大多数的业务会汇聚在一个节点处,网络的保护方法通常使用二线单向通道进行倒换方法。在其他的有源光纤接入设施呈现环形网络时,它的保护功能通常就使用1+1的线路保护。

2机场有线通信网对光接入网的选择

用户密度比较大的大楼以及楼群、距离电话交换局很远的又相对集中的用户群体可以使用有源双星网络。利用全数字的传送方法提供电话通信的信道、数据信道、非话业务等,让原有的传送量为9600kbit/s及以下的速率有效地提升至32Mbit/s等以下的各类标准效率,且增强了传送的信道,还满足了机场各个部分的用户通信业务各类要求,改善了通信的最终质量。如图4所示为机场到发报台光接入点网络结构简图。在业务量的要求非常大时,对通信的安全性要求很高的部门有转报室、调度热线、雷达站点、票务专线、气象中心等,均选择环形网。新建且相对较小的用户群体,如一般的政府部门,可选择无源双星网。

光纤接入网在总体的通信网络中有着重要的地位,且对民航的有线通信进展是不容忽视的,应尽快结合实际的状况,由点到面地进行有效的试点工作。在接入网络上,光纤的接入方法不会在短时间内即刻替代电缆接入方法。这也是当前的经济等综合业务要求不同方面的因素。如图5所示为机场的光接入网络虚拟图。

3结语

随着我国通信技术的迅猛进展,光纤成为了最主要的通信传送方式之一,且得到了广泛的使用。此时,对光纤的高效率、安全稳定运行有了更高的标准。怎样利用好现存在的电缆网络,并开发使用复用技术,强化传送的力度,拓展容量是我们当下不可忽略的大问题。现阶段,我国的移动通信公司以及联通公司都逐步展开了移动数据此业务,让我国的GPRS能够快速有效地升温。我国的移动市场以及数据通信均不稳定平衡,这就使我国的移动数据业务短期内市场非常不明朗,不过各个运营商都在考虑实现市场以及未来的竞争,要快速地提升移动数据通信类业务能力,并且还要符合中国的市场应用,从而为我国的机场光纤通信运用打下坚实的基础。

作者:苏宝礼单位:交通运输部北海第一救助飞行队

第5篇

由于电力通信业务量的日益增长,供电单位对供电系统可靠性要求也越来越高。各种有关的电力信息需要更为可靠、稳定、安全的传输中介,电力系统通信面临着前所未有的挑战。此时光纤技术不断发展完善,并得到广泛的关注和认可。光纤通信技术的可靠性、实时性、有效性等特点正好符合了电力通信系统的要求。因此,光纤通信技术也就成为了电力信息系统的关键技术。

1光纤通道的配置方式

电力系统主要是由发电厂、输变电系统、配电系统等共同组成。而在系统中,信息的采集和传输是其正常运行的关键因素,因此光纤通信技术在电力系统中扮演着越来越重要的角色。双光纤通信的组网方式极其灵活,大致分为树形、星型、链型、网状、环状等。按照智能电网配电自动化系统的特点,光纤网通常采用环型网或者树型环型相结合的网络,并通过与计算机的连接实现数据资源共享。由于环路节点较多,为防止光缆设备故障、通讯中断等通信事故出现,大多数企业采用双光纤环路自愈网,并配置具有自愈功能和自动切换的光纤收发器。当光缆出现故障时,断点两侧的光纤设备通过双环路切换器构成新的光纤路径,实现自愈功能,为电网的运行调度和继电保护系统保驾护航。

2光纤通信有利于保护输电线路

供电单位作为一个特殊的部门,对电网可靠性的要求极高,因此对继电保护的要求也越来越高。当系统发生故障时要求必须做出及时高效的反应,快速切除,及时解决故障,绝不允许出现任何纰漏,继电保护发生拒动的现象更是不被允许的。另一保护电网的有效方法是全线速动的纵联保护,其保护作用的发挥程度直接关系到高压电网的稳定运行。当出现故障时,高压线路纵联保护两端的保护装置通过故障信息的交换,可以甄别出是本线路故障还是区外故障,并根据不同的故障采取不同的方法。在遇到区外故障时不动作,在甄别出是区内故障时,快速反应及时切除故障以达到保护的作用。光纤抗干扰性,容量大的特点为电流差动保护的应用提供了强大的技术支持。

3光纤通信在电网中的发展前景

随着经济、技术的发展,光纤通信技术、计算机技术也越来越多的应用到了现代生产生活中。光纤通信讯技术在电力系统中的应用也越来越深入广泛,电力系统调度自动化已经成为了一种必然发展趋势。通过数字传输手段传递电量讯号、用光纤作为传输媒介取代金属电缆共同构成了网络通信的二次系统,这种网络二次系统成为电力系统的未来发展趋势。自动化技术的发展是智能化电力系统的基础。而智能化电力系统则是对信息传输全程实现数字化,这对光纤通信技术提出了更高的要求。光纤通信技术也应积极创新,与时俱进,实现应用上的平稳发展,并对重点技术及科技难题进行逐一突破、逐步完善。电网现代化要求调度自动化进一步加强,要求人力从繁复的劳动中解放出来。调度自动化有利于优化配电网络结构,简化保护和运营程序,提高供电的可靠性和电能质量。作为新的传输媒介,将光纤运用到电力通信系统中,并依据电力系统自身特点对其进行科学的改进,可以提高电力系统各个组成部分的运转能力,也可以提高电力系统运转的稳定性、安全性和可靠性。随着光纤的不断发展进步,电力通信会越来越完善,光纤在电力系统中的应用也会越来越深化。

4小结

综上所述,光纤通信技术在电力通信调度自动化发展中发挥着无可替代的作用,为电力系统调度自动化提供了强大的技术支持。光纤因其可靠性、实时性、有效性的特点使其具有了广阔的发展前景,但同时,我们也应看到电力系统自动化对光纤通信技术提出的更高的要求。在实际应用中,应当高度重视这一光纤通信技术并且与时俱进,充分发挥光纤通信技术的优势,使其为电力系统调度自动化的一大助力。

作者:韩亚男

第6篇

1.1电力通信的主要方式

电力通信的主要方式主要就是以下这几个方面。首先是通过电力线载波来进行通信,这种通信方式主要就是用来输送工频电流,在通信的过程中,通过将各种信息用载波机来转换成高频的弱电流,然后在利用相应的电力线路来进行传输,这种通过电力线载波的通信方式的传输通道一般可靠性比较高,并且性价比也要高,同时这种电力通信方式还能够与电网建设同步,因此这是目前的一种主要电力通信方式。其次就是光纤通信,这种通信方式是一种新型的通信方式,但因为这种通信方式的各种优点,使得这种通信技术在诞生之后,就受到了电力部门的广泛应用,并且取得了巨大的发展。最后还有其它的一些传统通信方式,比如说明线电话以及音频电缆等,这些都是电力通信中的主要方式。

1.2电力通信网的特点

电力通信网的主要特点就是,电力通信网与其它的公用网相比有更高的可靠性与灵活性,因为电力通信网一般都是比较先进的通信技术,所以电力通信网相对于其他的一些电力通信系统而言具有需要优点,比如说电力通信网能够传输更多的信息、同时传输的种类也相当要复杂,通过电力通信网在传输信息的过程中还能够保持很强的时效性。同时电力通信网还具有很强的耐“冲击”性,通过电力通信还能够传输更为广泛的范围。

2.光纤通信技术在电力通信中应用的必要性

2.1电力通信系统的网络结构相对复杂

在整个电力通信系统,需要用到许多不同种类的通信设备,而设备与设备之间连接方式以及信息的转换方式也不一样,从而造成了整个电力通信系统的网络结构非常的复杂。比如说电力通信系统中的中继线传输、用户线的延伸等线路,还有载波设备与微波设备之间的转接等设备之间的信息转换,同时整个电力通信系统中的通信手段也非常的多。因此在这样的一种情况下,就使得整个电力通信系统的网络构成要非常的复杂。所以利用光纤通信技术应用到电力通信中非一项非常有必要的举措。

2.2电力通信系统中的信息传输量小

电力通信系统在运行的过程中,电力通信系统的传输信息量相对较少,但同时要求要有非常强的时效性。在电力通信系统中,传输信息的过程中需要继电保护信号以及话音信号,并且电力通信系统要有电力负荷监测信息,包括各种图像信息与数字信息等,虽然在整个电力通信系统中,这些信息的量不是很大,但失效性却越好保证,因此同样需要应用光纤通信技术[3]。

2.3电力通信系统要求具备更高的可靠性

与灵活性如今随着社会经济的发展,人们对电力系统的依赖性越来越高,并且电力系统也已经成为了人们生活与工作的基础,这就要求电力供应系统拥有更高的稳定性。因此同时也就要求电力通信系统在工作的过程中,不容许出现各种间断或者是突变的现象,这就要求整个电力通信系统要具备更高的灵活性以及可靠性,同时因为光纤通信技术就具备了非常高的灵活性与可靠性,所以在电力通信系统中应用光纤通信技术有很高的必要性。

2.4电力通信系统要求具备更高的抗冲击性

对于整个电力通信系统而言,要想让电力通信保持长期稳定的工作,电力通信系统还需要具备另外一个要求,那就是电力通信系统要求具备更高的抗冲击能力。因为正电力通信系统的联系非常的紧密,因此一旦某一个地方出现了突发性的故障,就会对对很大范围内的通信造成影响,从而对整个通信造成很大的压力并造成很大的损失。因此在这样的一种情况下,电力通信系统一定要具备更高的抗冲击能力,而光纤通信技术就具备了非常高的抗冲击能力,所以说在电力通信系统中应用光纤通信技术是非常有必要的。

3.光纤通信技术在电力通信中的应用

光纤通信技术作为一种新型的通信技术,却能够在非常短的时间内得到广泛的应用,其主要的原因就是应为光纤通信技术所具备的优点,光纤通信技术具有非常强的抗电磁干扰能力也就是抗冲击能力,同时光纤通信技术还具有传输容量大与传输衰耗小等多种优点,因此这种技术在诞生之后就在电力通信系统中得到了广泛的应用,并迅速取得了巨大的发展。如今在电力通信系统中,除了普通光纤之外,还诞生了许多特种光纤,各种性能的光纤在电力通信系统中都得到了广泛的应用。比如说光纤复合底线(OPGW)、光纤复合相线(OPPC)以及全介质乘光缆(ADSS)等多种光纤,下面将主要介绍我国目前在电力通信系统中应用最多的几种光纤[4]。

3.1光纤复合地线

光纤复合地线(OPGW)是我国目前在电力通信系统中应用最为广泛的一种光纤,这种光纤复合地线也可以叫做地线复合光缆或者是光纤架空地线等,这种光纤通信技术是在电力传输线路的地线中包含了通信所使用的光纤单元,也就是光纤。这种光纤通信技术在电力通信系统的使用过程中,可靠性非常的高,基本上不需要去维护,但这种光纤通信技术的投入成本非常的高,因此这种光纤通信最好是在新建线路或者是旧线路中需要更换底线的使用最合适。采用这种光纤通信的主要功能有两个方面,第一个方面是使用这种光纤通信技术能够作为整个输电线路中的防雷线,对输电导线有很好的保护作用,能够提高其抗冲击性能。第二个方面就是能够通过复合在地线中的光纤来实现所有的信息传输,这种光纤复合地线能够将架空地线以及光缆综合起来[5]。光纤复合地线除了了具备各种光学性能之外,对架空地线的机械与电气性能也能够满足,因此这种光纤通信技术也就能够在所有的架空地线中使用,同时在工作运行的过程中,光纤单元还被放在了保护管内,对光纤有一个很好的保护作用,因此也就提高了整个电力通信过程中可靠性以及安全性,并且这种光纤复合地线在安装的过程中也不需要特殊安装工具。一般常见的光纤复合地线主要有三种结构,分别是铝管型、铝骨架型以及钢管性。光纤复合地线的发展对我国的电力通信通信系统而言有非常重要的意义,因为在电力通信系统中采用这种电力通信系统能够将电力系统中输电容量进一步提高,同时还能够让我国的架空线实现超高压化以及高自动化。尤其是对于我国目前的电力系统现状,因为我国的地域非常的辽阔,因此也就导致了我国的电力传输路线非常的广,需要大量的使用超高压架空线来输送电力,因此这种光纤通信技术在将来一定能够得到更大应用发展。

3.2光纤复合相线

在我国的电力通信系统中,有些地方可能不需要架空地线,但是在电力通信系统中的相线是一定要的,因此在传统的相线结构中加入相应的光纤,就能够将光纤通信技术应用到电力通信系统中去,从而形成了光纤复合相线,这种光纤复合相线与光纤复合地线虽然在结构上有些相似,但是这两种光纤通信技术在原则上却完全不一样。光纤复合相线主要是利用电力通信系统本身的线路资源,从而让整个电力通信系统中的频率资源、线路以及电磁兼容性等各个方面都保持协调,这中光纤通信技术也是如今的一种新型通信光缆。光纤复合相线一开始是在一些发达国家使用的,主要是将光纤复合相线用在150KV的电力系统中,如今这种光纤通信技术已经能够在更高的电压系统中开始应用了。如今在我国的电力通信系统中,35KV以下的线路中一般都是用三相电力系统来进行传输,而通信方式则一般还是采用传统的方式来进行传输,而将光纤通信技术应用进来之后,一般都是将光纤复合相线来代替三相电力系统的一相,让光纤复合相线与其它的两相来组成三相电力系统,这样在整个电力通信系统中,就不需要在另外架设通信线路了,并且能够大大提升电力通信系统的传输质量与数量[6]。光纤复合相线在设计的过程中,主要就是参照了光纤复合地线与三相电力系统来进行设计的,而在光纤复合相线在具体的施工过程中,需要将相线中的光纤单元单独的分离出来,其中主要运用了光纤的接续技术以及光电子的分离技术,因此就要求光纤复合相线在施工的过程中要有一个独特的接线盒,目前我国在这一方面已经取得了一定的进展。

3.3全介质自承光缆

全介质自承光缆(ADDS)在我国的电力通信系统也已经得到了非常广泛的使用,这中光纤通信技术一般是在220KV、110KV以及35KV的电压输电线进行使用的,而且这种光纤通信技术一般是在一些已经建设好的线路上进行使用的。这种光纤通信技术的出现,能够让我国的电力部门实现直接的高压输电线杆搭建自己的通信网络,这种光纤通信技术能够在各种环境下实现架空敷设。这种光纤通信的出现,大大的推动了我国电力通信系统的发展。如今是一个数据通信发展非常迅速的时代,电力部门在应用了这项光纤通信技术之后,不仅能够满足自身的通信需求,而且还能够开设出新的通信业务。其主要的原因就是因为这种全介质自承光缆具有非常高的光纤传输性能以及光缆机械性能,并且这种全介质自承光缆还具有很好的环境性能,在施工的时候还能够与其它的高压电力传输线路一起进行铺设,主要是因为这种光纤通信技术在传输强电场环境中,光缆的传输信号不会受到任何的干扰,抗干扰的能力特别强,因此这就成为了电力通信中的一种非常有效且方便的传输方式。全介质自承光缆之所以会有这些优点,其组成的材料一般都是非金属材料,并且这种光缆的外套也是由聚乙烯或者是耐电痕的外套组成的,全介质自承光缆在设计的过程中,充分的考虑了我国电力线路的实际情况,因此能够在各种高压输电线路中使用,并且在具体的应用中,也要根据具体的情况来选择合适的外护套,比如说在10KV与35KV的输电线路中,就需要采用聚乙烯外护套。同时在光缆设计的过程中,还考虑了各种外界环境的变化对光缆的影响,比如说风速、温度以及雨雪等因素,因此这种光纤通信技术还具有很强的抗冲击性能,并且在施工的过程中也非常的方便。

4.电力光纤通信网的组网技术

4.1波分复用技术

在电力系统中应用光纤通信技术是我国电力通信行业在时展中需要,而电力光纤通信网的组网技术其中一项非常中的技术,其中波分复用技术就是一种典型的电力光纤通信网的组网技术。这种技术主要是将许多不同波长的光信号复合到同一根光纤上,也是一种再传输技术,这种技术主要是根据光波的波长将光纤的低损耗窗口进行划分,然后将光波当成是信号的载波,就能够将不同波长的信号合并在一起,在一根光纤中同时进行传输,然后在信号的接受端,将合并起来的波长进行分开,这样就能够在一根光纤中实现多种信号的传输,而将两个方向相反的信号在不同的波长中进行传输,就能够在同一根光纤中实现双向传输。同时波分复用技术也可以根据波峰之间的间隔不同,而形成密集波分复用技术以及粗波分复用技术。

4.2同步数字技术

同步数字技术组成的同步数字体系是一种有集复接、交换以及线路传输为一体的信息传输网络。在同步数字信号中,主要是为数字信息提供一定的等级,然后通过相应的技术将低等级的同步数字技术转换成高等级的同步数字技术。在将各种信息传输实现同步的时候,就能够大大的提升网络的传输速度,从而增加网络的利用率。在同步数字技术中,主要的特点就是将光纤通信技术中的复接以及分接技术进行了简化,这样就能够提升网络的灵活性以及可靠性,而且在整个同步数字体系中,还带有一套自我保护的体系,这就使得这种同步数字技术在所使用的过程中,能够达到很高的可靠性。因此同步数字技术不仅能够将电力通信的传输能力提升上去,而且还能够将为整个电力通信系统提供很高的安全性。

5.结语

第7篇

(1)在电力通信中,完成通信需要多个设备的参与,而这主要是由于设备的性质不同、功能不同,且所承担的任务也不同,因此,这就使得电力系统通信网络结构复杂,由于传统的通信已无法适应电力系统通信网络发展的要求,因此,把光纤通信作为介质,提高通信质量也就成为一种趋势。(2)电力通信与其它通信之间的区别在于,其不仅对传输信息质量要求高,而且在通信实时性方面有着较高要求。随着中国经济社会发展的转型升级,电网规模的扩大,通信信号的种类日渐繁杂,同样要求在电力系统通信领域应用光纤通信,不仅包括继电保护信号,也包括语音信号,通过应用光纤通信,可提高信号传输质量。(3)由于电力系统的覆盖范围广,在通信这一领域,对传输范围和抗冲击能力均有较高的要求,为了最大程度上降低通信的损耗,保证传输的质量,特别是长距离传输的质量,也要求应用光纤通信。

2电力系统中光纤通信的特点

光纤通信的特点,主要是相对于传统电力通信方式来说的,这些特点同时也可视为光纤通信的优点,主要包括以下几个方面:(1)电力系统中的光纤通信的通信容量相当大,一般情况下,一对光纤便足以满足上百路甚至上千路信息路径通过,同时在一根光缆中,含有几十根甚至上百根光纤纤芯。(2)众所周知,光纤的制作材料一般为硅或者玻璃,所以这也就意味着光纤制作的原料来源非常丰富,所以对于节约金属材料的使用量具有重要的意义。(3)在电力系统通信领域中,光纤通信的保密性良好,外界的电磁干扰不容易对其造成影响,同时光纤通信也不受雷击、潮湿等因素的影响。(4)电力系统用的光纤,主要是OPGW光缆,其敷设与地线一次性完成,比较简单。(5)由于光纤通信无感应性能,所以电力系统中的光纤通信不容易受到电位升高的影响,毫无疑问,光纤通信技术是电力通信系统最为理想的通信技术。

3光纤通信在电力系统中的应用领域

光纤通信在电力系统中主要在以下方面有应用:(1)电网监控与调度自动化。电网智能化和自动化程度提高,在电网中应用光纤通信技术成为一种常态,在监控与调度中的应用表现为:把监控传感器采集到的状态信息传输给上级系统,同时下达有关的指令。(2)在配网自动化中的应用。确保系统运行的安全性与可靠性,要求在电力系统通信领域应用光纤通信,在状态监测、调度管理与分层控制等方面具有重要的作用。此外,光纤通信在继电保护器中也有着应用,主要是用于保护电流纵差中的导引线、保护继电保护装置、智能变电站或控制室内的信号传输线等。

4光纤通信在电力系统中的发展前景

现阶段,光纤通信在快速发展的形势下,已经发展到第五代光纤通信阶段,在这一阶段的光纤通信技术,具有容量大、信号传输速率快等诸多的优点。随着技术的进度与经贸水平的提高,全球的信息化程度逐步提高,因此对光纤通信的通信距离、容量和速度等提出了更高的要求。电力系统中,光纤通信的发展前景包括下面几个方面:

4.1光纤传送网新技术

目前,传输40GE/100GE网络的技术中,主要包括两种技术:①40Gbit/s技术;②100Gbit/s技术。同时,这两种技术中又包含有编码调制技术、色散补偿技术与非线性抑制技术,以及OSNR保证对策等几个方面。在未来电力系统发展过程中,为有效保证长距离光纤通信的要求,应使用光纤传输网新技术,主要是FEC技术,也就是多种增强前向纠错技术,以及动态增益均衡技术、新型编码调制技术等,通过利用电均衡接收机、功率调整技术等,可实现增加容量的目的。而频分复用技术、偏振复用技术和波分复用技术等,在未来的电力系统通信中,毫无疑问将会有越来越广泛的应用。

4.2光纤通信接入网新技术

在现阶段,电力系统中光纤通信接入技术主要存在传输距离、分光比、业务支持能力等方面的差距。目前光纤接入技术包括EPON技术(即太无源光网络)、GPON技术(即基于I-TU-TG984标准的新宽带无源光网络),以及基于星型结构的以太网接入技术、基于树形拓扑的APON/BPON技术等。一般情况下,EPON技术的实现,相比于GPON技术来说要简单不少,但是对于多业务的支持能力不如GPON技术。而基于星型结构的光纤接入技术是在传统的以太网的基础上实现的电力系统光纤通信的接入技术,这种技术适宜在单用户对宽带的要求大的区域(此种光纤接入情况下只能对单个用户进行连接)或者具有丰富光纤资源的区域,因此,相对来说基于星型结构的光纤接入技术的范围比较窄,并不是主流光纤接入技术的发展方向。

4.3光纤通信光交换新技术

对于光网络来说,典型属性之一便是光交换。当前,基于实现特征与交换颗粒进行光交换技术的划分,可以分为OPS即光分组交换、OBS即光突发交换、OCS即光路/波长交换。OCS的交换单位是波长,具有易于实现,交换颗粒大的优势,然而宽带的利用率以及复用特性非常差;OPS的交换单位是分组,并且交换的颗粒较小,因此不易于实现,然而其宽带的利用率以及统计复用特性非常好。基于光路/波长光交换技术与光分组交换技术的OBS,相对来说较为容易实现,同时,宽带利用率和复用特性能较好,因此,在未来电力系统通信中光纤通信的应用中,OBS会处于主导位置。

5结语

第8篇

1.DPSK传输系统模型

在DPSK光纤通信系统中,发射机主要由差分编码器、激光源、MZ调制器组成,接收机则包括MZ干涉仪、平衡检测器和一个电低通滤波器,传输媒介由一段或多段光纤组成,在每个中继站有一个光放大器用来补偿光纤的传输损耗,本文使用前置补偿的方法。DPSK传输系统的模型如图1至3所示。DPSK调制码型为占空比为67%的RZ-DPSK(CSRZ-DPSK)码,原始信号用40Gb/s的伪随机二进制序列表示。系统工作波长为1550nm,传输距离为1200km,传输链路由15个环路段组成,每个环路段包括一段80km的单模光纤(SMF)和一段17km的色散补偿光纤(DCF),使色散得到完全补偿。SMF的前置掺饵光纤放大器(EDFA)用于补偿环路段的衰减,并规定SMF的入纤光功率为4dB,DCF的前置EDFA规定DCF的入纤光功率为0dB,EDFA的噪声指数为4dB,电滤波器为四阶低通滤波器,截止频谱为32GHz。

2.仿真结果分析

2.1调制格式的色散容限我们用眼图张开度代价衡量不同调制格式对色散效应的容限。测量调制格式的色散容限时,所采用的传输链路与图1稍有不同,只保留一段80km的SMF光纤,SMF光纤的参数设置中,去掉非线性效应和偏振模色散效应。保持光纤长度不变,通过改变SMF中色散系数的大小,测量接收信号的眼图和背靠背信号眼图,计算眼图张开度代价(EOP)。EOP与色散值关系曲线如图4所示。通过比较达到规定EOP时所允许的最大色散值,可对比图中四种调制格式的色散容限。由图4可以看出,在40Gb/s的单信道光传输系统中,各种调制格式的色散容限的上升趋势基本相同,达到2dB眼图张开度代价时,NRZ信号的色散容限最大,RZ-DPSK信号的色散容限最小。RZ格式相对于NRZ格式,其脉宽较小,频谱较宽,所以受色散效应的影响比NRZ大。CSRZ-DPSK的频谱宽度介于NRZ-DPSK和RZ-DPSK之间,所以它的色散容限高于RZ调制格式。由上面的仿真中知道,在传输系统中都必须考虑色散补偿,因为普通的SMF每公里的色散值为17ps/nm/km,不管使用哪种调制格式,不加色散补偿时,其传输距离只能限制在几公里内[3]。

2.2调制格式的非线性容限在高速光纤传输系统中,非线性效应会导致光纤传输特性的劣化,如信噪比降低,信号失真等。对于单信道系统,自相位调制(SPM)是最主要的非线性效应[4]。搭建一个类似图1结构的40Gb/s单信道光传输系统,传输距离为160km。在色散完全补偿(不考虑偏振模色散)的情况下,使用SMF和DCF前面的放大器规定其入纤功率。通过改变SMF的入纤光功率的大小(引起光纤非线性的大小变化),测量受其影响的接收信号眼图张开度,与背靠背眼图张开度比较,得到眼图张开度代价(EOP)。下图为传输距离为160km时,NRZ、NRZ-DPSK、33%RZ-DPSK和CSRZ-DPSK四种调制格式的眼图张开度代价随SMF入纤光功率大小的变化曲线。通过比较达到规定EOP时所允许的最大SMF入纤光功率,可对比图中四种调制格式的非线性容限。从图中可看出,在40Gb/s的单信道光传输系统中,达到2dB眼图张开度代价时,RZ-DPSK的非线性容限最大;其次是CSRZ-DPSK和NRZ-DPSK;NRZ的非线性容限最小。通过NRZ-DPSK与NRZ两者的对比,验证了DPSK的抗非线性性能比NRZ好;通过NRZ-DPSK与RZ-DPSK的对比,验证了RZ码型的抗非线性性能比NRZ码型好。DPSK的非线性容限较高,是因为DPSK调制格式利用相邻相位差来传递信息,在幅度上采用恒包络调制,对于自相位调制(SPM),恒包络调制每个码元功率均分,所以产生的非线性相移基本一致,在接收端相邻码元之间的相位差保持不变,所以SPM对DPSK调制格式的影响比较小[5]。

传输距离的增加会造成非线性效应的累积,导致信号恶化,误码率增高。特别是在长距离传输系统中,ASE噪声功率随着光放大器数目的增多而增大,G-M效应(非线性相位噪声)对传输信号的干扰也越来越大,降低了信号的最大传输距离。为了进一步验证DPSK格式和OOK格式的非线性容限,我们研究了各种调制格式的接收性能和传输距离的关系。从图中可以看出,在40Gb/s长距离传输中,RZ-DPSK的Q值最高,其次是CSRZ-DPSK和NRZ-DPSK,而NRZ最低。随着传输距离的增加,四种调制格式的接收性能都呈下降趋势,NRZ格式在800km时Q值已在5dB以下,因此在长距离传输当中一般不采用NRZ,而DPSK有较高的非线性容限,在长距离传输系统中明显比传统的强度调制格式有优势,因而得到了广泛的应用。在基于DPSK的调制格式中,RZ-DPSK具有较好的非线性容限,因而能更好地抑制非线性相位噪声的影响,所以能传输更远的距离。

3.结语

本文通过光通信仿真软件OptiSystem7.0搭建了一个40Gb/s单信道1200km的光传输系统模型,并对DPSK格式在长距离高速率系统中的抗非线性效应和抗色散能力两个方面来进行了仿真研究,验证了DPSK比OOK更适合于在长距离高速率系统的传输。具体表述如下:(1)在40Gb/s的高速率长距离传输系统中,DPSK比NRZ的色散容限小,而CSRZ-DPSK的色散容限接近NRZ,说明载波抑制的DPSK能提高DPSK的抗色散能力。不管使用哪种调制格式,传输系统都必须考虑色散补偿,因为普通的SMF每公里的色散值为17ps/nm/km,不加色散补偿时,其传输距离只能限制在几公里内。(2)在40Gb/s的高速传输系统中,DPSK的抗非线性效应的能力明显高于NRZ。主要原因:DPSK调制格式利用相邻相位差来传递信息,在幅度上采用恒包络调制,使得自相位调制(SPM)对DPSK信号的影响比较小;DPSK调制格式采用平衡接收机,对光信噪比的要求比OOK调制格式低3dB。

作者:何嘉贤单位:广东电网公司佛山供电局

第9篇

1.1光纤技术的应用情况

1.1.1充当传感器方面的应用现阶段,汽车的配电盘、计算机等都在使用光导纤维进行图像或者光源的传输。光纤技术若与敏感元件进行组合,则能够制成多种多样的传感器,对相关的温度、位移、压力等进行测量,从而不但节省了相关的资源,而且方便使用,具有广阔的发展空间。

1.1.2光纤技术在医学领域的应用光纤技术在医学领域内有着广泛的应用,比如可以利用光导纤维内窥镜可以导入患者的心脏等部位,同时还可以测量患者的体温、血压等生命体征,给医学带来极大的便利。

1.2光纤通信技术的应用情况

1.2.1在通信领域内的应用目前,光纤通信技术在通信领域内以光导纤维作为介质的光纤通信占有重要的地位。尤其是在本地通信、国际通信、城域通信等重要的通信行业中利用光纤通信技术的占有很大一部分。并且光纤通信技术已经开始扩展,成为通信领域中非常重要的技术之一,推动者通信行业的发展。

1.2.2在电力通信领域中的应用电力通信网是为了保证电力系统的安全稳定运行而产生的。目前,电力通信是电网调度自动化、网络运营市场化以及管理现代化的基础,也是电力系统的重要基础设施。随着科学技术的发展,我国从较为单一的通信电缆和电力线载波通信手段到如今包括光纤、数字微波、卫星等多种通信手段并用的现状。电力通信在协调电力系统发电、配电等组成部分的联合运转以及保证电网安全可靠运行等当面发挥了重要的作用。光纤在电力通信领域的应用和发展的潜力是巨大的。

1.2.3在有线电视网络方面的应用我国的光纤技术在上世纪九十年代就已经开始应用,经过多年的发展,光纤技术也在不断成熟,尤其是在电信传输、电力通信网和广播电视网等方面的应用更为显著。光纤技术的不断成熟在很大程度上推动了有线电视网络的发展。现阶段,广电综合信息网的规模不断扩大,系统的复杂程度也在不断增加,一定程度上对广电综合信息网的维护和管理工作带来较大的困难。因此,可以利用ATM+光纤或者综合SDH+光纤等构成宽带数字传输系统,或者可以构成多种形式的复合网络,这样才能够不断满足多种信息传输的需求。就目前我国技术条件而言,要想实现宽带多媒体网络已经成为了可能。但是由于诸多因素的影响,致使我国的有线电视网络处于主导地位,因此只有通过对有线电视网络不断进行改造而逐渐实现宽带多媒体传输网络的构建。

2光纤通信技术的发展趋势

2.1通信信道容量不断增加光纤通信技术在应用过程中各项技术已经得到了明显的转变。目前光纤通信技术10Gbps系统已经得到很大范围的使用,但是当前的光纤电缆与10Gbps系统还存在许多不匹配的地方。但是,若将不匹配的地方进行优化就很有可能进一步提升光纤通信的速度和容量。

2.2全光网络光纤通信的发展趋势乃是全光网络。全光网络主要是以光节点代替电节点,信息主要都是以光的形式进行传输和交换,交换机对信息的处理主要是根据其波长决定路由的。全光网络已经成为光纤通信发展的必然趋势,也将会成为未来信息网络的核心,因而全光网具有良好的发展前景。

3结语

第10篇

关键词:光纤通信光缆架设建设方案

2000年开始,隆尧县供电局分三期沿电力线路架设ADSS光缆(无金属自承式光缆),根据电网结构建立起两个SDH双环自愈光纤环网。目前光纤通信承担着全局行政电话、调度电话、调度自动化、计算机联网、图象监视、远程抄表等信息传输任务,有效地解决了困扰多年的通信质量和容量问题,为县级供电企业的现代化建设和创一流工作奠定了可靠基础。

1光纤通信现状

第一期工程称西环网(如图1所示),2000年底竣工,投资147.62万元,架设光缆60km,包含14个站点(含主站),实现双环自愈。第二期工程称东环网(如图1所示),2001年竣工,投资155万元,架设光缆50.73km,包含8个站点(含主站)。以上两期工程均采用ADSS光缆,沿35kV及以上电力线路架设,除隆尧站至柳行站为东、西两环和邢台市局共用通道采用18芯光缆外,其它均采用8芯光缆,两环中心站均设在县局,在县局实现数据交换。目前全县17座局属变电所、12个供电所及东局、西局、北局均实现光纤通信。

2农网改造时建光纤通信

农网改造时建光纤通信也称第三期工程。投资80万元,架设ADSS光缆38km。分别为:①华龙站-莲子站-白寨站工程,沿35kV线路架设,为新建莲子站提供光纤通道,同时使东环网实现双环自愈。②冯村站通信工程。由于冯村站与隆尧35kV主网不相连,因此沿10kV线路架设光缆,该工程为冯村站、尹村供电所提供通道,信息量大,因此设计接入西环网(如图1所示,利用光纤将冯村站点串入主网)。③南位所通信工程。沿10kV线路架设光缆,该工程为南位供电所提供通道,信息量小,因此设计"T"接接入西环网。

3光缆架设计算

(1)配盘。根据电力线长度以4km左右分段,光缆耐张尽可能设在线路转角处,以减少耐张金具的使用数量。配盘长度L计算如下:

L=1.03L线+L熔接1+L熔接2

式中L线-该光缆耐张段电力线路长度,1.03为光缆弧垂系数

L熔接1、L熔接2-光缆线路(或进站)熔接预留长度,35kV杆塔取15m,110kV杆塔取20m,进站熔接预留

长度为终端杆塔至通信机房的长度

图1光纤通信环网

(2)耐张金具。耐张金具数量N耐张计算如下:

N耐张=2×(N配盘+N转角)

式中N配盘-该电力线路光缆配盘数

N转角-全程每个光缆耐张段间大于15°转角的个数,但不含既是光缆耐张又是线路转角的点

(3)悬挂金具。悬挂金具数量N悬挂计算如下:

N悬挂=N总数-N耐张/2-1

式中N总数-该电力线路杆塔总数

4建设方案

在进行系统工程设计时,应首先编制近期及远期通信发展规划,根据整个通信网的特点和组成方式、设备类型及数量,提出较为合理的系统工程设计,最主要的是整个系统传输性能要满足要求。

(1)光路。本通信网为光纤双环自愈环网,设备采用GK-G04、GK-G04ASDH光端机。光端机配置:县局中心站采用双TM配置64×2MGK-G04光端机,站均采用8×2M双光口GK-G04A光端机。复接后的光纤线路速率为标准的STM-1信号155.520Mb/s,每个环网最大传输容量为64个2.048Mb/s异源数字信号(合1920话路)。现已开通21个2Mb/s端口。环网拓扑如图2所示。

图2光纤双环自愈环网拓朴图

方案的特点:①灵活的复接结构,支持多种支路接口。不同比特率的信号都是一次复接成155M的信号,支路接口为电接口,也可以是光分支。例如,水饭所、东良所、牛桥所及待建的南位所通信工程均采用"T"接方式,既能满足环网要求又不占用物理光缆纤芯,如图2所示。②采用光纤双环自愈的组网方式,可对各ADM节点开放业务,当环内的任一节点发生故障,可保证全部业务通信不中断。③兼容性:所有节点设备的光接口板、电接口板、支路板、公务板、电源板相同,各种节点设备的单元背板也相同。④先进的维护手段。可进行两位站号的公务电话联络,具有完备的网络管理功能,可监测到各节点的所有告警,对支路的上下及方向进行配置,统计、打印系统的误码信息。

(2)PCM终端设备。终端设备采用V2020型智能PCM基群设备,县局中心站和站采用一对一方式,配置双E1端口。具有多种用户接口,包括二线、四线音频接口、E/M接口和数据接口(V.24、V.35、G703)及10-BaseT以太网接口,可实现与各种交换机、话机及数据终端设备的连接,完成话音、数据及视频图象等信息传输任务。

(3)网管:网管安装在县局通信机房。该系统是一个Windows应用程序,可实现对全部设备的网络维护和管理,亦可实时监测网络和设备的运行情况。

(4)所有站点均配置标准机架、配备UPS提供不间断220V交流电源,经转换输出直流供电,以保证通信设备的可靠运行。

5系统规划和设想

(1)县城配电自动化系统2001年底投入运行,各开关的FTU部分和公用配变的TTU均采用光纤实现与县局主站的通信,光纤均采用8芯普通光缆沿10kV主干线架设。

(2)新建变电所。根据站点的重要性的地理位置,确定采用环入或"T"接方式接入系统。

(3)与省电力公司光纤通信网链接。省电力公司投资的王段220kV站--隆尧220kV站光纤通信设计在近几年内竣工投运,届时隆尧供电局即可很方便的与省电力公司联网,实现数据共享。

第11篇

关键词:光纤通信技术特点发展趋势光纤链路现场测试

1光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。

2光纤通信技术的特点

2.1频带极宽,通信容量大。光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。

2.2损耗低,中继距离长。目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。

2.3抗电磁干扰能力强。石英有很强的抗腐蚀性,而且绝缘性好。而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。

2.4无串音干扰,保密性好。在电波传输的过程中,电磁波的传播容易泄露,保密性差。而光波在光纤中传播,不会发生串扰的现象,保密性强。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。正是因为光纤的这些优点,光纤的应用范围越来越广。

3不断发展的光纤通信技术

3.1SDH系统光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。伴随着科技的进步,特别是计算机网络技术的发展,传输数据也越来越大。分组信号与连续码流的特点完全不同,它具有不确定性,因此传送这种信号,是光通信技术需要解决的难题。而且两种传送设备也是有很大区别的。

3.2不断增加的信道容量光通信系统能从PDH发展到SDH,从155Mb/s发展到lOGb/s,近来,4OGB/s已实现商品化。专家们在研究更大容量的,如160Gb/s(单波道)系统已经试验成功,目前还在为其制定相应的标准。此外,科学家还在研究系统容量更大的通讯技术。

3.3光纤传输距离从宏观上说,光纤的传输距离是越远越好,因此研究光纤的研究人员们,一直在这方面努力。在光纤放大器投入使用后,不断有对光纤传输距离的突破,为增大无再生中继距离创造了条件。

3.4向城域网发展光传输目前正从骨干网向城域网发展,光传输逐渐靠近业务节点。而人们通常认为光传输作为一种传输信息的手段还不适应城域网。作为业务节点,既接近用户,又能保证信息的安全传输,而用户还希望光传输能带来更多的便利服务。

3.5互联网发展需求与下一代全光网络发展趋势近年来,互联网业发展迅速,IP业务也随之火爆。研究表明,随着IP业的迅速发展,通信业将面临“洗牌”,并孕育着新技术的出现。随着软件控制的进一步开发和发展,现代的光通信正逐步向智能化发展,它能灵活的让营运者自由的管理光传输。而且还会有更多的相关应用应运而生,为人们的使用带来更多的方便。综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术是目前光纤传输的研究热点,而在以后,科学家还会继续对这一领域的研究和开发。从未来的应用来看,光网络将向着服务多元化和资源配置的方向发展,为了满足客户的需求,光纤通信的发展不仅要突破距离的限制,更要向智能化迈进。

4光纤链路的现场测试

4.1现场测试的目的对光纤安装现场测试是光纤链路安装的必须措施,是保证电缆支持网络协议的重要方式。它的目的在于检测光纤连接的质量是否符合标准,并且减少故障因素。

4.2现场测试标准目前光纤链路现场测试标准分为两大类:光纤系统标准和应用系统标准。①光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。对于不同的光纤系统,它的标准也不同。目前大多数的光纤链路现场检测应用的就是这个标准。②光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。这种测试的标准是固定的,不会因为光纤系统的不同而改变。

4.3光纤链路现场测试光纤通信应用的是光传输,它不会受到磁场等外界因素的干扰,所以对它的测试不同于对普通的铜线电缆的测试。在光纤的测试中,虽然光纤的种类很多,但它们的测试参数都是基本一致的。在光纤链路现场测试中,主要是对光纤的光学特性和传输特性进行测试。光纤的光学特性和传输特性对光纤通信系统对光纤的传输质量有重大的影响。但由于光纤的特性不受安装的影响,因此在安装时不需测试,而是由生产商在生产时进行测试。

4.4现场测试工具①光源:目前的光源主要有LED(发光二极管)光源和激光光源两种。②光功率计:光功率计是测量光纤上传送的信号强度的设备,用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。光功率计的原理非常像电子学中的万用表,只不过万用表测量的是电子,而光功率计测量的是光。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,组成光损失测试器,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。③光时域反射计:OTDR根据光的后向散射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等。从某种意义上来说,光时域反射计(OTDR)的作用类似于在电缆测试中使用的时域反射计(TDR),只不过TDR测量的是由阻抗引起的信号反射,而OTDR测量的则是由光子的反向散射引起的信号反射。反向散射是对所有光纤都有影响的一种现象,是由于光子在光纤中发生反射所引起的。

虽然目前光通信的容量已经非常大,但仍有大量应用能力闲置,伴随着社会经济和科学技术的进一步发展,对信息的需求也会随之增加,并会超过现在的网络承载能力,因此我们必须进一步努力研究更加先进的光传输手段。因此,在经济社会发展的推动下,光通信一定会有更加长久的发展。

参考文献:

[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006.(4).

[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信.2004.(2).

第12篇

论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。

1.光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

2. 光纤通信技术的特点

(1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。

(2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

(3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

3. 光纤通信技术在有线电视网络中的应用

20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用 SDH +光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目。 转贴于

有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的 CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV 大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网 PSTN 中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。

现在光通信网络的容量虽然已经很大, 但还有许多应用能力在闲置, 今后随着社会经济的不断发展, 作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力, 推动通信网络的继续发展。因此, 光纤通信技术在应用需求的推动下, 一定不断会有新的发展。

参考文献

[1]王磊,裴丽. 光纤通信的发展现状和未来[J].中国科技信息,2006,(4)

[2]何淑贞,王晓梅. 光通信技术的新飞跃[J]. 网络电信,2004,(2)

[3]辛化梅,李忠. 论光纤通信技术的现状及发展. 山东师范大学学报,2003,4