时间:2023-05-29 18:01:32
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇蓝牙传输,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
蓝牙(Bluetooth)是一种新型、开放、低成本、短距离的无线连接接技术,可取代短距离的电缆,实现话音和数据的无线传输。这种有效、廉价的无线连接技术可以方便地将计算机及外设、移动电话、掌上电脑、信息家电等设备连接起来,在它可达到的范围内使各种信息化移动便携设备都能实现无缝资源共享,还可通过无线局域网(WirelessLAN)与Internet连接,实现多媒体信息的无线传输。
蓝牙系统采用分散式(Scatter)结构,设备间以及从方式构成微微网(Piconet),支持点对点和点对多点通信。它采用GFSK调制,抗干扰性能好,通过快速跳频和短包技术来减少同频干扰,保证传输的可靠性。使用的频段为无需申请许可的2.4GHz的ISM频段。
蓝牙协议从协议来源大致分为四部分:核心协议、电缆替代协议(RECOMM)、电路控制协议和选用协议。其中核心协议是蓝牙专利协议,完全由蓝牙SIG开发,包括基带协议(BB)、连接管理协议(LMP)、逻辑链路控制和适配协议(L2CAP)以及服务发现协议(SDP)。蓝牙协议从体系结构又可分为底层硬件模块、中间协议层和高端应用层三大部分,其中链路管理层(LM)、基带(BB)和射频层(RF)构成蓝牙的底层模块。由此可见,基带层是蓝牙协议的重要组成部分。本文主要对蓝牙技术中最重要的基带数据传输机理进行分析。
1基带协议概述
图1给出蓝牙系统结构示意图。在蓝牙系统中,使用蓝牙技术将设备连接起来的网络称作微微网(Piconet),它由一个主节点(MasterUnit)和多个从节点(SlaveUnit)构成。主节点是微微网中用来同步其他节点的蓝牙设备,是连接过程的发起者,最多可与7个从节点同时维持连接。从节点是微微网中除主节点外的设备。两个或多个微微网可以连接组成散射网(Scatternet)。
图2给出蓝牙协议结构示意图。基带层位于蓝牙协议栈的蓝牙射频之上,并与射频层一起构成蓝牙的物理层。从本质上说,它作为一个链接控制器,描述了基带链路控制器的数字信号处理规范,并与链路管理器协同工作,负责执行象连接建立和功率控制等链路层的,如图3所示。基带收发器在跳频(频分)的同时将时间划分(时分),采用时分双工(TDD)工作方式(交替发送和接收),基带负责把数字信号写入并从收发器中读入数据。主要管理物理信道和链接,负责跳频选择和蓝牙数据及信息帧的传输、象误码纠错、数据白化、蓝牙安全等。基带也管理同步和异步链接,处理分组包,执行寻呼、查询来访及获取蓝牙设备等。
在蓝牙基带协议中规定,蓝牙设备可以使用4种类型的地址用于同场合和状态。其中,48位的蓝牙设备地址BD_ADDR(IEEE802标准),是蓝牙设备连接过程的唯一标准;3位的微微网激活节点地址AM_ADDR,用以标识微微网中激活成员,该地址3位全用作广播信息;8位的微微网休眠节点地址PM_ADDR,用以标识微微网中休眠的从节点。微微网接入地址AR_ADDR,分配给微微网中要启动唤醒过程的从节点。
当微微网主从节点通信时,彼此必须保持同步。同步所采用的时钟包括自身不调整也不关闭的本地设备时钟CLKN,微微网中主节点的系统时钟CLK以及为主节点时钟对从节点本地设备时钟进行周期更新以保持主从同步的补偿时钟CLKE。
与其它无线技术一样,蓝牙技术中微微网通过使用各种信道来实现数据的无线传输。其中,物理信道表示在79个或者23个射频信道上跳变的伪随机跳频序列,每个微微网的跳频序列是唯一的,并且由主节点的蓝牙设备地址决定;此外,蓝牙有5种传送不同类型信息的逻辑信道,它们分别为:
(1)LC信道:控制信道,用来传送链路层控制信息;
(2)LMC信道:链接管理信道,用在链路层传送链接管理信息;
(3)UA信道:用户信道,用来传送异步的用户信息;
(4)UI信道:用户信道,用来传送等时的用户信息;
(5)US信道:用户信道,用来传送同步的用户信息。
在蓝牙系统中,主从节点以时分双工(TDD)机制轮流进行数据传输。因此,在信道上又可划分为长度为625μs的时隙(TimeSlot),并以微微网主节点时钟进行编号(0-227-1),主从节点分别在奇、偶时隙进行数据发送。
2蓝牙数据传输
蓝牙支持电路和分组交换,数据以分组形式在信道中传输,并使用流控制来避免分组丢失和拥塞。为确保分组包数据正确传输,还进行数据的白化和纠错,下面分别对这些传输机制进行分析。
2.1蓝牙分组
分组包数据可以包含话音、数据或两者兼有。分组包可以占用多个时隙(多时隙分组)并且可以在下一个时隙继续发送,净荷(Payload)也带有16位的错误校验识别和校验(CRC)。有5种普通的分组类型,4个SCO分组包和7个ACL分组包。一般分组包格式如图4。
图3基带层抽象
其中,接入码(Accesscode)用来定时同步、偏移补偿、寻呼和查询。蓝牙中有三种不同类型的接入码:
(1)信道接入码(CAC):用来标识一个微微网;
(2)设备接入码(DAC):用作设备寻呼和它的响应;
(3)查询接入码(IAC):用作设备查询目的。
分组头(Header)包含6个字段,用于链路控制。其中AM_ADDR是激活成员地址,TYPE指明分组类型,FLOW用于ACL流量控制位,ARQN是分组包确认标识,SEQN用于分组重排的分组编号,HEC对分组头进行验。蓝牙使用快速、不编号的分组包确认方式,通过设置合适的ARQN值来区别确定是否接收到数据分组包。如果超时,则忽略这个分组包,继续发送下一个。
2.2链接及流控制
蓝牙定义了两种链路类型,即面向连接的同步链路(SCO)和面向无连接的异步链路(ACL)。SCO链接是一个对称的主从节点之间点对点的同步链接,在预留的时间里发送SCO分组,属于电路交换,主要携带话音信息。主节点可同时支持3个SCO链接,从节点可同时支持2~3个链接SCO,SCO分组包不支持重传。SCO链路通过主节点LMP发送一个SCO建立消息来建立,该消息包含定时参数(Tsco和Dsco)。
ACL链接是为匹克网主节点在没有为SCO链接保留的时隙中,提供可以与任何从节点进行异步或同步数据交换的机制。一对主从节点只可以维持一个ACL链接。使用多个ACL分组时,蓝牙采用分组包重发机制来保证数据的完整性。ACL分组不指定确定从节点时,被认为是广播分组,每个从节点都接收这个分组。
蓝牙建议使用FIFO(先进先出)队列来实现ACL和SCO链接的发送和接收,链接管理器负责填充这些队列,而链接控制器负责自动清空队列。接收FIFO队列已满时则使用流控制来避免分组丢失和拥塞。如果不能接收到数据,接收者的链接控制器发送一个STOP指令,并插入到返回的分组头(Header)中,并且FLOW位置1。当发送者接收到STOP指示,就冻结它的FIFO队列停止发送。如果接收器已准备好,发送一个GO分组给发送方重新恢复数据传输,FLOW位置0。
2.3数据同步、扰码和纠错
由于蓝牙设备发送器采用时分双工(TDD)工作机制,它必须以一种同步的方式来交替发送和接收数据。微微网通过主节点的系统时钟来实现同步,并决定其跳频序列中的相位。在微微网建立时,主节点的时钟传送给从节点,每个从点节给自己的本地时钟加上一个偏移量,实现与主节点的同步。在微微同生存期内,主节点不会调整自己的系统时钟。为了与主节点的时钟匹配,从节点会偏移量进行周期的更新。蓝牙时钟应该至少具有312μs的分首辨率。主节点分组发送的平均定时与理想的625ms时隙相比,偏移不不能超过20ppm,抖动(Jitter)应该少于1ms。
在分组数据送出去并且在FEC编码之前,分组头和净荷要进行扰码,使分组包随机化。接收数据分组包时,使用盯同的白化字进行去扰处理。
为了提高数据传输可靠性及系统抗干扰性,蓝牙数据传输机制采用三种纠错方式:1/3率FEC编码方式(即每一数据位重复3次)、冗余2/3率FEC编码方式(即用一个多项式发生器把10位码编码成15位码)以及数据自动请求重发方式(即发送方在收到接收方确认消息之前一直重发数据包,直到超时)。
图4蓝牙分组包格式
3蓝牙设备连接
蓝牙链接控制器工作在两种主要状态:待令(Standby)和连接(Connection)。在蓝牙设备中,Standby是缺省的低功率状态,只运行本地时钟且不与任何其他设备交互。在连接状态,主节点和从节点能交换分组包进行通信,所以要实现蓝牙设备之间的互相,彼此必须先建立连接。由于蓝牙使用的ISM频带是对所有无线电系统都开放的频带,会遇到各种各样的干扰源,所以蓝牙采用分组包快速确认技术和跳频方案来确保链路和信道的稳定。在建立连接和通信过程中使用跳频序列作为物理信道,跳频选择就是选择通信的信道。
3.1跳频选择
跳频技术把频带分成若干个跳频信道(HopChannel)。无线电收发器按一定的码序列(以产生随机数的方式)不断地从一个信道跳到另一个信道,并且收发双方都按这个规律才能通信并同步。跳频的瞬时带宽很窄,通过扩频技术展成宽频带,使干扰的影响最小。当一个设备被激活时,该设备被分配32个跳频频点,以后该设备就在这些跳频点上接收和发送信息。通用跳频选择方案由两部分组成,即选择一个序列并在跳频频点上映射该序列。对于每一情况,都需要从-主和主-从两种跳频序列。蓝牙系统中使用的跳频序列有如下几种:
(1)呼叫跳频序列:在呼叫(Page)状态使用;
(2)呼叫应答序列:在呼叫应答(PageResponse)状态使用;
(3)查询序列:在查询(Inquiry)状态使用;
(4)查询应答序列:在查询应答(InquiryResponse)状态使用;
(5)信道跳频序列:在连接(Connection)状态使用。
3.2蓝牙连接建立
从待令状态到连接状态的过程就是连接建立过程。通常来讲,两个设备的连接建立过程如下:
首先,主节点使用GIAC和DIAC来查询范围内的蓝牙设备(查询状态)。如果任何附近的蓝牙设备正在监听这些查询(查询扫描状态),就发送它的地址和时钟信息后,从节点可以开始监听来自主节点的寻呼消息(寻呼扫描),主节点在发现附近的设备之间可以寻呼这些设备(寻呼状态),建立链接。在寻呼扫描的从设备被这个主节点寻呼后,就会以DAC(设备访问码)来响应(Slaveresponsesubstate)。主节点在接收到从节点的响应后,便可以以送主节点的实时时钟、BD_ADDR、BCH奇偶位和设备类(FHS分组包),最后在从节点已经接收到这个FHS分组之后,进入连接状态。具体过程如图5。
由图5可见,在蓝牙连接建立的呼个不同阶段,主节点和从节点分别处于不同的状态,这些状态包括:
查询(Inquiry):查询是主节点用来查找可监视区域中的蓝牙设备,以便通过收集来自从节点响应查询消息中得到该节点的设备地址和时钟,查询过程使用IAC;
查询扫描(InquiryScan):蓝牙设备周期地监听来自其他设备的查询消息,以便自己能被发现。扫描过程中,设备可以监听普通查询接入码(GIAC)和特定查询接入码(DIAC);
查询响应(Inquiryresponse):从节点以FHS分组响应查询消息,它携带从节点的DAC、本地时钟等信息;
寻呼(Page):主节点通过在不同的跳频序列发送消息,来激活一个从节点并建立连接,寻呼过程使用DAC;
寻呼扫描(PageScan):从节点周期性地在扫描窗间隔时间内唤醒自己,并监听自己的DAC,从节点每隔1.28s在这个扫描窗上根据寻呼跳频序列选择一个扫描频率;
从节点响应(SlaveResponse):从节点在寻呼扫描状态收到主节点对自己的寻呼消息即进入响应状态,响应主设备的寻呼消息;
主节点响应(MasterResponse):主节点在接收到从节点对它的寻呼消息的响应后,主节点发送一个FHS分组给从节点,如果从节点响应回答,主节点就进入连接状态。
3.3连接状态
连接(connection)状态以主节点发送一个POLL分组开始,表示连接已经建立,此时分组包可以在主从节点之间来回发送。连接两端即主从节点都使用主节点的接入码和时钟,并且使用的跳频为信道跳频序列。即在连接建立后,主节点的蓝牙设备地址(BD_ADDR)决定跳频序列和信道接入码。在连接状态的蓝牙设备,可以有以下几个子状态:
Active:在这个模式下,主从节点都分别在信道通过监听,发送和接收分组包,并彼此保持同步;
Sniff:在这个模式下,从节点可以暂时不支持ACL分组,也就是ACL链路进入低能源sleep模式,空出资源,使得象寻呼、扫描等活动、信道仍可用;
Park:当从节点不必介入微微网信道,但仍想与信道维持同步,它能进入park(休眠)模式,此时具有很少的活动而处于低耗模式,从节点放弃AM_ADDR,而使用PM_ADDR。
4蓝牙完全机制
今年的CES上,在爱立信CEO卫翰思主题演讲的最后,公司移动接入平台的工程师Anders Stenkvist拿着一部“特殊”的手机走上了舞台,他将与卫翰思一起为现场的观众带来一份惊喜。
“这项技术真的非常、非常新,刚刚从实验室里出来,还很原始。不过,它的确已经能够正常工作了。”Stenkvist强调着,言语中透着激动和紧张,接着他话锋一转,调侃道“当然,只是在有些时候。”台下立刻爆发出一阵笑声。
Stenkvist用这部特殊的手机拍摄了一张现场的照片,他想让台下的观众都能够立刻看到,但仅靠小小的手机屏幕显然不行,他需要把这张图片传到大一些的显示设备上。于是,他请卫翰思先把一只手轻轻放在手机上,再用另一只手去摸一台与电视连接的接收器。就在卫翰思的右手触到接收器的瞬间,手机上的照片也出现在了电视的屏幕上――卫翰思“化身”成为一根人肉数据线,将照片传到了电视上。现场的观众愣了愣神,旋即报以热烈的掌声。
人体传输
卫翰思所演示的是爱立信开发的一种名叫Connected Me的人体传输技术。
Stenkvist手中拿着的智能手机中装有一个特殊的数字回路,可以进行数据传输。该回路连接一块金属板,金属板能够将信号发送至人体内,而在连接电视的接收器上同样装有相应的回路和金属板,可以检测到流经人体的微弱信号。
通过调整发射机电极的电压并监测接收机电极上的电位差,信号得以发送,这时在人体中除了存在电位差,还流过一个小电流。这一物理现象被称为“电容耦合”,人体传输的实现正是基于这一原理。
根据爱立信官方公布的数据,目前Connected Me技术已经能够实现6-10Mbps的传输速率。与现有的传输技术相比,人体传输更加便捷,并且能够大大提升用户体验。
人体传输技术并非爱立信所独有。早在1996年的计算机经销商博览会上,IBM就已经展示过这项技术的雏形。日本电信电话公司(NTT)最近10年也一直在持续开发这一技术。2005年,NTT曾宣布成功开发出能够投入实际应用的人体传输技术,并将之命名为RedTaction,当时所能达到的传输速度为2Mbps。此外,松下、索尼和微软也都曾开发类似的技术,不过由于过于超前,一直没有真正推向市场。
卫翰思此前接受其他媒体采访时曾表示,历史上每一次伟大的技术变革都要经历两个阶段,技术诞生至少需要20年的导入期,在那之后,才会快速发展并被市场认可。
掐指算来,人体传输技术至今已经有近20年的历史,这也解释了为什么爱立信会在这个时间节点上隆重推出Connected Me。
从年初拉斯维加斯的CES到巴塞罗那的MWC大会,再到最近新奥尔良的CTIA美国无线通信展,卫翰思每次出场都会不遗余力地向外界介绍Connected Me。如此卖力宣传,爱立信显然是认为人体传输技术的引爆点即将到来。
14年前,为了推广自己发明的蓝牙技术,爱立信联合诺基亚、东芝、IBM和英特尔成立了蓝牙共同利益集团(Bluetooth SIG),最终使得蓝牙技术得以普及。如今,爱立信正在尝试复制当年的成功,将Connected Me打造成下一个蓝牙。
虽然不是最早开发出人体传输技术的公司,但是种种迹象都表明,爱立信希望依靠这个阶段的突然发力,一举奠定其在人体传输领域的领导地位,以便在将来的市场竞争中占得先机。
不过,对于这样一项新奇又涉及人体的技术,安全性自然是人们颇为关心的问题,对此,爱立信方面称:“爱立信所做的一系列测试表明,实验用的设备完全符合对商用设备的要求,而且还留有宽裕量。”
不只是人肉数据线
Connected Me现在已经能实现传送照片、音乐和高清视频,但是爱立信所“兜售”的绝不是“人体数据线”的概念那么简单。作为一种新奇的技术,人体传输可以带来许多全新的应用场景。
NFC无疑是业内这两年最为热门的技术之一,NFC支付的产生将过去的“刷卡”变成了“刷手机”,很酷吧?但是与人体传输的直接“刷手”相比,NFC就要逊色多了。
正在举行的伦敦奥运会上,NFC已经惊艳亮相。据悉,全伦敦有超过6万家商户支持NFC支付。不过,就在奥运会开幕之前,安全软件厂商McAfee却给它泼了一盆冷水。McAfee发出警告称,搭载NFC的设备存在严重的安全隐患。
相比之下,用人体传输技术完成支付则会更加安全和便捷。“NFC需要在安全设置上花很大一部分精力,而如果使用以人为中心的网络的话,只要在手机里预存银行卡信息和密码,点击一下触摸屏,整个安全认证就能传过去了,这就降低了安全认证的难度。”爱立信中国市场与战略部市场经理田清鹤介绍说,“而且你不通过我本人,是无法进行安全验证的,所以支付也会变得更加安全。”
在医疗领域,人体传输技术同样大有可为。田清鹤向记者描绘了这样一幅图景:目前的胃镜检查需要将装有摄像头的光导纤维通过食道插入患者的胃中,整个过程十分难受。但是未来随着人体传输技术的进步,只需在一片药片中植入微型的摄像头,再让患者吞咽下去就可以获取体内的影像。
“我们提出来(Connected Me),是为了给业界提供一些思考。”田清鹤说,而更多创新的应用场景还需要爱立信在产业链上的伙伴共同推动。
对于爱立信而言,当务之急是让市场进一步接受这种技术,虽然人体传输技术已经有近20年的历史,但是它究竟会在未来什么时候爆发,谁也说不好,而在这之前,所有押宝这项技术的厂商们还需要继续苦苦等待。
Connected Me这个名字背后其实也蕴含着爱立信的产品逻辑,那就是要打造以人为中心的社会网络。
随着移动终端的普及和家用电器的智能化,设备间的连接需求正变得愈来愈多,比如在家中正在PC上阅读资料,但是突然需要外出,此时PC与手机的同步就变得格外重要,云计算的应运而生解决了部分问题,但是将个人信息上传至企业的云端,这意味着用户在享受便利的同时也将个人的部分隐私权利让渡给了企业,用户不得不承担隐私泄露的风险。
而以Connected Me为代表的人体传输技术则体现出了与云计算完全不同的技术逻辑:个人依旧是信息的主宰,设备间的互联由用户自己主导,自始至终,信息传输的主动权都牢牢掌握在用户自己的手中。
虽然业内的IT厂商都在主推云计算的概念,但是随着隐私问题的不断凸显,人体传输技术能够后来居上也未可知。将来的某一天,人体传输或许能够发展成为与云计算并行不悖的另一条道路,正如今天苹果与谷歌在封闭和开放路线上的选择一样。
虽然目前的Connected Me还只是demo版本,但是爱立信已经为它的大规模普及做好了准备。
田清鹤告诉记者,Connected Me的部署成本很低,所有的电子元件都可以在市场上轻松获得,而且,其传输速率已经与wifi相差无几,能够应对用户的各种需求。所以,目前万事俱备,只欠东风。
科幻电影情节变为现实
在007系列电影中,邦德多次遥控他那经过改装的汽车帮他脱险。曾经,这种电影中的科幻情景让我们赞叹不已,如今这种技术已经变为现实,实现它的就是“蓝牙”。用手机给身旁好友的手机传送音乐,通过蓝牙无线耳机畅听高品质的音乐,摆脱束缚懒在床上使用无线键盘和鼠标上网看电影,LG公司甚至还推出了基于蓝牙技术的家庭影院,“有车一族”现在普遍使用的GPS导航系统使用的也有蓝牙技术。Windows Vista给蓝牙的应用也提供了一方新天地,你可以使用蓝牙遥控器在房间的各个角落操作电脑……
蓝牙,没你想的那么复杂
蓝牙(Bluetooth)是一种近距离无线电通信技术,由爱立信、IBM、英特尔、诺基亚和东芝等公司于1998年联合推出。它可以摆脱错综复杂的电缆,将各种通信设备、计算机甚至家用电器等在一定距离范围内采用无线方式连接起来,实现数据传送和语音通信。蓝牙技术功能强大、耗电量低、成本低廉,难怪很快就风靡全球。
蓝牙技术连连看
蓝牙相关产品上标注的字母和数字代表什么意思呢?
目前,蓝牙主要分为1.1、1.2和2.0三个版本,前两个版本的数据传输速率较低(约为748~810kbps),而2.0版则大幅提升了数据传输速率(约为1.8Mbps~2.1Mbps)。近两年的手机上很多也标注支持EDR和A2DP。EDR(增强速率)大大提高了数据传输速率,还可充分利用带宽优势同时连接多个蓝牙设备。A2DP(增强语音传输协议)能够让两个支持蓝牙音效传输的装置互相连接,输出高质量的立体声音乐。
蓝牙按传输距离又分为Class 1、Class 2和Class 3。Class 1多用在商业用途,传输距离大约在100米左右,后两者则多用于个人产品,Class 2传输距离大约在8-30米之间,Class 3则仅为2-3米。目前,常见的蓝牙设备的传输距离一般在10米以内。
为了方便用户识别和购买,SIG(蓝牙特别兴趣组织)推出了全球统一的蓝牙设备标示(国内很多设备还没有标注,见下表)。
自己动手
享受快乐无线生活
免费的蓝牙音箱
无需购买昂贵的蓝牙音箱,你只需要一个基于BROADCOM芯片的蓝牙适配器,并在电脑上安装和设置好WIDCOM的蓝牙软件,就可以使用手机上的音乐播放软件的“经蓝牙播放”功能,通过音箱来享受音乐了。
手机也能遥控电脑
一款名为“Bluetooth Remote Control”的小软件(下载地址:)让你轻松把蓝牙手机变成电脑遥控器。软件分为电脑服务器端和手机Java客户端,可以适用于支持Java的大部分手机。
还有很多有趣的蓝牙应用软件,带给你更多的无线生活乐趣,自己去多多挖掘吧。
小知识:蓝牙和红外线传输技术的区别
采用红外线传输(IrDA)时发送和接收设备必须互相对准,传输距离一般为1米以内。而蓝牙传输则打破了这种局限,发送和接收设备无须互相对准,只要在10米的无障碍范围内数据都可以正常传送。
蓝牙是一种短程无线链路技术。作为一种缆线替代技术,蓝牙在消费电子设备之间传输语音和数据,如移动电话、PC和PDA设备等。由于蓝牙应用于电池驱动的小型设备,并且具有短程无线链路的特点,因此功耗一直是该技术关注的问题。
蓝牙技术
蓝牙运行的工业、科学和医学(ISM)频带范围为2.4~2.4835GHz。由于这个频带是开放的,因此有许多其它的无线链路标准也使用这个频带,如802.11Wi-Fi和DECT无绳电话。因为非常类似,这些设备之间可能造成相互的干扰,从而影响蓝牙链路的质量。
蓝牙链路的范围取决于无线设备的功率。一级设备的连接范围是100米,二级设备为10米,三级设备为1米以内。
蓝牙技术的标准数据传输速率高达每秒1Mbit/s,真正吞吐量为每秒723千比特。数据被蓝牙堆栈划分为数据包,并通过两个链路中的其中一个进行发送。此链路是通过SCO(SynchronousConnectionOrientedChannels)利用预留带宽进行实时传输(包括语音包)的;或通过ACL(AsynchronousConnectionlessChannels)进行数据传输和再传输。一个蓝牙设备由硬件、固件和软件三部分组成。
图1显示的是一个典型的分层蓝牙规格协议栈。除了主机控制接口(HCI)、逻辑链路控制及适配协议(L2CAP)、RFCOMM和服务发现协议(SDP)之外,该蓝牙规格协议栈还具有无线电、基带和链路管理协议。
干扰:挑战设计
由于蓝牙使用的ISM射频是开放的,因此许多其它的无线标准也利用ISM频带,其中比较有影响力的标准包括802.11b/gWi-Fi。除了因为与其它无线标准共存而产生的挑战之外,蓝牙通讯链路还可能受到其它家用设备的影响,如微波炉。这些家用设备在运行的同时辐射出射频能量,由于成本和技术上的限制,不可避免地这些设备会散发出相当程度的幅射。
尽管受到环境射频的干扰,蓝牙在频率冲突方面的主要挑战还是来自于802.11b/gWi-Fi。这两种技术都在ISM频带范围内运行,以数据包的形式发送数据。在过去五年中,WiFi和蓝牙都广泛受到消费者的欢迎,越来越多的家庭开始使用蓝牙产品和无线LAN网络。因为这两种技术非常类似,所以共存是一个首先需要考虑的问题。实际上,许多机制已经被采用,以便解决相互间的干扰问题。
为了降低某个ISM频带区域内传输的功率总量,蓝牙和Wi-Fi不得不采用各种数据传输扩频技术。蓝牙采用跳频技术(FHSS),在相对较窄的1MHz带宽范围内传输数据包。这样,在该带宽提供的79个信道范围内,窄带信号的频率变为每秒1,600跳。通过围绕频谱频繁跳动,使信号功率充满了整个频带。
发生一般性干扰时,数据包的接收可能被中断,因为蓝牙和802.11b/g信号发生叠加,造成记录错误。附近的天线可能对第二个系统的运行造成前端过荷干扰。但是,这种干扰要求具备较强的干扰信号,所以较一般性干扰来说是一种不常见的干扰。
自适应跳频技术(AFH)
自适应跳频技术(AFH)是解决一般性干扰的有效途径。AFH可以识别“坏”信道。在这些信道上,要么有其它无线设备干扰蓝牙信号,要么蓝牙信号干扰了其它的设备。具备AFH技术的蓝牙设备与蓝牙微网(Piconet)内的其它设备进行通讯,分享有关坏信道的详细信息。这样,这些设备就可以转换到可用的“好”信道,远离干扰区,不影响带宽的使用。使用AFH技术时,坏信道的分类必须准确,并且“一般性”干扰应是唯一的干扰形式。图2展示了有效使用AFH技术的情形。
BlueCore的默认设置通常能在大约四秒钟的时间内适应新的来源方面的干扰。
信道跳转使v1.1设备获得了AFH技术的优点,但不得不牺牲蓝牙带宽以尽量减少对Wi-Fi信号的影响。即使802.11b/g此时闲置,也有高达50%的非优先蓝牙通讯被终止。然而,尽管这个数字看起来很大,用户却常常觉察不到带宽的变化,除非他们试图实施某些对时间敏感的应用,如立体音频随选随播。
时分多路复用(TDM)
时分多路复用(TDM)是一种应对前端过荷型干扰的手段,AFH技术无法应对这种干扰。TDM最初用于保护802.11b/g传输不受蓝牙干扰,而不是相反的情形。其工作原理是:当ISM频带内运行802.11b/g时,所有蓝牙传输都要关闭,但那些高优先级的蓝牙传输除外。与信道跳转一样,这种方法牺牲了部分蓝牙带宽,这部分牺牲的带宽与802.11b/g工作周期成比例。因此,如果802.11b/g闲置,则链路维护通讯可能造成带宽下降2-3%,用户不可能察觉到这个细微的变化。
要增强TDM的效果,就需要具备有关802.11b/g无线设备活动的准确信息。为此,CSR公司定义了WLAN_Active硬件信号,以保证当无线设备运行时,b/g信号得到保护。当需要保护蓝牙信号不因802.11b/g干扰而衰退时,CSR公司开发出了BT_Priority,这是一种可选的信号,它可以指出何时正在发送或接收重要的蓝牙数据包。这种信号可用于保护采用HV3数据包的SCO音频,这种格式在单声道耳机随选随播音频数据时最为常见。Wi-Fi干扰可能阻止耳机与电话连接,还可能造成音频质量下降,因为部分SCO数据包的传输被终止,并且不重新传输。
根据信道质量确定数据速率(CQDDR)
这个方案针对的是极端的范围和干扰问题,其建立的基础包括跳频、数据包标题和有效载荷的检错码、以及数据包确认收悉或再传输。有两种格式的数据包,即DH和DM,分别利用高带宽和中带宽。DH数据包可以传输更多的数据,但是如果部分数据包遭到破坏,整个数据包必须重新传输以恢复数据。DM数据包包含前向纠错(FER)码,占有效载荷的三分之一:每10比特的数据就增加5比特的前向纠错码,每15比特的数据/FEC数据块中可以纠正2比特的错误。这种数据包格式可能降低最大的数据速率,但比不包含纠错功能的DH数据包更强大。它允许接收设备与传输设备进行协调,按照环境干扰情况来确定采用何种数据包格式。例如,如果某个设备确定正在接收的数据存在诸多错误,它就会通知传输设备以DM数据包的方式传输数据。如果链路恢复畅通了,它就会允许传输设备回转到DH数据包。见图4。
CQDDR只是蓝牙链路的一个可选项,并不包括在蓝牙技术规范内。因此,对于配置BlueCore的设备发送数据给没有配置CQDDR的设备的情况,CSR公司发明出了一种算法来评估链路的表现,并且按照确认收悉的数据包(ACKs)和没有确认收悉的数据包(NACKs)之间的比率来修改数据包的类型。但是,对于从一个没有配置CQDDR的设备接受信息的情况,如果数据包受损,则BlueCore无法提供应对措施。
扩展型同步定向连接信道(eSCO)
eSCO是允许受损语音数据进行再传输的检错语音信道。每一个数据包都有一个CRC(循环冗余校验),这样接收设备就可以检查数据包是否正确接收。在接收过程中存在错误和丢失的数据包将得到否认。再传输窗口允许未经确认的数据包进行再传输。
1.1版SCO只能使用单槽数据包。扩展型SCO允许对同步语音或数据使用三槽数据包。这意味着扩展型SCO可以达到100kbps以上的连接速度,而1.1版的连接速度为固定的64kbps。这是因为在使用单槽数据包时链路容量丢失,而当无线设备改变频率时数据包之间产生间隙。
在每个eSCO传输过程中,主设备传输一个eSCO数据包,从设备会按照SCO常规进行响应(即使没有接收到主设备的数据包,从设备也可以进行响应)。eSCO与SCO的不同之处在于SCO存在一个再传输窗口。在这个窗口中,可以对未经确认的数据包进行再传输,直至确认收悉。eSCO传输的间隔是可以调整的。1.1版SCO有三种数据包间隔可供选择,传输速度都是64kb/s。扩展型SCO的数据包长度和间隔在链路的两个方向都是可以调整的,因此可以实现不对称传输。
尽管eSCO信道不主动处理或避免干扰,受损数据包的再传输仍保证了其音频质量受到其它无线设备的影响相对较小。
功耗对于蓝牙技术的重要性
功耗是一个关键性的问题,在无线开发的竞争方面有着特别重要的作用。作为一种短程无线功耗是一个关键性的问题,在无线开发的竞争方面有着特别重要的作用。作为一种短程无线链路技术,蓝牙的功耗可以降到最低水平,特别是在电脑设备这样的应用中,蓝牙设备的范围实际上不足50cm。
蓝牙较低的功耗水平使其成为移动电话和PDA这样的小型手持设备首选的无线连接技术,这些设备依赖于电池电量,消费者也看重其电池寿命。
低功耗模式与内部时钟
在蓝牙堆栈的范围内,最大的功耗水平源自于无线单元的活动,在仅以蓝牙堆栈数字单元要求的10mA电流水平传输和接收数据时,无线单元的活动却需要50mA的电流。因此,减少蓝牙无线单元的活动对于降低整体的功耗水平最为有效。此外,灵活使用低功耗模式也可以进一步降低蓝牙设备的功耗水平。
BlueCore芯片内的硬件时钟可以将数字单元与无线单元隔离,这样可以关闭无线单元,从而将芯片送入浅度或深度睡眠模式。
在浅度睡眠模式下,时钟频率从16MHz、10mA降低到0.125MHz、2mA(图6)。
在深度睡眠模式下,除了1kHz自激弛张振荡器之外,时钟的主晶体和所有其它部分都停止工作(图7)。
要进入深度睡眠模式,BlueCore需要有20ms时间的静止状态。要从深度睡眠模式下苏醒过来,时钟晶体需要5ms时间转动起来,而设备需要大约20ms时间的无活动状态。BlueCore可以通过两种方式退出深度睡眠模式,一是通过定时闹钟,在下一次定时活动之前叫醒设备;二是通过PIO、UART或USB串口传输设备来中断深度睡眠模式。
功耗控制方法对于降低干扰和电源耗竭的风险也很重要。如果一个蓝牙设备需要与几厘米之外的另外一个设备进行通讯,这个设备就不需要消耗与100m之外的一个设备链接所需要的那么多功率。BlueCore具备了这方面智能,因此,通过利用最少的电流来建立和维持无线链接,BlueCore可以减少功率损耗。
芯片结构
BlueCore芯片结构在保证功耗效率和低功耗方面起着关键作用。图8显示的是BlueCore3-ROMCSP芯片封装设计的一个例子,展示了BlueCore芯片的典型设计。自最初就设计成一个单芯片产品的BlueCore,其芯片组件特别少,减少了功率消耗,更为重要的是,BlueCore包含一个数字信号处理器基带去取代常规的ARM处理器。蓝牙的短程连接和协议堆栈意味着这个复杂而消耗功率的处理器无法执行日常的蓝牙任务。此外,协议堆栈的结构使所有数据不用通过微处理器。芯片内存集线器存储包括信息包在内的数据,而微处理器确定数据包的类型和结构。数据包通过DSP传输。这种方法限制了单个组件的参与,因此降低了数据传输和处理过程的功率耗损量。
效率和低功耗方面起着关键作用。图8显示的是BlueCore3-ROMCSP芯片封装设计的一个例子,展示了BlueCore芯片的典型设计。自最初就设计成一个单芯片产品的BlueCore,其芯片组件特别少,减少了功率消耗,更为重要的是,BlueCore包含一个数字信号处理器基带去取代常规的ARM处理器。蓝牙的短程连接和协议堆栈意味着这个复杂而消耗功率的处理器无法执行日常的蓝牙任务。此外,协议堆栈的结构使所有数据不用通过微处理器。芯片内存集线器存储包括信息包在内的数据,而微处理器确定数据包的类型和结构。数据包通过DSP传输。这种方法限制了单个组件的参与,因此降低了数据传输和处理过程的功率耗损量。
EDR蓝牙
EDR蓝牙的增强型数据传输速率也有助于降低蓝牙功耗,EDR芯片被越来越多的消费产品所采用。数据传输速率最大增加三倍,这意味着数据包的传输速度快三倍,而无线单元最多在三分之一的时间内是激活的,另外设备可以利用数据包之间增加的空间进入低功耗模式,如浅度睡眠或深度睡眠。EDR蓝牙的效果目前还是有限的,因为EDR产品必须采用标准数据传输速率与不具备EDR的v1.1或v1.2设备进行通讯。
目前所有干扰和功耗问题都已克服了吗?
蓝牙技术自推出以来,在干扰和功耗方面取得了令人难以置信的进展。我们的设计工程师们努力将BlueCore打造成最强大的、功率最高的蓝牙技术产品,并不断研发芯片结构、低功耗模式和软件应用的新方法,以提供最好的干扰和功耗解决方案。包括自适应跳频(AFH)、分时多路复用(TDM)、电源控制以及信道质量确定数据速率(CQDDR)在内的共存系统,使蓝牙链路更为强大,并作为其它流行标准(如802.11b/gWi-Fi)的补充技术,改善了蓝牙用户的体验。
效率和低功耗方面起着关键作用。图8显示的是BlueCore3-ROMCSP芯片封装设计的一个例子,展示了BlueCore芯片的典型设计。自最初就设计成一个单芯片产品的BlueCore,其芯片组件特别少,减少了功率消耗,更为重要的是,BlueCore包含一个数字信号处理器基带去取代常规的ARM处理器。蓝牙的短程连接和协议堆栈意味着这个复杂而消耗功率的处理器无法执行日常的蓝牙任务。此外,协议堆栈的结构使所有数据不用通过微处理器。芯片内存集线器存储包括信息包在内的数据,而微处理器确定数据包的类型和结构。数据包通过DSP传输。这种方法限制了单个组件的参与,因此降低了数据传输和处理过程的功率耗损量。
EDR蓝牙
EDR蓝牙的增强型数据传输速率也有助于降低蓝牙功耗,EDR芯片被越来越多的消费产品所采用。数据传输速率最大增加三倍,这意味着数据包的传输速度快三倍,而无线单元最多在三分之一的时间内是激活的,另外设备可以利用数据包之间增加的空间进入低功耗模式,如浅度睡眠或深度睡眠。EDR蓝牙的效果目前还是有限的,因为EDR产品必须采用标准数据传输速率与不具备EDR的v1.1或v1.2设备进行通讯。
就利润型便携设备市场而言,UWB本身的某些因素使它无法普及和被广泛采用。缺乏信令技术、可靠的安全性、强大的匹配能力以及功率等问题,使得UWB不适用于以电池供电的便携式设备,面临作为小市场技术而落后的风险。另一方面,像蓝牙这样成熟的技术可靠而且高效,能够将UWB带离其仅有的应用而引入便携式设备大众市场。正因为如此,蓝牙技术联盟(SIG)宣布将来颁布的蓝牙技术规范将支持WiMedia(UWB)。本文着重讨论整合这两种无线技术所存在的各种挑战。
尽管有所不同,蓝牙和UWB是两种非常互补的技术。蓝牙一直以来提供低速率的数据传输,不过其成本和功耗很低。蓝牙V2.0+EDR(增强型数据速率)当前最大的应用速率为3Mbit/s,同时在激活状态下的功耗为25mA、在闲置状态下的功耗仅为几个微安。UWB在激活状态下功耗达到蓝牙的20倍,但提供的数据速率高达480Mbit/s,能够满足日益增长的大量数据应用需求。相对于蓝牙来说,UWB的每比特功耗较低,使数据能够迅速传输。但是,UWB仅在3米范围内有效,而蓝牙的有效范围超过100米。
至此我们知道,这两种技术有着非常不同的特点:UWB有效范围较小,但数据传输速率高,功率要求也高;而蓝牙有效范围较大,功率要求非常低,但数据传输速率差强人意。于是,通过整合蓝牙和UWB,设备制造商便能够通过“单一”的无线解决方案,实现低功耗、低成本和高数据速率传输,这些是通过一种技术无法实现的。
蓝牙技术:促进者
蓝牙技术已经成为当今各种便携式设备的重要通讯连接,最初用于包括移动电话耳机在内的各种音频应用,在这方面蓝牙因其固有的低功耗性能而胜人一筹。不过,通讯协议包含的应用更为广泛。图1显示的是蓝牙堆栈与ISO OSI堆栈的比较。尽管在分层和结构方面有着重大的差异,蓝牙技术的较低层和ISO的实例是相似的。这个实例显示,WiMedia UWB技术目前还没有超越最低层。
按照如今的标准来衡量的话,蓝牙技术的速率也很低。Wi-Fi和802.11的标准正在开发中,这两个标准将使蓝牙技术的速率超越120Mbit/s。目前,蓝牙设备的最高速率为3Mbit/s。这个速率对于音频流来说已算不错,但对于视频等数据型应用还是不够的。
蓝牙与WiMedia的联合
蓝牙技术联盟没有放弃现有的蓝牙技术以及近十亿部配有蓝牙装置的设备,相反,目前它正在采用WiMedia(UWB)作为附加界面。这两项技术的结合,可实现比从前单独使用时更好的储能效果,同时也为WiMedia提供了一个应用基础。
目前正在开发的方法是:蓝牙技术作为控制信道,利用其低功率的关联机制建立应用连接,只有当设备需要发送大量数据时才开启UWB,待传输完成后再将其关闭。有关这两种技术之间如何配合的细节问题仍在研究中。总的来说,蓝牙将在物理层建立连接。然后,确定并向上层报告普通UWB设备的性能。当同时建立低速和高速信道,蓝牙的业务发现功能将决定是否执行所要求的终端用户功能(或应用)。蓝牙应用框架还将定义应用的数据路径,或者由一种独立于应用之外的机制来确定最佳数据路径。此时,UWB作为一个高速通道,在需要的时候打开,不用时关闭。这是最具成本效益的执行方法,使低速蓝牙链路能够尽可能长时间地保持设备之间的连接。
图2的协议堆栈显示,数据路径因应用需求不同而略有区别。目前包括移动电话耳机在内的音频应用不需要UWB的速率,这些应用还将继续采用功耗很低的V2.0+EDR甚至更早的蓝牙版本。数据路径用两个箭头表示:细箭头表示低数据速率应用,而粗箭头表示新型大数据量的应用。不管怎样,提供命令和控制信息的数据包总是通过蓝牙连接来传输。
蓝牙+UWB架构
UWB的最大不同之处在于它传输数据的信号水平比“噪声层”(即正常背景噪声)低得多。在无法觉察的信号层中传输数据比较便捷,而在这样的层中正确接收信息却很困难。这就需要UWB中先进的接收器在这样低的信号水平来探测信号。
在传输过程中,UWB技术提供令人难以置信的低功耗和高速率,支持数百个同步信道,并有全球实施的潜力。这是因为UWB信号不与传统的RF载波相互干扰,因此不存在共存的问题。尽管UWB信号在技术有效范围之外难于探测,但是当UWB技术与蓝牙技术整合之后,却能有所增值。消费品制造商将能够充分利用蓝牙的互操作性,这是无线技术获得成功的基础。
UWB技术如何移植到蓝牙架构上。蓝色箭头显示的是当前提供给用户的数据路径。标注“蓝牙v1.2”的箭头是原始的1Mbit/s链路,而标注“蓝牙v2.0”的箭头表示增强型数据速率(EDR)3Mbit/s。绿色箭头显示的是UWB链路中的建议数据路径。大多数蓝牙堆栈都被利用,只有现有2.4GHz专用的部分被设为旁路。
中间层一如OBEX(对象交换协议)、BNEP(蓝牙网络封装协议――TCP/IP适配层)和A/V(音频视频支持)一无须知道可以提供480Mbit/s的链路。他们只知道服务质量(QOS)请求中可提供更好的效能。
这些QoS请求是蓝牙UWB系统如何确定使用哪个链路的关键。UWB技术的每比特功耗极低,但待机功耗相对较高。这就意味着必须做出选择。如果需要大量的数据,如直播视频,那么UWB链路就能够充分利用便携式设备有限的电池使用时间。而如果需要交换的数据只是某次会议的一组商务名片,那么Qos参数将表示只有少量对时间要求不高的数据需要交换:在这种情况下,UWB甚至无须打开。
这个过程中的上部还有一个标为SDP的方框――服务发现应用架构。蓝牙技术的本地设备使便携式蓝牙设备能够明确知道它与其他蓝牙设备间实现怎样的功能和通讯。当各设备间完成连接后,正是这个设备用来确定UWB的可用性。
当省电性能变得不太重要时,这个蓝牙架构还支持被用来认证无线USB、无线1394或WiMedia WiNet协议的UWB。开关该功能在蓝牙控制范围之外进行,并且必须在UWB执行过程中进行。
整合了UWB技术的新版蓝牙将使用户能够对大量数据同速进行和传输,并使便携式设备能够实现更多先进的视频和音频应用。在蓝牙技术规范下,UWB技术在10米的有效范围内速率可达到480Mbit/s,行业研究显示该效能超过了许多应用中最高要求的200Mbit/s。将MP3播放器或高画质数码相机的同速进行即是此技术的应用实例。这就为扩展各种应用保留了很大的空间。
蓝牙是一种支持设备短距离通信(一般10m内)的无线电技术。能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等之间进行无线信息交换。蓝牙技术的特点可归纳为如下几点: 全球范围适用、同时可传输语音和数据、可以建立临时性的对等连接(Ad-hoc Connection)、具有很好的抗干扰能力、蓝牙模块体积很小、便于集成、低功耗、开放的接口标准、成本低。
最近在智能家居领域我们看到不少蓝牙的身影。相对于WiFi近年如火如荼覆盖大江南北的势头,蓝牙似乎显得有些落寞。其实大概在四五年前,WiFi 远没现在普及,蓝牙依旧是手机之间文件传输的主要方式。记得当年在诺基亚S60时代,用蓝牙跟朋友之间传输一张照片、一首音乐是非常常见的事,而且蓝牙本身传输速度也很快,使用起来也比较方便,基本上不受环境影响,只要两部设备具有蓝牙功能即可连接,所以被人们广泛使用。
如今,支持蓝牙的设备随处可见。事实上,蓝牙是生活中常见的一种重要通讯方式,相对于ZigBee、Z-wave、WiFi等技术在智能家居中“露面”较少而言,蓝牙也是无线智能家居的一种主流通讯技术。蓝牙技术得到了广泛的应用,集成该技术的产品包括手机、电脑、耳机、音箱、汽车、医疗设备等等。
众所周知,蓝牙是一种点对点的通讯方式,支持设备短距离通信的无线电技术,能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。利用“蓝牙”技术,能够有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与 Internet之间的通信,从而数据传输变得更加迅速高效,为无线通信拓宽道路。基于蓝牙技术的智能家居的设计方案,利用该解决方案可以使数据采集和家庭安防监控灵活方便,摆脱了布线系统的束缚,同时蓝牙的跳频技术在一定程度上提高了系统的抗干扰能力。
除此之外,蓝牙设备体积小、易于携带,所以,在智能家居领域,蓝牙技术比较适合一些近距离私人使用的设备,如智能手环、智能手表、智能秤等。
与物联传感等主流智能家居企业与采用的ZigBee等技术不同,蓝牙技术明显更擅长于“单打独斗”的小设备。蓝牙技术可直接置入体积较小的智能家居设备,特别是在安全性、能耗等方面提升之后,它也被用于不少智能家居单品。
另外,对于智能家居来说,蓝牙技术与其他无线充电方案最大的不同就是它能够进行身份识别。举个例子,当你走进一家咖啡馆,将手机放在桌子上的无线充电设备充电时,咖啡馆的系统能够通过你的蓝牙ID判别这是谁的手机、在哪个座位上。这意味着,无需离开座位,你就能用手机完成点单和支付。
当然,Bluetooth smart也并非是完美无缺的――虽然它的传输距离可以达到60米,但前提是芯片厂商提供了足够的支持,例如,对手手机设备而言,其距离基本被限制在10 米~30米以内。此外,如果数据量较大,Bluetooth Smart的传输效率就显得有些拖沓,需要耗费较长的时间。其他还有比如信道兼容性、可靠性和安全性欠缺,泄密事件非常普遍,无法实现真正的“漫游”,没有网络自愈功能,对于以无线网络为基本的智能家居来说会大大降低设备运作效率,并且蓝牙抗干扰能力差。另外,由于其传输距离较短,所网络承载能力相对低,新标准的组网规模一般不能超过300个,所以并不适合组建庞大的家庭网络。这都是接下来需要解决的问题。
关键词:蓝牙 室内无线定位 定位技术
中图分类号:TP393 文献标识码:A 文章编号:1007-9416(2015)12-0000-00
目前,世界范围内主要的定位方式就是无线定位技术,其多用于导航及交通和工程或是抢险救灾中。利用卫星进行精确定位已发展成熟,不过无线通信系统定位也发展飞速,其价廉且灵活,近年被广泛应用于各大场合。蓝牙是无线技术中的一种,其功耗低且应用便捷,蓝牙2.0协议的提出,充分提升了该技术数据传输速率及功耗和误码率等。本文就蓝牙技术于室内无线定位系统中的技术实现进行了深层分析,并提出实用性技术实现策略。
1室内定位技术
1.1室内定位技术概论
室内定位,即于室内环境中来实现位置定位,多使用无线通讯及基站定位和惯导定位等技术,将多种技术集为一体以实现整套室内位置定位系统,达到人员及物体等室内空间位置的严密监控。
1.2无线定位原理
通常两条及两条以上的直线/曲线能够确定二维平面中的点,同时应确定点坐标与已知坐标空间距离关系,这则主要是到达时间法及到达时间差法和到达角度发与信号强度法,具体来讲,其间到达时间法定位主要是测定待定位节点及已知不少于3个信标节点间的信号到达时间,将其乘以信号速度而得到待定位节点及各个信标点距离,再将信标节点作为圆心,所得距离值作为半径做圆,圆交点则为待定位节点坐标;到达时间差法是使用到达时间法中对应信标节点及其待定位节点时间同步务必严格要求,这时应增加硬件而使成本提升,所以使用达到时间差法,此类方式对信标节点及待定位节点时间同步要求并不严格,因其定位系统较为简单而被广泛应用;到达角度法定位原理主要是待定位节点发射无线信号给信标节点,利用信标节点天线来测定信号到达的角度,从而确定待定位节点及信标节点的夹角,再利用几何原理算出待定位节点坐标,二维空间中则应测定不少于两个的信号以至信号到达角度,取其直线方向交点,这时则可获得待定位节点坐标。该方式定位精确度偏低,主要改善方式是利用天线阵列且按照已知阵元的排列关系,再利用诸多AOA信息进行定位,以此提升定位精确度;信号强度法主要是利用信号接收端测量所接受到的功率,再利用传播损耗模型公式计算节点之间的距离,测量待定位节点及不少于3个信标节点之间的距离解算信标节点位置坐标。
2蓝牙室内无线定位系统
蓝牙技术属于短距离无线通信技术,是利用无线连接把固定及移动的信息设备构成个人局域网,从而使得设备之间低成本无线互连通信的实现。本文分析了基于蓝牙技术的室内无线定位,用Blue Core4芯片作为主要研究对象,设计构建蓝牙室内定位系统,应用协议为蓝牙串口。如图1所示,Blue Core4芯片系统结构简视图。
图1 Blue Core4芯片系统结构简视图
2.1蓝牙技术
蓝牙技术属于低功耗无线技术,2.0协议使得蓝牙技术数据传输速率及功耗和误码率均有所提升。蓝牙技术可于任何地方随时利用无线接口替代有线电缆实现链接,其具备极强的移植性,多用于各类通讯场景下,并且蓝牙技术功耗低。蓝牙设备所搜寻到的另一蓝牙设备,则即刻可进行连接,并不需要进行对应设置,往往无线电环境越复杂则蓝牙技术优势更为显著。
2.2蓝牙Core4芯片技术分析
蓝牙Core4芯片属于第四代蓝牙芯片,此芯片满足SIG最新加强数据传输率的各项规范。蓝牙Core4芯片数据传输率快,是现有蓝牙装置的3倍,利用蓝牙移动电话及手机耗电量小,很快就实现了批量生产。传输率的提高则表明该技术对特定量数据快速展开工作,这样也可有效降低耗电量。再者是信息包有效负荷可传输更多比特,蓝牙Core4芯片可充分与各类蓝牙装置兼容,其对应信息包定时及结构均是统一的,传输频谱特征并未有所改变。蓝牙Core4芯片具体提供方式为外部内存及掩模ROM。
3蓝牙室内无线定位系统技术实现
3.1蓝牙串口应用特征
蓝牙串口应用时对应使用授权及鉴权与加密等均可自选择,这些均属安全性特征的支持,鉴权及加密为关键支持。应用安全特征连接建立阶段可执行设备匹配,建立模拟串行电缆连接应执行各项服务发现过程。采用RFCOMM传输数据,解调器控制信号调制,同时有效配置各方面命令。
3.2接入点程序实现
蓝牙串口应用协议实现主要是:第一步,完成PIO初始化,配置控制PIO的对应任务函数;第二步,配置蓝牙串口应用任务处理函数,初始化蓝牙串口应用类设备,同时初始化RFCOMM通道编号,设置蓝牙串口应用优先级,设置蓝牙串口应用状态,初始化蓝牙串口应用储存空间,设置蓝牙串口应用协议返回客服端任务;第三步,蓝牙协议堆栈,配置处理连接任务,合理初始化多点传输管理;第四步,注册此设备安全模式,记录此设备属性,改变此设备状态以进入查询模式状态;第五步,建立连接,搜寻到设备之后就得到另一蓝牙地址,各个设备蓝牙地址均是唯一独立的;第六步,读取RSSI值,构建连接之后则利用函数调用读取RSSI值,同时估计发射设备及接收设备的距离,通常返回值应是8位整型,-128~127范围之内的某个值。如图2所示,接入点程序实现简视图。
图2 接入点程序实现简视图
4结语
随着科学技术水平的不断提升,室内无线定位技术被广泛应用于各类大型场合,不过此项技术于国内发展并不是十分快速,这也使得诸多研究方案未能真正发挥其价值,所以关于室内无线定位方面的知识普及,对室内无线定位技术发展及其研究空间的扩大有着极大现实意义,以便将其服务于社会大众。本文基于蓝牙Core4芯片对蓝牙室内无线定位系统技术实现进行了深层分析,详细分析蓝牙串口应用服务程序编写及调试,分析其接入点程序实现,以期提升人们生活便捷度,促进国内蓝牙室内无线定位系统技术水平提升。
参考文献
[1]陈国平,马耀辉,张百珂.基于指纹技术的蓝牙室内定位系统[J].电子技术应用,2013(3).
[2]赵娜,李丹.浅谈蓝牙室内无线定位系统的技术实现[J].中小企业管理与科技(下旬刊) ,2011(2).
[3]张浩,赵千川.蓝牙手机室内定位系统[J].计算机应用,2011(11).
[4]吴琳.室内定位技术探讨[J].江西测绘,2013(2).
【关键词】蓝牙(Bluetooth);近距离无线通信
1.蓝牙的起源与发展
蓝牙是1998年5月由东芝、爱立信、IBM、Intel和诺基亚共同提出的一种近距离无线数据通讯的技术标准,这是一种支持设备短距离通信的无线电技术。利用该技术可以有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与因特网之间的通信,使数据的传输变得更加迅速、高效。
蓝牙的支持者从最初的五家企业发起的蓝牙特别兴趣小组(SIG)发展到现在近3000个企业成员。蓝牙从实验室进入市场要经过三个阶段:
第一阶段(2001年底到2002底):蓝牙产品作为附件应用于移动性较大的高端产品(如移动电话耳机、笔记本电脑插卡或PC卡等)中,或应用于只要求性能和功能且对价格无要求的特殊场合。
第二阶段(2002年到2005年):蓝牙产品嵌入中高档产品中,如PDA、移动电话、PC、笔记本电脑等。蓝牙的价格进一步下降,估计其芯片价格在10美元左右,而有关的测试和认证工作也初步完善。
第三阶段(2005年以后):蓝牙进入家用电器、数码相机及其他各种电子产品中,蓝牙网络随处可见,蓝牙应用开始普及,蓝牙产品的价格在2美元~5美元之间,每人都可能拥有2-3个蓝牙产品。
2.蓝牙技术的工作原理
2.1建立连接
在微微网建立之前,所有设备都处于就绪状态。在该状态下,未连接的设备每隔1.28s监听一次消息,设备一旦被唤醒,就在预先设定的32个跳频频率上监听信息。跳频数目因地区而异,但32个跳频频率为绝大多数国家所采用。连接进程由主设备初始化。如果一个设备的地址已知,就采用页信息(Page message)建立连接;如果地址未知,就采用紧随页信息的查询信息(Inquiry message)建立连接。在微微网中,无数据传输的设备转入节能工作状态。主设备可将从设备设置为保持方式,此时,只有内部定时器工作;从设备也可以要求转入保持方式。设备由保持方式转出后,可以立即恢复数据传输。连接几个微微网或管理低功耗器件时,常使用保持方式。监听方式和休眠方式是另外两种低功耗工作基带技术支持两种连接方式:主要用于语音传输的面向连接(SCO)方式;主要用于分组数据传输的无连接(ACL)方式。
2.2差错控制
基带控制器采用3种检错纠错方式:1/3前向纠错编码(FEC);2/3前向纠错编码;自动请求重传(ARQ)。
2.3认证与加密
认证与加密服务由物理层提供。认证采用口令——应答方式,在连接过程中,可能需要一次或两次认证,有时也无需认证。认证对任何一个蓝牙系统都是重要的组成部分,它允许用户自行添加可信任的蓝牙设备,例如只有用户自己的笔记本电脑才可以通过自己的手机进行通信。设置蓝牙安全机制的目的在于提供适当级别的保护。
2.4软件结构
蓝牙设备具有互操作性。对于某些设备,从无线电兼容模块、空中接口,直到应用层协议、对象交换格式都要实现互操作性;对另外一些设备(如头戴式设备等)的要求则要宽松得多。蓝牙计划的目标就是要确保任何带有蓝牙标记的设备都能进行互换性操作。软件的互操作性始于链路级协议的多路传输、设备和服务的发现、以及分组的分段和重组。蓝牙设备必须能够彼此识别,并通过安装合适的软件识别出彼此支持的高层功能。互操作性要求采用相同的应用层协议栈。不同类型的蓝牙设备对兼容性有不同的要求,用户不能奢望头戴式设备内含有地址簿。蓝牙的兼容性是指它具有无线电兼容性,有语音收发能力及发现其它蓝牙设备的能力,更多的功能则要由手机、手持设备及笔记本电脑来完成。为实现这些功能,蓝牙软件构架将利用现有的规范,如OBEX、HID(人性化接口设备)、vCard/vCalendar及TCP/IP等,而不是再去开发新的规范。设备的兼容性要求能够适应蓝牙规范和现有的协议组成部分,它允许用户自行添加可信任的蓝牙设备,例如,只有用户自己的笔记本电脑才可以通过用户自己的手机进行通信。蓝牙安全机制的目的在于提供适当级别的保护,如果用户有更高级别的保密要求,可以使用有效的传输层和应用层安全机制。
3.蓝牙通讯技术的特点
4.蓝牙技术在日常生活中的应用
通过以下蓝牙连接,我们可以从家庭办公的线路束缚中解脱出来:
(1)保持计算机、电话及PDA上的联系人、日历和信息同步。
(2)从计算机向打印机无线发送文件。
(3)将计算机无线连接至鼠标和键盘,免去了桌上一堆的杂乱电线。
(4)通过连接手机至扬声器召开免提电话会议。
(5)从拍照手机向打印机发送图片,并进行打印。
(6)通过无线立体声耳机收听从家庭音响或其它类似音频设备传送的流音乐。
(7)通过蓝牙连接从膝上型计算机或手机向媒体查看器发送图片,在电视上查看数码照片。
(8)在无线立体声系统内,基站可以通过蓝牙连接向无线扬声器流传输音频。
(9)在进行日常活动时,使用连接至手机或固定电话的无线耳机,就可以随意接听来电。
(10)在家时,可以使用连接至陆线CTP电话的手机,以节省话费。
5.结束语
蓝牙技术产品与因特网Internet之间的通信,使得家庭和办公室的设备不需要电缆也能够实现互通互联,大大提高办公和通信效率。因此, “蓝牙”将成为无线通信领域的新宠,将为广大用户提供极大的方便而受到青睐。蓝牙技术对我国的信息化建设来说,既是机遇也是挑战。我们衷心希望具有我国自主知识产权的蓝牙产品早日投入市场,也希望有更多有识之士关注和支持我国蓝牙技术的发展,也许在不久的将来,人们会惊奇地发现我们的工作与生活都在逐渐变蓝。 [科]
【参考文献】
[1]超低功耗(ULP)蓝牙技术规范解析[M].国防工业出版社,2010.
1 引言
蓝牙(Bluetooth )是一种低成本、短距离的无线连接技术标准。它是由爱立信(Ericsson ) ,国际商用机器(IBM ) ,英特尔( Intel ) ,诺基亚(Nokia )和东芝(Toshiba ) 5 家公司共同倡导的一种全球无线技术标准。其目的就是将智能移动电话与笔记本电脑、掌上电脑以及各种数字信息的外部设备用无线方式连接起来。目前,无线连接飞速普及、大受欢迎,蓝牙技术的广泛应用对无线移动数据通信将起到巨大的促进作用。
2 蓝牙无线频段的选择和抗干扰
蓝牙技术采用2400~2483.5MHz 的ISM (工业、科学和医学)频段,这是因为:
( l )该频段内没有其它系统的信号干扰,同时频段向公众开放,无须特许;
( 2 )该频段在全球范围内有效。
此时,抗干扰问题便变得非常重要。因为2400~2483.5MHz ISM 频段为开放频段,使用其中的任何频段都会遇到不可预测的干扰源(如某些家用电器、无绳电话和汽车开门器等),此外,对外部干扰源和其它蓝牙设备的干扰也应作充分估计。
抗干扰方法分为避免干扰和抑制干扰。避免干扰可通过降低各通信单元的信号发射电平来达到;抑制干扰则通过编码或直接序列扩频来实现。然而,在不同的无线环境下,专用系统的干扰和有用信号的动态范围变化极大。在超过50dB 的远近比和不同环境功率差异的情况下,要达到1Mb/s 以上速率,仅靠编码和处理增益是不够的。相反,由于信号可在没有干扰时(或干扰低时)发送,故避免干扰更容易一些。若采用时间避免干扰法,当遇到时域脉冲干扰时,发送的信号将会中止。另一方面,大部分无线系统是带宽受限的,而在2.45 GHZ 频段上,系统带宽为80MHz,可找到一段无明显干扰的频谱,同时利用频域滤波器对无线频带其余频谱进行抑制,以达到理想效果。因此,以频域避免干扰法更为可行。
3 蓝牙基带协议中的可靠性措施
蓝牙基带协议把保证蓝牙无线连接的可靠性放在了至关重要的位置上,确保匹克网内各蓝牙设备之间由射频构成可靠的物理连接。实际上,为了提高蓝牙无线连接的可靠性,以较小的开销有效地降低误码率、切实提高蓝牙无线连接的可靠性,蓝牙基带协议中定义了一系列提高蓝牙无线连接可靠性的措施,主要包括:差错检测和校正、进行数据编解码、差错控制、数据加噪等。下面,我们对这些可靠性措施一一进行阐述:
3.1 蓝牙基带协议中的差错控制方案
在蓝牙基带协议中采用的差错控制方案有:1/3 比例前向纠错码(FEC);2/3比例前向纠错码(FEC);数据的自动重传请求(ARQ, Automatic Repeat Request)方案。
其中,FEC(前向纠错)的目的是为了减少数据载荷重发的次数,使用FEC码,检错、纠错以及编解码的过程变得简单迅速,这对RX 和TX 间的有限处理时间非常重要。但是,采用FEC的缺点是还是会降低实际数据传输速率。所以,在纠错要求不高的环境中,可以不采用FEC。蓝牙规范基带协议中的分组的定义对于在有效载荷中是否采用FEC 给出了相当的灵活度,由此而定义了ACL链接中使用的DM 和DH分组以及SCO链接中使用的HV分组。分组头通常采用1/3比例前向纠错码保护,它含有很重要的链接信息,能够容忍多位错误。
3.1.1 1/3 比例前向纠错码(FEC)
在这种3位重复方案中,分组头中的每一位都重复三次。主要用来屏蔽头中的错误,因为分组头中包含有重要的连接信息。实际上在整个分组头里都采用了三位重复码。在这种3 位重复方案中,重复码大部分在接收端判决,既可用于数据包头,也可用于SCO链接的分组。例如,在SCO链接中使用的HV1分组里的话音段中也采用了这种编码格式。
3.1.2 2/3比例前向纠错码(FEC)
在这一方案中,采用了一种(15, 10)精简的(缩短的)汉明码表示方式。每10个信息位被编码为15位的码字,生成多项式为:g(D)= (D+1) (D4+D+1)。此类错误校正方法主要用来以最可靠的方式来发送数据分组。该方案能够在各代码字中纠正所有奇数位错和检测所有偶数位错,误码检测用于数据纠错。它既可用于SCO链接的同步分组,也可用于ACL 链接的异步分组。具体而言,2/3比例前向纠错码可用于DM分组、DV分组中的数据段、FHS 分组以及SCO链接中使用的HV2分组中。由于编码器采用长度为10 的信息段,所以值为O的尾位可附加在CRC位之后。而所有需要编码的位数(即:有效载荷头、用户数据、CRC和尾部数位)必须是10 的整倍数。通常是用线性反馈移位寄存器LFSR来生成2/3比例前向纠错码。
3.1.3 自动重传请求(ARQ)
在蓝牙无线连接中,为了保证可靠传送,常用做法是采用自动重传请求(ARQ)方案,由接收方发回特殊的控制帧,作为对输人肯定或否定性的确认(ACK/NACK)。如果出现丢帧或丢掉确认消息的情况,则计时器在超时后会发出超时信号,提醒发送方可能出现了问题,必须重传此帧。而且收方必须能够辨别收到的是重复帧还是新帧。
在蓝牙采用的ARQ方案中,蓝牙的DM、DH和DV分组的数据段可以进行传输或重发,直到收端返回成功接收确认信息(或超时)为止。该确认信息包含在返回分组头里,即捎带( Piggy backing) 。为了确定有效载荷正确与否,循环冗余校验码应该加载于有效载荷中。ARQ方案只工作在分组的有效载荷上(仅针对具有CRC的有效载荷)。分组头和话音有效载荷不受ARQ 保护。
蓝牙使用快速、无编号确认方案。为了应答前次接收分组,应返回ACK (ARQN=1)或NAK (ARQN=0)。在返回分组的分组头里,生成ACK / NACK 域,同时,接收分组的分组头中的ACK / NACK域可表明前面的负载是否正确接收,决定是否需要重发或发送下一个分组。从单元将在主-从时隙后紧跟在从-主时隙中进行应答。主单元则将在下一个事件中应答,该事件将给出同一从单元地址。由于处理时间短,当分组接收时,解码选择在空闲时间进行,并要简化FEC编码结构,以加快处理速度。快速ARQ方案与停止等待ARQ方案相似,但时延最小,实际上没有由ARQ方案引起的附加时延。该结构比退后n帧ARQ更有效,并与选择重传ARQ 效率相同,但由于只有失效的分组被重发,可减少开销。
在快速ARQ方案中,收方为了辨别是重复帧还是新帧(即过滤重传数据),头部将附加SEQN位。通常,每次新的CRC数据有效载荷传输,SEQN位将交替变化。而在重传中,SEQN位不发生变化。这样,通过辨认SEQN位是否发生变化,收方即可辨别出是重复帧还是新帧。
3.2 蓝牙基带协议中的错误校验
在蓝牙无线连接中,至少应该对HEC进行分组头校验。另外,必要时其有效载荷也必须进行CRC校验。使用分组头HEC信息和有效载荷中的CRC信息,可以检测分组错误和传输错误。
3.2.1 分组头HEC检测
为了检测蓝牙分组头,每个分组头的最高8位定义为HEC ( Header-Error-Check,头部错误检测)信息。HEC由多项式647(八进制数)生成,在生成HEC之前,HEC生成器用一个8 位值来初始化。在初始化后,对分组头的其它10位进行计算,得到8位的HEC值。另外,在接收方校验HEC之前,也必须先进行适当的初始化。在接收分组时,首先校验的是访问码,由于在信道访问码中的64位同步字来源于24位主单元的低地址部分(LAP),这样就可以校验LAP是否正确,并可以防止接收方接收来自其它匹克网的分组。
3.2.2 有效载荷的CRC校验
CRC校验即循环冗余码校验,是一种常用的检错编码,而且已经有相应的国际标准,如CRC-CCITT。在蓝牙无线连接中,发送方按照国际标准CRC-CCITT ,即g (D) = ( D + 1 ) ( D7 +D4+D3+D2+D+1),并用线性反馈移位寄存器LFSR硬件电路生成有效载荷(数据信息)的CRC校验码,附加在数据信息后面构成完整的数据帧,由接收方在接收时检查。若出错,返回NAK,发送方收到NAK 后重发该数据帧。
3.3 蓝牙基带协议中的其它可靠性措施
3.3.1 教据加噪
所有的分组头和载荷信息在发送前都要利用数据加噪字进行加噪处理。这主要是为了避免在传输过程中出现过长的连续0或1的位流模式。基带处理器需要从接收到的模拟数据信号中判断数据是0还是1,但过长的连续0或1位流会造成问题。因为在接收到的模拟数据信号中并不存在象直流信号中那样的参考点,因此必须依靠接收到的最后几个传输信号进行校正。任何连续的0或1的长序列位流串都可能导致校正失败。因此需要采用数据加噪技术对信号进行扰码处理,以大大降低出现长序列0或1位流串的可能性。
在蓝牙无线连接的发送方,这种加噪过程先于FEC编码完成。在接收端,接收数据使用相同的数据加噪字进行还原处理,该还原处理在FEC解码后完成。
3.3.2 链路监测
在无线连接中,有很多原因能够引起连接中断,比如,设备关闭、设备移出了蓝牙通信范围。而且在连接中断发生时,通常不会有任何提前报警,所以,在蓝牙主、从单元两端对链路进行监测是非常必要的。
为此,在蓝牙主、从单元均使用链路监测定时器。一旦收到经过HEC校验的分组和正确的蓝牙活动成员地址(AMADDR),定时器就复位。如果在连接状态的任何时刻,定时器达到阈值(该阈值可协商),则连接复位。SCO和ACL 连接使用同一阈值。这样,就能够在蓝牙主、从单元两端对链路进行监测了。
4 蓝牙链路管理层(LM)中的可靠性措施
类似地,在蓝牙链路管理层(LM )中,也定义有保证可靠的无线连接的措施。
在蓝牙接收和发送设备的链路管理层之间是通过协议数据单元(PDU)来相互通信的。PDU 由操作码、事件ID和内容参数组成,其中,7 位操作码用来标识不同类型的PDU。
如果链路管理器收到不能识别操作码的PDU,就用LMP no accepted协议数据单元(PDU)应答,并且LMP no accepted PDU中含有原因码unknown LMP PDU。而且返回的操作码参数同样也是不能够识别的操作码。如果链路管理器收到含有无效参数的PDU,就用LMP no accepted PDU应答,并且LMP no accepted PDU中含有原因码invalid LMP PDU(无效LMP 参数).
某一方在等待对方响应时,如果发现超过了最大响应时间或者检测到链路丢失,等待应答的一方就可以认为该过程已经终止。
信道出错或发送方系统出错都会引起发送错误的消息。为了检测后一种情况,LM应监测错误消息数量,一旦超过阈值就将其断开,该阈值可根据实际情况进行设置。
由于无法实时地截获PDU,在链路两端的LM都对同一过程进行初始化而且都没有成功时,很可能会发生冲突。这时,主单元将通过发送含有原因码“LMP Error Transaction Collision ”的LMP no accepted PDU,中止从单元的初始化过程,从而保证主单元的初始化过程能够顺利进行。
5 蓝牙应用层中可采用的可靠性措施
5.1 稳定、可靠的蓝牙文件传输协议:RBTFT
蓝牙的文件传输是通过RFCOMM协议建立一条端到端的连接。所以在蓝牙RFCOMM协议的基础之上建立了本文所描述的蓝牙的文件传输协议,称之为RBTFT(表示为Reliable Bluetooth File Transfer),其主要目标是在蓝牙设备之间建立一条可靠的无线连接通道,进行可靠的文件传输。该协议目前的开发是采用VC+ +,应用平台为WIN98/2000/NT,但作为RBTFT 协议的本身不受具体编程语言及操作系统所限制。
RBTFT 协议支持一次传输多个文件、断点续传和CRC校验。其设计思想是基于帧传输方式,即在发送数据时是一帧一帧地发送,为保证可靠的传输,RBTFT协议对RBTFT帧进行了精心的定义,RBTFT 帧由报头、数据子包组成,报头指明帧类型(有些帧是不带数据的命令帧、信息帧,如BTFNAK ) ,还携带CRC校验信息。而数据子包还有不同的子包结束符,指明后面是否有后续包等。在进行数据传输时,采用发送/应答/握手/失败方式,即发送一帧数据,一个应答,若应答没收到,重新进行协商握手,握手失败则向应用程序报告错误。
在利用RBTFT 协议进行实际的文件传输时,首先第一步是进行串口初始化操作,在串口初始化成功时,通过异步消息RBTFT C0NNECT向应用程序报告,表示一条通信链路建立完毕。开始发送数据时,应用程序根据内部缓冲区的大小决定每次真正可发送的数据量,数据将被存储在内部缓冲区内,按照RBTFT协议,内部缓冲区的数据分割成一帧一帧并加人帧信息和CRC校验信息,每一帧将调用内部线程发送数据,当内部缓冲区的数据全部发送完毕(即内部缓冲区为空)时,则向应用程序发送消息表示内部缓冲区的数据全部发送完毕,应用程序将可继续发送其余的数据。在接收方,每到达一帧时,接收方就判读帧信息、对到达的数据进行接收并进行CRC校验,若发生错误则通过RBTFT协议所定义的方式进行重发或协商,当通信能继续则不向应用程序发送任何消息,继续保持链路,若通信不能继续,则放弃此链路,并且向应用程序发送RBTFT ERROR的消息,应用程序将重新复位此链路或进行其它相应的处理。另外,当有任何一方断开链接,应用程序将接收到RBTFT CLOSE消息,表示此链路已经断开。在接收端,所接收到的分帧的数据被去掉帧头重新归到接收缓冲区流,重新拼装为所传输的文件。然后,再进行下一个文件的传输,直至传输完所有的文件。
对于在应用层提高蓝牙无线连接的可靠性而言,最为可贵的是RBTFT协议支持断点续传。我们目前所实现的也就是将RBTFT文件传输协议嵌人到蓝牙无线文件传输的应用中,这样,即便出现文件传输中断的情况,也可以进行断点续传。这对于大文件无线传输尤为有意义。
RBTFT协议支持断点续传的原理在于RBTFT数据帧在报头中携带有指明文件数据在文件具体某个位置开始的偏移量。当发生错误或连接中断时,接收方发送一个带有偏移量的信息帧,说明它希望发送方从该位置重新开始传输。这样就无需重传整个文件,从而实现了断点续传。
5.2 蓝牙文件传翰RBTFT协议发送文件的详细过程
以下是蓝牙文件传输RBTFT 协议发送单个文件的详细过程:
n =0; //初始化重试次数计数器,收发双方建立连接;
file = fopen (filename,“rb ”); 设置并发送包含文件名、文件长度的报头;
for ( ; ;) {
message =所读取接收方发来的响应报头信息;
switch (message) {
case 接收方返回“已经准备接收”:
发送第一个数据子包,并以子包结束符指明后面有后续包;
Continue ;
case 接收方拒绝接收:
fclose (file);
return OK;
case 接收方返回确认信息:
发下一个包;
Continue;
case 超时:n=n+l;
if (n>20)//重试20 次,若还不能恢复连接,则放弃
{return ERROR;}
else if
{重新建立连接;
请求接收方发送带有偏移量的信息帧;
接收该信息帧;
从指定偏移量处开始继续传送;
Continue;}
case 接收方放弃传输:
return ERROR;
case 文件传输完毕:
输出“文件传输完毕”的屏幕提示信息;
return OK;
关键词:蓝牙;无线网络;安全威胁;安全体系
中图分类号:TP39 文献标识码:A 文章编号:2095-1302(2016)10-00-03
0 引 言
在当前的网络应用中,物联网具有对物品多样性、低成本、低速率、短距离等特征的泛在需求,这类需求主要通过蓝牙等低速网络协议实现。蓝牙是一种短距离通信开放标准,利用嵌入式芯片实现通讯距离在10 m100 m之间的无线连接。蓝牙的设计目标在于通过统一的近距离无线连接标准使各生产商生产的个人设备都能通过该网络协议更方便地实现低速率数据传输和交叉操作。蓝牙技术具有低成本、低功耗、模块体积小、易于集成等特点,非常适合在新型物联网移动设备中应用。
1 蓝牙技术的安全体系
1.1 四级安全模式
1.1.1 安全模式1
安全模式1无任何安全机制,不发起安全程序,无验证、加密等安全功能,该模式下设备运行较快且消耗更小,但数据在传输过程中极易被攻击。蓝牙V2.0及之前的版本支持该模式。
1.1.2 安全模式2
安全模式2是强制的服务层安全模式,只有在进行信道的逻辑通道建立时才能发起安全程序。该模式下数据传输的鉴权要求、认证要求和加密要求等安全策略决定了是否产生发起安全程序的指令。目前所有的蓝牙版本都支持该模式,其主要目的在于使其可与V2.0之前的版本兼容[1]。
1.1.3 安全模式3
安全模式3为链路层安全机制。在该模式下蓝牙设备必须在信道物理链路建立之前发起安全程序,此模式支持鉴权、加密等功能。只有V2.0以上的版本支持安全模式3,因此这种机制较之安全模式2缺乏兼容性和灵活度。
1.1.4 安全模式4
该模式类似于安全模式2,是一种服务级的安全机制,在链路密钥产生环节采用ECDH算法,比之前三种模式的安全性高且设备配对过程有所简化,可以在某种程度上防止中间人攻击和被动窃听。在进行设备连接时,和安全模式3一样先判定是否发起安全程序,如需要则查看密钥是否可用,密钥若可用则使用SSP简单的直接配对方式,通过鉴权和加密过程进行连接[1]。
建立连接的安全模式机制流程图如图1所示。
1.2 密钥管理
1.2.1 链路密钥
链路密钥是128 b的随机数,由伪随机数RAND和个人识别码PIN、设备地址通过E21或E22流密码算法启动。其中初始密钥及组合密钥经初始化过程生成后作为临时链路密钥在设备间完成鉴权后就被丢弃。主密钥可以用于设备在微微网内进行加密信息的广播,在发送广播信息时主密钥会替代原来的链路密钥。单元密钥生成后在蓝牙设备中会被保存且会一直应用于链路通信。
1.2.2 加密密钥
完成鉴权的蓝牙设备可以在通信中使用加密密钥来加密传递的数据。该密钥由对称加密算法E3算法产生,字长为128 b,由伪随机数RAND、鉴权过程产生的加密偏移数COF和当前链路密钥K生成。蓝牙采用分组加密的方式,加密密钥和其他参数(主体设备的设备地址、随机数、蓝牙时钟参数)通过E0算法产生二进制密钥流从而对传输数据进行加密、解密。密钥的生成如图2所示。
1.3 鉴权
鉴权的目的在于设备身份的认证,同时对参数传递是否成功进行反馈,它既可以是单向过程也可以是相互鉴权,但都需要事先产生链路密钥。被鉴权设备的设备地址、鉴权的主体设备产生的随机数以及链路密钥都参与其中,由此产生应答信息和鉴权加密偏移值,前者被传递至主体设备进行验证,若相同则鉴权成功。若鉴权失败则需要经过一定长度的等待时间才能再次进行鉴权[2]。鉴权过程如图3所示。
2 已知的蓝牙安全漏洞
2.1 跳频时钟
蓝牙传输使用自适应跳频技术作为扩频方式,因此在跳频系统中运行计数器包含28位频率为3.2 kHz的跳频时钟,使控制指令严格按照时钟同步、信息收发定时和跳频控制从而减少传输干扰和错误。但攻击者往往通过攻击跳频时钟对跳频指令发生器和频率合成器的工作产生干扰,使蓝牙设备之间不能正常通信,并且利用电磁脉冲较强的电波穿透性和传播广度来窃听通信内容和跳频的相关参数[3]。
2.2 PIN码问题
密钥控制图中的个人识别码(PIN)为四位,是加密密钥和链路密钥的唯一可信生成来源,两个蓝牙设备在连接时需要用户在设备中分别输入相同的PIN码才能配对。由于PIN码较短,使得加密密钥和链路密钥的密钥空间的密钥数限制在105数量级内,并且在使用过程中若用户使用过于简单的PIN码(如连续同一字符)、长期不更换PIN码或者使用固定内置PIN码的蓝牙设备,则更容易受到攻击[4]。因此在V2.1之后的版本中PIN码的长度被增加至16位,在增大了密钥空间,提高了蓝牙设备建立连接鉴别过程的安全性的同时,也不会因为使用太长的数据串为通信带来不便。
2.3 链路密钥欺骗
通信过程中使用的链路密钥基于设备中固定的单元密钥,而加密过程中其他信息是公开的,因此有较大漏洞。如设备A和不同设备进行通信时均使用自身的单元密钥作为链路密钥,攻击者利用和A进行过通信的设备C获取这个单元密钥,便可以通过伪造另一个和A通信过的设备B的设备地址计算出链路密钥,伪装成B来通过A的鉴权,B伪装成C亦然[5]。
2.4 加密密钥流重复
加密密钥流由E0算法产生,生成来源包括主体设备时钟、链路密钥等。在一个特定的加密连接中,只有主设备时钟会发生改变。如果设备持续使用时间超过23.3小时,时钟值将开始重复,从而产生一个与之前连接中使用的相同的密钥流[6]。密钥流重复则易被攻击者作为漏洞利用,从而得到传输内容的初始明文。
2.5 鉴权过程/简单安全配对中的口令
除使用个人识别码PIN进行配对以外,蓝牙标准从V2.1版本开始,增加了简单安全配对SSP(Secure Simple Pairing,SSP)方式。SSP方式比之前的PIN码配对更方便,不像PIN码配对那样需要两个有输入模块的配对设备同时输入配对密码,而SSP只需要有输出模块的两个配对设备确认屏幕上显示的是否是同一个随机数即可。通过设备搜索建立蓝牙物理连接,产生静态SSP口令,鉴权这四步即可建立连接,但是这种关联模型没有提供中间人攻击保护,静态SSP口令很容易被中间人攻击攻破[7]。
3 蓝牙技术的安全威胁
针对蓝牙的攻击威胁大体上可以分为两种,一种是对不同无线网络均适用的攻击,一种是针对蓝牙特定的攻击。
3.1 拒绝服务攻击
拒绝服务攻击(DoS)的原理是在短时间内连续向被攻击目标发送连接请求,使被攻击目标无法与其他设备正常建立连接。蓝牙的逻辑链路控制和适配协议规定了蓝牙设备的更高层协议可以接收和发送64 KB的数据包,类似于ping数据包,针对这个特点,攻击者可以发送大量ping数据包占用蓝牙接口,使蓝牙接口不能正常使用,并且一直使蓝牙处于高频工作状态从而耗尽设备电池[8]。DoS攻击流程图如图4所示。
3.2 中间人攻击
在两个设备之间的攻击者截获数据一方发送的数据后再转发给另一方,可在不影响双方通信的情况下获得双方通信的内容,是一种广泛应用于无线网络的攻击方式。蓝牙4.0版本的低功耗蓝牙技术(Bluetooth Low Energy,BLE)在设计初始时有防范中间人攻击的安全措施,但是在产品阶段考虑到产品功耗成本等因素,这方面并没有得到足够的重视,依然容易受到攻击[9]。最常见的是用软硬件结合的蓝牙攻击设备伪造BLE通信进行中间人攻击。中间人攻击示意图如图5所示。
3.3 漏洞窃听
蓝牙窃听可以通过对蓝牙漏洞的攻击来实现,蓝牙中的OBEX (Object Exchange)协议,即对象交换协议在早期的蓝牙产品规范中没有强制要求使用权鉴,所以攻击者可以利用此漏洞在被攻击者手机没有提示的情况下链接到被攻击手机,获取对手机内各种多媒体文件以及短信通话记录等文件的增删改权限,甚至可以通过手机命令拨打接听电话。具有这些攻击功能的指令代码被黑客写成了手机软件,可在网络上下载。普通人一般会使用图形化界面去操作,某些山寨手机中甚至自带这项功能,当和别的手机配对成功后即可获得对方手机的操作权限。不过随着蓝牙技术的不断提升,针对早期蓝牙漏洞的攻击现在已经越来越少见。
3.4 重放攻击
重放攻击的原理是监听或者伪造双方通信的认证凭证,经过处理后再回发给被攻击方进行认证。蓝牙传输过程中有79个信道,攻击者可以通过监听信道、计算跳频时序、回放已授权设备的口令来进行攻击。V4.2的标准中已经增加了防止重放攻击的协议。
3.5 配对窃听
蓝牙V2.0及之前更早版本默认的4位PIN码很容易被暴力破解,因为低位数字排列组合的方式十分有限,蓝牙V4.0的LE配对同理。攻击者只要监听到足够的数据帧,就可以通过暴力破解等方式确定密钥,模拟通信方,实现攻击目的。
3.6 位置攻击
每个蓝牙设备都有唯一的6字节序列号作为设备地址,这种序列标识由于在使用过程中不发生改变很容易泄露设备的位置信息。攻击者可以根据蓝牙的调频连接机制和寻呼机制、设备标识符和其他通信参数获得被攻击者设备的地理位置[7]。
3.7 简单配对模式攻击
蓝牙V2.0规定的SSP安全简单配对连接方式并不安全,是由于使用了静态口令而无法防止中间人攻击,并且一旦攻击者取得了口令,在一段时间内可以用此口令进行持续性攻击。
4 结 语
随着物联网技术在制造业、农业以及家居设备等方面的快速推广,蓝牙的应用前景不可小觑,但也面临着较大的挑战。因此我们期待在未来的蓝牙标准设计中可进一步实施必要的安全策略,同时在使用蓝牙设备进行传输时,也应提高蓝牙设备使用的安全意识,尽量使用最强的安全模式。
参考文献
[1]张超,蔚俊刚.蓝牙安全体系的研究与实现[J].仪器仪表用户,2012,19(2):99-100.
[2]田新建.关于蓝牙安全机制的进一步研究[D].重庆:重庆大学,2003.
[3]唐婧壹.蓝牙安全策略研究[J].山西电子技术,2011(2):85-86.
[4]张俊.蓝牙技术及其安全机制研究[J].电脑知识与技术,2008,3(27):1941-1942.
[5]谭凤林,葛临东.蓝牙安全机制分析[J].信息工程大学学报,2002,3(2):76-78.
[6]Guideto Bluetooth Security. NISTSP800-121(修订1)[Z]. 2012(1).
[7]严霄凤.蓝牙安全研究[J].网络安全技术与应用,2013(2):51-54.
蓝牙技术向着新型信息产业以及传统的产业的渗透,将会为蓝牙技术拓展新的市场,寻求新的增值空间,同时也是满足大众个性化需求的未来之路。
随着蓝牙技术的不断推进,高速、低功耗逐渐成为是蓝牙技术发展的未来趋势,蓝牙作为一种无线传输功能,凭借这些优势,蓝牙技术的应用整逐步融入大众生活。
蓝牙技术最初仅被设想为用于耳机和手机之间的数据传输,然而消费者不断上升的使用需求让蓝牙技术的应用更加多元化,逐步渗透到电脑备件等领域。就目前的发展情况来看,蓝牙技术在手机、耳机、PDA、数码相机和数码摄像机等设备上都有应用,同时又由于手机的普及率较高,因此蓝牙手机成为目前蓝牙技术的主要应用,然而蓝牙技术未来将在汽车产业、移动办公设备、家庭娱乐、运动健身、医疗保健等领域得到拓展与应用,从而开辟蓝牙技术的新的增值空间。
根据美国一家媒体报道,美国一家医院给失去双腿的病人安装了一对内置蓝牙技术的假肢。假肢内的芯片给关节处的马达发送信号来控制动作,同时两个假肢的脚踝处装有蓝牙芯片,两个假肢的蓝牙芯片会彼此通报自己的状况,比如如何在移动、是否在走路、站立或者爬坡,并且让两个假肢模拟彼此的动作。安装假肢的人只需要用大腿肌肉施加压力就可以控制假肢停下来。
2008年10月10日,蓝牙技术联盟(Bluetooth Special Interest Group,Bluetooth SIG)中国2008峰会在北京成功召开,作为蓝牙技术诞生十周年环球庆典活动之一。蓝牙技术联盟是由电信业、信息业、消费性电子业、汽车业及网络业的领补袖厂商组成,积极开发蓝牙崭新科技并导入市场。其创始公司包括爱立信、英特尔、联想、微软、摩托罗拉、诺基亚及东芝,目前超过11,000个加盟及应用公司会员。在此次峰会上,蓝牙技术联盟成员展示了最新的蓝牙产品和服务,同时就蓝牙相关热点话题进行了小组讨论。推动了蓝牙技术在中国的发展和应用。
峰会上,支持蓝牙功能的手机、耳机、车载免提设备、蓝牙技术测试装置和认证服务以及蓝牙遥控游戏机等相继亮相。展示了蓝牙技术的发展态势。蓝牙技术联盟亚太区及日本市场总监苏国良(Derek Soh)先生在会上指出:“未来,具有低功耗和高速传输特点的蓝牙技术将继续引领个人无线通信领域,并打开新的市场。”另外,他补充道:“目前,蓝牙技术联盟已经在中国设立了3家蓝牙认证测试中心(BQTF,Bluetooth Qualification TestFacitify),他们将在蓝牙认证程序,尤其是蓝牙技术测试领域为中国蓝牙设备制造商提供专业的品质服务。”这也将推动中国市场蓝牙产品发展进程。
今年七月,为提高蓝牙技术在中国大陆的各个产业领域的应用,蓝牙技术联盟与北京天地互联信息技术有限公司(BII)合作,在北京设立了办事处,为近600名中国成员提供技术支持以及增值服务。这一系列举措展现了蓝牙技术联盟对中国市场的重视及在中国推动蓝牙技术应用的坚定信心。
蓝牙无线技术作为一项全球通用的短距离个人无线连结技术,适用于多种电子装置。且此技术持续发展内在的技术优势,小型发射器、低功耗、低成本、内建安全功能、耐用性、易用性及点对点网络功能等。目前,每个工作日平均有超过9种全新的蓝牙产品获得认证,而每周则有近2千万件蓝牙产品出货。全球问世的蓝牙装置产品已超过20亿件,数量并持续攀升中。
蓝牙技术与新型信息产业以及传统的产业的融合,将会开拓蓝牙技术的新市场,寻求新的增长点,拓展产业链,使得各项服务更加个性化的满足大众的需求,只要实现产业链的较好融合,蓝牙技术的未来中国之路应该具有广阔的发展前景。
无线耳机选购的两个疑惑
蓝牙还是2.4G:当前无线耳机使用的技术主要分为蓝牙和2.4G两种,前者更适合手机、平板等设备使用,尤其是蓝牙模块成为移动设备标配后,有效推动了蓝牙无线耳机的普及。此外,对于配备蓝牙模块的笔记本用户来说,同样建议选用蓝牙无线耳机。而对于台式机用户来说,由于大多数台式机没有配备蓝牙模块,因而更适合使用2.4G无线耳机。
关于音质:蓝牙和2.4G无线技术的传输损耗一定程度上的确大于有线耳机,但对于192Kbps这样主流码率MP3来说,极少有人能听出同价位有线和无线耳机的差异。因而,对于主流用户来说,不必太过担心无线耳机在音质上的表现。此外,赛尔贝尔查尔德G15这样将蓝牙与降噪融为一体的产品,通过主动降噪和动圈喇叭,已经能为用户带来优秀音质体验。
笔记本拍档
雷柏S230
推荐理由:雷柏S230采用了经典的超轻便式结构设计,看起来十分美观。耳机的头梁内侧为钢架结构,弹性好耐拉伸,其外侧包裹有一层透明的塑料材质,很好的保证了美观,也可有效提高佩戴的稳定性。该耳机基于2.4G无线传输技术,超小NANO无线发射器可轻松隐藏在笔记本USB接口上,有效传输距离为8米,内置锂电池一次充电可使用6个小时。
轻盈蓝牙耳机
硕美科W601
推荐理由:硕美科W601在佩戴上创造性地使用了Free-adaption入耳角度修正技术,通过入耳角度自由调节,提升用户佩戴舒适度与贴合度。该耳机符合Ver2.1+Edr标准规格,传输速率高达3Mbps,确保高保真音质的传输。同时将多功能操作键集中在左边耳壳,便于用户操作,通话、听歌一键切换。
简约时尚
宾果i623
推荐理由:宾果i623耳机是一款专门为外出携带聆听设计的便携式头戴蓝牙耳机,有黑、白两种颜色可供选择。折叠收纳方式,外出携带聆听起来非常便利,采用隐形麦克风设计,拾音效果清晰,方便手机用户使用。宾果i623耳机内置锂电池供电,一次充电可使用4个小时,待机则长达250小时,续航效果符合当前主流。
发烧友专属