HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 控制设计论文

控制设计论文

时间:2023-01-10 10:16:45

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇控制设计论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

控制设计论文

第1篇

CPAC和其中一个客户端构成的银行自动化存取控制系统总体结构。控制系统由上位机和下位机两部分组成。上位机是计算机系统,包含控制中心计算机、客服端计算机及打印机、磁卡阅读器与密码键盘等配套设备;下位机是CPAC、端子板及存取机械手与取箱口所用的6个伺服电机及驱动器。由于CPAC只能控制8个伺服电机,控制存取机械手与取箱口1已经占用了6个接口,而一个取箱口远远不能满足客户的需求。当取箱口数量超过一个后,用PLC控制其余出箱口,PLC与CPAC之间通过RS485总线通讯,由CPAC作为主控制器协调PLC实现存取保管箱操作。整个系统工作在由交换机组建的星形局域网中,各部分之间基于TCP/IP协议进行通讯。

2控制系统设计

2.1控制过程安全机制

2.1.1限位

为避免因软件错误或硬件故障导致的执行机构上的运行失控,保护硬件设备与操作人员的安全,在存取机械手与取箱口的每个控制轴上除了在导轨的两端安装有硬件限位块外,还必须使用限位开关来限制各轴的运动范围。软限位与硬限位配合使用,可以有效地防止运动部件跑出导轨。

2.1.2报警

当检测到驱动器报警信号以后,CPAC将关闭该轴的伺服使能,急停该轴的伺服电机,同时该轴报警触发标志位置。程序中检测到报警触发标志位以后,将故障状态报告控制中心,同时点亮报警灯并开启蜂鸣器,等待人工处理。

2.2运行速度的规划

在本控制系统中,CPAC工作采用点位运动模式。在运动控制中,梯形速度曲线以耗能低、速度快、容易实现等优点成为常用的速度控制曲线。其速度与加速度的变化曲线如图3所示。然而由于梯形速度曲线采用线性加速方式,其对应的加速度曲线不连续,因此存在柔性冲击,导致执行机构在运动过程中的平稳性能差。为了既获得平滑的加速度,又不失去梯形速度曲线的优势,将梯形速度曲线加以改进得到S型速度曲线。S型速度曲线的运动过程由加加速段、匀加速段、减加速段、匀速段、加减速段、匀减速段、减减速段组成。本控制系统采用该速度曲线作为存取机械手各轴的速度控制曲线,避免了柔性冲击因素。S型速度曲线由CPAC通过设置各轴运动参数中的平滑时间来实现。

2.3控制系统作业方式

在银行保管箱自动存取系统中,存取机械手执行任务时可以选择单一作业方式或复合作业方式。单一作业方式是:存取机械手从原点位置出发运行到任务指定的保管箱位置,将保管箱取出并送到取箱口,客户操作完成后从取箱口处把保管箱送回箱架,然后返回原点位置。复合作业方式是:存取机械手接收到一批存/取保管箱任务后,从原点位置出发运行到第一个任务指定的保管箱位置,将保管箱取出并送到取箱口,客户操作完成后从取箱口处把保管箱送回箱架,之后存取机械手不返回原点,而是直接执行下一个任务,不断循环直到完成所有任务。

2.4CPAC运动控制

CPAC的运动控制部分是整个软件系统设计的核心部分。CPAC运动控制软件主要由系统初始化模块、用户界面模块、运动控制模块、数据读写模块和网络通信模块组成。运动控制程序首先调用系统初始化模块,然后检查有无故障,如果系统运行正常,则通过网络连接控制中心,查询CPAC的控制方式,如果为手动模式,则进入手动模式运动控制子程序,否则进入自动模式运动控制子程序。用户界面模块为客户提供登录界面、图形化的存/取保管箱命令,并显示系统执行结果。运动控制模块通过在OtoStudio软件中调用CPAC运动控制库GUC-X00-TPX.lib中的运动控制函数执行以下功能:设置伺服电机的速度、加速度、移动距离(脉冲数);读取光电开关对应的数字输入口获取光电开关的触发状态;往数字输出口写“1”、“0”来打开、关闭电磁开关。通过控制存取机械手、取箱口的执行机构、拉板以及拉勾的动作,实现保管箱的自动存取操作。数据读写模块通过RS485总线控制激光条形码阅读器,读取条形码扫描结果。网络通信模块使CPAC通过以太连接控制中心,接收控制中心的命令与保管箱在箱架中的位置数据,并返回运行结果与报警信息。

3结束语

第2篇

关键词:变压器;冷却控制系统;硬件

1变压器冷却控制系统控制模块的设计总体思想

本文所进行的就是对变压器冷却控制系统控制器模块进行设计,其中包括了可以对主变压器风扇投入与切除的温度范围进行自行设定,也可以按照用户的要求而变化。在传统控制方式中,风扇投切的温度限制值是不能改变的,此外,风扇电机的启动和停止温度有一余量,不像传统的控制方式中是一个定值,避免了频繁启动的缺陷,此外还有运行、故障保护及报警等信号的显示及其与控制中心或调度中心的通讯,上传这些信息,如变压器油温、风扇运行状态有无故障等。至于风扇的分组投切设置是为了节约电能,具有一定的经济意义,但这个分组数不宜过多,以免控制复杂,且散热效果不佳。

控制器主要由AT89CS1单片机、A/D转换器、键盘控制芯片,输出模块、通讯模块以及自动复位电路等组成,其中单片机是控制器的核心,AID转换器是把输入信号转换为数字信号。

2变压器风扇控制系统的硬件接线

基于以上的要求,我们设计的风扇控制器的硬件线路图如下页图1所示。变压器风扇控制中对控制模块进行改进是本文研究的重点,其中包括主要芯片的选用以及一些抗干扰元件的使用。所以在本章节中,我们重点将要介绍变压器风扇冷却控制模块中的主要硬件芯片的作用、选用以及它们之间的连接力一法。

(1)单片机AT89C51(如图1)。

AT89C51是Atmel公司生产的一种低功耗,高性能的8位单片机,具有8k的flash可编程只读存储器,它采用Atmel公司的高密度不易丢失的存储器技术,并且和工业标准的80c51和80c52的指令集合插脚引线兼容,其集成的flash允许可编程存储器可以在系统或者通用的非易失性的存储器编程中进行重新编程。AT89C51集成了一个8位的CPU,8K的flash。256字节的EDAM,32位的I/0总线。三个16字节的定时器/计数器,两级六中段结构,一个全双工的串行口,振荡器及时钟电路。AT89C51是完成系统的数据处理和系统控制的核心,所有其它器件都受其控制或为其服务。

在本文中,经过TLC1543A/D转换器后输出的数字量输入到AT89C51单片机中,同时在进行了温度参数的设置以后,进行它的输出控制,其中包括了变压器的温度显示、状态显示、以及声音报警设备等等,也就是我们所研究的变压器冷却控制系统的核心部分。

(2)变压器的温度采集及温度处理模块。在变压器的风扇冷却自动控制系统中,第一步进行的就是对变压器上层油温进行的温度采集工作。变压器的温度采集是由变压器的温度控制器来实现的,其中包括铂电极、传感器以及变送器。经过温度控制器输出的信号进入变送器,变送器送出一个4一20毫安的电流信号,然后将此电流信号通过控制芯片上的电阻元件实现电流电压信号的转换,转换后的电压是在0.4一2(伏特)之间,然后将此电压信号输入到TLC1543数模转换器,进行信号处理。变送器输出信号有电流和电压信号两种,考虑到变压器安装的位置(室外)距本控制装置(室内)有一定的距离,电流信号不易损失,故选择了4一20毫安的电流信号。(3)11通道10位串行A/D转换器丁LC1543。

TLC1543A/D转换器是美国TI公司生产的众多串行A/D转换器中的一种,它具有输入通道多、转换精度高、传输速度快、使用灵活和价格低廉等优点,是一种高性价的模数转换器。TLC1543是CMOS,10位开关电容逐次逼近模数转换器。它有三个输入端和一个3态输出端:片选(CS),输入/输出时钟(I/0CLOCK),地址输入和数据输出(DATAOUT)。这样通过一个直接的四线接口与卞处理器或的串行口通讯。片内还有14通道多路选择器可以选择11个输入中的任何一个三个内部自测试(self-test)电压中的一个。

(4)BC7281128段LED显示及64键键盘控制芯片。

BC7281是16位LED数码管显示器键盘接口专用控制芯片,通过外接移位寄存器(典型芯片如74HC164,74LS595等),最多可以控制16位数码管显示或128支独立的LED。BC7281的驱动输出极性及输出时序均为软件可控,从而可以和各种外部电路配合,适用于任何尺寸的数码管。

BC7281各位可独立按不同的译码方式译码或不译码显示,译码方式显示时小数点不受译码影响,使用方便;BC7281内部还有一闪烁速度控制寄存器,使用者可随时改变闪烁速度。

BC7281芯片可以连接最多64键C8*8)的键盘矩阵,内部具有去抖动功能。它的键盘具有两种工作模式,BC7281内部共有26个寄存器,包括16个显示寄存器和10个特殊(控制)寄存器,所有的操作均通过对这26个寄存器的访问完成。

BC7281采用高速二线接口与MCU进行通讯,只占用很少的I/O资源和主机时间。

BC7281在本系统中主要用于驱动变压器温度显示的LED以及显示风扇运行状态的指示灯。

前已提及,BC7281芯片内部共有26个寄存器,包括16个显示寄存器和10个特殊功能寄存器,共用一段连续的地址,其地址范围是OOH-19H,其中OOH-OFH为显示寄存器,其余为特殊寄存器。

(5)使用MAX232实现与PC机的通讯。

①MAX232芯片简介

MAX232芯片是1VIAX工M公司生产的低功耗、单电源双RS232发送/接收器,适用于各种E工A-232E和V.28;V.24的通信接口,1VIAX232芯片内部有一个电源电压变换器,可以把输入的+5V电源变换成RS-2320输出电平所需±10V电压,所以采用此芯片接口的串行通信系统只要单一的+5V电源就可以。

我们的设计电路中选用其中一路发送/接收,RlOUT接MCS一51的RXD,T1工N接MCS一51的TXD,TlOUT接PC机的RD,Rl工N接PC机的TD1。因为MAX232具有驱动能力,所以不需要外加驱动电路。

系统中使用了此技术之后就实现了变压器风扇冷却系统的远程控制,工作人员可以在控制室对冷却系统进行控制,可以达到方便、准确、快捷的日的,这也是我们对传统的风扇冷却控制系统而做的一个重要的改进。

②串行通讯

在此实现中,我们必须要对MCS-51串行接日和PC机串行接日的串行通讯要有一定的了解,串行通信是指通信的发送方和接收方之间数据信息的传输是在单根数据线上,以每次一个二进制位移动的,它的优点是只需一对传输线进行传送信息,囚此其成本低,适用于远即离通信;它的缺点是传送速度低;串行通信有异步通信和同步通信两种基本通信方一式,同步通信适用于传送速度高的情况,其硬件复杂;而异步通信应用于传送速度在50到19200波特之间,是比较常用的传送方式,本文中使用的就是异步通讯方式。

(6)“看门狗”电路DS1232

在系统运行的过程中,为了避免因干扰或其他意外出现的运行中的死机的情况,“看门狗电路”DS1232会自动进行复位,并且能够重读EEPROM中的设置,以保证系统可以安全正常的运行。

美国Dallas公司生产的“看门狗”(WATCHDOG)集成电路DS1232具有性能可靠、使用简单、价格低廉的特点,应用在单片机产品中能够很好的提高硬件的抗干扰能力。

DS1232具有以下特点:

①具有8脚DIP封装和16脚SOIC贴片封装两种形式,可以满足不同设计要求;

②在微处理器失控状态卜可以停止和重新启动微处理器;

③微处理器掉电或电源电压瞬变时可自动复位微处理器;

④精确的5%或10%电源供电监视;

在本变压器冷却控制系统中,DS1232作为一定时器来起到自动复位的作用,在DS1232内部集成有看门狗定时器,当DS1232的ST端在设置的周期时间内没有有效信号到来时,DS1232的RSR端将产生复位信号以强迫微处理器复位。这一功能对于防止由于干扰等原因造成的微处理器死机是非常有效的,因为看门狗定时器的定时时间由DS1232的TD引脚确定,在本设计中,我们将其TD引脚与地相接,所以定时时间一般取为150ms。

3结论

本装置实现了通过单片机自动控制冷却器的各种运行状态并能精确监测变压器的油温和冷却器的各种运行、故障状态,显示了比传统的控制模式的优越性。(1)能够对变压器油温进行监测与控制;(2)实现了变压器冷却器依据不同油温的分组投切,延长了冷却器的使用寿命,有较好的经济意义;(3)实现了冷却系统的各种状况,如油温、风扇投切和故障等信息的上传,便于值班员、调度员随时掌握情况。

由于固态继电器实现了变压器的无触点控制,解决了传统的控制回路的弊端,同时此控制装置具有电机回路断相与过载的保护功能。由于使用了单片机,因而具有一定的智能特征,实现了油温、风扇的投入、退出和故障等信号的显示以及上传等。通过实际运行表明,该装置的研制是比较成功的。但今后,我们还应该对固态继电器本身的保护进行一些研究,以免主回路因电流过大而造成固态继电器的损坏,以使变压器风扇冷却控制回路更加完善。

参考文献

第3篇

关键词:家庭控制器自动监控安全防范

l引言

随着国民经济和科学技术水平的提高,特别是计算机技术、通信技术、网络技术、控制技术的迅猛发展与提高,促使了家庭实现了生活现代化,居住环境舒适化、安全化。这些高科技已经影响到人们生活的方方面面,改变了人们生活习惯,提高了人们生活质量,家居智能化也正是在这种形势下应运而生的。

2智能家居控制系统概述

智能家庭控制系统是以HFC、以太网、现场总线、公共电话网、无线网的传输网络为物理平台,计算机网络技术为技术平台,现场总线为应用操作平台,构成一个完整的集家庭通信、家庭设备自动控制、家庭安全防范等功能的控制系统。

智能家居控制系统的总体目标是通过采用计算机技术、网络技术、控制技术和集成技术建立一个由家庭到小区乃至整个城市的综合信息服务和管理系统,以此来提高住宅高新技术的含量和居民居住环境水平。

系统通常由系统服务器、家庭控制器(各种模块)、各种路由器、电缆调制解调器头端设备CMTS、交换机、通讯器、控制器、无线收发器、各种探测器、各种传感器、各种执行机构、打印机等主要部分组成。

3智能家居控制系统功能

智能家庭控制系统的主要功能包括家庭通信、家庭设备自动控制、家庭安全防范三个方面。

3.1家庭通信

家庭通信可采用电话线路、计算机互联网、CATV线路、无线局域网等方式。

(1)电话线路

通过电话线路实现双向传输语音信号和数据信号。

(2)计算机互联网

通过互联网实现信息交互、综合信息查询、网上教育、医疗保健、电子邮件、电子购物等。

(3)CATV线路

通过CATV线路实现VOD点播和多媒体通信。

(4)无线局域网

通过无线收发器、天线、各种无线终端,实现双向传输数据信号。

3.2家庭设备自动监控

家庭设备自动监控包括电器设备的集中、遥控、远距离异地(通过电话或Internet)的监视、控制及数据采集。

(1)家用电器的监视和控制

按照预先所设定程序的要求对热水器、微波炉、视像音响等家用电器进行监视和控制。

(2)热能表、燃气表、水表、电度表的数据采集、计量和传送根据小区物业管理的要求所设置数据采集程序,通过传感器对热能表、燃气表、水表、电度表的用量进行自动数据采集、计量,并将采集结果远程传送给小区物业管理系统。

(3)空调机的监视、调节和控制

按照预先所设定的程序,根据时间、温度、湿度等参数对空调机进行监视、调节和控制。

(4)照明设备的监视、调节和控制按照预先设定的时间程序,分别对各个房间照明设备的开、关进行控制,并可自动调节各个房间的照度。

(5)窗帘的控制

按照预先设定的时间程序,对窗帘的开启/关闭进行控制。

3.3家庭安全防范

家庭安全防范主要包括多火灾报警、可燃气体泄漏报警、防盗报警、紧急求救、多防区的设置、访客对讲等。家庭控制器内按等级预先设置若干个报警电话号码(如家人单位电话号码、手机电话号码、寻呼机电话号码和小区物业管理安全保卫部门电话号码等),在有报警发生时,按等级的次序依次不停地拨通上述电话进行报警(可报出家中是哪个系统报警了)。同时,各种报警信号通过控制网络传送至小区物业管理中心,并可与其它功能模块实现可编程的联动(如可燃气体泄漏报警后,联动关闭燃气管道上的电磁阀)。

(1)防火灾发生

通过设置在厨房的感温探测器和设置在客厅、卧室等的感烟探测器,监视各个房间内有无火灾的发生。如有火灾发生家庭控制器发出声光报警信号,通知家人及小区物业管理部门。家庭控制器还可以根据有人在家或无人在家的情况,自动调节感温探测器和感烟探测器的灵敏度。

(2)防可燃气体泄漏

通过设置在厨房的可燃气体探测器,监视燃气管道、灶具有无燃气泄漏。如有燃气泄漏家庭控制器发出声光报警信号,并联动关闭燃气管道上的电磁阀,同时通知家人及小区物业管理部门。

(3)防盗报警

防盗报警的防护区域分成两部分,即住宅周界防护和住宅内区域防护。住宅周界防护是指在住宅的门、窗上安装门磁开关,在对外的玻璃窗、门附近安装玻璃破碎探测器;住宅内区域防护是指在主要通道、重要的房间内安装被动红外探测器或被动红外/微波双技术探测器。当家中有人时,住宅周界防护的防盗报警设备(门磁开关、玻璃破碎探测器)设防,住宅内区域防护的防盗报警设备(红外探测器或被动红外/微波双技术探测器)撤防。当家人出门后,住宅周界防护的防盗报警设备(门磁开关、玻璃破碎探测器)和住宅内区域防护的防盗报警设备(被动红外探测器或被动红外/微波双技术探测器)均设防。当有非法侵入时,家庭控制器发出声光报警信号,并通知家人及小区物业管理部门。另外,通过程序可设定报警装置的等级和报警器的灵敏度。

(4)访客对讲

住宅的主人通过访客对讲设备与来访者进行双向通话或可视通话,确认是否允许来访者进人。住宅的主人利用访客对讲设备,可以对大楼入口门或单元门的门锁进行开启和关闭控制。

(5)紧急求救

当遇到意外情况(如疾病或有人非法侵入)发生时,按动报警按钮向小区物业管理部门进行紧急求救报警。紧急求救信号在网络传输中具有最高的优先级别,由于是人在紧急情况下的求救信号,其误报的可能性很小。

智能家居控制系统类型

4.1系统类型

智能家庭控制系统可分成采用公共电话网的智能家庭控制系统、HFC的智能家庭控制系统、以太网的智能家庭控制系统、LonWorks的智能家庭控制系统、KS485的智能家庭控制系统、无线网的智能家庭控制系统等类型。

4.2基本特点、功能、适用范围

(1)采用公共电话网的智能家庭控制系统采用公共电话网的智能家庭控制系统图参见国家建筑标准设计<智能家居控制系统设计施工图集》03X602第14页。

·基本特点:家庭智能控制器内配置了与电话线连接的收发器,利用电话网络作为信息传输网。该系统不仅在功能上能完全满足要求,而且大大地简化了布线,可以节省布线的投资。

·系统组成:系统由系统服务器、家庭控制器(内置了与电话线连接的收发器)、路由器、收发器、各种探测器、各种传感器、各种执行机构、打印机等组成。

·系统功能:实现家庭通信、家庭设备自动控制、家庭安全防范。

·适用范围:该系统适用于新建、扩建的智能化住宅(小区)工程,且特别适用于改造的智能化住宅(小区)工程,利用原有的电话线就可实现数据信号的共网传输。

(2)采用HFC的智能家庭控制系统

采用HFC的智能家庭控制系统图参见国家建筑标准设计<智能家居控制系统设计施工图集》03X602第15页。

·基本特点:家庭智能控制器内配置了CableModem,利用有线电视的HFC网络作为信息传输网。该系统不仅在功能上能完全满足要求,而且大大地简化了布线,可以节省布线的投资。

HFC网络采用共享方式,其共享带宽为36Mbps。当上网人数较多时,上网的速度会变慢。由于CableModem设备费用较高,用户网络的开通费用高。

·系统组成:系统由系统服务器、家庭控制器(内置了CableModem)、路由器、电缆调制解调器头端设备CMTS、有线电视传输网络、各种探测器、各种传感器、各种执行机构、打印机等组成o

·系统功能:实现家庭通信、家庭设备自动控制、家庭安全防范。

·适用范围:该系统适用于新建、扩建的智能化住宅(小区)工程,且特别适用于改造的智能化住宅(小区)工程,仅将原有的有线电视HFC网络进行双向改造,就可实现数据和图像信号的共网传输。

(3)采用以太网的智能家庭控制系统

采用以太网的智能家庭控制系统图参见国家建筑标准设计<智能家居控制系统设计施工图集》03X602第16、17页。

·基本特点:家庭智能控制器内配置了以太网网卡,利用以太网作为信息传输网。以太网同时支持住户计算机和智能家庭控制系统。该系统不仅在功能上能完全满足要求,而且大大地简化了布线,可以节省布线的投资。

以太网传输速率较高,传输速率有10Mbps、100Mbps等。根据传输距离的要求,由小区物业管理中心至各楼交换机采用5类以上4对对绞线、多模光缆或单模光缆,由交换机至家庭控制器采用超5类4对对绞电缆。

·系统组成:系统由系统服务器、家庭控制器、路由器、交换机、各种探测器、各种传感器、各种执行机构、打印机等组成。

·系统功能:实现家庭通信、家庭设备自动控制、家庭安全防范。

·适用范围:该系统适用于新建、扩建和改造的智能化住宅(小区)工程,用以太网实现数据和图像信号的双向传输。

(4)采用LonWorks的智能家庭控制系统采用LonWorks的智能家庭控制系统图参见国家建筑标准设计《智能家居控制系统设计施工图集如3X602第21、22、23页。

·基本特点:采用一个覆盖全部ISO/OSI标准七层通信协议、开放性的LonWork总线技术,一台系统服务器最多可连接127台LONWorks路由器,一台LonWorks路由器最多可连接63台家庭控制器。每台家庭控制器为LonWork一个通道上的网络节点,每个网络节点包括有神经元(NEURON)芯片、振荡器、电源、一个通过媒介通信的收发器和与监控设备接口的I/O设备(电路)、存储器等。

LonWorks直接通信距离可达2700m(双绞线、78Kbps),其通信传输速度最大可达1.25Mbps(此时有效传输距离为130m)。LonWorks路由器至小区物业管理中心线路长度超过2700m时,需在总线上加装中继器。传输线通常采用双绞线,根据需要也可采用同轴电缆或电力线。

·系统组成:由系统服务器、家庭控制器、路由器、LonWorks路由器、交换机、各种探测器、各种传感器、各种执行机构、打印机等组成。

·系统功能:实现家庭通信、家庭设备自动控制、家庭安全防范。

·适用范围:该系统特别适用于新建、扩建的智能化住宅(小区)工程。

(5)采用KS485的智能家庭控制系统

采用KS485的智能家庭控制系统图参见国家建筑标准设计<智能家居控制系统设计施工图集>03X602第18、19、20页。

·基本特点:KS485串行接口总线为主从式网络,它的通信为半双工、采用双向单信道连接方式。RS485串行接口总线的传输介质采用双绞线,它可以高速地进行远距离传输,传输速度与传输距离的技术指标如下:传输速率为10Mbit/s时,最大传输距离是12m;传输速率为1Mbit/s时,最大传输距离是120m;传输速率为100kbit/s时,最大传输距离是1200m。

·系统组成:由系统服务器、家庭控制器、路由器、通讯器、控制器、各种探测器、各种传感器、各种执行机构、打印机等组成。

·系统功能:实现家庭通信、家庭设备自动控制、家庭安全防范。

·适用范围:该系统特别适用于新建、扩建的智能化住宅(小区)工程。

(6)采用无线网的智能家庭控制系统

采用无线网的智能家庭控制系统图参见国家建筑标准设计<智能家居控制系统设计施工图集>03X602第24、25页。

·基本特点:利用无线作为信息传输网,该系统不仅在功能上能完全满足要求,而且从系统服务器至家庭控制器、家庭控制器至各种现场末端装置均采用无线传输方式,小区、楼内、户内无需布线,施工简单,可以节省施工的投资。

无线网的工作频率符合IEEE802.11b标准要求。

·系统组成:由系统服务器、家庭控制器、无线收发器、各种探测器、各种传感器、各种执行机构、打印机等组成。

·系统功能:实现家庭通信、家庭设备自动控制、家庭安全防范。

·适用范围:该系统适用于新建、扩建的智能化住宅(小区)工程,且特别适用于改造的智能化住宅(小区)工程,不用敷设线路就可实现数据信号的传输。

5系统设计及产品选用要点

5.1智能家庭控制系统类型的选用

新建、扩建的智能化住宅(小区)工程,宜采用LonWorks的智能家庭控制系统、以太网的智能家庭控制系统或采用RS485的智能家庭控制系统。改造的智能化住宅(小区)工程,宜采用公共电话网的智能家庭控制系统、HFC的智能家庭控制系统或无线网的智能家庭控制系统。

5.2家庭控制器的选用

家庭控制器的选用主要包括功能、总线技术及模块化设计、扩展功能、可按用户的基本要求进行配置等方面的选用要求。

(1)家庭控制器功能的选用

家庭控制器通常具有以下功能:

·家庭防盗报警;

·家庭火灾报警;

·家庭燃气泄露报警;

·家庭紧急求助;

·远程设防与撤防;

·远程报警;

·访客对讲;

·家用电器监控;

·家用表具数据采集及处理;

·空调机监控;

·接入网接口;

·小区电子公告;

·信息查询;

·家用设备报修等。

(2)家庭控制器功能的选择

在工程设计中,家庭控制器功能的选择可参见下表所示。

5.3总线技术及模块化设计

·家庭控制器要求采用总线技术,如LonWorks、R5485、BACnet、C^NBlls、CEBus、X一10;

·家庭控制器要求采用模块化设计,以便用户可以根据需求选择不同的模块完成不同的功能。

5.4扩展功能

家庭控制器要有一定的扩展功能,考虑能适应今后发展的需要。

5.5可按用户的基本要求进行配置应能根据用户提出有哪些被控设备及监视控制要求(功能要求)等因素,来对家庭控制器组成进行配置,包含模块种类的选择和各种模块数量的选择。设备的安装

6.1交换机、路由器、控制器、放大箱、分配箱、电话分线箱

2.在住户内安装入侵报警探测器。

具有语音对讲及控制开启楼道人口处防盗门功能。

1~2点

热能表、燃气表、水表、电度表的自动抄收及远传、超限判断、自动检查、分时计费、实时计量、管理功能。

提高级(2A)

在室内安装可燃气体泄

漏自动报警装置。且能就地

发出声光报警信号。

1.在住户内两处安装紧急按钮开关。

2.在住户内安装入侵报警探测器,在户门、及用台、外窗安装

人侵报警装置。

具有语音对讲及控镧开启楼道人口处防盗门功能。可实

现住户与安防监控中心的直接联系。

2点以上

热能表、燃气表、水表、电度表的自动抄

收及远传、超限爿断、自动检查、分时计费、实时计量、管理功能。

先进级(3A)

1.在室内安装可燃气体泄漏自动报警装置,当燃气体泄漏报警后能自动切断气源、打开捧气装置,且能就地发出声光报警信号。

2.在住户内设置火灾自动报警装置。

1.在住户内不少于两处安装紧急按钮开关。

2.在住户内安装入侵报警探测器,在户门及阳台门、外窗安装入侵报警装置。

具有语音、可视对讲及控翻开启楼道入口处防盗门功能,可实现住户与安防监控中心的直接联系。

2点以上

热能表、燃气表、水表、电度表的自动抄收及远传、超限判断、自动检查、分时计费、实时计量、管理功能。

这些设备均应安装在电气竖井内或公共走道的墙上(内)。

6.2家庭控制器

暗装(或明装)在墙内(上),其底边距地面1.4m左右。家庭控制器应设置在住户大门附近(宜距户门0.5m以内),且容易操作(包括设防与撤防)的地方。

6.3可燃气体探测器

安装在厨房内的燃气管道、灶具附近,当住户使用的是天然气,燃气探测器吸顶棚安装在距顶棚300ram以内的地方;当住户使用的是液化石油气,燃气探测器安装在距地面300mm以内地方。

6.4感温探测器设置在厨房内,它吸顶棚安装。

6.5感烟探测器设置在起居室、卧室等房间内,它吸顶棚安装。

6.6紧急按钮开关

设置在起居室沙发和主卧室床头附近的墙上,及卫生间的墙上。紧急按钮开关暗装在墙内,其底边距地面0.5m~1.2m。

6,门(窗)磁开关

安装在门扇和门框内或窗扇和窗框内。

6.8玻璃破碎探测器

安装在窗户和玻璃门(阳台)附近的墙上或吸顶棚安装。

6.9被动红外侵入探测器和被动红外/微波双技术探测器

安装在住户的主要通道、重要的房间内,它吸顶棚安装或安装在顶棚的墙角处。

6.10红外遥控器

安装在被控电器设备正面附近的墙上,距离不能超过红外线工作范围,且与电器设备之间没有遮挡。

7工程设计实例

以二室户型为例介绍户内的智能家庭控制系统设计,设计标准采用康居住宅先进级(3A)。采用以太网的家居控制系统,家庭控制器与户内各模块之间采用R.$485总线,家庭控制器可通过电话线或计算机网络接收控制指令、发出信息,所选用的家庭控制器具有可视访客对讲功能。家居控制系统图参见国家建筑标准设计<智能家居控制系统设计施工图集>03X602第17页,二室户型家居控制平面图参见图1、2所示,家庭控制器与室内设备的连接参见图3所示。

在起居厅、卧室设置了感烟探测器,厨房设置了感温探测器、可燃气体探测器,各房间的窗户、阳台推拉门上及附近设置了门(窗)磁开关和玻璃破碎探测器,起居厅设置了被动红外侵入探测器,起居厅、卧室、卫生间设置了紧急按钮开关。对电、水、燃气进行计量;可对餐厅、起居厅、卧室的灯进行控制;当可燃气体探测器探测到有燃气泄漏后,联动控制关闭燃气管道上电磁阀、开启排烟风机;当有各种探测器报警后,联动警报发声器发出报警声音。

家庭控制器共提供13路输入:电度表(电度表安装在照明配电箱内)、燃气表、热能表、可燃气体探测器、感温探测器、感烟探测器、紧急按钮开关、被动红外侵入探测器、玻璃破碎探测器各1路,水表、门(窗)磁开关各2路。

家庭控制器共提供7路输出:警报发声器控制1路、燃气管道上电磁阀控制1路、排烟风机控制1路、照明控制4路。

三室户型、复式结构、别墅的智能家庭控制平面图及家庭控制器与室内设备的连接参见国家建筑标准设计<智能家居控制系统设计施工图集》03X602。

第4篇

1.1下位从控机

因为系统中的每一个仓室运行中所承受的负荷都时不同的,所以在系统出现故障的时候,现场控制的时候就需要除尘设备的每一个舱室都能够独立的运行,这样就可以保证一个仓室出现故障的时候,系统还可以维持正常运转,在对设备进行设置的过程中还要能够根据运行的需要去更改设备的某些控制参数,同时每一个仓室都应该有一个可以对仓室运行情况进行反馈的装置,这样就可以让每一个仓室都可以独立完成喷吹操作,这是因为,每个仓室所承受的负荷不同也会使得相应的喷吹参数也产生非常大的变化。每个仓室在系统运行的过程中也应该设置不同的控制模式。为了让现场的工作人员进行手动除尘的时候可以更加的方便,手动控制器上要设置一个可以控制开关的磁阀,这样就可以在出现紧急状况的情况下及时的通过这个阀门对仓室进行控制。当然也可以按照所有仓室之间具体的压差情况进行仓室的排序,对靠前的仓室要首先除尘,同时也可以按照压差的具体情况对开阀的时间和喷吹的时间间隔进行更加有效的控制,也可以对仓室的喷吹方式和喷吹的周期进行有效的调整。

1.2上位主控机

上位主控制系统包括工厂中心控制室和值班室控制等。主控机作为分布式数据采集系统的上位机管理层接入CAN网络中.其主控机的设计功能包括:①远程监控和设定功能。在使用的过程中,用户可以凭借这一功能在主控机的工作室完成所有的控制工作,而且,上机位还可以借助网络的力量对设备运行的情况进行异地监控,在监控的过程中,工作人员可以看到现场发生的一切,同时这一系统中还设置了不同的用户口令,这样就很好的划定了管理的范围,更加有效的提高了系统运行的安全。②趋势变化分析功能。在系统运行的过程中,这一功能占据着非常重要的位置,上机位的管理功能就主要体现在了它可以经过一定的程序你会指出除尘过程中设备运行的趋势曲线和报警记录等非常重要的内容,同时它还可以用不同的方式展现给相关的人员。③监控功能,在除尘设备的阻力正常变化的情况下。人们通过肉眼也是可以看到烟雾的排放量不断增加的,无论阻力是上升和还是下降,都证明局部的布袋出现了破损,而想要解决这一问题,最好的方法就是测量仓室内外口的压力差,这种压差式的方式可以很好的减少喷吹的频率,同时也对过滤袋产生了非常有效的保护作用,进而也降低了设备运行过程中的能源消耗,延长了设备运行的时间和寿命。

2各模块功能简介

2.1主控制器监控部分

主控制器是系统的主要控制部分,本系统采用ARM芯片做主控芯片。晶振电路,电源电路,复位电路等构成了ARM微处理器的最小系统运行所需要的基本电路。ARM微处理器参与系统工作的全过程,它控制系统各个部分的启动、停止、控制等工作以及各部分运行的协调。主机模块是整个控制系统的大脑,它负责向触摸屏输入各种数据,还有读取输入状态,并对输入的数据进行处理,将处理好的数据发给从控机进行操作,它还接收从控机的数据,实现除尘设备状态的监视,接收下位机采集的数据,数据经处理后通过控制程序,发送有效的控制信号,为适合不同工作环境,调节现场工作参数,并且显示现场运行状态。系统功能包括报错、显示以及控制等,负责系统运行状态显示、设置以及故障提示,初始化完成后系统运行过程的故障提醒,和对数据的查询等。其中报错通过蜂鸣声、LED光和屏幕闪烁报错,并提供故障信息。假如某一分系统运行故障或程序出错将在显示屏上显示出错信息,同时通过蜂鸣声报警和LED光闪烁提示。在数据采集完成后可以通过触摸屏来查询处理过的参数数值,并可修改设置。

2.2从控机数据采集与动作执行部分

压差传感器用来比较从进风口和出风口两个地方传输过来的气压值,进风口的气压值一般来说不变,随着滤袋灰尘加厚出风口的气压值会减小,可以设定一个压差值即在出风口气压值和进风口气压值相差为多少时,控制系统会发出信号,要求开通电磁阀进行喷吹除尘。可以说压差采集电路相当于整个系统的触手,触手的感觉是否准确,灵敏,决定了控制系统处理信号的准确度和反应速度,因此这部分在系统中极为重要。

2.3CAN总线实现从机与主机的连接

CAN总线是一种串行通信网络,它能实现分布式与实时控制,可以点对点、一点对多点或者全局广播的方式通信;CAN总线通信距离非常远,最远可达到10km,并且保证速率为5Kb/s以上,在距离为40m时最高速率可以达到1Mb/s,由于目前CAN收发器的驱动能力有限,最多只能挂接110个CAN节点,但已经够用了。CAN通信方式中,我们主要考虑实时性和抗干扰性。CAN节点的抗干扰设计中需要收发器与控制器之间的光耦隔离、连接线间电容、信号滤波等,对传输介质也有一些考虑因素如:线长、波特率、抗外界干扰、有效电阻等。按照CAN总线的长度计算传输速率,确定通讯周期,看是否符合性能要求来调整线的长度、连接方式和总线上的节点个数。

3结语

第5篇

本文设计的基于以太网的超声检测多轴运动控制系统是在复杂的多轴运动控制技术之上结合了远程通信技术,以此来实现超声检测的远程自动控制。此系统主要由上位机、多轴运动控制器、步进电机驱动器、步进电机、机械执行装置、限位开关和超声探头等组成,其组成框图如图1所示。由上位机LabVIEW控制系统为多轴运动控制器发送运动指令,并由多轴运动控制器将运动信号拆分为步进信号和方向信号,再将这两种电机控制信号发送给步进电机驱动器,步进电机驱动器将其转化为角位移发送给步进电机,使步进电机转动相应个步距角,以达到使步进电机按指令运动的目的。步进电机上安装有机械执行装置,用以固定超声探头,机械执行装置上安有限位开关,以此控制电机的运动范围,当电机运动到限位开关的位置时,限位开关发出限位信号到多轴运动控制器,运动控制器便停止发出使电机运动的脉冲信号。在进行自动超声检测时,Z轴方向机械执行机构上固定的超声检测探头能够在被检测物体的表面按照上位机运动控制算法设计的运动轨迹进行连续检测,并实时向PC机返回探头的位置信息,并将数据采集卡采集的超声信号与探头返回的位置信息建立起对应关系,最终通过上位机的图像处理系统形成超声检测图像,以此来实现物体的超声检测。

2多轴运动控制器的方案设计

多轴运动控制器可以通过远程以太网通信的方式接收上位机的控制信号,向步进电机驱动器发送脉冲信号和方向信号以完成对电机的运动控制。采用ARM9处理器S3C2440搭建硬件平台,配有DM9000A以太网通信芯片使硬件平台具备远程通信的功能。在Linux操作平台上进行控制系统软件功能设计,并采用UDP通信协议实现上位机与运动控制器之间的远程通信[3]。

2.1多轴运动控制器硬件电路设计

本文采用ARM9处理器S3C2440设计了系统中运动控制器的硬件电路部分,并采用DM9000A网络接口控制器设计了运动控制器的以太网接口。运动控制器硬件整体框图如图2所示。运动控制器选用ARM9处理器作为运动控制器的核心芯片可以方便地嵌套Linux操作系统,在操作系统之上实现运动控制器的插补等多轴运动控制算法。选用DM9000A以太网控制芯片实现上位机LabVIEW与运动控制器之间的远程通信,进而实现超声检测的远程自动控制。为了解决步进电机驱动器与主控芯片信号匹配的问题,本文采用光耦器件设计了电压转换模块,负责把主控芯片输出的3.3V电压信号转换至5V电压信号后输入到步进电机驱动器中,同时负责把限位开关发出的24V限位信号转换至3.3V输入到主控芯片中。此外,电路中还搭载了用于存储数据的扩展存储器、以及用于调试的JTAG接口电路和RS232串口电路。

2.2多轴运动控制器软件设计

本课题所用的限位开关为位置可调的限位开关,每个轴有2个限位开关,在每次超声检测前,把每个限位开关调节到被测工件的边缘处,从而使探头移动的范围即为工件所在范围。故此设计运动控制器的软件时便可将限位开关做为边界条件,以此来设计探头的运动范围。其运动控制流程:首先系统初始化,通过上微机控制界面人工控制探头到被测工件的起点,然后X轴正向运动到X轴限位开关处,Y轴正向运动一个探头直径的长度,X轴再反向运动到X轴另一侧的限位开关处,之后Y轴继续正向运动一个探头直径的长度,如此往复运动直至探头到达Y轴的限位开关处,检测结束,探头复位。运动控制软件流程图如图3所示。

3多轴运动控制系统上位机软件设计

基于以太网的自动超声检测多轴运动控制系统的上位机软件是以LabVIEW开发平台为基础,使用图形G语言进行编写的,主要包括多轴运动控制软件和以太网通信软件。Lab-VIEW是一款上位机软件,其主要应用于仪器控制、数据采集和数据分析等领域,具有良好的人机交互界面[4]。LabVIEW软件中有专门的UDP通信函数提供给用户使用,用户无需过多考虑网络的底层实现,就可以直接调用UDP模块中已经的VI来完成通信软件的编写,因此编程者不必了解UDP的细节,而采用较少的代码就可以完成通信任务,以便快速的编写出具有远程通信功能的上位机控制软件[5]。上位机LabVIEW软件的远程通信模块、运动控制模块以及数据处理模块相互协调配合,共同构成了超声检测多轴运动控制系统的上位机软件。

3.1运动控制软件设计

运动控制系统软件部分主要由运动方式选择、探头位置坐标、运动控制等模块组成,可完成对系统运动方式的选择,运动参数、控制指令的设定以及探头位置信息读取等工作。运动方式选择模块可根据实际需要完成相对运动或是绝对运动两种运动方式的选择,并会依照选择的既定运动模式将X、Y、Z三轴的相应运动位置坐标输出在相应显示栏中,以便进行进一步的参数核对以及设定;运动控制模块可依照检测规则实现对整个系统运动过程的控制,包括:设定相对原点、运行、复位、以及退出等相关操作。相对原点设定可以将探头任意当前位置设为新的原点,并以原点作为下一个运动的起始点,即为探头位置坐标的相对零点,并将此刻相对原点的绝对位置坐标值在文本框中显示出来。运动控制系统软件流程图如图4所示。

3.2以太网通信软件设计

以太网通信模块采用无连接的UDP通信协议,通过定义多轴运动控制器与上位机LabVIEW的以太网通信协议,实现下位机与上位机之间的远程通信。具体设计如下:首先使用“UDPOpenConnection”打开UDP链接,使用“UDPWrite”节点向服务器端相应的端口发送命令信息,然后使用“UDPRead”节点读取服务器端发送来的有效回波数据,用于后期处理,最后应用“UDPCloseConnection”节点关闭连接[6]。以太网通信模块的程序框图如图5所示。

4实验及结果

实验平台由步进电机及其驱动器、上位机控制软件和自主研发的多轴运动控制器构成。在上位机的用户控制界面中,首先输入以太网的IP地址并选择运动方式,然后根据用户的检测需求设定运动速度和运动距离,点击运行后探头即按所设定运行。探头运动过程中还可以选择设定当前位置为原点,探头即按照新的原点重新开始运动。同时,在探头运动时会实时显示探头当前所在位置坐标。模拟开关发送选通超声探头信号并发送脉冲信号激励超声探头发射超声波,FPGA控制A/D转换电路对超声回波信号进行转换,并将数据存入双口RAM,存储完成后向ARM发送信号,ARM接收到采集完成信号将数据通过以太网向上位机发送。上位机的LabVIEW用户控制界面如图6所示。

5结束语

第6篇

(一)设计原则和设计单位的设计思路直接影响工程项目总投资

工程项目所确定设计思路和设计原则直接决定工程项目总投资,如新技术应用,进口设备的选用,系统布局原则,集约节约程度,附属设施投入和外购程度,配套设施替代条件,艺术性及形象工程关注程度,可持续发展的条件,创造性思维和方法的应用,等等,都会对项目总投资起到决定性作用。

(二)设计方案直接决定项目投资的经济性

设计方案的优劣,系统流程的合理性,设备配置的合理性和效果,资源节约利用程度,先进经验、技术的普及性,落后淘汰技术的替代和更新程度等,都要进行经济、环境、政策分析,做风险评估,最终确定项目投资的经济性和节约程度。

(三)设计质量和效果是影响工程造价的重要环节

工程设计方案的优化是通过人员优化、项目设计管理优化以及科学的统筹安排来完成的系统工作。项目设计管理过程要抓住重点与关键点进行重点控制,以此提高工程设计方案质量,减少设计变更,控制重复投资,大力降低工程造价。

(四)设计方案优劣直接决定投运后的经济效益

设计方案不仅要考虑投资额的高低,还应考虑项目投产后的生产成本高低和经营效益的好坏,与同行业的竞争优势,环境及社会影响程度,更新及技术改造的投入程度等。

二、优化设计对控制工程造价的途径

(一)加大设计管理力度

业主单位必须高度重视优化设计工作,积极采用招标等方式优选出设计单位,优化设计原则,明确设计思路和方法,全过程对设计优化加大监管力度,以系统设计的方法对项目的整体性、相关性、有序性、动态性、先进性、安全性、经济性和最优化进行分析、论证,运用最优化的方法建立一个最佳系统、最佳投资的建设项目,确保设计优化工作全方位开展,保证投资项目经济、节约、高效。

(二)做好设计方案的全方位细化优化和动态管理工作

设计方案优化包括工艺流程的优化、设备优选、耗用物料的节省、总图布置优化、自动化的优选结构的优化、技术领先战略最优、技术经济指标应达到最优等。最终确保项目设计达到功能满足、技术先进、安全适用、结构合理、满足环境及节能要求、投资节省,对设计方案要以提高综合价值为目标,以功能分析为核心,以系统观念为指导,形成最佳方案。

(三)利用价值工程进行经济性比较

在方案设计中,需要考虑整个设计方案的价值,要充分考虑项目的投资价值和功能价值。需要运用价值工程原理,从功能和成本两方面来进行评价,计算改进方案的成本和功能值,根据改进方案的评价,从中优选最佳方案,从而通过优化设计方案有效地降低工程造价。

(四)强化基建期间的设计管理和设计质量控制

要加强施工阶段的设计管理,控制设计变更,同时按优化设计管理的流程和办法,做好设计变更和设计质量控制工作,强化优化设计效果。

(五)充分发挥第三方功能对设计工作进行监督和评价

设计阶段,积极推行设计监理制,对设计优化和过程设计进行监理,并对相关关键环节、关键技术同时可委托社会专业机构进行专项评价,充分利用第三方的监督、评价职能,督促设计单位提高优化设计的水平和效果。切实推行限额设计,推广标准化设计及典型性设计。实行项目技术经济评价机制,对设计方案的项目功能、造价、工期和设备、材料、人工消耗等方面进行定量与定性结合的综合分析,确定技术经济效果好的设计方案,提高投资效益。

(六)安全和节能减排作为投资项目优化设计的重中之重

在项目设计中不仅仅考虑技术经济的优化,更要注重系统设备的安全性,并要把节能减排指标的控制作为重要设计原则进行设计优化,在造价控制过程中,要充分考虑项目投资的功能价值和工程项目的社会价值,达到综合价值最大化。

(七)制定优化设计、节约投资的激励机制

项目单位必须制定相应的优化设计的奖惩管理办法,结合设计监理和设计方案评价机制,从设计方案选定和评价,设计变更多少和影响程度,投资费用的节省,生产运营效果的评价和行业竞争优势的比较,等等,全方位推行设计奖惩机制,推行设计索赔制度,切实保障设计质量和控制造价。(八)优化设计要勇于创新,敢于突破设计规范修改周期一般较长,而现在科学技术的发展又日新月异,设计工作要勇于创新,敢于突破,这不仅能节约造价还能为优化设计打下坚实的基础。

三、结束语

第7篇

关键词:CEBus总线扩频电力线载波

1系统介绍

铁路沿线的各站点都装设有用于照明的大型灯塔。目前对灯塔的控制一般采用集中控制方式,在控制室中使用多个闸刀对灯塔进行一对一控制。因灯塔和控制室常位于铁路两侧,所以施工较困难,而且电缆的投资大,自动化水平也不高。采用电力线载波通信技术,在现成的电力线路上传输数据,无需装设通信线路,也不占用无线通信频道资源,可很好地解决这个问题。但由于电力线上存在高衰减、高噪声、高变形等问题,它不是一个理想的通信媒介。因此要在电力线上实现可靠的载波通信,必须选用基于扩频技术的抗干扰能力强的电力线载波专用Modem芯片来设计铁路灯塔控制系统。

铁路灯塔控制系统由一个主站和若干个子站构成,主站和子站挂接在单相或三上低压电力线上。主站安装于控制室内,子站安装于各灯塔底座的控制箱内。主站和子站以扩频电力线载波通信方式实现数据交换。

系统中站和子站的载波通信网络接口控制器选用美国Intellon公司的SSCP300芯片。该芯片是一个高度集成的电力线收发器和信道存取接口,提供了CEBus(用户电子总线)总线标准。CEBus是EIA(美国电子工业协会)制定并颁布的一种通信标准,目前为EIA-600。CEBus标准是一种应用于网络的开放式通信协议,采用节点到节点的通信方式,数据传输速率为10kbps。CEBbus协议采用ISO/OSI协议中的四层:物理层、数据链路层、网络层和应用层。一个CEBus信息由报头和数据包组成,如图1所示。报头是载波侦听多路访问/冲突检测(CSMA/CDCR)协议的一部分,发送方用监听传输介质中是否有其它发送方占用信道,以获取对传输通道的控制权。CEBus采用扩频载波(SSC)技术,形成“Chirp”扫频信号,对报头采用ASK调制,数据包采用PRK调制,频率范围为100kHz~400kHz。

2硬件结构

2.1主站及子站的硬件结构

主站及子站的硬件结构如图2所示。

主站以PIC16F877单片机为核心,由指示、键盘、RS232接口、在线编程接口、通信接口等单元组成。指示单元用74LS164串/并转换芯片实现,接到PIC16F877单片机的RB5和RB4引脚。键盘单元用74LS165并/串转换芯片实现,接到PIC16F877单片机的RA3、RA4和RA5引脚。主站定义了具有如下功能的按键:(1)一个灯塔的东西南北灯组选择;(2)子站地址选择;(3)锁键盘;(4)运行命令。在线编程接口单元利用PIC16F877单片机的/MCLR、RB3、RB6、RB7四个引脚对CPU的在系统程序及定值进行修改。主站利用MAX202实现标准RS232通信接口,可与上位监控PC机进行数据通信,也可外接Modem来实现远程通信。

子站由PIC16F877单片机、指示、在线编程接口。固态继电器出口、地址编码、通信接口等单元组成。地址编码用于设置本子站的地址码,用一个八位开关与PIC16F877单片机的RD口连接,共有256个编码。每个子站装有四个固态继电器,用于开启和关闭一个灯塔的东西南北四个方向的灯组。

2.2通信接口

主站和子站的通信接口原理如图3所示。

SSCP300网络控制器提供了一个与SPI兼容的主处理器接口,将PIC16F877的RC3(SCK)、RC4(SDO)、RC5(SDI)引脚定义用于SPI串行通信,分别与SSCP300的SCLK、SDI、SDO连接。SSCP300的片选信号/CS、复位信号/RST及中断信号/INT分别连接与PIC16F877的RB3、RB2及RB1引脚。由SSCP300产生的“Chirp”波形输出到其SO管脚,经放大、三级滤波、SSCP111媒介接口IC放大后,被传输到电力线耦合电路并送至电力线。由电力线经耦合电路来的“Chirp”波形经无源六级LC构成的滤波器后,被传输到SSCP300的SI引脚。耦合电路采用铁氧体磁环作为耦合变压器的磁芯,变比为1:1,初次级线圈的匝数均为7。采用TVS来抑制较大幅度或较大加速度的瞬间电压。

3软件结构

系统的软件采用模块化结构,主要包括初始化模块、输出控制模块、键盘扫描模块、通信模块等。整个软件分为主站软件和子站软件两部分。下面以通信模块软件的设计为例来说明程序设计方法。

SSCP300向与之连接的PIC16F877单片机提供CEBus服务。PIC16F877单片机通过SPI接口对SSCP300进行初始化、层信息设置、数据链路的存取控制设置等操作。完成以上步骤后,可进行数据的发送和接收。

PIC16F877单片机与SSCP300间各种形式的数据交换由控制命令来实现。常用的控制命令、十六进制码及功能如表1所示。一般情况下,命令后紧跟数据长度,接着为数据信息。

表1常用控制命令

命令码命令值命令名称功能

RST

LR

LW

IR

PR

PT

WRS-460X01

0X02

0X03

0X04

0X08

0X09

0X46Reset

Layer_Management_Read

Layer_Management_Write

Interface_Read

Packet_Receive

Packet_Transmit

Write_Register_46复位

读层信息

写层信息

读标志位

接收分组

发送分组

设置数据链路控制

3.1SSCP300的初始化

当电源接通或执行复位命令时,SSCP300将执行一个内部诊断和建立序列。直到此序列被执行完毕,命令才能被送至SSCP300。在对SSCP300进行初始化之前,PIC16F877要完成I/O口的初始化、片内RAM初始化以及SPI接口的初始化。

3.2层信息设置

初始化完成后可进行层信息设置。层信息设置的数据长度为7个字节,字节0为控制方式,一般设为数据链路(DLL)方式;字节1为组地址的低八位;字节2为组地址的高八位;字节3为设备地址的低八位;字节4为设备地址的高八位;字节5为系统地址的低八位;字节6为系统地址的高八位。在设置地址时应注意某些段内的地址为保留地址,不要使用,如0x0000为广播地址。

在层信息设置的过程中,首先单片机向SSCP300写入LW命令及数据长度“0X07”,然后确定好0~6字节的数据信息。层信息设置完成后,应用LR命令读回,判断读回信息与写入信息是否一致。如果一致则说明设置成功,否则应重新初始化后再设置层信息。

3.3数据链路存取控制设置

若节点之间的通信采用地址应答方式ADRACK或地址非应答方式ADRUACK,则应进行数据链路存储控制设置,由命令WRS-46来实现,数据长度为1。可设置的内容为:(1)在主处理器的每个发送期内需要发送ADRUACK的次数;(2)在信道间存取的时间;(3)对于ACK和ADRUACK,是否需要尝试多信道存取。

3.4数据的发送和接收

数据的发送和接收分别由命令PT和PR来实现。单片机送出PT命令后,接着送出数据长度、控制域、目标节点的设备和系统地址、源节点的设备和系统地址、数据信息等。应答或非应答通信方式由控制域决定。源节点地址应和初始化的地址一致,数据长度不超过32字节。发送完成后应读回标志位,判断是否发送成功。当SSCP300接收到有效数据帧时,将向单片机提供一个中断信号,单片机检测到该信号后发送PR命令,读回SSCP300接收到的数据帧其格式与发送数据帧类似。接收完成后也应进行正确性判断。

第8篇

系统由上位机和下位机组成。其中,上位机安装了组态软件服务器,负责接收发回来的数据和发送相应的命令;下位机由网关和节点组成。其中,节点是由电源模块、ZigBee模块、传感器、太阳能板、电磁阀等部分组成。在稻田池块处放置节点,根据水稻生长时期和土壤状况确定传感器埋设深度,实时监测池块变化。设计时,在池块中布置8个节点,网关与节点中采用ZigBee树状网络通讯,网关与上位机采用GPRS通讯,系统网关和节点都通过太阳能板供电。节点实时采集传感器的数值,经ZigBee传输到网关,数据实时显示在组态屏上,网关将数据融合后由GPRS传送到上位机。上位机软件接收并处理数据,根据相应的预设参数和采集回来的参数,会自动控制电磁阀启停功能。同时,网关还可以监测电池电量的参数,并传送至上位机。

2系统设计

2.1网关控制芯片的设计

STC12C5A60S2/AD/PWM系列单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8~12倍;内部集成了MAX810专用复位电路、2路PWM、8路高速10位A/D转换(250K/s),针对电机控制,适用于强干扰场合。

2.2节点驱动电路的设计

采用驱动继电器控制电磁阀的方式。为了提高系统的可靠性,采用5V继电器。继电器使用ULN2803驱动,ULN2803使用5V供电,STV12C5A60S2的输出信号经74HC14传输到ULN2803。

2.3传感器的选择

传感器测量部分包括土壤水分、池块温度和池块水位。各部分的选型如下:1)测量池块温度。选用DSl8B20温度传感器,与传统的热敏电阻不同,其可直接将被测温度转换为串行数字信号,供单片机处理。测量温度范围为-55~+125°C,在-10~+85°C范围内精度为±0.5°C,适合于恶劣环境的现场温度测量。2)测量池块水位。选用GB2100A液位传感器,供电范围5~12V,具有信号隔离放大、截频干扰设计及抗干扰能力强等特点。根据寒地水稻控制灌溉技术规范,水稻生育转换期要提前晒田,并在生育期转换问题上提出“时到不等苗苗到不等时”的调控方法。“时到不等苗”,即不管水稻处于哪个生育期(分蘖末期除外),土壤水分到了土壤控制下限则灌水至上限,土壤水分未达到控制下限,不需要灌水;“苗到不等时”即水稻生长发育到分蘖末期,不管土壤水分是否控制到下限,都要及时排水晒田。过了分蘖末期,到了拔节孕穗期,(需水敏感期)则必须灌水至土壤水分上限。因此,采用HS-102STR土壤水分传感器,它是一款基于频域反射原理,利用高频电子技术制造的高精度、高灵敏度的测量土壤水分的传感器,通过测量土壤的介电常数,能直接稳定地反映各种土壤的真实水分含量。

2.4ZigBee网络的设计

ZigBee网络采用TI公司最新一代ZigBeeSOC芯片,芯片供电电压为3.3V,内部已集成了一个8051微处理器与高性能的RF收发器。该芯片在无外加功放情况下通信距离可以达到1600m。采用TI公司的ZigBee2007/PRO协议栈作为开发背景,在IAREmbeddedWorkbench环境下开发。启动网关后允许采集节点与其连接,接收节点的数据信息;然后,数据通过ZigBee传送至网关,网关将其打包成规定的数据帧格式,经由GPRS传送至上位机。

2.5通讯协议

在网关与上位机之间通过GPRS通讯,设计的数据格式参考了常见的Modbus-RTU协议的格式,由设备地址、功能码、数据、结束符组成。采用求和校验方式,即将功能码和数据位的5个字节数据(BIT2-BIT6)相加求和,取低16位写入校验位。设备地址为设定的网关地址,在本设计中定义为4A01,功能码用于区分实现不同的功能,包括继电器控制、读取采集节点数值、读取电池电量等。其中,功能码4B1x用于实现继电器控制,数据位000000表示继电器闭合,FFFFFF表示继电器断开;读取电池电量检测功能码531x,即数据位000000表示电量低,FFFFFF表示电量高;采集传感器数据功能码73xx,即功能码7311代表1号节点的1号温度传感器。例如,上位机发送:4A014B110000005C0D0A,即表示发送继电器1闭合命令。

2.6节点供电电路的设计

对于分散在池块的采集节点,由于距离控制室较远,因此供电采用太阳能电池板与铅蓄电池相结合的方式。在阳光良好、太阳能电池板输出充足的时候,采用太阳能电池板供电,同时对铅蓄电池进行浮充;当太阳能电池板输出不足或者出现故障时,切换到铅蓄电池端,利用电池进行供电。在系统的设计上,采用一只1N5819二极管作为太阳能电池板与铅蓄电池的切换开关:当太阳能电池板输出充足时,则太阳能电池板具有优先权;当太阳能电池板输出不足不能为系统正常供电时,则二极管导通,采用铅蓄电池供电,以保证系统能够连续工作。

2.7系统软件设计

系统软件主要是靠对单片机编程实现。其中,对上位机无线通信时,响应帧在上位机链接单元中自动生成,在单片机中无需用户再编写通信程序。因此,单片机编程主要解决的是现场电磁阀的开启和关闭控制、模拟量的数据的采集和处理,同时也可接收上位机发送的控制指令完成相应的控制操作。系统软件的实现可以让操作员位于监控中心的计算机终端,进行远程手动、半自动和全自动控制,各项操作无需人进行,节省了人力资源,操作的准确性、连贯性比以往得到显著提高,从而大幅度提高了生产效率。

2.8上位机组态程序设计

MCGS是北京昆仑通态自动化软件科技有限公司研发的一套基于Windows平台的、用于快速构造和生成上位机监控系统的组态软件系统。该产品以搭建战略性工业应用服务平台为目标,可以为企业提供一个对整个生产流程进行数据汇总、分析及管理的有效平台,使企业能够及时有效地获取信息,及时地做出反应,以获得最优化的结果。MCGS软件具有网络监控、数据采集和处理、趋势曲线、报表输出、动画显示等功能,同时支持多种GPRS模块,能够在灌溉远程控制中发挥其优越性。

3安装调试

本研究选用方正研究院的试验地块,地势较平坦,选取8个下位机基站对水稻内环境进行监测,检验系统的各项性能指标。节点无线通讯模块的天线高度为1.5m,与上位机间距分别为45~55m,每个工作节点下设1个温度传感器、1个液位传感器和1个土壤水分传感器,分别监测池块的温度、水位和土壤水分。

4结果与分析

对系统进行连续7天试验,运行状况良好,当时为水稻分蘖前期。

5结论

第9篇

1553B通信节点与各个传感器采用主从式通信模式进行通信。通过将1553B通信节点配置为BC(总线控制器),传感器节点配置为RT(远程终端)。所有传感器节点需使用不同的1553B地址,并将其作为通信集群中节点的唯一ID。如表1所示为不同传感器1553B地址分配。飞行控制计算机外部1553B传感器由惯导传感器、大气数据机传感器和无线电高度传感器组成,样例飞行控制计算机各传感器数据流量如表2所示。BU-61580内部具有4k字的共享静态RAM,与主机交互具有很强的操作灵活性。BU-61580的存储数据的基本单元为消息块(MessageBlock),每个消息块大小为38字[6]。其中数据字包含的最大数据量为32字,故一次可传输的最大数据量为32。本系统中,无线电高度传感器与大气数据机传感器的数据帧长度均小于32字节,可通过一次数据传输完成数据通信。而惯导传感器的数据帧长度为54个字节,超过了一次传输数据的最大字节数,为保证数据完整性,不破坏每个字节数据内容,本设计采用数据帧拆分的方式。通过将数据帧拆分,使每个数据块长度均小于32字节,然后通过BC与RT的两次数据通信完成整个惯导传感器数据帧的传输。惯导传感器数据格式如表3所示。2.31553B通信时间调度设计由表1可知,飞行控制计算机各个传感器的更新频率并非完全一致,速率最高为100Hz,最低为50Hz。针对BC与多个RT进行数据通信,BU-61580采用大周期和小周期协同的方案来实现多个传输速率的通信。由于本系统频率最高为100Hz,最低频率为50Hz,故将通信大周期选择为20ms,将小周期选择为10ms。如图3所示为BC与传感器RT1~RT3的大周期通信顺序图,每个大周期内,惯导传感器和无线电高度传感器与BC通信一次,而大气数据机传感器与BC通信两次。图3中,为平衡数据流量及小周期通信数量,本设计将惯导传感器和无线电高度传感器分别位于两个小周期中,使两个小周期的数据流量平衡,实现两个小周期的通道资源充分利用。

2、FlexRay总线时间调度

根据样例飞行控制计算机的内部总线FlexRay通信协议可知,内部总线通信时间为5ms,每个时隙为50μs,FlexRay总线最大帧长为127字[7]。本设计中1553B帧长度最大为54个字节,频率最高为100Hz,故使用上述FlexRay总线通信协议能够符合1553B总线通信要求。本设计中,1553B传感器数据的频率为50Hz和100Hz,而FlexRay总线通信频率为200Hz,内部总线通信速率高于外部传感器速率。故1553B板卡在内部总线通信过程中,当有传感器数据更新时,FlexRay总线传输最新的数据;而当没有数据更新时,FlexRay总线传输当前的传感器数据。为保证数据的完整性及减少占用总线时隙数量,本设计共使用总线三个时隙,每个时隙具体传输内容如表4所示,时隙2、7、15传输内容分别为惯导传感器无线电高度传感器和大气数据机的数据,数据帧大小分别为54字节、32字节、12字节。

3、1553B通信单元软件设计

3.1驱动软件的IP核封装与实现

在嵌入式FPGAEDK设计中,为了简化用户开发难度,Xilinx公司提供了一个封装了的接口,即IPIF(IPinterface,IP接口)作为介于PLB总线与用户逻辑模块之间的接口缓冲[8]。IPIF将PLB总线操作封装起来,而留给用户一个逻辑接口。本文软件设计采用模块化设计思想。其设计步骤如下:首先,将每个硬件模块对应编写一个驱动软件程序;其次,将相应驱动软件封装成通用IP核;最后,将IP核挂载到PowerPC内部总线PLB上。模块之间的通信主要通过PLB总线和OPB总线实现,系统中各模块通过这两种总线连接至PowerPC内核上,而PowerPC通过内部总线读写机制实现对各个模块的读写与控制。如图4所示为1553B通信单元的硬件平台总体架构图,主要由PowerPC内核、1553BIP核、FlexRay总线对应GPIOIP核集合、串口IP核、BRAM模块IP核及相应的中断控制IP核组成。

3.21553B总线接口驱动软件设计

如图5所示为1553B总线接口IP核结构图,整个驱动分为三个模块:总线读写模块,初始化模块和数据缓存模块。系统上电,该IP核激活,进行总线初始化操作,发送初始化完成信号并查询PLB读写信号,等待PowerPC405的读写操作。当读控制信号使能时,PowerPC405读取数据缓冲区中的数据;当写控制信号使能时,总线读写模块将数据缓冲区中的数据发送至总线上。

3.31553B通信算法设计

1553B通信单元的调度主要由外部1553B总线的数据接收,内部FlexRay总线的数据通信组成。本设计采用模块化设计,将系统功能划分为顶层应用和底层数据通信。底层数据通信主要包括外部数据流通信及内部数据流通信,外部数据流通信主要由1553BIP核实现,内部总线也由FlexRay驱动程序实现数据通信;而内核PowerPC主要实现顶层应用,即数据调度及总线故障切换功能的实现。如图6所示为节点通信程序流程图,系统上电后,首先对FlexRay总线及1553B总线节点进行相应的初始化,进而查询1553B对应FIFO满输出引脚,当接收到数据时,节点读取FIFO内容,并写入相应的总线发送缓冲区中。进而查询MFR4310的中断引脚信号,当发送中断有效时,执行发送中断子程序,将接收到1553B总线数据通过1553B总线发送出去;当接收中断有效时,执行接收中断子程序,通信节点接收CPU发送来的控制信号。系统完成数据调度后,进而进行总线故障检测。由于1553B总线的基本周期为10ms,故本设计中总线检测周期为10ms。当定时器的10ms定时时间到,总线进行一次总线检测。当接收到总线切换指令,通信单元进行总线切换,并更新总线状态;进而判断是否接受到传感器的1553B总线应答信号,如果有,将总线故障计数清零,倘若没有,将故障计数加1,当故障计数大于6,进行总线切换,并更新总线状态。

4、总线网络通信测试与结果分析

(1)FlexRay总线测试结果将FlexRay通信周期设置为5ms,静态时隙长度为50μs,将CPU板卡与1553B板卡进行通信实验,从总线上读出输出波形。FlexRay总线通信时,在总线上截取的波形如图7所示,从图中可以看出通信周期为5ms,与预设值一致。如图8所示为一个周期时隙输出波形,时隙2、7、15传输传感器数据。由图8可知,时隙2与时隙7相差250μs,时隙7与时隙15相差350μs,与预设值一致。FlexRay总线通信6小时,进而进行连续总线数据传输测试,经过6个小时的总线测试结果如表5所示,通信过程中,丢帧、错帧计数均为0,表明1553B通信单元FlexRay总线设计正确,可以满足飞行控制计算机通信的基本要求。(2)1553B总线测试结果由前面可知,1553B数据通信周期为10ms,即100Hz。如图9~12分别为1553B通信单元与CPU单元模拟大气数据机传感器数据帧发送数据8字节,进行通信2小时、4小时、6小时、10小时的通信仿真图。其通信帧数分别为719999,1439998,2160023,3599991。期间在2小时~4小时,4小时~6小时,6小时~10小时通信期间,丢帧数分别为1,1,0,合计丢帧率约为5.56×10-7,符合飞行控制计算机通信要求。(3)测试结论以上实验结果表明,1553B通信单元的各个模块通信正常,与飞行控制计算机CPU板卡通信正常,能够符合飞行控制计算机的通信要求。

5、结束语

第10篇

1系统结构设计

系统总体结构如图1所示,系统以MSP430F2616微控制器为核心,这款单片机有良好的低功耗性能,适宜开发家用电子产品。当系统上电运行后,WSN节点会通过湿度测量模块对当前湿度进行采集,湿度测量模块选用HS1101湿敏电容与NE555构成多谐振荡器,以此将空气湿度变化转变为电容值的变化,单片机通过采集多谐振荡脉冲频率,可得到湿度值。STC12C5A50S2单片机获得湿度值后,通过NRF24L01传递给主控单片机并显示于TFT液晶,用户可通过按键(“加湿开”、“加湿关”、“干燥开”、“干燥关”“、复位”)进行人机交互。湿度数据与预设湿度范围相比较,若超出范围,MCU可通过控制继电器来驱动加湿与抽湿执行机构。此外,主控系统拥有华为GTM900-CGSM通信模块,支持短信查询功能,用户可借由手机软件平台对湿度进行查询与控制现信息的远距离传输与闭环控制。为满足系统供电需要,选用220V-12V电源适配器进行供电输入,作为加湿器,抽湿器电源;开关集成稳压芯片LM2596输出5V为单片机、NRF24L01模块、TFT液晶逻辑供电;线性稳压元件LM1117稳压输出3.3V为无线主接收模块、TFT液晶背光供电。

2系统软件设计

2.1主程序设计

主程序开始,先初始化各个模块,然后等待命令,若有命令则判断是控制命令还是查询命令,若为查询命令,则向客户端发送信息,若为控制命令,执行控制动作;若无控制命令,判断无线接收数据,若有则做数据处理,若无则数据更新显示,并返回等待命令。传感器节点开始工作时开启MCU的定时器,由HS1101与NE555组成多谐振荡器,空气湿度值改变将改变容值,并产生周期不同的方波。由式(1)计算出电容C=T(/0.7*(R1+2*R2))(1)C:湿敏电容容值;T:方波周期;R1:567K;R2:20K。由单片机定时器获得周期。根据HS1101特性曲线(拟合直线),解出湿度值,然后发送给无线接收主控(为了防止湿度值突变,在测量200次之后再进行处理)。在后台轮询来自主控的无线数据查询信号,并将处理后的当前湿度值通过无线发回主控。

2.2湿度变化拟合曲线

3实验测试及分析

3.1测试方案

系统测试采用先模块单独调试再系统联调的方法。①测试电源模块的输出,得到功率,电压电流信息。②硬件仿真测试单片机,测试液晶显示是否正常。③湿度传感器测试湿度是否采集值成正比,同时测试加湿干燥机构在供电正常情况下能否正常工作。④用PC机的串口调试和GSM模块之间串行通信。⑤整机系统连接好,重复以上步骤,测试数据接收。通过以上测试,可判断整机运行是否正常。

3.2测试数据

测试数据包括以下四部分:①通过万用表测试电源模块的输出:+5V和+3.3V的误差在±0.1Y以内,接上所有负载后输出的电流达1A;②通过设置不同的标准状态值:测试到系统的超标自动发送短信至终端功能正常;③终端发送查询指令至系统:测试到手持机终端接收到的数据和TFT液晶显示屏显示的数据完全吻合;④终端发送控制信息至系统:得到动作与指令相同。

3.3结果分析

第11篇

关键词:毕业设计(论文);指导;因材施教

内蒙古科技大学坐落在“草原钢城”包头,1956年建校,1960年更名为包头钢铁学院,隶属原冶金工业部,1998年划归管理,2003 年更名为内蒙古科技大学。它定位于一所教学研究型普通高等学校,以冶金工程、材料工程、矿业工程等优势学科为依托,形成以工科为主,建设在冶金、材料、矿业、机电、建筑、能源等领域具有优势的学科专业体系,培养“上手快、留得住、后劲足”,具有实践能力、创新意识和创业精神的高级应用型专门人才[1]。

我校材料成型与控制工程系始创于建校伊始的1956年,由轧钢这个具有相当长历史的老专业发展和演变而来,专业改造后在名义上这一老专业方向不存在了,但新专业传承了轧钢这一老专业的特点与内涵。本专业是我校传统的优势学科,1996年获得材料加工工程硕士学位授予权,2004年获得材料工程领域工程硕士授予权,目前是材料科学与工程博士学位支撑点建设学科。1998年教育部进行高等院校本科专业目录调整时,设立了材料成形与控制工程这样一个新的本科专业,从该专业在我校的演变历史可以看出其专业范围重点还是传统的轧钢专业,以侧重于为钢铁工业培养专业技术人才为主要目的,毕业生的去向也主要集中在钢铁企业[2]。

一、当前毕业设计(论文)中存在的主要问题

(一)设计(论文)的命题

命题是毕业设计(论文)的起航点,立题不当,可能会使整个毕业设计的创新性和目的性黯然失色[3]。实际毕业设计(论文)中选题不当常有发生,其原因各异。

有些命题过于陈旧,这尤其体现在毕业设计的命题上。按照我校本专业的传统,毕业设计主要是针对钢铁企业轧钢厂的生产车间进行设计。随着我国的钢铁工业近10年来迅猛发展,发生了天翻地覆的变化,新的装备和控制手段被大量的应用到现代化的钢铁生产线上,产品结构发生的更本的变化,很多传统的观点和思维被打破[4]。在这种背景下,部分命题仍然按照10年以前的标准来制定,就显得有些更不上时代,不仅如此,还会造成学生可能存在抄袭现象,影响了对学生的锻炼效果。

青年教师不能很好的把握毕业设计(论文)题目难度,这一点在笔者身上显得尤为突出。笔者在博士毕业后,第一次指导学生做毕业设计(论文),在给部分学生制定毕业论文题目时,没有考虑到学生本身的知识结构的局限,题目超出了学生所能承受的范围,在完成毕业论文的过程中遇到了很多问题,影响了毕业论文的顺利进行。

(二)学生投入不足

1、就业对学生毕业设计(论文)投入的影响。就业对学生毕业设计投入的影响是本专业近期才出现的问题,是一个新问题。鉴于我校本专业毕业生拥有较强的专业性,在2008年以前我国钢铁工业迅速发展期间,本专业大四学生一般在秋季学期就找到了相应的工作。然而近3年来,随着钢铁工业整体的不景气,我校本专业学生的就业形势也受到不少影响,很多学生在大四的春季学期即进行毕业设计的学期还没有能够确定工作,尤其是女生。由于存在就业的压力,迫使学生将更多的精力放在联系工作之上,真正投入到毕业设计中的精力和时间有限,毕业设计时心不在焉,出现懈怠情绪。笔者所带的学生中就存在这种现象,在整个期间,主要的精力放在联系工作上,对整个毕业设计进程影响严重。

2、考研对毕业设计投入的影响。近些年来,随着就业压力的增加,为了缓解这种压力不少学生选择考研,一般初试成绩约在3月份出来,那些过了初试需要准备复试的学生,在此期间难以全心去做毕业设计,这种状态一般会持续到5月中旬,在研究生入取基本结束后,这部分学生才可能完全集中精力去准备毕业设计。

此外还有一部分学生是那种本身学习成绩较差,在最后一学期不仅有就业压力而且更重要的是还要疲于应付各种挂科的清考。这一类的学生本身基础比较差,在理论学习阶段就养成了对学习不认真、得过且过的习惯,在就业和清考双重压力之下,只能有很少的精力投入到毕业设计中。这类学生在笔者所带的学生中也存在,也是另笔者最头疼的学生。

3、学生投入不足,也有部分原因是学生对毕业设计(论文)的重要性认识不够。部分同学对研究题目认识不足,准备不充分,设计过程往往流于形式,其表现往往是应付了事。这是一种普遍的心态,具有普遍性。

二、相关问题的改进

(一)完善命题

命题是指导教师的最重大的任务,为了保证质量,在命题是笔者认为需要在以下几个方面把关:首先从专业培养目标出发,设计的内容应与本行业最新的发展趋势密切相关,这需要指导教师密切关注当下国内外钢铁工业的发展趋势;其次设计(论文)题目难度应适中,尤其是青年教师需要尽量避免这种现象的出现,针对青年教师容易出现这样的问题,个人认为系主任要对青年教师制定的题目进行审核,对研究和设计的内容进行把关,以确保学生能够运用所学知识和现有条件在规定的时间内完成毕业设计;最后,还需保证题目的多样性,不仅要保证学生1人1题,更重要的是要避免题目重复出现。

(二)因材施教

学生经过大学四年的学习,个体存在很大的差异,且新时期的学生每个人所追求的目标亦不相同,自身想法很多,因此在面对毕业设计时,学生心中所想也不尽相同,当然最终的基本目的还是一致的即能够完成毕业设计,顺利毕业。

鉴于不同学生各自拥有不同客观条件和自身追求,因此作为指导教师在面对学生是不能采用一刀切的方式进行指导,而是需要客观的面对学生所固有的个体差异,因材施教,以确保每个学生都能完成毕业设计,顺利毕业。

为此作为指导教师,首先应该主动了解学生的基本情况。在初见学生的时候,明确学生的就业情况,是否签约,签约的意向以及将来拟从事工作的类型;了解学基础课的学习成绩,是否存在补考和最后的清考;学生的考研状况,报考的学校和专业。

其次在明确学生的相关背景之后,充分考虑到学生的个体化差异,为不同学生量身定做其毕业设计或论文的内容。具体的指导思想是重点培养对本学科有兴趣的学生且精力足够,将来要从事钢铁工业生产或者研究领域的学生,按照评优的标准去要求这些学生,激发这类学生的潜力,这类学生以做毕业论文为主,提前培养他们运用所学知识解决问题的能力,让他们能够学以致用;对于需要找工作,且将来乐于从事钢铁工业的学生要重点帮扶,这类学生以做毕业设计为主,我校本专业的毕业设计以轧钢车间设计为主,整体套路成熟,但是缺乏创新性。让这类学生做毕业设计可以让学生了解轧钢生产基本流程,设备状况,了解车间设计的目的和意义,对将来熟悉工作环境打下一个良好的基础。对于能力有限(主要是那些基础课程成绩很差,还需要参加补考和清考的学生),则需要重点照顾,适当降低对他们的要求,让需要补考的学生有足够的时间去准备补考,同时指导教师要花更多的时间去跟踪指导他们的设计,以避免学生过于放松设计;对于那些完全无意于从事本专业的学生,则不能再专业方面对他们施加过大的压力,因为学生已经对本专业的学习没有兴趣也就没有做好毕业设计的动力,对于这样子的学生,个人认为应该尽量的帮助他们完成最基本的毕业设计内容,确保顺利毕业。

(三)严格纪律

当然,对待不同的背景的学生采用不同的指导思想,并不是说放松对学生的要求。严格纪律仍然是不可或缺的,是毕业设计能够顺利完成是一个重要保障。

指导教师在充分考虑学生个体差异情况下制定研究和设计内容后,在毕业设计的开始就要明确毕业设计的纪律,以严格的出勤、过程监控、结果检查、毕业答辩规章制度以及考核办法,使学生认识和重视毕业设计,端正毕业设计态度,认真完成毕业设计。

此外,认真做好毕业设计的教育、动员和宣传工作,使学生充分重视毕业设计在教学中的重要地位,亦是不可缺少的过程。

三、总结

综上所述,本科毕业设计工作是高等学校人才培养的重要环节,在面对新的环境下出现的系列问题,指导教师一方面需要加强在命题科学性,前瞻性以及合理性方面的探索,另一方面要充分考虑学生自身的背景以及兴趣爱好,在指导学生时因材施教,充分发挥每个学生的积极性,并辅之以严格的纪律,使学生顺利完成毕业设计,提高能力,为将来的工作和进一步深造打下坚实的基础。

参考文献:

[1]李保卫.内蒙古科技大学本科教学水平评估自评报告[j].包头:内蒙古科技大学,2008.

[2]李振亮,陈林,包喜荣,郭瑞华,刘永珍.材料成型控制工程基础课程建设与教学改革探索[j].中国冶金教育,2009,(2):30-33.

第12篇

1如何激发学生参与毕业设计的热情

目前学生普遍存在对毕业设计环节积极性不高的问题,通过调查分析,一部分学生对本专业不感兴趣,将来也不愿意从事本专业方面的工作,另一部分打算将来考公务员或考特岗教师,所以,对毕业设计只是参与而没有积极性,特别是在民族学生中这种现象普遍存在。针对这些问题,指导教师应该从新疆大化工大石油的角度,特别是我国的能源建设,从政策、资金等方面已向新疆倾斜的现实出发,向学生讲明本专业在新疆经济建设中的重要性,鼓励学生去化工企业就业,并向学生介绍新疆的化工企业,从思想上转变学生的就业观,从而激发学生对本专业感兴趣,进而提高对本专业毕业设计的重视。如果条件允许,应该请化工企业的技术人员到学校向学生做专业方面的宣讲,让学生听一听来自生产一线的最新信息。目前,在新疆境内只有新疆大学开设有过程设备与控制工程本科专业,每年毕业一个民族班一个汉族约60名学生,而新疆境内的化工、石油、煤化工等国有及民营企业正不断发展壮大,人才应该是供不应求。2014年新疆大学过程装备与控制工程专业被评为新疆紧缺专业,投入400万元资金作为专业建设经费,因此,不论从外部环境,还是从学校内部环境,本专业的发展都有广阔的前景。作为毕业设计教师应该把这些优势向学生讲清楚,教师本人也应该身体力行,积极主动寻找有实践背景的设计题目,使学生毕业后能迅速适应企业的工作环境。

2校企联合指导毕业生的构想

在实践教学基础上,应该聘请企业工程人员与学校教师共同指导毕业生,使理论与实践有机结合起来,课堂知识与实践知识不至于产生脱节,使学生的理论水平与实践技能得到同步提高。如果毕业设计题目是源于生产实际的题目,企业指导教师提供的资料和文件都是企业经过多方调研或从生产实践总结的内部资料,学生知道题目的真实性又与今后的工作有密切联系,则会使学生更加热爱真刀真枪地锻炼,通过毕业设计可以深入企业调研和实践,可大大提高学生的工程实践能力。

3指导教师言行对学生选择毕业设计的影响

我校过程装备与控制工程专业,每年由指导教师出毕业题目,再由学生选择题目和指导教师,平时给学生印象较好的教师,比较容易得到学生的青睐,学生比较跟这类教师做毕业设计,相反,学生不太喜欢平时讲课平淡或对学生要求及其严格的教师,学生的这种心理是可以理解的,学生就怕设计不过关,拿不上毕业证。因此指导教师应该不断提高自己的业务水平和改善自己的管理水平,做到为人师表,人性化管理,充分参与到学生的毕业设计工作中,不能认为为难学生,特别是民族学生,由于汉语水平较低,普遍存在惧怕毕业设计的心理状态。

4指导教师职称职务对学生选择毕业设计的影响

学生中普遍存在愿意选择职称高、学历高的教师做为自己的指导教师的现象,我校化学与化工学院过程装备与控制工程专业目前有9名教师,其中副教授3名,讲师4名,实验员1名,学历均为本科及硕士,总体来说,本教研室教师学历和职称偏低,所以,教师应有一种紧迫感,争取尽快晋升职称,才能取得学生的进一步认可和信任,更好地为教学服务。

5总结

通过对新疆大学化学与化工学院过程装备与控制工程专业毕业生选择毕业题目的分析,可以得出以下结论和建议:(1)好的毕业设计课题能满足社会的需求,能反映专业的最新技术进步,能激发学生的兴趣,精心编制的毕业设计题目,在满足本科毕业设计目的的前提下,将学生的毕业去向、用人单位现阶段的任务、指导教师的科研项目及学生的兴趣有机结合,充分体现课题的综合性,实际性,前沿性,这样才能引起学生的兴趣,兴趣是成功之母,学生有了兴趣,才能保质保量完成设计任务。(2)教师的业务水平要随着时代技术的发展而提高,教师应不断提高自己的讲课水平和自己的管理教育水平,因材施教,做学生的知心朋友,在学生中树立良好形象。(3)教师应有上进心和紧迫感,多争取科研课题,多与企业联系,并尽快晋升职称,职称是衡量教师水平的重要指标。

作者:孙红梅 努兰·苏力坦汗 单位:新疆大学化学与化工学院