时间:2022-05-16 05:59:12
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇光纤技术论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
摘要:当前信息容量日益剧增,为提高信息的传输速度和容量,光纤通信被广泛的应用于信息化的发展。城域传送网传作为承载城域范围内的固定、移动和数据等多种业务的基础传送网络,在整个光网络中占有不可替代的地位。本文介绍了城域传送网的特点,对主要技术进行了分析,最后探讨了其发展趋势。
一、引言
城域传送网是覆盖城区、郊区或者部分规模较小的市县,为城域多业务提供综合传送平台的网络,是承载城域范围内的固定、移动和数据等多种业务的基础传送网络,它一般以多业务光传送网络为基础、以多种接入技术为辅,为多种业务和通信协议提供综合传送承载平台。城域传送网向上与省际和省内干线相连,向下负责综合业务引入,完成集团用户、商用大楼、智能小区的业务接入和电路出租的任务。
二、城域传送网的特点
城域传送网是非常复杂的网络,每个城市和每个城市都因现状不同而有所不同,从网络分层结构来说,城域传送网一般分为核心传送层、汇聚层和接入层。对于网络规模较小的城市,可根据实际情况简化网络层次。下面从通用角度分析城域传送网的特点。
多业务。城域传送网需要同时支持多种业务,单一平台支持多种协议和处理混合业务的特征是城域光传送网络获得足够竞争优势的关键因素,也是最重要的特点。多业务支持是城域光传送网络的基石,可为运营商带来许多竞争优势,如后向兼容性(如SDHoverWDM)、成本显著降低(减少了网络分层和设备)、网络管理简化和配置工作量减少等。
安全可命性和可增位性。城域传送网涉及到大量的客户和服务,网络的安全可靠性直接影响到客户,传送网应支持网络节点的备份和线路保护,提供网络安全措施,同时多种生存性有利于运营商向用户提供更好的业务定义。同时城域传送网应当要充分考虑业务扩展能力,能针对不同的用户需求提供丰富的宽带增值业务,使网络可持续赢利。
动态性。与骨干传送网相比,城域传送网的动态性较强,多种数据业务的动态性和不可预见性使得城域传送网的相关需求加强,目前的发展趋势是越来越多的客户需要带宽更灵活的业务。他们需要快速的业务配置、更短期的、可灵活增加的服务合同和基于QoS的价格,将来还可能出现对带宽按需分配等新业务的需求。
网络扩展性。由于受用户需求和地理分布动态变化的影响,城域的数据业务具有多变性,城域传送网要建设成完整统一、组网灵活、易扩充的弹性网络平台,留有充分的扩充余地,能够随着需求变化,可允许运营商不断地按照业务需求增加带宽,而不需要进行网络整体升级。
三、城域网中的相关技术分析
SDH多业务传送平台。SDH多业务传送平台(MSTP)是目前广泛应用的产品。为了适应城域网多业务的需求,SDH从单纯支持2Mb/s,155Mb/s等话音业务接口向支持以太网和ATM等多业务接口演进,将多种不同业务通过YC或VC级联方式映射入SDH时隙进行处理。SDH多业务平台将传送节点与各种业务节点融合在一起,各厂商只是融合程度不同。
MSTP的出发点是将2层或3层的功能作为SDH附加功能来完成的,其对2层或ATM层的处理都是与SDH处理相分离的,但都可以映射到SDH的VC时隙进行重组。从功能上看,MSTP除了具有SDH功能外,还具有2层、MAC层和ATM功能。
MSTP比较适合于已经敷设大量SDH网的运营公司,它可以方便有效地支持分组数据业务,实现从电路交换网到分组网的过渡,适合支持混合型业务特别是以TDM业务为主的混合型业务,同时可以保证网络管理的统一性。
弹性分组环技术。正在由IEEE802。17工作组制定的弹性分组环(RPR)技术,吸收了吉比特以太网的经济性、SDH系统50ms环保护特性。RPR采用类似以太网的帧格式,结合丝丝标记,基于MAC高速交换,简化IP前传。RPR技术可以支持更细的带宽粒度,网络成本较低,可以承载具有突发性的IP业务,同时支持传统语音传送,有比较好的带宽公平机制和拥塞控制机制。RPR环是在整个环上实现公平机制而不是在单独链路上,容易实行全局的公平机制。服务供应商可以利用源节点发送数据包的速率来控制上游节点和下游节点的速率。带宽策略允许在无拥塞的情况下,把环上任意两个节点之间所有的带宽分配给这两个节点,没有SDH那种固定电路系统的不灵活性,同时又比点到点的以太网更加有效。
目前RPR标准尚未完成,其中的一个重要问题是对时钟的透明传输,RPR同步机制与SDH不同,必须确保TDM时钟可以透明传输到对端。第二个挑战来自RPR定义的是一个环网结构下的技术,无法工作在复杂的网络环境下(甚至是环间互联),而实际的城域网络环境则是十分复杂的。
RPR技术适合于以数据业务为主、TDM业务为辅的网络,其应用范围将逐渐扩大,适合于新建网络。
城域WDM光网络。WDM技术不仅提高了光纤利用率,而且在业务信号复杂多变的城域网中对信号具有透明性,它可以对从不同设备出来的信号不进行速率和帧结构调整,直接进行透明传输。这可给用户、特别是租用波长的用户以最大的灵活性。同时,不同波长间的信号互不干涉,每个波长都可以自己灵活上下。WDM技术主要应用于城域骨干网。
城域OADM环网可以承载大量客户的多种协议和多种速率的业务,每个波长承载一种业务的方式将很快耗尽波长,为提高每个波长的带宽利用率,应尽量避免低速率业务单独占用一个光波长通道。一种新兴的经济有效的方法是将多个低速率客户信号复用到一个波长信道中,该技术被称为子波长复用,从而实现了每个波长携带多种业务。这种子波长复用器降低了城域网WDM系统的应用门槛,可以直接容纳低速率信号,给组网带来了灵活性。WDM环网解决了两个重要问题:光纤短缺和多业务的透明传输。成本是限制其应用的重要因素,目前它主要用来保护那些SDH还无法保护的业务,如ESCON,FiberChannel等。
在目前的光网络中,数据业务的提供需要经过4层处理:首先将业务映射进IP包,并以ATM信元封装,然后将ATM信元映射进SDH帧,最后转换为光信号在光网络上传送(采用WDM/DWDM方式)。随着IP业务的飞速发展,这种结构的缺点日益暴露。人们开始研究将ATM层和SDH层从4层结构中剥离出去,将其功能融合到IP/MPLS层和WDM/OTN(光传送网)层中,将IP业务直接在WDM光路上传送(即IPoverOptical,目前主要为IPoverWDM/DWDM)。在传统的光网络中引入信令控制和动态交换功能,将IP层和光网络层置于同一控制平面下,对光网络实施配置连接管理,在此思想下,一种能够自动完成网络连接的新型网络ASON(自动交换光网络)应运而生。
自动交换光网络。ASON是在IPoverDWDM基础上发展起来的,底层仍为OTN,主要的不同就是在OTN上引入了控制平面。控制平面通过信令交换完成对传送平面的动态控制。控制平面的引入带来了以下好处:迅速实现业务提供,允许网络资源动态分配路由和带宽;容易管理,业务提供者无需为新的传输技术系统的配置管理而开发维护操作支持系统软件;具有扩展的信令能力,增加了补充业务;在出现故障时可实现快速的保护与恢复,比通常的传送网节省了冗余容量和资源;控制平面的协议比管理平面的协议有更丰富的原语组,可用于各种传输技术。
四、通用标签交换(GMPLS)技术
为了使MPLS适应时分复用、波分复用等不同的应用环境,以支持在电路交换网中建立连接,IETF对MPLS中标签的概念和形式进行了相应的扩展,将时分系统和空间交换系统涵盖了进来,推出了通用标签交换--GMPLS。其具有许多新功能:
时隙、虚通道和波长等均可作为标签。GMPLS所管理的对象不仅是分组,还可以是FR。ATM,SDH和WDM等,且这些设备上的接口还可以细分为PSC(分组交换功能)、TSC(TDM交换功能)、LSC(波长交换功能)和FSC(光纤交换功能)等多种类型。
可以为离散单位分配带宽,因为时隙、波长和光纤等都是离散单位。
具有下行按需标签分配和使用上行标签的双向LSP建立能力,并且可以通过从上游节点向下游节点传送建议标签来简化倒换过程、减少双向LSP的建立时延。
可以设置标签组,以缩小下游标签的选择范围。当然,在引入GMPLS控制平面后,对传统数据通信网络(DCN)也提出了新的要求,特别是电路交换网络。首先,DCN必须保证能为控制器之间提供控制信息的传送,能够直接或间接地为两个LSR提供交换控制信息的信道:其次,所提供的信道必须是可靠的、安全的:最后,DCN必须支持IP,且必须具有较高的可靠性和QoS,以避免用户数据业务出错而影响控制数据,确保控制信息的顺利发送。
参考文献:
关键词:光纤通信技术优势接入技术
引言
近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。
一、光纤通信技术定义
光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
二、光纤通信技术优势
2.1频带极宽,通信容量大
光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。散波长窗口,单模光纤具有几十GHz·km的宽带。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。采用密集波分复术可以扩大光纤的传输容量至几倍到几十倍。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps,采用密集波分复术实现的多波长传输系统的传输速率已经达到单波长传输系统的数百倍。巨大的带宽潜力使单模光纤成为宽带综合业务网的首选介质。
2.2损耗低,中继距离长目前,实用的光纤通信系统使用的光纤多为石英光纤,此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。
如果将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。目前,由石英光纤组成的光纤通信系统最大中继距离可达200多km,由非石英系极低损耗光纤组成的通信系至数公里,这对于降低通信系统的成本、提高可靠性和稳定性具有特别重要的意义。
2.3抗电磁干扰能力强我们知道光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。它是一种非导电的介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。这样,就是把它平行铺设到高压电线和电气铁路附近,也不会受到电磁干扰。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。
2.4光纤径细、重量轻、柔软、易于铺设光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。此外,光纤的重量轻,柔韧性好,光缆的重量要比电缆轻得多,在飞机、宇宙飞船和人造卫星上使用光纤通信可以减轻飞机、轮船、飞船的重量,显得更有意义。还有,光纤柔软可绕,容易成束,能得到直径小的高密度光缆。
2.5保密性能好对通信系统的重要要求之一是保密性好。然而,随着科学技术的发展,电通信方式很容易被人窃听,只要在明线或电缆附近设置一个特别的接收装置,就可以获取明线或电缆中传送的信息,更不用去说无线通信方式。光纤通信与电通信不同,由于光纤的特殊设计,光纤中传送的光波被限制在光纤的纤芯和包层附近传送,很少会跑到光纤之外。即使在弯曲半径很小的位置,泄漏功率也是十分微弱的。并且成缆以后光纤在外面包有金属做的防潮层和橡胶材料的护套,这些均是不透光的,因此,泄漏到光缆外的光几乎没有。更何况长途光缆和中继光缆一般均埋于地下。所以光纤的保密性能好。此外,由于光纤中的光信号一般不会泄漏,因此电通信中常见的线路之间的串话现象也可忽略。
三、光纤接入技术
随着通信业务量的不断增加,业务种类也更加丰富,人们不仅需要语音业务,高速数据、高保真音乐、互动视频等多媒体业务也已经得到了更多用户的青睐。光纤接入网可分为有源光网络A(ON)和无源光网络((PON。)采用SDH技术、ATM技术、以太网技术在光接入网系统中称为有源光网络。若光配线网(ODN全)部由无源器件组成,不包括任何有源节点,则这种光接入网就是无源光网络。
现阶段,无源光网络P(ON)技术是实现FT-Tx的主流技术。典型的PON系统由局侧OLT光(线路终端)、用户侧ONUO/NT(光网络单元)以及ODN-OrgnizationDevelopmentNetwork(光分配网络)组成。PON技术可节省主干光纤资源和网络层次,在长距离传输条件夏可提供双向高带宽能力,接入业务种类丰富,运维成本大幅降低,适合于用户区域较分散而每一区域内用户又相对集中的小面积密集用户地区。
为实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达置的不同,有FTB、FTTC,FTTCab和FTTH等不同的应用,统称FTTx。
FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制定了FTTH的技术标准和建设标准,有的城市还制门了相应的优惠政策,这此都为FTTH在我国的发展创造了良好的条件。
在FTTH应用中,主要采用两种技术,即点到点的P2P技术和点到多点的xPON技术,亦可称为光纤有源接入技术和光纤无源接入技术。P2P技术主要采用通常所说的MC(媒介转换器)实现用户和局端的自接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。
随着通信需求日益复杂,现代光纤设备也使用了更新、更多类型的特种光缆。现在主要应用的几种光缆设备在其结构方面较传统光缆有着很大区别,虽然其成本相对较高,但其使用寿命更长、传输中的损耗更低、安全性更可靠,有效地提升了当代电力系统的通信质量。
2电力特征光缆及其技术
2.1ADSS技术
ADSS光缆为全介质自承光缆,其应用范围主要是110KV及更低电压的线路。ADSS光缆自身性质为完全绝缘的自承式架空光缆,本身不包含可导电的材质,使用的纺纶材料能承受更大的张力,且外部温度变化对它产生的影响也较小,因此能够在保证不停止供电的前提下进行架线等工作。虽然现今ADSS光缆的使用范围十分广泛,但依然存在一定的不足,由于其外部保护套容易受到电磁腐蚀,因此其使用寿命常常不高于25年。所以在我们运用ADSS技术时,需要特别注意对线路中电场进行测定,精确计算杆塔上电场的分布状况。出于保护光缆结构的考虑,在其运行时需要用AT外护套。在ADSS光缆的施工过程中,一定要保证其不与周围物体产生摩擦撞击。
2.2OPGW技术
相比ADSS技术,OPGW技术更为先进,它有效地将传统意义上的线路与现今使用的光纤相结合,并且采用复合架空地线电缆,这一应用,使其拥有更好的机械性能与导电性,并且加快信息的传输速度。加大光纤的通信量,也能使保密性得到提高,尤其是在应对雷击等意外方面有着更好的性能。与ADSS技术相反,OPGW技术主要应用在经过改造或者是新建的110KV及更高电压的输电线路中,而且,架设的档距一般在200米甚至更高档距,其在维护及对抗高压电腐蚀降解方面显现出优异的性能。但是,OPGW技术也不是完美无缺,由于架设档距大,对线路和杆塔强度也提出了非常高的要求。而且由于自身材质的特性,在线缆架设施工的过程中,线路不能通电,因此OPGW技术与ADSS技术相比可谓各有千秋。在架设和施工过程中,一定要考虑到各方面的安全因素,包括带独显的弧垂、工程地点的气候情况等条件,最终确定最佳架设方案。
2.3MASS技术
这种光缆与OPGW光纤在结构上有着相同之处,同样为不锈钢光纤校合了一层铝包钢丝或者是镀锌钢丝。其显著特点就是强度高,在防电抗腐蚀方面性能优异。而与OPGW不同的是,其结构更轻、更小,在安装敷设时需要选择合适挂点,这些特性又与ADSS相类似。可以说MASS技术是ADSS技术与OPGW技术相结合的产物。
3发展方向的预估
3.1更先进的光纤设备
当今电信技术不断发展,光纤设备的更新换代也随之加速。现在通信距离日益增长,因此对光纤的质量也提出了更高的要求。单模光纤已经渐渐地无法满足现今对信息传输的需求,因此对新型光纤的开发显得尤为重要。
3.2光纤接入网
在不远的未来,网络将向着智能化、高度集成化方向发展,通信系统将具备高度集成、数字化、网络化特点,实现更高效、更快速地传输信息。从光纤的管理维护成本方面考虑,光纤接入网将具有更低的维护管理成本,甚至能够实现网络的透明化。
3.3光联网
更大容量、更大网络覆盖范围、更多网络节点、更高网络透明度将成为光网络的特性。光联网将使网络具备更高的灵活性,网络发生故障时的恢复速度和恢复时间都将得到大幅度缩短,对电力系统正常运行的影响将降至最低。光联网有巨大的潜力。将在未来的网络通信中发挥其巨大的使用价值,对未来电力系统通信有着不可预估的重要影响。
4结语
1.1光纤接入网技术
光纤接入网技术利用传输网络实现用户接入光纤,共同实现光纤接入网下信息传输效果的持续提升,实现了传统信息传输的技术性突破,满足人们对信息传输速度的需求。光纤用户接入技术发展起着关键作用。FTTH是光纤接入网发展的一种最终形式,光纤接入网以光网络单位(0NU)的位置所在,分为FTTH、光纤到大楼(FTTB)、光纤到驻地(FTTP)、光纤到路边(FTTC)等几种情况。目前,以”千兆到小区、百兆到大楼、十兆到用户”为基础的光纤+五类缆接入方式(FTTx+LAN)非常适合我国国情。它适用于用户相对集中的小区、大专院校、企事业单位及人口密集的乡镇。这种光纤接入方式的上传和下传带宽,能够实现高速上网或企业局域网间的高速互联,满足不同客户群体对不同速率的需求。
1.2光纤波分复用技术
光纤波分复用技术是现代信息技术发展的重要组成部分,充分表现了现代光纤通信技术发展的主要特点。在ITU-T标准中,通过引入控制层面,使网络具有自动连接建立和修改功能,以及提高连接恢复能力。光纤网络控制层面本身能够支撑不同的技术,不同的业务需求及不同的功能组合。光纤波分复用技术主要是应用波分复用器对广信信息传输出现的损耗进行控制,保证宽带资源的有效获取。同时在光波频率根据波长的不同情况对光纤损耗情况进行独立性信息发送,充分发挥波分复用器的效果将信息数据进行整合。波分复用器能够将不同信号波长进行传输,承载电信光纤通信技术优势。
1.3光联网的实现
目前,在扩充骨干网、迅速普及应用DWDM系统的驱动下,我国光网络市场已出现巨大变化,光传送网的角色由原来大容量带宽传送转变为提供端到端的服务连接。电信运营商在电路交换转变为分组交换过程中,在光层网络同时实现了传输功能和交换功能,而全光网络以其良好的透明性、波长路由特性、兼容性和可扩展性,成为下一代高速(超高速)宽带网络的首选。光纤接入网技术和光纤波分复用技术的创新推广应用中,光分插复用器(OADM)和光交叉连接设备(OXC)的成功研制,使得二者能够在基础通信设备基础上实现光路交叉,为光联网起步奠定坚实基础,能够进一步扩充网络系统,提升网络系统的透明性,使全光联网成为可能,掀起了SDH电联网之后又一次新的光通信发展,建设一个最大透明、高度灵活的和超大容量的国家骨干网络不仅可以为未来的国家信息基础设施(NII)奠定一个坚实的物理基础,而且对应我国信息产业和国民经济腾飞及国家安全有极其重要的战略意义。
1.4全新一代光纤
全新一代光纤是新时期电信光纤通信技术应用的核心内容。新的光传输网分为三层:光通路层(Och)支持终端到终端的传送客户信号。OMS光复用层把许多光波复用到一起后传动到光纤中。OTS光传送层把客户信号映射到单一的光道,再将许多单一的光道复用在一起后送上光纤。全新一代光纤具有频带宽通信容量大、损耗低,中继距离长、抗电磁干扰、无串音保密性好等优势特点。根据电信网络服内容不同,创新了传统光纤发展模式,呈现出大容量、长距离传输等优势。
二、电信光纤通信技术发展趋势的优势分析
伴随中国城镇化等宏观经济政策调整,我国城乡每年旧城改造和新屋建设达到20多亿平方米,至少可以容纳2000万户新居或数百万个企业,为光宽网建设提供了几乎海量的外在条件。伴随信息华社会的发展,人们随时随地办公、生活、学习、购物、娱乐的内在需求日益凸现,建设安全的全光信息网络已经提升为国家战略。科学技术水平提升使电信光纤通信技术提供的服务质量能够不断的满足人们的要求。电信光纤通信技术发展趋势优势明显,传输速度快、传输容量扩大,并且在长距离下实现信息容量提升、完善全光网络系统。在未来电信光纤通信技术发展状况下信息数据传输水平会在网络系统发展下实现高速发展。电信光纤通信技术发展具有重要的现实应用意义。
2.1全光网络
电信光纤通信技术发展中全光网络是重要的组成部分,同时也是电信光纤通信技术应用的关键核心,是人们对网络信息技术需求发展的表现。全光网络(ASON)在路由和信令控制下,完成自动交换连接功能。它首次将信令和选路引入传送网,通过智能的控制层面来建立呼叫和连接,实现了真正意义上的路由设置、端到端业务调度和网络自动恢复。探究全光网络特点对电信光纤通信技术进行研究,能够更好的实现电信光纤通信技术应用的全面发展。我国对电信光纤通信技术不断进行研究,创新了技术发展模式,在应用上取得了较大发展。伴随国务院《“宽带中国”战略及实施方案》的推进,联通等通信运营商加大力度推行“城乡一体化”光网改造工程,通过全光网络的方式向宽带中国目标靠近,不断地满足社会对现代网络光纤通信技术的应用需求。
2.2多业务承载能力
新时期为了进一步促进电信市场的发展,需要对电信市场发展模式进行改革创新,对运营模式进行重组改制,实现电信业务多元化发展。网络系统光纤接入技术的应用能够承载更多的业务项目,强化基础型承载业务水平,移动基站回传、语音等服务都是多业务承载能力提升的重点内容。从提高传输通道变为提高光业务的解决方案,使光网络能够提高多种高质量的带宽应用与服务,包括:1、OVPN;2、业务SLA;3、带宽出租、带宽批发、带宽贸易、实时计费;4、流量工程;5、分布式恢复;6、SPC(软永久连接)/SC(交换连接)/PC(永久连接)。传统接入网系统主要采用对接式网络结构,这种模式在一定程度上提升了运营系统管理成本投入,使网络系统建设经济效益受到影响。高接入带宽接入网应用之后能够更好的使系统与网络进行融合,实现网络系统高效运行,建立统一系统应用平台。电信光纤接入技术促进多业务承载能力的同时保证了系统客户的应用安全有效性,业务发展保证服务水平质量提升,同时能够承载更多的系统业务,并且针对个人系统应用要求强化电信光纤通信技术。除此之外,还能够提供高可靠性接入、高精度时钟传送、有效满足针对移动基站的回传业务。
三、结束语
关键词:光纤通信技术特点发展趋势光纤链路现场测试
一、光纤通信技术
光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。
二、光纤通信技术的特点
2.1频带极宽,通信容量大。光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。
2.2损耗低,中继距离长。目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。
2.3抗电磁干扰能力强。石英有很强的抗腐蚀性,而且绝缘性好。而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。
2.4无串音干扰,保密性好。在电波传输的过程中,电磁波的传播容易泄露,保密性差。而光波在光纤中传播,不会发生串扰的现象,保密性强。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。正是因为光纤的这些优点,光纤的应用范围越来越广。
三、不断发展的光纤通信技术
3.1SDH系统光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。伴随着科技的进步,特别是计算机网络技术的发展,传输数据也越来越大。分组信号与连续码流的特点完全不同,它具有不确定性,因此传送这种信号,是光通信技术需要解决的难题。而且两种传送设备也是有很大区别的。
3.2不断增加的信道容量光通信系统能从PDH发展到SDH,从155Mb/s发展到lOGb/s,近来,4OGB/s已实现商品化。专家们在研究更大容量的,如160Gb/s(单波道)系统已经试验成功,目前还在为其制定相应的标准。此外,科学家还在研究系统容量更大的通讯技术。
3.3光纤传输距离从宏观上说,光纤的传输距离是越远越好,因此研究光纤的研究人员们,一直在这方面努力。在光纤放大器投入使用后,不断有对光纤传输距离的突破,为增大无再生中继距离创造了条件。
3.4向城域网发展光传输目前正从骨干网向城域网发展,光传输逐渐靠近业务节点。而人们通常认为光传输作为一种传输信息的手段还不适应城域网。作为业务节点,既接近用户,又能保证信息的安全传输,而用户还希望光传输能带来更多的便利服务。
3.5互联网发展需求与下一代全光网络发展趋势近年来,互联网业发展迅速,IP业务也随之火爆。研究表明,随着IP业的迅速发展,通信业将面临“洗牌”,并孕育着新技术的出现。随着软件控制的进一步开发和发展,现代的光通信正逐步向智能化发展,它能灵活的让营运者自由的管理光传输。而且还会有更多的相关应用应运而生,为人们的使用带来更多的方便。
综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术是目前光纤传输的研究热点,而在以后,科学家还会继续对这一领域的研究和开发。从未来的应用来看,光网络将向着服务多元化和资源配置的方向发展,为了满足客户的需求,光纤通信的发展不仅要突破距离的限制,更要向智能化迈进。
四、光纤链路的现场测试
4.1现场测试的目的对光纤安装现场测试是光纤链路安装的必须措施,是保证电缆支持网络协议的重要方式。它的目的在于检测光纤连接的质量是否符合标准,并且减少故障因素。
4.2现场测试标准目前光纤链路现场测试标准分为两大类:光纤系统标准和应用系统标准。①光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。对于不同的光纤系统,它的标准也不同。目前大多数的光纤链路现场检测应用的就是这个标准。②光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。这种测试的标准是固定的,不会因为光纤系统的不同而改变。
4.3光纤链路现场测试光纤通信应用的是光传输,它不会受到磁场等外界因素的干扰,所以对它的测试不同于对普通的铜线电缆的测试。在光纤的测试中,虽然光纤的种类很多,但它们的测试参数都是基本一致的。在光纤链路现场测试中,主要是对光纤的光学特性和传输特性进行测试。光纤的光学特性和传输特性对光纤通信系统对光纤的传输质量有重大的影响。但由于光纤的特性不受安装的影响,因此在安装时不需测试,而是由生产商在生产时进行测试。
4.4现场测试工具①光源:目前的光源主要有LED(发光二极管)光源和激光光源两种。②光功率计:光功率计是测量光纤上传送的信号强度的设备,用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。光功率计的原理非常像电子学中的万用表,只不过万用表测量的是电子,而光功率计测量的是光。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,组成光损失测试器,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。③光时域反射计:OTDR根据光的后向散射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等。从某种意义上来说,光时域反射计(OTDR)的作用类似于在电缆测试中使用的时域反射计(TDR),只不过TDR测量的是由阻抗引起的信号反射,而OTDR测量的则是由光子的反向散射引起的信号反射。反向散射是对所有光纤都有影响的一种现象,是由于光子在光纤中发生反射所引起的。
虽然目前光通信的容量已经非常大,但仍有大量应用能力闲置,伴随着社会经济和科学技术的进一步发展,对信息的需求也会随之增加,并会超过现在的网络承载能力,因此我们必须进一步努力研究更加先进的光传输手段。因此,在经济社会发展的推动下,光通信一定会有更加长久的发展。
参考文献:
[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006.(4).
[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信.2004.(2).
虽然“光纤通信”课程是一门理论与实践相结合的课程[4],但是基础理论的掌握对以后实践起着极其重要的作用。可以说基础理论的广度和深度直接影响以后从事实用型工作还是创造型研究。“光纤通信”总学时为92学时,其中基础理论占56学时,实验教学为36学时,最后设置了两周课程设计内容。理论教学内容主要包括光纤传输理论、通信用光器件、光端机、数字光纤通信系统、模拟光纤通信系统、光纤通信新技术和光纤通信网络等。实验教学主要包括以光纤端面处理与熔接实验、单模光纤结构设计光纤光缆的识别与使用、光纤损耗系数和事件点参数测量、光发送机的参数测试、光纤电话传输实验、光纤视频传输实验、波分复用光纤传输实验和掺铒光纤放大器实验为代表的十二个题目。本课程最后一个教学环节为课程设计,主要是针对所学内容进行选择性深入学习和研究,并独立设计完成指定题目。
二、“光纤通信”课程理论教学方法与实践
1.理论教学过程中的理论分析应从简单递进难度。例如,我们在教学实践过程中学习光纤中的光传输理论时,先讨论学生较熟悉的几何光学法的全反射传输理论,再分析光在光纤中遵循的电磁理论,提出麦克斯韦方程组,并进行严格推导和详细讨论。
2.教学中应适当展开课堂讨论。对于一些较简单并有一定重复性的内容,可以采取课堂讨论的教学模式。由于,光纤制造和光缆制作工艺相对简单易懂,制造过程和方法有很多种。因此,对以上内容进行课堂讨论形式教学。预先把学生分成几组,每组选择2~3个题目,之后收集资料、制作PPT、充分备课。课堂上每组选出1~2个学生,上讲台利用15~25分钟的时间对特定题目进行讲解,讲完后其他成员可以提问,相互讨论。通过以上教学环节,本是一些繁杂的内容从不同讲解者的不同风格再现出来,课堂气氛积极活跃,讲授内容丰富多彩。同时讲解者完成了选题目、制作PPT及备课讲课等全过程,这对即将毕业的学生是一个展现自己、锻炼自己的好机会。
3.教学过程中适当展示实际器件或相关案例。光纤通信是一门要求理论与实践相结合的课程。除了规定的实验课外,在理论教学过程中应该注意理论与实际相结合。在理论教学过程中,涉及一些实际光学元件和设备时,比如,连接器、耦合器、光纤光栅和激光器等,课堂上尽量展示实物及说明书,并说明其在通信网络中的具置和作用。不仅可以活跃课堂气氛,还可以巩固教学内容,留下深刻印象。比如,设计光纤分类和工艺等内容时,我们尽量引入许多国内外的著名企业并展示其相关光纤产品。我国已拥有长飞、亨通、烽火、富通、中天、永鼎、通光、汇源等光缆企业及特发、成康、北康、侯马、富春江、天虹、宏安、华伦、华达、华新、港龙、通鼎、西古、法尔胜等一大批骨干企业。2006年,国内市场光缆总量达2000万芯公里,出口光缆470万芯公里,总产销2470万芯公里以上。2000~2012年,我国光纤需求量增加了整整24倍,年增长率达30%。2006年中国光纤需求量仅占全球的25%左右,至2012年,这一市场份额已超过了50%。光缆总体技术水平已达国际先进水平,主要企业的主要产品指标领先国际先进水平,产品种类规格基本齐全(海底越洋光缆尚差)[5]。
4.概念与其背景相联系。每一学科与每一门课程都具有相应的概念和理论。其中一些现象的发现、一些概念的提出有其历史背景和条件。在光通信,特别是光孤子通信属于这一类,孤子这个名词首先是在流体力学中提出的,其概念可以追溯到1844年英国工程师SocttRussel在《波动论》中记录的一段于1834年8月在爱丁堡一戈拉斯高运河上的一次经历。讲授该内容时,我们抓住其独特的历史,回顾一下当年的发现,活跃课堂气氛,形象准确地理解概念。
5.理论分析与科研成果相联系。在教学实践中应用科技论文,可以使学生对教学内容掌握得更好,同时对科技论文的查阅、内容格式和写作等进一步了解,对以后毕业论文,乃至科研工作有一定的引导作用。对科技论文的选取要注意以下几点:文章的主题符合课程相关内容;科技论文的难度要适当;科技论文作者及其单位在行业有一定的影响力;最后,科技论文内容为该领域研究热点[2]。比如,讲授完光纤结构、制造工艺和传输理论之后,组织学生学进延(烽火通信科技有限公司)的《S-C-L三波段传输新型单模光纤的设计和研究》和专利《一种新型低色散光纤》[3]。通过分析科技论文巩固所学知识,进一步理解提出问题、解决问题,并把成果撰写成科技论文或申请专利的整体过程,提升学生的科学素养,培养学生综合能力。
6.实验、课程设计和仿真模拟。在实践教学环节,我们针对性地开设了12个典型实验。除此之外,结合理论与实践,设置了计算机仿真的课程设计内容。仿真是利用模型复现实际系统中发生的本质过程,并通过对系统模型的实验研究存在的或设计中的系统[6]。很多情况下,因受到实验条件限制,光纤通信中经实际操作,用实验结果证实和分析的内容有限。此时,我们可以学习和利用仿真技术,主要是利用一些光纤通信领域功能较强的模拟软件设计光纤通信器件和光纤通信系统。对光纤通信网络的模拟,参数调整和结果分析加深对实际通信网络的了解,分析其存在的问题,提出解决方案。
三、结语
关键词:光纤,光纤业务,FTTH
计算机工业界很多人士引以为自豪的是计算机技术的快速发展,同时,数据通信速率也在快速发展,最终,在计算机能力和通信能力的竞赛过程中,通信赢了。数据通信传输速率的快速发展更是让人难以想象,这样的发展速度要依靠光纤作为传输媒介的问世。光纤技术现已相对成熟,下面就光纤的优点和业务上的需求来研究一下光纤的发展趋势。
一、光纤优点
1。频带宽
频带的宽窄代表传输容量的大小。载波的频率越高,可以传输信号的频带宽度就越大。目前,采用先进的相干光通信可以在30000GHz范围内安排2000个光载波,进行波分复用,可以容纳上百万个频道。
2.重量轻
因为光纤非常细,单模光纤芯线直径一般为4um~10um,外径也只有125um,。论文格式。比标准同轴电缆的直径47mm要小得多,加上光纤是玻璃纤维,比重小,使它具有直径小、重量轻的特点,安装十分方便。
3.抗干扰能力强
因为光纤的基本成分是石英,只传光,不导电,不受电磁场的作用,故光纤传输对电磁干扰、工业干扰有很强的抵御能力。因此,在光纤中传输的信号不易被窃听,因而利于保密。
4.保真度高
因为光纤传输一般不需要中继放大,不会因为放大引人新的非线性失真。只要激光器的线性好,就可高保真地传输电视信号。
5.工作性能可靠
一个系统的可靠性与组成该系统的设备数量有关。设备越多,发生故障的机会越大。因为光纤系统包含的设备数量少(不像电缆系统那样需要几十个放大器),可靠性自然也就高,故一个设计良好、正确安装调试的光纤系统的工作性能是非常可靠的。
6.成本不断下降
目前,有人提出了新摩尔定律,也叫做光学定律(Optical Law)。该定律指出,光纤传输信息的带宽,每6个月增加1倍,而价格降低1倍。光通信技术的发展,为Internet宽带技术的发展奠定了非常好的基础。这就为大型有线电视系统采用光纤传输方式扫清了最后一个障碍。由于制作光纤的材料(石英)来源十分丰富,随着技术的进步,成本还会进一步降低;而电缆所需的铜原料有限,价格会越来越高。显然,今后光纤传输将占绝对优势,成为建立全省、以至全国有线电视网的最主要传输手段。
7.损耗低
在同轴电缆组成的系统中,最好的电缆在传输800MHz信号时,每公里的损耗都在40dB以上。相比之下,光导纤维的损耗则要小得多,传输1、31um的光,每公里损耗在0.35dB以下若传输1.55um的光,每公里损耗更小,可达0.2dB以下。这就比同轴电缆的功率损耗要小一亿倍,使其能传输的距离要远得多。此外,光纤传输损耗还有两个特点,一是在全部有线电视频道内具有相同的损耗,不需要像电缆干线那样必须引人均衡器进行均衡;二是其损耗几乎不随温度而变,不用担心因环境温度变化而造成干线电平的波动。
二、业务上的需求和市场的竞争
伴随着计算机的广泛应用,计算机网络数目在不断的增加,Internet用户数量也在不断增加,使得通信容量不断的加大,因此,数据通信的带宽要求显得更加重要。目前,为了解决数据能够在主干网络中顺利的传输,在通信介质方面,对于主干网络都采用了光纤作为传输媒介。光纤作为主干网络的传输媒介,解决了主干线路数据负载问题,使得数据能够顺利传输。光纤在主干网络中取代了传统的铜线介质,但“最后一英里”问题上,还没有完全的普及光纤,这就造成本地回路成为主干网络的瓶颈。随着3G网络的不断发展,用户“最后一英里”问题应该尽快解决。目前,采用的接入方式有:FTTH、FTTB、FTTC。
相关数据表明,2002年至2006年,我国宽带上网用户比例由9%上升到52%。宽带用户成为大多数,这标志着我国互联网已经进入宽带时代。宽带接入已经成为固网运营商增长的第一驱动力。而宽带业务的需求必然刺激相关宽带技术的发展和应用,光纤具有近似于无限的带宽,端到端的全光网络是宽带接入的最终解决方案。随着光纤接入成本不断下降、铜缆接入网运维成本的攀升,运营商网络将向以宽带为特征的下一代网转型。论文格式。随着今后更多高带宽业务的出现,FTTH上马也是大势所趋。论文格式。
正是基于这种共识,各固网运营商在铺网时都遵循光进铜退的准则,将投资重心转向光纤接入网。新建商业楼宇与住宅区原则上采用光纤覆盖,控制铜缆投资。FTTH已经从实验室中走出,真正贴近普通用户,迎来了快速增长的新时期。
在最近几年,FTTH已经出现了良好的发展势头。FTTH,一方面受到了企业用户和高端家庭用户的欢迎,与将来可能需要一次次地带宽升级相比,一劳永逸的光纤接入更受他们的青睐。FTTH使得在家里能享受各种不同的宽带服务,如VOD、在家购物、在家上课等。 另一方面,铜线和光纤价格的一涨一跌,也使得部署FTTH的成本正呈现下降的趋势。长远来看,DSL的成本已经基本上达到了极值点,但FTTH还有很大的下降空间,而且从运维成本上来说,与DSL相比FTTH有更加明显的优势。
1改革的重点与具体措施
1.1教学方法三维可视化为了解决大学生在学习过程中理解困难和前沿性的科研促教中缺乏实验条件验证的教学问题[3],教学团队将物理建模思想应用于教学实践中,通过三维可视化仿真,使复杂、抽象、烦琐的理论模型变得直观、具体、明了.例如:针对“空间光通信创新实验”课程中的光学天线设计及光传输、激光雷达成像和光子晶体光纤光传输等进行了三维动态可视化仿真.在对前沿性的科研促教中缺乏实验条件验证的情况下,拟采用理论建模与仿真验证方法来实现.
1.2创新实践自主化为了解决自主创新实践能力训练不足的教学问题[4],教学团队将光通信、微波光子学等交叉学科前沿技术与创新实践相结合,构建了“空间光通信”开放式创新实践平台,建设了综合型、设计型、创新型的开放式专业实验室.依托开放式创新实践平台,开展了大学生自主研究型学习,着力加强大学生自主创新实践能力的培养[5,6].加强科研促教,拓展创新思维,在“985高校”大学生创新训练计划支持下,实施了创新设计项目40余项.依托科研项目把学生带到学术前沿,进行了形式多样的学术研讨:教授、副教授、博士、硕士、本科生分别定期做主题报告、分组讨论、网上论坛、参加国际国内会议和暑期夏令营等方式促进学术交流,形成良好的学术氛围.学生在开放式专业实验室里自主进行理论建模、仿真设计与实验验证,在规定时间内撰写学术论文等,开展了大学生自主创新能力的培养模式.
1.3多元化的教学评价体系为了解决传统评价方式缺乏对创新实践、仿真设计与课程论文等环节的评价的教学问题[7,8],教学团队将理论考试和平时成绩相结合,实验操作与自主创新实践相结合,理论建模仿真与课程论文相结合,构成了多元化的评价体系.例如:把理论考试成绩所占的比例下调到60%,而课程论文的比例上升到40%,通过创新项目和课程论文等方式评价学生的学习;通过课程论文答辩方式,依据“假设的合理性、建模的创新性、结果的准确性、表达的清晰性”进行综合评定,实现从应试教育到素质教育的观念性转变.引领学生朝着有利于自身全面发展的方向努力.
1.5开放式教学资源建设为了解决传统教学资源不足的问题,教学团队加强了师资队伍的建设,进行了广泛的国际、国内教学研讨和学术交流.重点建设了丰富的数字化网络资源平台网络课程含教学录相、典型实例、创新设计系列实验教案、经典物理问题、及在线实践编程等模块;适时引入在线答疑、网络论坛及现场演示与讨论等交互式教学形式,形成了模块化、交互式、开放式教学资源平台.
2改革与实践的探索
实例1大学生在牛顿式光学天线系统测试平台(图1)上做的部分实验内容:图2为接收光斑实验测试,图3为利用光束质量诊断仪器测试光斑.通过三维可视化仿真,使复杂、抽象、烦琐的空间光通信系统中的激光传输理论模型变得直观、具体、明了,解决大学生在学习过程中理解困难的教学问题(大学生创新实验设计项目)。例如:老师们课堂上在讲解光子晶体的应用———布拉格光纤光传输特性时,就采用了仿真验证手段.通过详细举例以此来鼓励学生启迪思维、大胆创新设计、勇于实践.以下是学生们根据题目的要求,在老师的指导下做的部分仿真结果图.实例2等周期结构的布拉格光纤仿真(见图4—图6).实例3空间光通信系统激光传输特性仿真(见图7—图8).实例4波动方程的(动态)三维可视化(见图9).图9波动方程(动态)三维可视化图形实例5平面波用柱面波形式展开(见图10).图10平面波展开为柱面波仿真结果图形以上是具有代表性的大学生创新实验设计.“缺陷的光子晶体在偏振分束器等光学器件中的应用”(大学生参与者:黄鹤、刘天骄、陈逸舟)被学校推荐为2010年国家级大学生创新性实验计划项目;“推帚式激光雷达三维成像创新设计”(大学生参与者:谢国洋、顾大超、童磊)被学校推荐为2011年国家级大学生创新性实验计划项目.通过这种创新事例,能很好地锻炼和培养大学生的创造能力,大大激发了学生的创新欲望和学习兴趣.
3改革的实施成果
该课程未实行教学改革以前,我们实行的是传统教学模式(理论教学+笔试成绩+实验成绩),教学成果不理想.自从2009年本教学团队开展了对“空间光通信创新实验”课程教学研究型改革与实践的探索以来,特别是加强了针对“空间光通信创新实验”课程中的创新实践平台及《数学物理方法与仿真》、《光学天线设计》、《空间光通信创新设计实验》3本教材的重点建设.建立了1个基于大学生创新基地的空间光通信工程技术研究中心;并依托这个创新实践平台,开展了一系列的教学和科研项目.1)研发了十余个综合创新设计实验,例如:“卡塞格伦光学天线系统的光传输特性分析实验”、“光纤损耗与光纤耦合实验”、“激光准直与多波长光学天线传输实验”、“无线激光大气通信实验”等;2)2012年数学物理方法、三维可视化仿真及创新实践的“三位一体”教学模式改革获电子科技大学教学改革成果一等奖;3)教改项目:2009年“数学物理方法”教学研究与精品课程建设”,2010年“数学物理方法精品课程教学团队建设与改革”;4)团队教师指导大学生创新基金项目40余项,指导大学生40余篇(SCI收录6篇);5)开展了一系列高水平的科研项目,获得了国家自然科学基金项目2项,国家自然科学青年基金项目3项以及横向建设项目等;6)2011年建设了电子科技大学第一座2.0kW单晶硅太阳能发电站,并实现并网发电,以作为大学生新能源创新课题教学示范所用.7)发表教研论文20余篇、科研论文100余篇.取得了显著的教学成果,形成了交叉性学科前沿与创新实践相结合的人才培养模式.(教改前后对比情况见表1).
4结论
关键词:双向网络,V-HUB,高增益,光站,光机
1.建设无源网络的目的
1.1网络发展的要求
通过前几年的网络建设,我们的网络无论从质量上还是覆盖范围上都取得了长足的进步。科技论文。目前,城区内的网络已经形成了光机进小区、网络分配化的基本格局,网络对双向上网业务的开展也起到了很好的支持作用。
但是应该看到,随着技术的发展,高增益光站、DWDM技术、数字回传技术等在HFC网络中的应用逐渐增加,给网络建设提供了不少新的思路;另外,不断丰富的用户需求,也要求网络建设能够具有支持不同的服务品质的能力;再者,随着城市建设的不断发展,要求网络要尽快适应各种复杂的实际情况和客观要求。
无源分配网络以高增益光站为基础,结合V-HUB技术的思路,使得网络建设更加灵活,网络结构更加简单,数据和传统模拟信号有了有机结合的可能,对网络建设带来的变化将是彻底性的。
1.2网络维护的要求
双向业务开展以后,骨干网络维护的范畴大大加大,这其中,反向维护无论从数量还是复杂度都是传统正向维护所不可比拟的。在网络的反向维护中,大量的故障出现在电缆线路上。
无源网络的建设,无形之中增加了光缆的密度,极大的减少了骨干电缆的使用数量,使HFC骨干网络更加简单,在概念上逐步趋于消亡。从这个意义上讲,反向维护的工作量将大大降低,使得网络更加稳定。
1.3网络建设的要求
近两年,随着新建小区物业管理的水平不断提高,要求网络管道化、暗埋化。一方面,为了减少地面引上箱的数量,同时方便管理,需要将所有支线尽量集中;另一方面,大量暗埋,对电缆的接头数量和质量有了更高的要求,为了减少故障数量,必须更加简化网络结构;再者,新建小区设备供电越来越难以保证,需要我们大量减少有源设备的使用。
由于郑东新区的建设以及高层建筑的大量出现,传统HFC网络的水平面状覆盖特点无从体现,代之以点状条状的覆盖特点,大大限制了光站的覆盖范围。在这种情况下,无源网络的设计成为了一个相当不错的选择。
对于农村偏远用户,由于网络结构复杂,规模庞大,加之偷接、私接严重,管理难度大。为了改变这种现状,适当增加光纤的密度,辅以低成本的无源网络方案,应该对郊区农村的网络覆盖有所帮助。
对于市区密集型用户和双向需求较高的用户,通过无源网络的设计,同样可以适应光纤接近用户的发展趋势,提高网络质量,实现网络升级的目的,又可以适当解决楼放用电问题。
2.无源网络的网络结构
2.1单光站网络
当具有覆盖区域集中,规模不大(4-10栋楼、400户左右)的网络设计需求时,可以采用单光站网络的结构。这种网络结构的意义在于使用一台光站,直接覆盖所有设计用户,不再使用放大器。
光站采用具有高增益正向输出的四端口光站,用以保证光站的覆盖范围。反向为光路回传,增益36dB。骨干电缆以-7电缆为主,入户为-5电缆。
光站的每个端口以分配器将信号均分后,直接入楼带户。设计的时候,注意电缆尽量集中在光机处,减少地埋引上箱的数量,尽量减少铝管线的使用数量,尽量减少供电环节,减少过电分支器的使用数量。
2.2园区网络
园区网络指得是由10栋楼到几十栋楼组成得大型社区内的网络。由于网络覆盖范围较大,接入用户较多,无法用单光站无源网络覆盖。这种大型社区,往往对物业管理的要求较高,在管道、用电等方面对我们的限制较多。
对于这种大型社区,在采用无源网络进行用户接入的时候,需要使用园区无源网络的接入形式。这种方式有以下一些特点:
2.2.1需要多个光机覆盖
由于用户数量较大,单个高增益光机无法全部覆盖,需要在园区内合理设置多个光机,分区域覆盖,每个光机覆盖8到10栋楼。
2.2.2光分路器置于园区内部
考虑到光纤资源,需要在园区内合适位置安装光分路器,园区内光机的下行光缆在园区内部解决。
2.2.3机房光功率需要特殊设计
由于终端光机数量的增加,园区内光功率要求增大,需要机房在光功率上进行保证。这给机房光资源的管理提出了新的课题。
2.2.4回传方式多样性
同样,考虑到回传光纤资源,园区内光机暂时还无法满足独立回传的要求,必须根据实际情况由多个光机共用回传光纤。根据前期积累的经验,综合考虑光缆、电缆和管道成本,建议以2台光机共用一芯回传光纤为佳。科技论文。
2.3V-Hub网络
单光站网络和园区无源网络解决了电缆的使用问题,而Aurora的Passive HFC技术方案更加注重解决光缆的问题和数字回传的问题。科技论文。从传输上来讲,它以波分复用技术为本质;从网络形态上讲,它以无源网络为基础;从设备上讲,它以V-Hub核心。
在城域范围之内,通过数量较少的光纤,连接多个区域中心,形成分布式的光纤网络系统。和以往的分布式HFC网络构架不同,V-Hub网络在传输上采用波分复用技术,将多路信号源和数据信号共纤传送,极大地节约了从核心机房到区域中心的光纤资源;对于反向传输,一方面,可以将每个光站的反向通道数字化后与其他光站的数字回传叠加传输,甚至可以和其他数据信号共同使用光纤带宽。通过这种技术,原则上,我们可以使用4到8芯光纤保证核心机房到区域中心的连接。
作为区域中心,V-Hub既是正反向信号的接收、处理、分配中心,又是区域内光纤的管理中心。一方面,V-Hub对接收下来的光信号进行解复用处理,然后将各种光信号放大后重新分配、复用,向不同的光站传输;另一方面,通过高集成模块将光纤的分配点一并集中在V-Hub内部,使得V-Hub的集成度非常高;另外,V-Hub采用和光站相同的野外安装模式,非常适合无机房化管理需求,使得它的使用范围大大扩展。
以NC4000光站为核心的无源网络方案是其在园区内部的解决方案。园区内各个光站采用光纤串接的方式连接,正向输出高增益,反向回传数字化,并且可以集成数据信号。是一种高质量的解决方案。
3.结束语
无源光网络作为接入层面的重要手段,随着用户带宽和业务需求的快速增长,在今后的几年内将会表现出高速增长的发展速度。同时我们看到在现在这样一个统一开放、公平竞争的市场环境及国家的政策鼓励下,随着自有知识产权的技术、标准、设备、应用的大力发展,也必将促进无源光网络乃至整个光接入网的健康迅速地发展。
参考文献
[1]陈雪.无源光网络技术.北京邮电大学出版社,2006.1.
[2]克雷默.基于以太网的无源光网络.北京邮电大学出版社,2007.5.
[论文摘要]光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信和军用通信等领域。综述我国光纤通信研究现状及其发展。
近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围
不断扩大。
一、我国光纤光缆发展的现状
(一)普通光纤
普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654 规定的截止波长位移单模光纤和符合G.653 规定的色散位移单模光纤实现了这样的改进。
(二)核心网光缆
我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。
(三)接入网光缆
接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。
(四)室内光缆
室内光缆往往需要同时用于话音、 数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。
(五)电力线路中的通信光缆
光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。
二、光纤通信技术的发展趋势
对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。
(一)超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6 Tbit/的 WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与 WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。
仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。
(二)光孤子通信。光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。
光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100 Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能 EDFA 方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。
(三)全光网络。未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。
全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。
目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以 WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。
三、结语
光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的“冬天”但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来到来。
参考文献
[1]辛化梅、李忠,论光纤通信技术的现状及发展[J]. 山东师范大学学报(自然科学版),2003,(04)
波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器。
关键词:光交换,波分复用(WDM),光传送网(DTN),自动交换光网络(ASDN),光突发交换(OBS)
现代通信网络中,先进的光纤通信技术以其高速、带宽的明显特征而为世人瞩目。实现透明的、具有高度生存性的全光通信网是宽带通信网未来发展目标。从系统角度来看,支撑全光网络的关键技术又基本上可分为光监控技术、光交换技术、光放大技术和光处理技术几大类。而光交换技术作为全光网络系统中的一个重要支撑技术,它的全光通信系统中发挥着重要的作用,可以这样说光交换技术的发展在某种程度上也决定了全光通信的发展。为了能帮助大家对光交换技术有一个更深的了解,笔者下面介绍一些光交换技术现有的概念、研究领域、以及发展趋势。
光交换是指不经过任何光/电转换,将输入端光信号直接交换到任意的光输出端。光交换是全光网络的关键技术之一。在现代通信网中,全光网是未来宽带通信网的发展方向。全光网可以克服电子交换在容量上的瓶颈限制;可以大量节省建网成本;可以大大提高网络的灵活性和可靠性。光交换技术也可以分为光路交换和分组交换。由于技术上的原因,目前还主要是开发光路交换,但今后发展方向将是分组光交换。
一、WDM技术
WDM波分复用并不是一个新概念,在光纤通信出现伊始,人们就意识到可以利用光纤的巨大带宽进行波长复用传输,但是在20世纪90年代之前,该技术却一直没有重大突破,其主要原因在于TDM(时分复用)的迅速发展,从155Mbit/s到622Mbit/s,再到2.5Gbit/s系统,TDM速率一直以过几年就翻4倍的速度提高。人们在一种技术进行迅速的时候很少去关注另外的技术。1995年左右,WDM系统的发展出现了转折,一个重要原因是当时人们在TDM10Gbit/s技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上,WDM系统才在全球范围内有了广泛的应用。论文格式。论文格式。
1、波分复用技术的概念
波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术; 在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
2、CWDM和WDM
通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。
3、发展特点:
1)向大容量超长距离DWDM系统发展
2)向城域WDM技术发展
二、IP over WDM
IP over WDM也称作IPover Optical,通俗的说,它就是让IP数据直接在光路上跑,减少网络层之间的冗余部分,具有体系简单、网络设备少、网络复杂性小,额外开销低、时延小、传输效率高等特点,这些都是IP over ATM和IPover SDH/SONET所无法比拟的。IP over ATM和IPover SDH/SONET最终将演变为IP over WDM。
主要研究内容有网络结构、帧结构、路由选择和波长分配、IP over WDM的应用、IPover WDM中的自愈技术。下面我们简单介绍一下自愈技术的研究现状。巨大的带宽承载着大量的业务使得带宽IP网络的可靠性更为重要目前由于DWDM袭用商用的只是点对点系统,因此,对IP over WDM方式的网络的自愈保护有两个层次:光层和IP层。由于IP层和光层都可以有自愈能力,如何协调和配合,是有待进一步研究的问题。
三、DTN(光传送网)
DTN概念:DWDM系统本质上是点对点的系统,组网方式有限,因此波分复用系统的一个发展方向是网络化,叫做光传送网(DTN:OpticalTransport Network)。它的基本思想是将点到点的波分复用系统用光交叉互连(OXC:Optical Transport Network)节点和光分插复用(OADM:Optical Add-Drop Multiplexer)节点连接起来,组成光传送网波分复用技术完成OTN节点之间的多波长通道的光信号传输,OXC和OADM节点则完成网络的交换功能。
1、OXC:光交叉连接是在网眼型网络中进行来自多数节点的光信通道路径的切换,因此用于相互连接网眼型网络或多个环型网络的大规模网络中。
2、OADM:光分插复用装置是在利用波长的网络中对所需信号进行分插复用的装置。
3、OTN的分层结构:
1)光通道层:(Optical Channel Layer)负责来自电复用段层的客户信息选择路由和分配波长,为灵活的网络选路安排通路连接,处理光通道开销,提供光通道层的检测、管理功能。
2)光复用段层:(Optical Mutiplexing Section Layer)负责相邻两个复用传输设备间复用光信号的完整传输,为复用信号提供网络功能
3)光传输段层(Optical Transmission Section Layer)为光信号在不同类型的光传输媒介(如G.652,G.653,G.655光纤等)上提供传输功能,同时实现对光放大器或中继器的检测和控制功能等。
四、ASON
自动交换光网络(ASDN:Automatically Switched Optical Network)作为构建新一代光网络的核心技术,以兼容性、扩展性良好的硬件系统为支撑,配备先进的软件系统,把光传输媒介层由静态变成了一种动态的、智能的光交换网络结构,并可以直接通过光域快速提供各种灵活的高速增值业务,形成一个以数据为中心的基础平台,可全面提升通信网络的传送效能。论文格式。
ASON是以光传输为基础的光层组网技术和以IP为基础的网络智能化技术迅速发展并结合后形成的。ASON的本质即光传送网与智能化相结合,是在传送网的光层网络基础上演进而来的,其着眼点是要把富有潜力的光网络发展成能高度自动地应对业务需要的、经济有效的、可在光层上直接为全网提供端到端服务的智能网。
ASON的关键技术很多,就目前的研究水平而言,主要包括:通用控制平面框架;信令和路由(包括信令网);连接及连接管理;管理平面功能;ASON的智能节点技术;ASON的生存性机制和网络性能等方面。ASON网络结构的核心的特点就是支持电子交换设备动态地向光网络申请带宽资源,可以根据网络中业务分布模式动态变化的需求,通过信令系统或者管理平面自动地去建立或者拆除光通道,而不需要人工干预。采用自动交换光网络技术之后,原来复杂的多层网络结构可以变得简单一些。光网络层各自直接承载业务,避免了传统网络中业务升级时受到的条件限制。ASON的优势集中表现在其组网应用的动态性、灵活性、高效性和智能化等方面。支持多粒度、多层次的智能,提供多样化、个性化的服务是ASON的核心保证。
光网络从PDH(准同步数据系列)到SDH(同步数字系列),又从SDH到DWDM(密集波分复用),最终实现从DWDM向全光网络过渡。分组化的、开放的、分层的网络体系结构是下一代网络的显著特征。传送层将由网络来承担,下一代的光网络及其演进就成为研究的重点。自动交换的功能是下一代交换光网络演进的趋势基本上是众望所归了。
五、光交换技术
光交换技术分为:光路交换(OCS:OpticalCircuit Switching)、光分组交换(OPS:OpticalPacket Switching)、光突发交换(OBS:Optical BurstSwitching)和光标记分组交换(OMPLS:OpticalMulti-Protocol Label Switching)。这里只简单介绍一下光突发交换: OBS 网络由光核心路由器、边缘路由器及光链路组成。在骨干网络边缘,来自接入网的IP 分组在边缘路由器中被汇聚(Assemble)成光突发单元,通过核心路由器的转发在OBS骨干网络中传输,再在目的端的边缘路由器中拆分(Disassemble)恢复成一个个的IP 分组进入对方接入网。
光交换技术的发展:目前市场上出现的光交换机大多数是基于光电和光机械的,随着光交换技术的不断发展和成熟,基于热学、液晶、声学、微机电技术的光交换机将会逐步被研究和开发出来。
由光电交换技术实现的交换机通常在输入输出端各有两个有光电晶体材料的波导,而最新的光电交换机则采用了钡钛材料,这种交换机使用了一种分子束取相附生的技术,与波导交换机相比,该交换机消耗的能量比较小。基于光机械技术的光交换机是目前比较常见的交换设备,该交换机通过移动光纤终端或棱镜来来将线引导或反射到输出光纤,实现输入光信号的机械交换。光机械交换机交换速度为毫秒级,但它成本较低,设计简单和光性能较好,而得到广泛应用。使用热光交换技术的交换机由受热量影响较大的聚合体波导组成,它在交换数据信息时,由分布于聚合体堆中的薄膜加热元素控制。当电流通过加热器时,它改变波导分支区域内的热量分布,从而改变折射率,将光从主波导引导自目的分支波导。热光交换机体积非常小,能实现微秒级的交换速度。
随着液晶技术的成熟,液晶光交换机将会成为光网络系统中的一个重要设备,该交换设备主要由液晶片、极化光束分离器、成光束调相器组成,而液晶在交换机中的主要作用是旋转入射光的极化角。当电极上没有电压时,经过液晶片的光线极化角为90°,当有电压加在液晶片的电极上时,入射光束将维持它的极化状态不变。而由声光技术实现的光交换设备,因其中加入了横向声波,从而可以将光线从一根光纤准确地引导到另一根光纤,该类型的交换机可以实现微秒级的交换速度,可方便地构成端口较少的交换机。但它不适合用于矩阵交换机。
另外,市场上目前又开发了基于不同类型的特殊微光器件的光交换机,这种类型的交换机可以由小型化的机械系统激活,而且它的体积小,集成度高,可大规模生产,我们相信这种类型的交换机在生产工艺水平不断提高的将来,一定能成为市场的主流。
参考文献:
1、《细说光波分复用(WDM)技术》邓永红
2、《细说光交换通信技术》西部数码网络作品
3、《多粒度光交换技术的研究》殷洪玺、张宇等
4、《自动交换光网络》吴健学、李文耀 编著
5、《光突发交换网络》纪越峰、王宏祥
6、《现代通信交换技术》穆维新、靳婷主编
7、《光信息网络》[日]菊池和郎 主编
8、《电路交换、分组交换和光交换》伊鹏、齐鸣杰
论文摘要:介绍了光纤通道的特点和工作原理,以及目前在电力光纤网络中光纤保护装置与光纤通道的连接方式和主要特点,讨论了光纤保护在实际应用中可能遇到的问题及其解决办法。
随着通信技术的发展,在纵联保护通道的使用上,已经由原来的单一的载波通道变为现在的载波、微波、光纤等多种通道方式。由于光纤通道所具有的先天优势,使它与继电保护的结合,在电网中会得到越来越广泛的应用。
1光纤通道作为纵联保护通道的优势
光纤通道首先在通信技术中得到广泛的应用,它是基于用光导纤维作为传输介质的一种通信手段。光纤通道相对于其他传统通道(如:电缆、微波等)具有如下特点:
1.1传输质量高,误码率低,一般在10-10以下。这种特点使得光纤通道很容易满足继电保护对通道所要求的"透明度"。即发端保护装置发送的信息,经通道传输后到达收端,使收端保护装置所看到的信息与发端原始发送信息完全一致,没有增加或减少任何细节。
1.2光的频率高,所以频带宽,传输的信息量大。这样可以使线路两端保护装置尽可能多的交换信息,从而可以大大加强继电保护动作的正确性和可靠性。
1.3抗干扰能力强。由于光信号的特点,可以有效的防止雷电、系统故障时产生的电磁方面的干扰,因此,光纤通道最适合应用于继电保护通道。
以上光纤通道的三个特点,是继电保护所采用的常规通道形式所无法比拟的。在通道选择上应为首选。但是由于光缆的特点,抗外力破坏能力较差,当采用直埋或空中架设时,易于受到外力破坏,造成机械损伤。若采用OPGW,则可以有效的防止类似事件的发生。
2光纤通道与光纤保护装置的配合方式
目前,纵联保护采用光纤通道的方式,得到了越来越广泛的应用,在现场运行设备中,主要有以下几种方式:
2.1专用光纤保护:
光纤与纵联保护(如:WXB-11C、LFP-901A)配合构成专用光纤纵联保护。采用允许式,在光纤通道上传输允许信号和直跳信号。此种方式,需要专用光纤接口(如:FOX-40),使用单独的专用光芯。优点是:避免了与其他装置的联系(包括通信专业的设备),减少了信号的传输环节,增加了使用的可靠性。缺点是:光芯利用率降低(与复用比较),保护人员维护通道设备没有优势。而且,在带路操作时,需进行本路保护与带路保护光芯的切换,操作不便,而且光接头经多次的拔插,易造成损坏。
2.2复用光纤保护:
光纤与纵联保护(如:7SL32、WXH-11、CSL101、WXH-11C保护)配合构成复用光纤纵联保护。采用允许式,保护装置发出的允许信号和直跳信号需要经音频接口传送给复用设备,然后经复用设备上光纤通道。优点是:接线简单,利于运行维护。带路进行电信号切换,利于实施。提高了光芯的利用率。缺点是:中间环节增加,而且带路切换设备在通信室,不利于运行人员巡视检查,通信设备有问题要影响保护装置的运行。
2.3光纤纵联电流差动保护:
光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧。时间同步和误码校验问题是光纤电流差动保护面临的主要技术问题。在复用通道的光纤保护上,保护与复用装置时间同步的问题对于光纤电流差动保护的正确运行起到关键的作用,因此目前光纤差动电流保护都采用主从方式,以保证时钟的同步;由于目前光纤均采用64Kbit数字通道,电流差动保护通道中既要传送电流的幅值,又要传送时间同步信号,通道资源紧张,要求数据的误码校验位不能过长,这样就影响了误码校验的精度。目前部分厂家推出的2Mbit数字接口的光纤电流差动保护能很好地解决误码校验精度的问题。3光纤保护实际应用中存在的问题
3.1施工工艺问题
光纤保护是超高压线路的主保护,通道的安全可靠对电力系统的安全、稳定运行起到重要的作用。由于光缆传输需要经过转接端子箱、光缆机、电缆层和高压线路等连接环节,并且光纤的施工工艺复杂、施工质量要求高,因此如果在保护装置投入运行前的施工、测试中存在误差,则会导致保护装置的误动作,进而影响全网的安全稳定运行。
3.2通道双重化问题
光纤保护用于220kV及以上电网时,按照220kV及以上线路主保护双重化原则的要求,纵联保护的信号通道也要求双重化,高频保护由于是在不同的相别上耦合,因此能满足双通道的要求,如果使用2套光纤保护作为线路的主保护,通道双重化的问题则一直限制着光纤保护的大规模推广应用。
3.3光纤保护管理界面的划分问题
随着保护与通信衔接的日益紧密,继电保护专业与通信专业管理界面日益难以区分,如不从制度上解决这一问题,将直接影响到光纤保护的可靠运行。对于独立纤芯的保护,通信专业与继电保护专业管理的分界点在通信机房的光纤配线架上。配线架以上包括保护装置的那段尾纤,属于继电保护专业维护,这就要求继电保护专业人员具备一定的光纤校验维护技能。
3.4光纤保护在旁路代路上的问题
线路光纤保护在旁路代路时不方便操作,由于光纤活接头不能随便拔插,每次拔插都需要重新作衰耗测试,而且经常性拔插也容易造成活接头的损坏,因此不宜使用拔插活接头的办法实现光纤通道的切换。对于电网中没有单独的旁路保护,旁路代路时是切换交流回路,因此不存在通道切换问题,但对电网有独立的旁路保护,对于光纤闭锁式、允许式纵联保护暂时可以采用切换二次回路的方式,但对于光纤差动电流保护则无法代路,目前都是采取旁路保护单独增设一套光纤差动保护的方法解决。已有部分厂家在谋求解决光纤保护切换问题的办法,如使用光开关来实现光纤通道切换。
结束语
尽管目前光纤保护在长距离和超高压输电线路上的应用还有一定的局限性,在施工和管理应用上仍存在不足,但是从长远看,随着光纤网络的逐步完善、施工工艺和保护产品技术的不断提高,光纤保护将占据线路保护的主导地位。
参考文献