HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 混凝土构件

混凝土构件

时间:2023-05-30 10:00:25

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇混凝土构件,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

第1篇

关键词:商品混凝土构件;裂缝;原因;防止措施

中图分类号:TU37 文献标识码:A

0. 前言

随着我国工程建设步伐的明显加快,工程建设中对于混凝土构件的需求也在不断地增加。现今在工程建筑中所使用的商品混凝土多采用的是集中搅拌、自动计量、现场泵送等的方式来将商品混凝土送入到施工现场,在提升商品混凝土品质及建造速度等方面都有着明显的优势,但是在商品混凝土的使用中,由于商品混凝土的生产、运输、浇筑以及养护等各环节的管理及质量控制中所存在的一些不足,使得商品混凝土所捣制的构件普遍存在着裂缝缺陷,严重影响着商品混凝土构件的使用质量。在分析商品混凝土构件裂缝产生原因的基础上做好商品混凝土构件裂缝的防治是商品混凝土构件施工首要解决的问题。

1. 商品混凝土构件裂缝产生的主要原因分析

1.1 商品混凝土水化热所产生温度所造成的裂缝

在商品混凝土在凝固的过程中会与水作用产生大量的水化热,一般情况下,混凝土浇筑的初期所产生的水化热并未产生明显的温升,随着反应的不断进行以及水化热的堆积,其会在3~5天以后混凝土内部出现最高温度,这些混凝土内部的热量会使得混凝土构件表面与内部产生较为明显的温差,如未能采取有效的措施来将内部的热量排出将会导致商品混凝土构件因温度差而产生温度应力,从而导致商品混凝土构件产生温度变形,商品混凝土构件的温度应力与水化热所产生的温度成正比。而每种标号的混凝土都有其所能承受的抗拉极限,当水化热所产生的温度应力超出其所能承受的极限时将会导致商品混凝土构件出现裂缝,因此,为了减少水化热对商品混凝土构件所造成的影响,需要控制好商品混凝土构件表面与内部之间的温度差。

1.2 外界温度变化对商品混凝土构件所造成的影响

商品混凝土构件内外温度差不仅仅是由于水化热所造成的,水化热会产生绝对温度,内外表面温差还与混凝土的浇筑温度以及混凝土的散热温度相关,其中混凝土的浇筑温度与浇筑时的温度直接相关,当浇筑时周围环境温度越高将会导致混凝土的浇筑温度越高,从而使得浇筑后的商品混凝土构件内外表面的温度差较小,但是当周边环境的温度较低时,则会导致商品混凝土构件的内外温差较大。

1.3 商品混凝土构件的收缩变形

在商品混凝土构件裂缝的产生原因中,收缩变形是其中一种非常重要的原因之一,其中,商品混凝土构件的收缩变形主要分为塑性变形、体积变形以及干燥收缩变形等3种。商品混凝土构件的收缩变形主要指的是混凝土拌合物在固化之前失水过多而导致的混凝土收缩所产生的变形,当产生塑性收缩变形时,由于商品混凝土构件内的钢筋导致水平方向上的收缩要较竖直方向上大,因此容易在商品混凝土构件上形成较深的裂缝,商品混凝土构件的塑形裂缝多产生与平面尺寸较大且厚度较薄的结构部件中。商品混凝土构件的体积变形多发生在终凝以后。干燥收缩变形发生在混凝土停止养护以后,当混凝土暴露在未饱和的空气中时,其内部会由于失去内部毛细孔的吸附水而产生不可逆的收缩,这一收缩被称为商品混凝土构件的干燥收缩变形。在商品混凝土构件的固化过程中所需要的用水量仅为拌合重量的1/5,而当干燥固化时其失去过多的水量会使得商品混凝土构件的表面干燥收缩过快,中心与表面的收缩不同步从而导致裂缝的产生。影响商品混凝土构件收缩的因素主要有以下几点:(1)商品混凝土构件的配合比中泥浆的配合比过高或是含砂率较低以及减水剂加入过多都会导致商品混凝土的匀质性不好。(2)混凝土的流动性或是搅拌不到位都会导致混凝土出现匀质性不强。(3)在商品混凝土的拌合中加入不同的外加剂或是水泥标号、砂石种类与粒径等都会导致混凝土的匀质性出现一定的偏差,从而使得混凝土构件在固化的过程中出现应力的集中,从而导致商品混凝土构件收缩裂缝的产生。

1.4 商品混凝土构件质量控制不到位

现今所使用的混凝土多采用的是集中搅拌的方式,对于搅拌完成后的混凝土通过水泥罐车输送至工地进行浇筑,由于混凝土搅拌站与工地较远,会使得混凝土的运输时间较长,同时夏季施工时为避免水分蒸发过快,在混凝土料运输的过程中会向混凝土罐车中加水从而导致混凝土的配合比发生改变影响混凝土的匀质性。在进行混凝土的浇筑时最主要关心的是混凝土的“坍落度”,这一参数与运输的过程中加水量与减水剂的量密切相关。在混凝土中所使用的外加剂主要有普通减水剂、高效减水剂以及引气剂等多种不同的类型,不同的类型及品牌对于使用特性以及使用的要求不尽相同,因此在外加剂的选择使用中应当进行相应的实验以确保其符合使用要求。同时在商品混凝土构件的施工过程中,商品混凝土构件施工管理质量不到位都会导致商品混凝土构件裂缝的产生,因此需要在商品混凝土构件施工的过程中加强对于振捣、养护等环节施工质量的控制,确保商品混凝土构件的施工质量。

2. 消除或防止商品混凝土构件裂缝的措施

2.1 通过实验选用合理的配合比

在商品混凝土构件水泥混凝土的配比选择上,需要根据实验选择合理的配合比,确保水泥混凝土的配制强度、拌合物的性能以及力学性能都能够满足需要,确保商品混凝土构件的施工质量。

2.2 严把商品混凝土构件原材料质量关

在确定好商品混凝土的配合比后,需要选择符合使用要求的原料,对于进场的各种原材料(如水泥、砂石、外加剂、水)等进行严格地检验,确保其质量满足国家相应的质量标准。

2.3 严格落实商品混凝土构件施工中的质量监督管理

从商品混凝土搅拌、运输直至拆模这一过程中需要严格落实商品混凝土构件施工质量管理体系,严格落实商品混凝土构件施工中的各种操作要求,首先在商品混凝土的浇筑与振捣环节,需要采用分层分段的方法来完成对于商品混凝土的浇筑,对于浇筑的每一层商品混凝土都需要振捣密实,在振捣时采用分层振捣的方式,振捣过程中需要根据要求确保振捣的时间和振捣的半径,从而使得分层浇筑的上下两层混凝土之间能够良好地进行结合,提高商品混凝土的抗裂能力,确保商品混凝土的浇筑效果。在商品混凝土浇筑施工过程中需要注意做好微膨剂或是膨胀剂的添加,从而使得商品混凝土E能够得到一定量的补偿收缩,减少商品混凝土的温度应力,再次采用后浇缝的方式以避免因混凝土的温度过高而导致的裂缝及地基的不均匀沉降所产生的裂缝。在完成了对于商品混凝土的浇筑后还需要注意做好对于浇筑混凝土构件表面的抹压,以使得商品混凝土构件表面平整、光滑,增强商品混凝土构件表面的强度,避免裂缝的产生。在商品混凝土构件表面的抹压时,应当注意做好对于抹灰工作的技术交底,在进行抹压作业时要注意对商品混凝土构件的浇筑表面进行多次反复的抹压,确保商品混凝土构件的施工质量。完成了对于商品混凝土构件的水泥混凝土的浇筑后,需要注意做好对于商品混凝土构件的养护,养护的好坏对于商品混凝土构件表面裂缝的产生有着非常重要的影响,在商品混凝土构件养护方式及措施的选择上需要根据施工环境温度的不同以及商品混凝土构件的机构等进行差异区分,选择合理的养护措施,在养护时需要选用草席或是彩条布等覆盖在商品混凝土构件的表面,并注意做好对于商品混凝土构件的浇水。养护过程一般持续2~4周。

结语

商品混凝土构建施工是一项复杂的系统性的工程,在商品混凝土构件的施工过程中,其表面所出现的裂缝不但对商品混凝土构件的使用质量有着重要的影响,同时是商品混凝土构件建设施工的一道难题。商品混凝土构件表面裂缝的产生受到多方面因素的影响,是多方面因素共同作用的结果,为做好对于商品混凝土构件裂缝的防治与消除,需要在商品混凝土构件施工过程中严把质量关,确保各个环节的施工质量,避免商品混凝土构件裂缝的产生。

参考文献

[1]满慧.商品混凝土结构裂缝产生原因及预防措施[J].科技资讯,2006(4):79-80.

第2篇

【关键词】 建筑 加固 技术

Abstract : The shortage of the strength of the concrete will affect adversely for the bearing capacity, cracks and durability etc. of the structure. We should adopt correspon-

ding measures according to the degree of its shortcomings.

1.综合加固技术

根据结构的受力特征、传力路径、结构状况等具体条件综合采用直接加固和间接加固的各种方法,称为综合加固法,是目前采用最多、效果和效益最好的方法。

1.1综合加固法十分重视结构检测的具体手段、原理、方法和过程,不同的检测手段对应不同的适用条件和不同的精度。

1.2鉴定中首先必须查明被鉴定结构的传力路线,并寻求新的传力路线,按照传力路线的计算分析、结构构造特点,采用相应优化的加固对策。

1.3为保证加固结构受力体系中的承载力和变形或刚度协调,尽可能采用预应力技术、植筋技术、碳纤维粘贴加固技术、钢板粘锚技术和加大截面外包加固技术等。这些技术均能够有效地减少应变滞后现象,保证新、旧结构共同工作。

1.4在传力路线转移上,宜采用增、减构件,或改变节点约束条件,改善自身结构的受力特点,通过荷载转移达到综合加固的目的。

1.5利用结构造型变化减缓风荷载效应,改善通风、采光、地震,这样既加固了结构本身,又改善了使用功能。

2.直接加固

直接加固法即通过各种途径增加结构抗力。加固前最好能在原结构上卸载,经加固后再恢复使用荷载,但在原结构上往往很难实现。工程中,国内、外直接加固技术主要有如下几种:

2.1增大截面加固法

增大截面加固法即采取增大结构或构筑物的截面面积,以提高其承载力和刚度,满足正常使用的一种加固方法。可广泛应用于混凝土、砖混等结构的梁、板、柱、墙等构件和一般构筑物的加固。

2.2外包钢加固法

外包钢加固法即在混凝土、砌体等构件四周包以型钢的加固方法(分干式、湿式两种形式)。适用于使用上不允许增大构件截面尺寸,而又需要大幅度地提高承载力和刚度的加固。此法主要适用于混凝土、砖混结构中的柱以及梁、桁架弦杆和腹杆的加固。这种加固方法的优点是施工方便,现场工作量少,工期短,受力可靠,对建筑物外观和净空影响小;缺点是用钢量较大,加固维修费用较高。当采用化学灌浆外包钢加固时,型钢表面温度不应超过60℃;当环境具有腐蚀性介质时,必须采取可靠防护措施,以提高其耐久性。

2.3改变结构传力途径加固法

改变结构传力途径加固法是以减小结构的计算跨度和改变传力路径、减少变形,提高其承载力的加固方法,适用于房屋净空不受限制的较大跨度的结构加固。

2.4外加预应力加固法

外加预应力加固是采用外设预应力拉杆或撑杆对结构构件整体进行加固的方法。通过施加预应力拉杆(分水平拉杆,下撑式拉杆和组合式拉杆)或撑杆受力,影响并改变原结构内力分布,从而降低结构原有应力水平,能较好地消除一般加固方法中普遍存在的应力-应变滞后现象的影响,后加部分和原有结构能够较好地共同工作,结构承载力能够得到较大的提高。预应力加固法主要用于大跨度支撑结构加固,以及采用一般方法无法加固或加固效果不理想的较高应力-应变状态下的大型结构加固。

2.5粘贴纤维复合材料加固法

纤维复合材料是由基体材料(环氧树脂)和增强材料(纤维)所组成复合材料。这种复合材料既可以保持原有材料的特性,又发挥组合后的新特性,它可以根据需要进行加固设计,从而最合理地达到使用要求的性能。工程中常见的纤维复合材料有:玻璃纤维、碳纤维和芳纶纤维等。其中以碳纤维的抗拉强度和弹性模量最大,其价格较贵,碳纤维片材加固的构件在较高温度、湿度、化学腐蚀条件下能够保持良好的工作性能。玻璃纤维极限抗拉强度较低,其弹性模量一般为1.7×104MPa,与混凝土的弹性模量2.55×104MPa(C20)较接近,若能保证粘贴牢固,玻璃纤维复合材料在加固过程中能保证与混凝土的变形一致。

纤维复合材料加固法可广泛适用于梁、板、柱及墙体的加固。其操作简单,施工方便,加固效率高,是一种很有发展潜力的加固方法。

3.间接加固技术

间接加固法是通过各种途径减少作用效应,达到提高结构安全度。其主要方法有:

3.1改变用途法

将重负荷楼面改为轻负荷楼面。例如将楼面使用荷载4~8kN/m2,改为一般用房的2kN/m2,使用荷载降低至原有的0.5~0.25,结构安全度大大提高。

3.2隔震法

利用隔震技术来阻止和减少地震作用对结构的影响,从而保证结构的可靠度。如在高烈度大地震中,很难用提高结构抗力R的方法抵御巨大的地震力作用。如果采取在上部结构与基础间设置隔震层,当地面运动强度超过规定值,上部结构与基础之间将产生滑移,即地面运动不能或不能全部地传递至上部结构,这样就有效减少了上部结构所受到的地震作用,从而确保了建筑物在强烈地震作用下的可靠性。

还可采用改变结构动力特性的方法以降低结构动力反应,有如改变结构刚度分布,达到间接加固的目的。

4.构件强度增强技术

4.1受拉构件

混凝土强度不足对轴心受拉构件的承载能力不产生影响,故无需对受拉构件进行结构加固,但从耐久性的角度出发,应对开裂部分作表面密封修补处理。

4.2受压构件

一般的轴心受压构件承载能力随着混凝土强度的不足几乎成正比下降。若混凝土强度不足的幅度较小,以致受压构件的承载能力下降不超过5%,或者按实测强度等级对原结构进行承载能力复核仍能满足设计使用要求,可以不作结构加固处理。否则,应根据结构受力情况和使用环境,进行结构加固处理。主要采用增大截面法、外包钢法、预应力法、外粘钢板法、外粘玻璃钢法、碳纤维(CFRP)加固法等,共同的特点是:加固截面或构件的应变,滞后于原截面或构件的应变,形成二次受力。经加固的结构总体承载力不是原结构抗力与加固部分的简单叠加,不同的加固方法有不同的理论与方法。

4.3受弯构件

对于混凝土强度不足的受弯构件,通常可根据受弯构件在变形和裂缝方面的表现、混凝土的设计强度等级、配筋情况、混凝土强度不足的幅度(即前述的强度等级下降系数)及混凝土结构设计和使用的要求确定处理方案:

4.3.1混凝土强度等级不足的幅度较小,构件控制截面的抗弯、抗剪承载能力下降的幅度均在5%以内时,可不进行结构加固处理。

4.3.2按实测混凝土强度等级对原结构进行承载能力和变形验算,若能满足设计及使用要求时,除了进行结构裂缝密封修补处理外,可以不作结构加固处理。

4.3.3若实测的混凝土强度等到级使得受弯构件的承载能力不满足上述1、2条的要求,则应进行相应的结构加固处理。常用的加固方法有:加大截面加固法、外包钢加固法、预应力加固法、改变结构传力途径法、粘贴片材材料(钢板、碳纤维等)加固法等。

小结

第3篇

【关键词】混凝土;预制构件;生产管理

中图分类号: TU37 文献标识码: A

前言

混凝土预制构件的生产从一定程度上可以说是建筑的工厂化,虽然说相比以前技术方法有了一定进步,但并不是质量也随之提高了,这还有赖于构件生产过程中的管理,下面我们来讨论有关混凝土预制构件的生产与管理。

预制钢筋混凝土构件

钢筋混凝土结构包括现浇整体式钢筋混凝土结构和预制装配整体式钢筋混凝土结构两大类。预制装配整体式结构是将各种钢筋混凝土预制构件用机械进行安装,并按设计要求进行装配的一种结构形式。预制构件的制作过程包括模板的制作与安装,钢筋的制作与安装,混凝土的制备、运输,构件的浇筑振捣和养护,脱模与堆放等。

1.预制混凝土构件的特点

(一)能够实现成批工业化生产,节约材料,降低施工成本;

(二)有成熟的施工工艺,有利于保证构件质量,特别是进行标准定型构件的生产,预制构件厂(场)施工条件稳定,施工程序规范,比现浇构件更易于保证质量;

(三)可以提前为工程施工做准备,施工时将达到强度的预制构件进行安装,可以加快工程进度,降低工人劳动强度。

2.构件制作工艺

根据生产过程中组织构件成型和养护的不同特点,预制构件制作工艺可分为台座法、机组流水法和传送带法三种。目前预制外墙、预制楼梯、预制阳台等仍以台座法生产为主,部分标准化生产的预制内隔墙条板已经实现了机组流水法或传送带法。

(一)台座法 台座是表面光滑平整的混凝土地坪、胎模或混凝土槽,也可以是钢结构。构件的成型、养护、脱模等生产过程都在台座上进行。

(二)机组流水法 机组流水法是在车间内,根据生产工艺的要求将整个车间划分为几个工段,每个工段皆配备相应的工人和机具设备,构件的成型、养护、脱模等生产过程分别在有关的工段循序完成。

(三)传送带流水法 模板在一条呈封闭环形的传送带上移动,各个生产过程都是在沿传送带循序分布的各个工作区中进行。

3.预制构件的成型

常用的振捣方法有振动法、挤压法、离心法等,以振动法为主。

振动法 用台座法制作构件,使用插入式振动器和表面振动器振捣。插入式振动器振捣时宜呈梅花状插入,间距不宜超过300mm。若预制构件要求清水混凝土表面,则插入式振动棒不能紧贴模具表面,否则将留下棒痕。表面振动器振捣的方法分为静态振捣法和动态振捣法。前者用附着式振动器固定在模具上振捣,后者是在压板上加设振动器振捣,适宜不超过200mm的平板混凝土构件。

挤压法 用挤压法常用于连续生产空心板,尤其是预制轻质内隔墙时常用。

离心法 离心法是将装有混凝土的模板放在离心机上,使模板以一定转速绕自身的纵轴旋转,模板内的混凝土由于离心力作用而远离纵轴,均匀分布于模板内壁,并将混凝土中的部分水分挤出,使混凝土密实。离心法常用于大口径混凝土预制排水管生产中。

4.预制构件养护

(一)预制构件的养护方法有自然养护、蒸汽养护、热拌混凝土热模养护、太阳能养护、远红外线养护等,以自然养护和蒸汽养护为主。

(二)自然养护成本低,简单易行,但养护时间长,模板周转率低,占用场地大,我国南方地区的台座法生产多用自然养护。

(三)蒸汽养护可缩短养护时间,模板周转率相应提高,占用场地大大减少。

(四)蒸汽养护是将构件放置在有饱和蒸汽或蒸汽与空气混合物的养护室(或窑)内,在较高温度和湿度的环境中进行养护,以加速混凝土的硬化,使之在较短的时间内达到规定的强度标准值。

(五)蒸汽养护效果与蒸汽养护制度有关,它包括养护前静置时间、升温和降温速度、养护温度、恒温养护时间、相对湿度等。

(六)蒸汽养护的过程可分为静停、升温、恒温、降温等四个阶段,蒸汽养护时,混凝土表面最高温度不宜高于65℃,升温幅度不宜高于20℃/h,否则混凝土表面宜产生细微裂纹。

三、混凝土预制构件管理措施

1.准备阶段

(一)熟悉设计图纸及预制计划要求

技术人员及项目部主要负责人应根据工地现场的预制件需求计划和预制件厂的仓存量确定预制构件的生产顺序及送货计划;及时熟悉施工图纸,及时了解使用单位的预制意图,了解预制构件的钢筋、模板的尺寸和形式及混凝土浇筑工程量及基本的浇筑方式,以求在施工中达到优质、高效及经济的目的。

(二)人员配置与管理

预制构件品种多样,结构不一,应根据施工人员的工作量及施工水平进行合理安排,针对施工技术要求及预制构件任务紧急情况以及施工人员任务急缓程度,适当调配施工人员参与钢筋、模板以及混凝土浇筑。要经常对全体员工进行产品质量、成本及进度重要性的教育,使施工人员要有明确、严格的岗位责任制。要有严格的奖惩措施。

(三)场地的布置设计

为达到预制构件使用要求、运输方便、统一归类以及不影响预制构件生产的连续性等要求,场地的平整及预制构件场地布置规划尤为重要。生产车间高度应充分考虑生产预制构件高度、模具高度及起吊设备升限、构件重量等因素,应避免预制构件生产过程中发生设备超载、构件超高不能正常吊运等问题。

2.原材料对混凝土预制构件的影响及控制

原材料主要包括水泥、细集料、粗集料等。只有优质的原材料,才能制作出符合技术要求的优质混凝土构件。

(一)水泥

配制混凝土用水泥通常采用硅酸盐水泥、普通水泥、矿渣水泥、火山灰水泥、粉煤灰水泥五大品种。通常普通硅酸盐水泥的混凝土拌和料比矿渣水泥和火山灰水泥的工作性好。矿渣水泥拌和料流动性大,但粘聚性差,易泌水离析;火山灰水泥流动性小,但粘聚性最好。用矿渣或火山灰水泥预制混凝土小型构件,易造成外表初始水分不均匀,拆摸后颜色不匀,掺入的矿渣或火山灰在混凝土表面易形成不均匀花带、黑纹,影响构件外观质量。因此,预制混凝土构件时,尽量选用普通硅酸盐水泥。

选用水泥的标号应与要求配制的构件的混凝土强度适应。水泥标号选择过高,则混凝土中水泥用量过低,影响混凝土的和易性和耐久性,造成构件粗糙、无光泽;如水泥标号过低,则混凝土中水泥用量过大,非但不经济,而目会降低混凝图构件的技术品质,使混凝土收缩率增大,构件裂纹严重。通常,配制混凝土时,水泥强度为混凝土强度的1.5~2.0倍。

集料

细集料应采用级配良好的、质地坚硬、颗粒洁净、粒径小于5mm.含泥量3%的砂。进场后的砂应进行检验验收,不合格的砂严禁入场。检查频率为1次/100立方米。

粗集料要求石质坚硬、抗滑、耐磨及清洁和符合规范的级配。石质强度要不小于3级,针片状含量≤25%,硫化物及硫酸盐含量

3.施工工艺对混凝土预制构件的影响及控制

(一)振捣

采用插入式振捣时,移动间距不应超过振捣棒作用半径的15倍,与侧模应保持最少5cm距离;采用平板振动器时,移位同距应以使振动器平板能覆盖已振实部分l0cm左右为宜;采用振动台时,要根据振动台的振幅和频率,通过试验确定最佳振动时间。要掌握正确的振捣时间,振捣至该部位的混凝土密实为止。密实的标志是:混凝土停止下沉,不再冒出气泡,表面呈现平坦、泛浆。

拆模

预制构件待混凝土达到—定的强度、保持棱角不被破坏时,方可进行拆模。拆模时要小心,避免外力过大损坏构件。拆模后构件若有少许不光滑,边角不齐,可及时进行适当修整。

养护

拆模后要按规定进行养护,使其达到设计强度。避免因养护不到位造成浇筑后的混凝土表面出现干缩、裂纹,影响预制件外观。当气温低于5℃时,应采取覆盖保温措施,不得向混凝土表面洒水。

结束语

混凝土预制构件的生产设计多个方面,尤其需要注意的是细节处理,在工程施工中处理好了构件的生产管理问题,工程质量自然会有所提高。本文提出了许多对混凝土预制构件的生产管理的改善措施,需要在实际工作中加以不断创新与完善。

参考文献:

[1]翟玉君,王振生,王世鼎.预制构件角裂缝的消除处理.黑龙江水利科技.2009

[2]刘际胜.预制构件模板装拆方案的设计.路基工程.2009

第4篇

关键词:无粘结预应力混凝土;裂缝控制;裂缝宽度;计算公式

预应力混凝土是近年来发展起来的一种新的施工技术,被世界上各个国家广泛使用,其发展前景极为广阔。所谓无粘结预应力混凝土也就是施工人员采用高强度钢材,通过无粘结预应力施工工艺而形成的高效预应力混凝土,通过利用这一材料能够有效的避免裂缝的产生,控制结构的挠度,具有非常好的延伸性。但是在我国,并没有相关规定来控制混凝土结构的裂缝以及裂缝宽度的计算公式,因此我们只能够结合有粘结预应力混凝土的相关规定来控制构件的裂缝,通过在实际工程中的不断探索,来促进无粘结预应力在建筑工程中的应用与发展。

一、对无粘结预应力混凝土裂缝的控制

1、拉应力的控制公式

从我国相关规定当中来看,规定中已将预应力混凝土出现裂缝的控制方法分为了三个等级,第二以及第三等级的裂缝控制应该根据规定中的相关公式:

(1)如果构件在荷载效应的标准组合下,裂缝控制应该满足

(2)如果构件在荷载效应的准永久组合下,裂缝控制应该满足

2、规范修正

新规范是在原有规范的基础上不断创新而制定的,因此在原有规范当中,新规范稍作了修正,主要有:1)在原有规范当中,对荷载效应所定义为短期效应组合以及长期效应组合,在新的规范当中,我们将荷载效应更改为标准组合与准永久组合,并且采用k与q来表示。这种表述方式更符合当今社会的发展,与国际接轨。2)在原有的规范当中,由于对 的要求过于严格,因此我们需要在实际工作中不断探索,根据相关经验来适当放松要求。由于对原有规范的抗裂控制条件有所放松,因此在很大程度上扩大了拉应力限制系数的趋势范围,这样在很大程度上能够满足实际的要求,也有效的提高了工程施工的技术标准。

二、无粘结预应力混凝土裂缝宽度的计算公式

在无粘结预应力结构当中,由于混凝土与钢筋之间没有足够的粘结力,导致它们因无法相互作用而下塌,从而导致混凝土出现裂缝。一般来说,混凝土的产生于发展都会受到各种因素的影响,如果我们采用阶段裂缝截面的预应力筋的应力以及非预应力筋的应力将难以测定出混凝土产生裂缝的宽度。目前,各专业研究者已经研究出了不同的裂缝宽度的计算公式,但是从整体上来看,这些计算公式并不能够运用于各种裂缝当中。所以经过分析,我们可以将无粘结预应力筋的面积换算成有粘结预应力筋的面积,然后再通过有粘结预应力混凝土裂缝宽度的计算公式来进行计算,这种方法由于方便快捷而受到广泛的关注,也是当前最为常见的一种计算方法。

在现行的新规定当中,仍然是采用的以下计算公式来计算出裂缝的宽度:

结合原有的规范,在现行的新规定当中所描述的裂缝宽度的计算公式有了一定的改进,具体体现在:1)在原有的规范当中,都是将c项与 项引入到竖向受拉力钢筋的表面特征系数当中,以此来考虑其对裂缝宽度的影响。但是通过实践证明,混凝土保护层的厚度对钢筋表面特征不会产生太大的影响,因此新规范中对此进行了一定的改正。2)考虑到目前保护层厚度有增大的趋势,把系数2.7及0.1分别改为1.9及0.08,反映了增大保护层厚度的影响。3)新规范对于采用多种不同直径和不同表面特征的钢筋的构件,根据钢筋和混凝土粘结力等效的原则,引入了等效钢筋自径的概念;并且考虑了小同种类钢筋的粘结特性,添加了不同钢筋的不同v值,显然比原规范更为合理。4)新规范对纵向受拉钢筋应变小均匀系数少,仍采用原规范的设计公式,但根据近年来的一些有关资料和工作经验,将少值的下限值山0.4改为0.2。5)鉴于在预应力损失中已考虑了混凝土收缩徐变的影响,对于裂缝宽度在长期作用下的增大系数τ1由1.5改为1.2,αcr也相应作了修改;

根据以上分析比较可以看出,采用新规范的裂缝宽度计算方法,无粘结预应力裂缝宽度计算也相应得到放松,这有助于减少无粘结预应力混凝土结构的用钢量,提高其经济性。

三、ωmax与ρte的关系

以受弯或偏心受压构件为例,混凝土强度等级取C40,保护层厚度取25mm。钢筋自径deq或d取20mm,Es为1.95×105N/mm2,分别按原规范和新规范求出。ωmax与ρte之间的关系是:

(1)随着配筋率的增加,裂缝宽度逐渐减小,大体成线性关系,随着受拉钢筋等效应力σsk(或σss)的增大,裂缝宽度递减的幅度也逐渐加大;

(2)在相同配筋率下,新规范的ωmax值比原规范小,在相同最大裂缝宽度下,新规范所需的配筋率比原规范小得多,从而减少了用钢量。

结论

(1)通过上述,在新的规范当中,我们适当放松了裂缝的控制条件以及裂缝的宽度计算公式,但是在实际工作中,在无粘结预应力混凝土工程施工过程中,新的规范却对裂缝的控制条件要严格许多,并且在设计无粘接预应力筋时,也比实际经验要多很多,因此在对其进行施工时,施工人员可以凭借自己丰富的经验来适当的放松条件,从而使工程达到经济合理性。

(2)目前无粘结预应力混凝土结构一般均按二级裂缝控制等级设计,要求小出现裂缝。但对荷载差异较大,其短期效应组介值高出长期效应组合值很多的结构,可考虑采用在荷载短期效应组介下按允许开裂的无粘结预应力混凝土进行设计,但应限制裂缝宽度,抗裂验算可参照有粘结预应力混凝土规范计算。

(3)配筋率可近似地表达梁截而中和轴高度和转动能力,预应力筋的极限应力增量随着配筋率的增加而减少,其大体存在线性关系。因此,在预应力结构设计中,应选择介适的配筋率,即小过多配置预应力筋,以免造成资源浪费、成本增加,但预应力筋配置又小能太少,以免造成裂缝宽度过大、小能发挥预应力结构的优势。

参考文献

[1] 郑文忠.无粘结预应力混凝土结构裂缝控制及验算建议[J].哈尔滨建筑大学学报.1996(06)

第5篇

关键词:钢筋混凝土构件 保护层 作用 设置

中图分类号:TU37文献标识码: A

一、 钢筋混凝土构件的工作原理

钢筋混凝土构件由钢筋和混凝土组成,从原材料的力学性能而言,钢筋有较强的抗拉、抗压强度,但混凝土只有较高的抗压强度,抗拉强度却很低。然而两者的弹性模量比较接近,还有较好的化学胶合力、机械咬合力和销栓力,两者结合既发挥了各自的受力性能,又能很好地协调工作,共同承担结构构件所承受的外部荷载。在结构计算时,钢筋混凝土构件是作为一个整体来承受外力的,又由于混凝土的抗拉强度很低,为简化计算,一般混凝土只考虑承受压应力,而拉应力则全部由钢筋来承担。

二、 钢筋混凝土构件保护层厚度的确定

对于受力钢筋混凝土构件截面设计来讲,受拉的钢筋离受压区越远,其单位面积的钢筋所能承受的外部弯矩也越大,这样钢筋发挥的力学效能也就越高。所以一般来讲钢筋混凝土构件受拉钢筋总是应尽量靠近受拉一侧混凝土构件的边缘。如果钢筋混凝土构件的钢筋位置放置错误或者钢筋的保护层过大,轻则降低了钢筋混凝土构件的承载能力,重则会发生重大事故。然而当钢筋混凝土构件的受拉钢筋越靠近钢筋混凝土构件的边缘时,通常会发生如下问题:

1、钢筋混凝土构件中钢筋的主要成分铁在常温下很容易被氧化,尤其在高温或潮湿的环境中,从而影响钢筋的力学性能。

2、钢筋混凝土构件的保护层过小容易在施工时造成钢筋露筋或钢筋混凝土构件受力时表面混凝土剥落。

3、随着时间的推移,钢筋混凝土构件表面的混凝土将逐渐碳化,在钢筋混凝土构件工作寿命内保护层混凝土失去了保护作用,从而导致钢筋锈蚀,有效截面减小,力学效能降低,钢筋与混凝土之间失去粘结力。这样构件整体性会受到破坏,甚至还会导致整个钢筋混凝土构件的破坏。

三、 桥梁主要构件保护层控制措施

1、现浇箱梁或预制梁板保护层控制措施

钢筋在桥梁上部结构中主要起抗拉受力作用,用来抵抗荷载所产生的弯矩,防止混凝土板面收缩和温差裂缝的发生,而这一作用均需钢筋在上下设置合理的保护层前提下才能发挥。在实际施工中,梁板底层钢筋的保护层比较容易正确控制。但当底筋的保护层垫块间距放大到1米以上时,局部梁板底筋的保护层厚度就无法得到保障,所以纵横向的保护层垫块间距控制在1米左右为宜。 箱梁或预制梁板面层钢筋的保护层的控制一直是施工中的一大难题,这是由于

(1)在施工过程中各工种交叉作业,施工人员行走频繁,无处落脚,钢筋网难免被大量踩踏,造成局部变形。

(2) 上层钢筋网的钢筋支撑设置间距过大,甚至不设。

在上述原因中对于第1个原因,可采取下列措施加以解决:

a、尽可能合理和科学地安排好各工种交叉作业时间,在板底钢筋绑扎后,线管预埋和模板封镶收头应及时穿插并争取全面完成,做到不留或少留尾巴,以减少板面钢筋绑扎后的作业人员数量。

b、在频繁和必须的通行处应搭设(或铺设)临时的简易通道,以供必要的施工人员通行。

c、加强教育和管理,使全体操作人员重视保护板面上层钢筋的正确位置;必须行走时应自觉沿钢筋支撑点通行,不得随意踩踏中间架空部位钢筋。

d、安排足够数量的钢筋工(一般应不少于3-4人或以上),在混凝土浇筑前及浇筑过程中及时对钢筋网进行整修。

e、混凝土工在浇筑时对裂缝的易发生部位和负弯矩钢筋受力最大区域,应铺设临时性活动板,扩大接触面,分散应力,尽力避免上层钢筋网受到踩踏变形。

对于第2个原因,建议面层双层双向钢筋必须设置卡槽式混凝土垫块,其纵横向间距不应大于700毫米(即每平方米不得少于2只),特别是对于Ф8一类细小箍筋,卡槽式混凝土垫块的间距应控制在600毫米以内(即每平方米不得少于3只),才能取得较良好的效果。

2、墩柱、薄壁桥台等保护层控制措施

墩柱、薄壁桥台等桥梁下构造因为钢筋笼多为竖向布置且能避免工人在施工时在成品钢筋笼上来回走动,因此这些构件保护层一般比较容易控制,主要控制措施为:

(1)墩柱、薄壁台保护层垫块纵横向间距一般控制在1米左右(且不少于2列),切忌数量太少。

(2)构件的受力钢筋骨架加工尺要准确。

(3)构件水平筋或箍筋的加工尺寸要准确。

(4)在设置保护层垫块时尽量采用新工艺、新产品,如采用塑料垫块或使用卡撑式定位件等。

(5)加强施工人员的教育和管理在支立模板和混凝土浇筑施工时切忌破坏保护层垫块。

四、结束语:

道路工程混凝土构件保护层的设置至关重要,在进行混凝土构件施工时保护层只有设的对、留的巧才能充分的发挥其作用,保证钢筋混凝土构件的力学性能、提高结构物的使用年限。

第6篇

关键词:混凝土;预制构件;生产;管理技术

Abstract: this paper briefly introduces the concrete prefabricated components production preparation simple management technology, combined with the engineering practice, proposed the influence factors on the quality of the concrete prefabricated components and control method.

Keywords: concrete; Prefabricated components; Production; Management technology

中图分类号:K826.16 文献标识码:A 文章编号

引言

混凝土预制构件的生产从某个意义上说是建筑的工厂化。与现浇相比,可控制的环节增加了,但这并不代表品质会有所提高。预制构件的工厂化生产管理非常重要,现以香港房屋工程供应预制构件的生产为例,谈谈预制构件生产管理中的几个重要环节。

1 准备阶段

混凝土预制构件生产的准备阶段的主要工作有:熟悉设计图纸及预制计划要求,人员配置,钢筋下料,模板设计,施工场地的平整与布置等。

1.1 熟悉设计图纸及预制计划要求

技术人员及项目部主要负责人应根据预制计划单对预制任务的紧急情况对模板数量、钢筋加工强度及预制顺序进行安排;及时熟悉施工图纸,及时了解使用单位的预制意图,了解预制构件的钢筋、模板的尺寸和形式及混凝土浇筑工程量及基本的浇筑方式,以求在施工中达到优质、高效及经济的目的。

1.2 人员配置与管理

预制构件品种多样,结构不一,应根据施工人员的工作量及施工水平进行合理安排,针对施工技术要求及预制构件任务紧急情况以及施工人员任务急缓程度,适当调配施工人员参与钢筋、模板以及混凝土浇筑。要经常对全体员工进行产品质量、成本及进度重要性的教育,使施工人员要有明确、严格的岗位责任制。要有严格的奖惩措施。

1.3 钢筋下料

通常钢筋下料长度为预制构件尺寸减去保护层,但对于有双层及以上的预制构件,除减去保护层外,还应考虑钢筋所在位置,比如端头需要加强钢筋或者钢筋为马丁型或者箍筋形式等的预制构件。在下料时还应考虑其在第几层,需减去该钢筋外侧的钢筋的直径及根数。预制构件钢筋保护层通常为15~30mm,忽略了这些就常会由于钢筋保护层太小甚至没有保护层导致预制构件露筋或混凝土表面产生沿钢筋方向的裂缝,从而影响了预制构件的使用功能。同时为了达到节约材料的目的,钢筋下料时除加强钢筋外必须尽量减少同一部位钢筋的重叠。

1.4 模板设计

预制构件的模板设计直接影响到预制构件的外观质量,针对预制构件的种类和要求,主要制作有定型模、活动模、预留孔模板等,使用材料根据预制构件尺寸类型、数量情况可使用钢模板、胶合板、槽钢、角钢、方钢管等不定,以便用于周转,达到节约材料,减少人工等。

由于预制构件类型多样,结构多变,数量不一,致使模板通用性、互换性差。为减少模板投入量,将结构一致,尺寸不一的预制构件划分为几个流水段,按照每一流水段模板的材料重复可利用原则,将预制构件按从大件至小件的顺序进行施工,使其模板的公用部分可周转使用。

1.5 场地的平整与布置设计

为达到预制构件使用要求、运输方便、统一归类以及不影响预制构件生产的连续性等要求,场地的平整及预制构件场地布置规划尤为重要。进行施工场地的平整一般宽度不能超过5米,模板可使用6米槽钢拉直线后安装加固,并以次作为场地混凝土浇筑的浇筑线,保证场地平整度偏差在±5mm,在距离分缝两边500mm处预埋小钢板后焊上M12螺帽用于模板加固。对于部分精度要求较高的预制构件,使用10厚钢板制作了三个平整度±2mm的钢板平台,底部使用C20槽钢@500布置搭建。

2影响混凝土预制构件质量的因素及控制

2.1原材料对混凝土预制构件的影响及控制。原材料主要包括水泥、细集料、粗集料等。只有优质的原材料,才能制作出符合技术要求的优质混凝土构件。

1)水泥。配制混凝土用水泥通常采用硅酸盐水泥、普通水泥、矿渣水泥、火山灰水泥、粉煤灰水泥五大品种。通常普通硅酸盐水泥的混凝土拌和料比矿渣水泥和火山灰水泥的工作性好。矿渣水泥拌和料流动性大,但粘聚性差,易泌水离析;火山灰水泥流动性小,但粘聚性最好。用矿渣或火山灰水泥预制混凝土小型构件,易造成外表初始水分不均匀,拆摸后颜色不匀,掺入的矿渣或火山灰在混凝土表面易形成不均匀花带、黑纹,影响构件外观质量。因此,预制混凝土构件时,尽量选用普通硅酸盐水泥。

选用水泥的标号应与要求配制的构件的混凝土强度适应。水泥标号选择过高,则混凝土中水泥用量过低,影响混凝土的和易性和耐久性,造成构件粗糙、无光泽;如水泥标号过低,则混凝土中水泥用量过大,非但不经济,而目会降低混凝图构件的技术品质,使混凝土收缩率增大,构件裂纹严重。通常,配制混凝土时,水泥强度为混凝土强度的1.5~2.0倍。

2)集料。细集料应采用级配良好的、质地坚硬、颗粒洁净、粒径小于5mm.含泥量3%的砂。进场后的砂应进行检验验收,不合格的砂严禁入场。检查频率为1次/100立方米。

粗集料要求石质坚硬、抗滑、耐磨及清洁和符合规范的级配。石质强度要不小于3级,针片状含量≤25%,硫化物及硫酸盐含量

2.2配合比对混凝土预制构件的影响及控制

1)集浆比。集浆比就是单位混凝土拌和料中,集料绝对体积与水泥浆绝对体积之比。在单位体积的混凝土拌和料中,如水灰比保持不变,则水泥浆的数量越多,拌和物的流动性愈大。但若水泥浆数量过多,则集料的含量相对减少,达―定限度时,就会出现流浆现象,使混凝土拌和料粘聚性和保水性变差,预制构件的强度和耐久性变低,外表产生裂纹、斑痕等病害;同时,水泥浆数量的增加,会增大构件成本。相反,若水泥浆数量过少,不足以填充集料的空隙和包裹集料表面,则会使混凝土拌和料粘性变差,预制小型物件的强度难以保障,其外观粗糙,蜂窝麻面增多,甚至出现崩坍现象。因此,混凝土拌和物中水泥浆数量应根据具体情况决定,在满足工作要求的前提下,同时考虑强度和耐久性要求,尽量采用较大的集浆比,以节约水泥用量,确保质量。

2)水灰比。为使混凝土拌和料能够密实成型,所采用的水灰比值不能过小,为了保证混凝土拌和料具有良好的粘聚性和保水性。所采用的水灰比值也不能过大。在实际工作中,为增加拌和料的流动性而增加用水量时,必须保证水灰比不变,同时增加水泥用量,否则将显著降低混凝土的质量,影响构件内在强度。

3)砂率。砂率即表征砂与石之间的相对含量。砂率变化,可导致集料的空隙率和总表面积的变化,因而混凝土拌和料的工作性随之变化。砂率过大,集料的空隙率和总表面积增大,在水泥浆用量_定的条件下,混凝士拌和料干稠,流动性小;当砂率过小时,骨料总表面积减少,粗骨料周围没有足够的砂浆层,拌和料流动性降低。严重影响拌和料的粘聚性与保水性,使拌和料粗涩、离析,水泥浆流失,甚至出现溃散等不良现象,预制构件外表粗糙无光泽。因此,对于混凝土预制构件,混凝土拌和料的合理砂率是在用水量和水泥量一定情况下,使混凝土拌和料获得最大的流动性,且保持适当的粘聚性和保水性为宜。

2.3施工工艺对混凝土预制构件的影响及控制

1)振捣。采用插入式振捣时,移动间距不应超过振捣棒作用半径的15倍,与侧模应保持最少5cm距离;采用平板振动器时,移位同距应以使振动器平板能覆盖已振实部分l0cm左右为宜;采用振动台时,要根据振动台的振幅和频率,通过试验确定最佳振动时间。要掌握正确的振捣时间,振捣至该部位的混凝土密实为止。密实的标志是:混凝土停止下沉,不再冒出气泡,表面呈现平坦、泛浆。

2)拆模。预制构件待混凝土达到―定的强度、保持棱角不被破坏时,方可进行拆模。拆模时要小心,避免外力过大损坏构件。拆模后构件若有少许不光滑,边角不齐,可及时进行适当修整。

3)养生。拆模后要按规定进行养生,使其达到设计强度。避免因养护不到位造成浇筑后的混凝土表面出现干缩、裂纹,影响预制件外观。当气温低于5℃时,应采取覆盖保温措施,不得向混凝土表面洒水。

3结束语

总之,高质量的产品必须通过严格的管理、科学的方法、持之以恒的态度才能有所保障,虽然具体宴施时的方法和形式可能各有不同。目前,广州、深圳、中山、东莞等地预制构件的生产厂家逐渐增多,他们大多采用了国外先进的工艺、技术、观念来管理,相信不久的将来会有越来越多性能优、安装施工效率高而且品质有保障的产品。

参考文献:

[1]翟玉君,王振生,王世鼎.预制构件角裂缝的消除处理[J].黑龙江水利科技,1998,(05).

第7篇

关键词:钢筋网水泥复合砂浆(CMMR);加固,受弯构件;廷性

中图分类号:TU317

文献标识码:B

文章编号:1008-0422(2007)07-0069-04

1前言

钢筋网水泥复合砂浆(Composite mortar laminate reinforced wilh mesh rein―forcement简称CMMR)加固混凝土结构,是指对混凝土构件表面进行凿毛并冲洗处理后,铺设钢筋网,再粉抹或浇注高性能复合砂浆,使加固层与原构件共同工作,达到提高构件工作性能的目的。早在20世纪80年代,Romualdi和iorns就首次探讨了钢丝网水泥砂浆在结构修复中的适用性,主要是用作液体蓄挡结构内衬的维修,如池塘、下水道、坑道等等。此外,采用钢筋网水泥砂浆对砌体结构进行加固,在国内外也有一些研究和应用“随着建筑材料技术的发展,高性能复合砂浆的产生把这项技术的应用范围拓展到混凝土结构的加固中”。

采用CMMR加固混凝土结构,不仅具有相容性和延性好,耐火、耐高温能力强等特点,而且施工简易,造价低廉,具有很强的适用性,非常易于推广应用。

为探讨CMMR加固法对混凝土受弯构件的加固效果,本文设计了一个对比试件和一个试验试件,试验中测量了试件的钢筋、混凝土、钢筋网荷载一应变曲线以及荷载一挠度曲线,测定了两个试件的极限承载力,对两试件的试验结果进行了深入的对比和分析。同时参考文献,将CMMR加固法应用到了工程实践中。

2试验研究概况

2.1试验设备与加载方案

本次试验采用重物吊篮加载法,加载装置为杠杆加载装置,杠杆放大系数设计为5倍。试验前用压力盒测试杠杆的实际放大系数。加载时采用分级加载方法,加载前先预加5kN,检查加载设备和仪表工作是否正常,正式加载时每次加载的级差1.5-2kN左右。当第一条弯曲裂缝出现后,适当加大加载级差,在试件将要破坏前适当缩小级差,以测定试件极限承载力。每级荷载加载后持续时间不少于10分钟,等仪表基本稳定后再采集数据并读取百分表数据。

2.2试件设计

本次试验共设计制作了2个试件,均为矩形截面,试件编号为B1、B2。其中B1作为对比试件,不进行加固,B2为采用CMMR加固的试验试件。试件混凝土截面尺寸b×h×1=100×180×2200mm,净跨10=2000mm。设计混凝土强度C25。试验梁在试验室制作并在室内条件下养护,实测混凝土轴心抗压强度及具体参数为试件的混凝土模板图和配筋图。为试件B2的截面加固图。

3试验结果与分析

3.1 B1试验结果 加载初期,钢筋、混凝土应变随荷载增加逐渐增加。当荷载增加至20kN左右时应变曲线走向发生突变,观察试件表面发现少量垂直裂缝,裂缝短而细靠近试件底部。随着荷载增加,裂缝缓慢加宽,并向上延伸,间隔一定距离处有新的裂缝产生。荷载继续增加,混凝土、钢筋应变增长速度加快,裂缝数量不再增加,裂缝宽度不断加宽。其中一条裂缝明显比其余裂缝加宽速度快,形成主裂缝,该裂缝顶端受压区出现水平裂缝,加载至极限荷载后,持荷时约5分钟,受压区水平裂缝突然增多,破坏加重,与受拉的主裂缝交汇形成三角形破坏区域。最后混凝土被压酥、剥落,试件破坏。从主裂缝顶端混凝土发生突变到试件破坏,时间很短,破坏过程比较突然。试件极限承载力为39.2kN。

3.2 B2试验结果

加载初期,钢筋、混凝土应变随荷载增加逐渐增加,当荷载增加至20kN左右时应变曲线走向逐渐变化,混凝土压应变增长速度减慢,观察试件表面没有发现裂缝,说明CMMR加固后构件的抗裂能力有所增强,荷载增加至35kN左右时,复合砂浆表面开始出现细微裂纹,裂缝宽度很小,荷载继续增加,裂缝宽度增长不明显,裂纹数量不断增加,裂缝间隔减小。相比较于对比试件B1混凝土表面的裂缝,试件B2复合砂浆表面的裂缝宽度明显减小,裂缝数量显著增加,平均裂缝间距约为试件B1的1/4左右。加载至接近极限荷载时,混凝土、钢筋、钢筋网应变增长速度加快,其中一条裂缝明显比其余裂缝加宽速度要快,形成主裂缝,裂缝顶端受压区混凝土和复合砂浆出现水平裂缝,加载至极限荷载后,持荷约5分钟,受压区水平裂缝逐渐增多,破坏加重,与受拉的主裂缝交汇形成三角形破坏区域,混凝土被压酥,复合砂浆剥离,试件破坏。从主裂缝顶端受压区发生突变到试件破坏,时间比较长,破坏过程比较缓慢,破坏延性很好。试件极限承载力为56.25kN。

3.3试验结果分析

对比试件B1、B2试验结果可以发现CMMR加固法非常有效,采用CMMR加固后的B2试件,承载力、延性都有很大程度的提高,极限承载力提高了43%,破坏时的挠度提高了54%。此外,采用CMMR加固后,试件的开裂荷载大幅度提高,且开裂后裂缝宽度增长缓慢,裂缝呈现细而密的形态,说明CMMR加固法加固的混凝土构件抗裂能力显著增强,从而构件的耐久性、抗腐蚀能力都得到的大幅度的提高。

4工程应用

4.1工程概况

郴州市某招待所位于市区中心地段,始建于上世纪八十年代初,整栋建筑为8层框架结构,2006年拟改造成宾馆。由于该建筑使用时间已经很长,结构老化比较严重,改造成宾馆后,部分梁柱的使用荷载也发生了变化,因此需要加固。

以某跨框架梁为例,由于改造成宾馆后增加了卫生间,该梁跨使用荷载发生了改变,需要加固。实测梁截面尺寸250×450mm,梁跨=6.2m回弹检测得混凝土强度为16.1MPa。查原设计图纸得该梁跨中截面纵筋为3.22,箍筋8@100/150。在新的使用荷载下,梁跨中弯矩值设计为182.66kN・m,经计算发现该梁抗弯承载力不足,拟采用CMMR进行加固。鉴于加固时已经基本卸除梁上的所有荷载,计算该梁加固后的承载力时可按一次受力计算,根据文献,采用如下公式计算该梁加固后承载力。

M――构件加固后的弯矩设计值:

fy――原构件钢筋抗拉、抗压强度设计值;

fym――钢筋网片钢筋抗拉强度设计值;

fc――原构件混凝土、复合砂浆轴心抗压强度设计值;

As――原构件中纵向受拉、受压钢筋截面积;

Asm――底面、侧面钢筋网纵向截面积:

b――原构件截面宽度;

ho――原构件截面高度、截面有效高度;

tt――底面、侧面加固层厚度;

X――截面等效受压区高度;

该梁跨中截面为单筋矩形截面:

As=0

复合砂浆拟采用25mm厚M50高性能复合砂浆:

t=ts=25mm

梁侧面钢筋网,拟采用每侧纵向网筋

Asm1=226mm

将上述各数值代入式得

x=87mm

Asm=575mm

计算得底面纵向网筋截面积偏大,为方便施工,底面纵向网筋改用II级钢进行等面积代换得:

Asm=403mm

底面纵向网筋选用12,为确保加固层与原构件的共同工作,设置横向网筋6@60/100,且在加密区设置6@120×120mm梅花型布置的剪切销钉。剪切销钉与钢筋网片在网格点处电焊,用于固定钢筋网。该梁加固层配筋图。

4.3技术经济性分析

对该框架梁的加固己于2006年8月完工。加固后该构件已经完全能够承担新的使用荷载,满足了实际使用要求。此外,与常规的粘钢加固法或外贴碳纤维布加固法相比较,CMMR加固法材料价格低廉,施工过程简便,因而具有明显的经济效益。实践表明在该建筑的加固过程中采用CMMR加固法后,取得了良好的技术、经济效果。

第8篇

【关键词】 钢筋砼结构;最小配筋率;受弯构件;带肋钢筋

【中图分类号】 tu528.0 【文献标识码】 b【文章编号】 1727-5123(2011)01-065-02

selection of minimum reinforcement ratio of reinforced concrete bending part

【abstract】 steel ratio of capacity to ensure the safe use of the main factors to determine reasonable minimum steel reinforcement

ratio, to ensure building safety and bring good social and economic benefits, the paper design of the structure under the current minimum

allocation rate of reinforcement.

【key words】 reinforced concrete structure; minimum reinforcement ratio; bending part; ribbed steel bars

现行的国家规范“砼结构设计规范”(gb50010-2002) 中把hrb400钢筋确定为钢筋砼结构的主导用筋。其后冶金企业研制开发的符合国情标准“钢筋砼用热轧带肋钢筋”(gb1499-1998) 的新型号筋。hrb500钢筋具有强度高、延性好、耐高低温、耐疲劳和可加工性能好的优点,符合砼结构对建筑用筋性能指标的主要内容要求。hrb500钢筋在建筑行业中己得到广泛使用,会促进其它相关建筑材料的发展提高,因此而带来可观的社会及经济效益,促进建筑业健康有序的发展具有重要意义。

钢筋砼梁的主筋纵向筋配筋率是保证安全使用影响承载力的主要因素,配筋率的变化不仅使梁的受弯承载力产生变化,而且会使梁的受力性能和破坏特征发生质的变化。当纵向主筋配筋率少到一定值后,梁的受力性能会产生大的变化,同无筋素砼梁没有什么差别。当这种梁一旦在受拉区的砼出现开裂,裂缝截面的拉力会很快超过屈服强度而进入强化阶段,造成整根梁发生撕裂,甚至使整个钢筋被拉断,这种破坏现象没有明显的预兆,属于脆性破坏。为了防止这种脆断的产生,钢筋砼结构设计规范明确规定:钢筋砼受弯构件的纵向受力主筋的配筋率不能低于某一限定值,该值即为受控钢筋的最小配筋率。hrb500钢筋作为一种新型的高强钢筋,已经在工程实践应用范围较广,必须合理确定其作为受拉钢筋的最小配筋率。在实践应用中探讨对hrb500钢筋作为受弯构件纵向主受拉的最小配筋率作浅要分析。

1最小配筋率确定的一般原则

钢筋砼受弯构件的最小配筋率是一个比较复杂的技术问题。试验和理论分析均表明,构件的最小配筋不仅与受力形态、表面尺寸及形式、材料强度有关,而且与受荷时间的长短、温度变化的大小、收缩及徐变的程度有关。目前世界一些国家对钢筋砼受弯构件的受拉钢筋最小配筋率的取值方法基本上有两种:即模型法和经验法。模型法是以截面受拉区砼开裂后,受拉钢筋由于配置过少而立即屈服进入强化阶段,此时的受拉钢筋配筋的最小配筋率。经验法是指直接给出最小配筋率的的取值,而没有受完整的受力模型作为取值准则,但其中也从不同角度考虑了一些因素对最小钢筋率取值的影响,所考虑的这些因素的影响规律与模型方案的趋势有一定的近似性。

而国内现行的《混凝土结构设计规范》对钢筋砼受弯构件的最小配筋率的确定原则是:截面开裂后,构件不会立即失效(裂而不断),即在最小配筋率的条件下,构件的抗弯承载力不低于同截面素混凝土构件的开裂弯矩,即:

mey≤mu ①

现以单筋矩形截面承受纯弯矩作用为例探讨钢筋砼受弯构件的纵向主受拉钢筋的最小配筋率问题。首先要计算钢筋砼梁的开裂弯矩。由于钢筋砼梁开裂时,钢筋的应力很低,因此计算钢筋砼梁开裂弯矩时,可以忽略钢筋的作用,即钢筋砼梁的开裂弯矩等于素砼的开裂弯矩。根据文献对素砼梁的开裂弯矩的推导计算,无筋素砼梁的开裂弯矩为:

mey =0.256fftbh2 ②

试中: ft-为混凝土轴心抗拉强度设计值。

根据钢筋砼梁的受力进行过程, 按照现行砼设计规范关于正截面承载力计算的基本假定“不考虑砼的抗拉强度”,假定钢筋砼梁达到极限承载力状态时的截面力臂为yho,其中y为内力臂长度系数,则钢筋砼梁的极限弯矩为:

mu = yhoòyas

此时òy= fyas =pmin bho y=1

mu = ho fypmin bho③

将式②、式③ 带入式① 以后,求出:

pmin=0.256ft / fy[h/ho]2 ④

2国内不同时期砼结构设计规范对最小配筋率的规定

根据介绍对世界各有关国家砼结构设计规范,对钢筋砼受弯构件规定的最小配筋率进行了简单比较,见表1。为转化为国内材料强度后各有关国家砼结构设计规范,对钢筋砼受弯构件规定的最小配筋率表达式。

表1不同国家对钢筋砼构件最小配筋率计算要求

我国的设计规范对于钢筋砼受弯构件,确定的最小配筋率的规定基本上是沿用前苏联20世纪五、六十年代的规定,数值明显偏低。随着我国国力的增强,结构设计的安全度增大以及结构耐久性设计概念的应用,钢材供应状况及水平的偏高,每次规范修订均适当提高了受力钢筋的最小配筋率,而且使其更为合理。a.在原《钢筋混凝土结构设计规范》tj10-74中规定受弯构件最小配筋百分率:当砼强度标号为200号及以下时为0.1;当砼强度标号为250-400号时为0.15。b.在进行了修改后的《混凝土结构设计规范》gbj10-1989中规定受弯构件最小配筋百分率:当砼强度等级为c35时为0.15;当砼强度等级为c40-c60时为0.2。c.在现行的《混凝土结构设计规范》gb50010-2002中规定受弯构件最小配筋百分率为0.2和45 ft / fy中的较大值。

从国各内各个阶段设计规范对最小配筋率规定的变化可以看出:随着我国改革开放的进一步推进,国民经济收入稳步的提高,对结构安全度的要求逐渐提高,综合考虑各种因素,构件的最小配筋率均有提高,而且考虑了材料强度的影响,有利于促进高强材料在工程中的大量应用。

3hrb500钢筋砼受弯构件的最小配筋率的应用

根据我国现行的《钢筋砼用热扎带肋钢筋》gb1499-1998中规定:hrb 335的屈服强度为335 mpa,hrb 400的屈服强度为400 mpa,hrb 500的屈服强度为500 mpa。我国现行的《混凝土结构设计规范》规定:hrb 335的屈服强度设计值为300 mpa,hrb 400的屈服强度设计值为360 mpa,不同种类钢筋材料分项系数ys均为1.10,因此hrb500钢筋的屈服强度设计值应取为450mpa。根据资料介绍的试验结果并考虑到裂缝宽度的影响,对hrb500钢筋的屈服强度设计值建议为420mpa,材料分项系数ys为1.19。根据我国现行的《混凝土结构设计规范》gb50010-2002中规定受弯构件最小配筋率百分率公式45 ft / fy,分别计算出各种钢筋的最小配筋率。详见表2。

表2钢筋混凝土受弯构件配筋率要求

根据表2可以看出,钢筋砼构件的最小配筋率的确定,不完全是技术问题,还反映了某一地区当时的经济建设发展水平,具有一定的社会性和政策性。因此,考虑将hrb 500钢筋砼受弯构件的最小配筋率百分率(%)为:当混凝土强度等级不大于c30时为0.15,当砼强度等级为c30以上时为0.2和45ft / fy 中的较大值为宜。根据上述浅要分析,国家推广应用hrb500钢筋不仅可以满足建筑行业科技飞速发展的需用,还具有明显的经济效益和社会效益。为了在工程实践中大力推广hrb500钢筋,考虑到我国实际国情,要采用hrb 500钢筋砼受弯构件的最小百分率(%)为:当砼强度等级不大于c30时为0.15,当砼强度等级为c30以上时为0.2和45ft / fy,中的较大值安全。

参考文献

1徐有邻等.混凝土结构设计规范理解与应用.中国建筑工业出版社, 2002

第9篇

关键词:预制混凝土构件裂缝;成因分析;预防措施

Abstract: precast concrete component in the production of every link may crack, the cracks of these will directly influence the quality of the components and functions. Serious cracks can also cause engineering quality accident. Therefore, we must analyze the cause of cracks, formulate effective crack prevention and control measures, take the correct reasonable construction method, to ensure the normal use of the component.

Keywords: precast concrete component crack; Cause analysis; Prevention measures

中图分类号: TV543 文献标识码:A 文章编号:

引言

钢筋混凝土结构裂缝扩展往往是破坏倒塌工程质量事故的主要原因之一,为此对研究裂缝的形态、分析裂缝的产生原因和裂缝对结构功能的影响具有重大的意义。其实,普通的钢筋混凝土结构一般都是带裂缝受力工作的,随着裂缝的发展变化,结构构件的耐久性和适用性会不同程度的降低,严重的甚至会导致结构构件的破坏,但是不通过观测仪器仔细观察钢筋混凝土裂缝一般很难发现。

1.裂缝对结构的危害

当钢筋混凝土裂缝的宽度超过规范限值就成了有害裂缝;有害裂缝的存在对结构的耐久性和适用性又造成严重影响,裂缝对结构的危害一般主要表现三方面:

1.1引起建筑物渗漏。

由于裂缝渗漏未及时处理或处理不当,既影响建筑物的美观,又对使用功能带来缺陷。

1.2冰冻的影响。

钢筋混凝土一旦产生裂缝水分就会乘虚而人,即使渗入不是很深,但当外界气温降到0℃以下时,水分便会凝结成冰。若经过多次冰融循环,裂缝表面边缘会形成散裂,随着时间的推移,裂缝将逐渐加宽,结构物受力也将发生变化。最终将会造成结构破坏。

1.3钢筋的锈蚀。

可分为两种情况:有“先裂后锈”和“先锈后裂”。先裂后锈即由于钢筋混凝土收缩和施工质量等原因引起的裂缝,常常成为空气、水分等其它侵蚀介质的通道,裂缝时间长久以后,会使钢筋产生锈蚀,从而削弱了钢筋的受力截面积,破坏混凝土对钢筋的握裹力。先锈后裂即由于钢筋混凝土自身的化学变化作用,使钢筋发生锈蚀,锈蚀物体体积膨胀,因此会造成沿钢筋长度的混凝土产生劈裂裂缝,破坏钢筋混凝土保护层,使钢筋与外界空气接触,导致钢筋锈蚀速度迅速加快。

2.预制混凝土构件裂缝的成因

所谓裂缝增多是指前两类,也就是裂缝增多的两类发生在混凝土的早期,这一阶段对于混凝土的开裂过程来说是非常关键的。在混凝土加水搅拌的早期,混凝土的体积变化最剧烈,水化热集中释放,由于此阶段混凝土的抗拉强度和极限拉应变相对来说都较低,早期的约束变形而产生的应力极易使混凝土产生裂缝,这些裂缝形成的微裂缝缺陷又在后期造成拉应力集中,裂缝易扩展影响构件的外观质量、实际有效的保护层厚度减少、钢筋锈蚀造成耐久性下降、严重的还可能造成构件结构承载力下降等严重的质量问题。

早期裂缝增多的原因主要有:构件按设计图要求生产,现场施工效率提高,工期要求紧,不足28天养护龄期,需提高混凝土早期强度,可提前预应力张拉或放张,提前出厂。使用早强水泥及增加水泥用量,导致凝结时间,水泥水化热等问题。

除胶凝材料外,细集料的品种变化也是增加开裂的原因之一,在天然砂资源日渐减少的情况下,特别是适合构件生产的中砂难以采购的情况下,使用细砂、山砂及人工机制砂就不可避免,也是社会发展的趋势。但随之而来的应用技术没有同步,这也是裂缝增多的原因之一。

3.各种裂缝成因和防治措施

3.1混凝土的塑性变形引起的裂缝

混凝土的塑性变形引起的裂缝一般是不连续的,在构件上部,较浅。有时脱模后即可发觉。

原因分析:混凝土拌和时太干,流动性、和易性太小;在施工时振捣不够密实;覆盖不及时,养护不好,水分蒸发过快。

预防措施:严格控制水灰比,凝结时间不宜过快,必要时可掺缓凝剂;混凝土振捣应均匀分布,且上下层结合良好;加强养护,防止因混凝土的水分蒸发过快而发生混凝土硬化不均匀。

3.2荷载作用下的裂缝

荷载裂缝是由于结构在荷载作用下变形过大而产生的裂缝。

产生的主要原因是结构设计、施工错误、承载能力不足、地基不均匀沉降等,往往人为因素影响较多,谨慎的控制人为错误可减少荷载裂缝产生。

预防措施:使用中不得改变使用荷载范围,特别是未成形的结构物,不许重型车辆行驶。其填土厚度严格按验标要求进行;提高设计人员的素质,提高图纸的设计质量,保证必要的构造配筋;加强施工人员的质量观念,严格按图纸及国家规范验收钢筋。

3.3由于温度产生的裂缝

温度裂缝是由大气温度变化、周围环境高温的影响和大体积混凝土施工时产生的水化热等多种因素造成,自然界气候变化对温度裂缝影响较大,为此作好应对温度影响的技术措施是至关重要。

成因分析:在混凝土温度应力、收缩应力的作用下,混凝土受周围结构的约束而不能自由变形,超过了混凝土结构的抗拉强度,此时在配筋率较低的部位抗拉强度较薄弱就产生了裂缝。转角处的裂缝是因为混凝土收缩时受到角两边结构面的约束而引起的

预防措施:温度裂缝由气候变化而导致.往往在经过夏天或冬天后出现或加大,在使用环境高温影响下,热源温度高,即使作用时间不长也可以引起开裂。热源温度不太高,在长期烘烤下也可能开裂。体积比较大的构件.由于水泥水化热大,构件内部温度与外部温度产生温差,而产生的裂缝的防治就是在构件表面加强覆盖,采取一定的保温措施,使这种温差降到最低。露天台座法生产的构件,当达到剪筋强度时,应立即剪断钢筋。

3.4自重徐变裂缝

在未拆侧模以前,其表现形式和横向裂缝极其相似,但自重徐变裂缝在拆侧模后特别是拆除底模用垫木搁支后和上板面的横向裂缝有很大区别,这类裂缝向下扩展,发生部位为距离板端部1~2m左右,数量不一,通常为两至三条。向下扩展要视具体情况。

成因分析:主要原因是混凝土的收缩在表面形成微裂缝,又由于模板支撑或刚度不足,桥面梁端部混凝土在重力作用下,以端承部折角处为支点形成弯距,产生拉应力,造成附近混凝土开裂。

预防措施:一是加强二次光面及早期养护,其次是加强模板刚度并在混凝土浇灌过程中及浇灌完毕后检查模板支撑,最好在浇灌混凝土完毕紧固支撑。在拆除侧模后暂缓拆除端部模板,一般应在同条件养护强度达到设计强度70%以后再拆除模板。

4裂缝处理原则

针对不同裂缝的产生制定出相应的预防措施,取得了良好的效果,总结了处理措施的原则。

①满足设计要求,遵守标准规范的有关规定。

②查清建筑结构的实际状况、裂缝现状和发展变化情况。确定裂缝性质,观测裂缝的变化,制定适当的处理措施,正确地组织施工。

③根据裂缝的性质和使用要求确定处理目的。

④对危及结构安全的裂缝,必须认真分析处理,防止产生结构破坏倒塌的恶性事故,并采取必要的应急防护措施,以防止事故恶化。

⑤最好在裂缝稳定后再处理:对随环境条件变化的温度裂缝宜在裂缝最宽时处理;对危及结构安全的裂缝应尽早处理。

5..结束语

在多年的构件生产实践中发现,采取各项措施,构件的缺陷可以很大程度减少,但类似裂缝,特别是一些细小裂缝要完全避免出现基本上没有可能,由于目前拌制混凝土所用基本的原材料及相关技术发展情况看,在一定程度上可以说,裂缝将长期和混凝土及混凝土构件并存。裂缝现象及解决之道,应当开展多方位、多层次的探索。

参考文献

第10篇

    【关键词】钢筋混凝土构件 安全 鉴定

    一、前言

    在桥梁钢筋混凝土技术鉴定中,需要对整座桥梁的结构构件进行技术鉴定,首先通过现场踏勘进行外观检查,可能会发现钢筋混凝土结构构件各种质量问题,其中裂缝是最常见的现象之一。裂缝出现都是事出有因,有设计上错误、原材料性能缺陷、施工质量低劣、环境条件的变化、坍落度不符合标准、震捣不均匀等等。如何鉴定裂缝、分析裂缝、控制裂缝,是安全鉴定工作的重要内容之一。根据裂缝成因和特征,判断结构受力工作状况,评定结构的安全性、适用性和耐久性。此种鉴定方法具有简便、直观、快速等优点。其缺点在于它只是一种定性的分析方法,而不能定量地分析结构的安全性。为此,对可疑结构构件应进行强度、刚度、抗裂性验算,必要时还应通过荷载试验,然后做出安全鉴定意见。

    二、钢筋混凝土结构构件裂缝分析

    判明是结构性裂缝还是非结构性裂缝:钢筋混凝土结构产生裂缝的原因很多,对结构的影响差异也很大,只有弄清结构受力状态和裂缝对结构影响的基础上,才能对结构构件进行定性。结构性裂缝多由于结构应力达到限值,造成承载力不足引起的,是结构破坏开始的特征,或是结构强度不足的征兆,是比较危险的,必须进一步对裂缝进行分析。非结构性裂缝往往是自身应力形成的,如温度裂缝、收缩裂缝,对结构承载力的影响不大,可根据结构耐久性、抗渗、抗震、使用等方面要求采取修补措施。例如桥梁防撞护栏裂缝普遍存在,裂缝的特点:大都出现在护栏的上半部,裂缝上宽下窄,中间宽两边细,通过对设计及施工情况的检查,设计无误,为施工原因,经过综合分析,判明为震捣裂缝,属非结构性裂缝。只要震捣均匀,用抹浆修补裂缝即可。

    (1)判明结构性裂缝的受力性质:结构性裂缝,根据受力性质和破坏形式进一步区分为两种:一种是脆性破坏,另一种是塑性破坏。脆性破坏的特点是事先没有明显的预兆而突然发生,一旦出现裂缝,对结构强度影响很大,是结构破坏的征兆,属于这类性质裂缝的有受压构件裂缝(包括中心受压、小偏心受压和大偏心受压的压区)、受弯构件的受压区裂缝、斜截面裂缝、冲切面裂缝,以及后张预应力构件端部局压裂缝等。脆性破坏裂缝是危险的,应予以足够重视,必须采取加固措施和其它安全措施。塑性破坏特点是事先有明显的变形和裂缝预兆,人们可以及时采取措施予以补救,危险性相对稍小。属于这类破坏的受力构件的裂缝有:受拉构件正载面裂缝,受弯构件和大偏心受压构件正载面受拉区裂缝等。此种裂缝是否影响结构的安全,应根据裂缝的位置、长度、深度以及发展情况而定。如果裂缝已趋于稳定,且最大裂缝未超过规定的容许值,则属于允许出现的裂缝,可不必加固。

    (2)查明裂缝的宽度、长度、深度:钢筋混凝土结构构件的裂缝按其表征可分三种:一是表面细小裂缝,即缝宽很小,长度短而浅;二是中等裂缝,其宽度在0.2mm左右,长度局限在受拉区,裂缝已深入结构一定深度;三是贯穿性裂缝,缝宽超过0.3mm,长度伸到受压区,裂缝已贯穿整个截面或部分截面。结构性裂缝不仅表征结构受力状况,还会影响结构的耐久性。裂缝宽度愈大,钢筋愈容易锈蚀,意味着钢筋和混凝土之间握裹力已完全破坏,使用寿命已近终结。一般桥梁结构中,横向裂缝导致钢筋锈蚀的危险性较小,而在潮湿环境中,裂缝会引起钢筋锈蚀,裂缝宽度应小于0.2mm,但纵向缝易引起钢筋锈蚀,并导致保护层剥落,影响结构的耐久性,应予以处理。当裂缝长度较长,深度较深,严重影响构件的整体性,往往是破坏征兆。例如桥梁梁底受拉区出现裂缝,裂缝长度纵向发展,是比较危险的,若缝长较短,局部在受拉区,一般危险性较小。裂缝深度也是表征之一,通常表面裂缝多是非结构性裂缝,贯穿性裂缝多是结构性裂缝,容易使钢筋锈蚀,危险性较大,应查明原因,根据危险性,采取必要的加固措施。

    三、桥梁钢筋混凝土施工

    水泥混凝土按强度分级,可分为:低强度混凝土(抗压强度小于20Mpa),中强度混凝土(抗压强度小于20-50Mpa),高强度混凝土(抗压强度大于50Mpa)。其中,水泥混凝土,普通混凝土和中强度混凝土是道路和桥梁中最常用的混凝土,现代大型桥梁和高速公路也常选用高强度混凝土。

    钢筋混凝土结构构件变形的分析:结构在长期使用中,由于荷载、温度、湿度以及地基沉陷等影响,将导致结构变形和变位,变形不但对美观和使用方面有影响,且对结构受力和稳定也有影响。较大变形往往改变了结构的受力条件,增大受力的偏心距,在构件断面、连接节点中产生新的附加应力,从而降低构件的承载能力,引起构件开裂,甚至倒塌。结构变形的测定项目应针对可疑迹象,根据测定的要求、目的加以选择,但最大的挠度和位移必需检测。变形的量测应与裂缝量测结合起来,结构过度的变形,可产生对应的裂缝,过大的裂缝又可扩大结构的变形。因此,结构变形情况如何,往往是反映出结构工作是否正常的重要标志,是结构构件安全鉴定的重要内容。另一方面还需看变形是稳定的还是发展的,变形发展很慢或基本稳定是正常的,若变形发展很快,变形速度逐渐增大或突然增大,即是异常的现象,应引起注意,通常意味着结构可能破坏,应立即采取措施确保房屋安全。结构过度变形是结构刚度不足或稳定性不足的标志,它并不直接反映结构的强度。影响结构变形的主要因素,如断面尺寸、跨度、荷载、支座形式、材料质量等,也影响到结构的强度。因此进行安全鉴定时,还应和裂缝、结构构件稳定等结合考虑。

第11篇

【关键词】 钢筋砼结构;最小配筋率;受弯构件;带肋钢筋

现行的国家规范“砼结构设计规范”(GB50010-2002) 中把HRB400钢筋确定为钢筋砼结构的主导用筋。其后冶金企业研制开发的符合国情标准“钢筋砼用热轧带肋钢筋”(GB1499-1998) 的新型号筋。HRB500钢筋具有强度高、延性好、耐高低温、耐疲劳和可加工性能好的优点,符合砼结构对建筑用筋性能指标的主要内容要求。HRB500钢筋在建筑行业中己得到广泛使用,会促进其它相关建筑材料的发展提高,因此而带来可观的社会及经济效益,促进建筑业健康有序的发展具有重要意义。

钢筋砼梁的主筋纵向筋配筋率是保证安全使用影响承载力的主要因素,配筋率的变化不仅使梁的受弯承载力产生变化,而且会使梁的受力性能和破坏特征发生质的变化。当纵向主筋配筋率少到一定值后,梁的受力性能会产生大的变化,同无筋素砼梁没有什么差别。当这种梁一旦在受拉区的砼出现开裂,裂缝截面的拉力会很快超过屈服强度而进入强化阶段,造成整根梁发生撕裂,甚至使整个钢筋被拉断,这种破坏现象没有明显的预兆,属于脆性破坏。为了防止这种脆断的产生,钢筋砼结构设计规范明确规定:钢筋砼受弯构件的纵向受力主筋的配筋率不能低于某一限定值,该值即为受控钢筋的最小配筋率。HRB500钢筋作为一种新型的高强钢筋,已经在工程实践应用范围较广,必须合理确定其作为受拉钢筋的最小配筋率。在实践应用中探讨对HRB500钢筋作为受弯构件纵向主受拉的最小配筋率作浅要分析。

1最小配筋率确定的一般原则

钢筋砼受弯构件的最小配筋率是一个比较复杂的技术问题。试验和理论分析均表明,构件的最小配筋不仅与受力形态、表面尺寸及形式、材料强度有关,而且与受荷时间的长短、温度变化的大小、收缩及徐变的程度有关。目前世界一些国家对钢筋砼受弯构件的受拉钢筋最小配筋率的取值方法基本上有两种:即模型法和经验法。模型法是以截面受拉区砼开裂后,受拉钢筋由于配置过少而立即屈服进入强化阶段,此时的受拉钢筋配筋的最小配筋率。经验法是指直接给出最小配筋率的的取值,而没有受完整的受力模型作为取值准则,但其中也从不同角度考虑了一些因素对最小钢筋率取值的影响,所考虑的这些因素的影响规律与模型方案的趋势有一定的近似性。

而国内现行的《混凝土结构设计规范》对钢筋砼受弯构件的最小配筋率的确定原则是:截面开裂后,构件不会立即失效(裂而不断),即在最小配筋率的条件下,构件的抗弯承载力不低于同截面素混凝土构件的开裂弯矩,即:

MEY≤Mu ①

现以单筋矩形截面承受纯弯矩作用为例探讨钢筋砼受弯构件的纵向主受拉钢筋的最小配筋率问题。首先要计算钢筋砼梁的开裂弯矩。由于钢筋砼梁开裂时,钢筋的应力很低,因此计算钢筋砼梁开裂弯矩时,可以忽略钢筋的作用,即钢筋砼梁的开裂弯矩等于素砼的开裂弯矩。根据文献对素砼梁的开裂弯矩的推导计算,无筋素砼梁的开裂弯矩为:

MEY =0.256Fftbh2 ②

试中: ft-为混凝土轴心抗拉强度设计值。

根据钢筋砼梁的受力进行过程, 按照现行砼设计规范关于正截面承载力计算的基本假定“不考虑砼的抗拉强度”,假定钢筋砼梁达到极限承载力状态时的截面力臂为yho,其中y为内力臂长度系数,则钢筋砼梁的极限弯矩为:

MU = yhoòyAS

此时òy= fyAS =pmin bho Y=1

MU = ho fypmin bho③

将式②、式③ 带入式① 以后,求出:

pmin=0.256ft / fy[h/ho]2 ④

2国内不同时期砼结构设计规范对最小配筋率的规定

根据介绍对世界各有关国家砼结构设计规范,对钢筋砼受弯构件规定的最小配筋率进行了简单比较,见表1。为转化为国内材料强度后各有关国家砼结构设计规范,对钢筋砼受弯构件规定的最小配筋率表达式。 转贴于

表1不同国家对钢筋砼构件最小配筋率计算要求

我国的设计规范对于钢筋砼受弯构件,确定的最小配筋率的规定基本上是沿用前苏联20世纪五、六十年代的规定,数值明显偏低。随着我国国力的增强,结构设计的安全度增大以及结构耐久性设计概念的应用,钢材供应状况及水平的偏高,每次规范修订均适当提高了受力钢筋的最小配筋率,而且使其更为合理。a.在原《钢筋混凝土结构设计规范》TJ10-74中规定受弯构件最小配筋百分率:当砼强度标号为200号及以下时为0.1;当砼强度标号为250-400号时为0.15。b.在进行了修改后的《混凝土结构设计规范》GBJ10-1989中规定受弯构件最小配筋百分率:当砼强度等级为C35时为0.15;当砼强度等级为C40-C60时为0.2。c.在现行的《混凝土结构设计规范》GB50010-2002中规定受弯构件最小配筋百分率为0.2和45 ft / fy中的较大值。

从国各内各个阶段设计规范对最小配筋率规定的变化可以看出:随着我国改革开放的进一步推进,国民经济收入稳步的提高,对结构安全度的要求逐渐提高,综合考虑各种因素,构件的最小配筋率均有提高,而且考虑了材料强度的影响,有利于促进高强材料在工程中的大量应用。

3HRB500钢筋砼受弯构件的最小配筋率的应用

根据我国现行的《钢筋砼用热扎带肋钢筋》GB1499-1998中规定:HRB 335的屈服强度为335 MPa,HRB 400的屈服强度为400 MPa,HRB 500的屈服强度为500 MPa。我国现行的《混凝土结构设计规范》规定:HRB 335的屈服强度设计值为300 MPa,HRB 400的屈服强度设计值为360 MPa,不同种类钢筋材料分项系数ys均为1.10,因此HRB500钢筋的屈服强度设计值应取为450MPa。根据资料介绍的试验结果并考虑到裂缝宽度的影响,对HRB500钢筋的屈服强度设计值建议为420MPa,材料分项系数ys为1.19。根据我国现行的《混凝土结构设计规范》GB50010-2002中规定受弯构件最小配筋率百分率公式45 ft / fy,分别计算出各种钢筋的最小配筋率。详见表2。

表2钢筋混凝土受弯构件配筋率要求

根据表2可以看出,钢筋砼构件的最小配筋率的确定,不完全是技术问题,还反映了某一地区当时的经济建设发展水平,具有一定的社会性和政策性。因此,考虑将HRB 500钢筋砼受弯构件的最小配筋率百分率(%)为:当混凝土强度等级不大于C30时为0.15,当砼强度等级为C30以上时为0.2和45ft / fy 中的较大值为宜。根据上述浅要分析,国家推广应用HRB500钢筋不仅可以满足建筑行业科技飞速发展的需用,还具有明显的经济效益和社会效益。为了在工程实践中大力推广HRB500钢筋,考虑到我国实际国情,要采用HRB 500钢筋砼受弯构件的最小百分率(%)为:当砼强度等级不大于C30时为0.15,当砼强度等级为C30以上时为0.2和45ft / fy,中的较大值安全。

参考文献

1徐有邻等.混凝土结构设计规范理解与应用.中国建筑工业出版社, 2002

第12篇

关键词:化学锚栓;混凝土构件;抗震性能;承载力;延性

中图分类号:TU375文献标志码:A

Experiment on Seismic Behavior of RC Members with Planting

Bars Confined by Chemical AnchorDENG Zongcai, ZHONG Linhang

(Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education,

Beijing University of Technology, Beijing 100124, China)Abstract: In order to research whether the chemical anchor could be used in seismic area or tensile region of reinforced concrete (RC) members, the test on the anchor behavior of RC members confined by chemical anchor was carried out. Through quasi static test, the failure modes of RC members confined by chemical anchors, the effects of anchor and the seismic behavior were studied under cyclic load. The experiment results show that the dynamic anchor effectiveness of chemical anchor is good, and the anchor can be used in seismic area or tensile region of RC members. The bearing capacity and ductility of members are enhanced by the chemical anchor, especially in later period of cyclic load test, the chemical anchor plays an important role in preventing the decrease of bearing capacity and increase of displacement. The anchor construction technology is an important influence factor on the seismic behavior of members.

Key words: chemical anchor; RC member; seismic behavior; bearing capacity; ductility

0引言

化学锚栓以其性能可靠、施工简便等优点被广泛应用于建筑物扩建、改造、加固和设备安装等工程[13],目前,锚栓的设计主要是以单向拉拔试验为依据来确定锚固深度。中国是多地震国家,需要确定锚栓是否能够用于地震区结构工程。由于锚栓动载性能试验装置复杂,没有统一的试验方法、设备和标准,各国学者对此研究甚少。工程中所用锚栓的种类较多[45],性能各异,在地震作用下受力复杂,作为结构构件的重要连接件,有必要对锚固构件的抗震性能进行深入的研究[6]。化学锚栓在工程中常被应用于地震地区和受拉区混凝土构件的锚固与连接,如钢板通过锚栓与原有混凝土构件连接是结构加固中粘钢、灌钢技术的必要措施,锚栓的锚固效果在这种施工工艺中起到了非常重要的作用。为了研究锚栓的抗震性能,用其连接混凝土梁与柱,采用悬臂试件进行反复加载试验。结果表明:试验中所用锚栓在承受反复拉拔力时锚固效果良好,提高了构件的承载力和延性,尤其在试验后期,锚栓在限制构件承载力下降和位移增大方面起到了重要作用;另外,试验中也发现,保证各锚栓的间距是影响锚固效果的重要因素。

1材料性能与试件加载

1.1材料性能

混凝土强度等级为C30,实测立方体强度为33.2 MPa,梁柱纵筋均采用HRB335,箍筋采用HPB235,试验中所使用的加固材料为韩日牌化学锚栓和韩日牌植筋胶,其力学性能指标如表1,2所示。表2中,d为植筋(钢筋)直径。

试件加载

试验试件共6个,几何尺寸及配筋如图1所示,试件参数见表3。表3中,ZJ20表示植筋(钢筋)直径为20 mm,10d,15d分别表示植筋深度为10倍、15倍植筋直径,单锚与双锚表示化学锚栓的数量。

图1试件尺寸及配筋(单位:mm)

Fig.1Geometric Sizes and Reinforcement of

Specimens (Unit:mm)为更加真实地反映实际工程中的情况,植筋和锚栓施工的过程由北京新鑫江建筑加固工程有限公司完成。试件在制作过程中采用两次浇筑成型的方法,即先浇筑节点柱子,等混凝土完全固化后在试件节点上用电锤钻出植筋孔,经过清孔、灌胶、植筋等施工工序将钢筋植入混凝土中,在结构胶经过24 h固化后绑扎箍筋,浇筑节点混凝土,经过28 d养护后再对节点进行打孔,用化学锚栓将钢板固定在相应位置。

双锚栓试件加载采用分级加载,每级的荷载增量为10 kN,荷载稳定时间为3 min,弹性阶段采用荷载控制加载,在出现明显的弹塑性变形后采用位移控制加载的方法,直至荷载下降到峰值荷载85%或构件破坏之后,停止加载。2试验结果分析

2.1破坏形态

试验中试件破坏形态如图2所示,试件的破坏过程和典型形态描述如下:

图2试件破坏形态

Fig.2Failure Modes of Specimans(1)ZJ2010d构件在受拉纵筋屈服前,混凝土及纵筋应变呈线性增长,受拉区混凝土出现少量水平裂缝;纵筋屈服后,新旧混凝土界面出现通缝,同时柱身侧面靠近钢筋位置处出现裂缝,随着加载的进行,裂缝宽度不断加大,直至构件破坏,柱身仍无明显新增裂缝,受压区混凝土也没有被压碎的现象,凿开柱脚混凝土层,发现植筋有部分被拔起,属于脆性破坏;ZJ2015d构件在加载过程中,裂缝均出现在柱身高度范围内,钢筋位置处无裂缝出现,最终纵向受拉钢筋屈服,受压区混凝土被压碎,这种破坏形态属于延性破坏。

(2)由锚栓加固后的构件在加载过程中,裂缝首先出现在锚栓锚固位置,紧接着在靠近钢板上沿处出现第2条裂缝。ZJ2010d单锚构件也有钢筋被拔起的现象,承载力突然下降,但是随着加载的进行,锚栓的拉拔力开始发挥作用,钢筋最终在钢板高度范围内屈曲,受压区混凝土被压碎,构件破坏。双锚构件开裂情况与单锚构件类似,但构件最终在锚栓锚固截面处产生通缝现象,说明原有混凝土结构的截面受到钻孔的削弱,裂缝在两孔之间开展,影响了锚栓的锚固效果。

(3)ZJ2015d单锚构件最终破坏时在锚栓位置处出现向四周延伸的裂缝,且有大块混凝土与锚栓牢固粘结,不脱落,这说明锚栓的锚固粘结效果良好。但是ZJ2015d双锚构件在最终破坏时可以清晰看到断面处的锚栓与混凝土柱几乎脱离,仅有部分混凝土残渣遗留在锚栓表面。这些现象同样说明了施工时锚栓之间的距离太近会造成原结构截面的削弱,影响锚栓的锚固粘结效果。

2.2承载力分析

试件承载力与位移试验结果如表4所示。由表4可知:

(1)与未用锚栓锚固的构件ZJ2010d相比,单注:Pcr,Δcr分别为开裂荷载及对应的开裂位移;Δy为与明显屈服荷载Py对应的屈服位移;Δd为弹塑性最大位移(骨架曲线上荷载下降至

极限荷载85%或构件破坏时的位移);Pu为极限荷载;Pmax为峰值荷载;μ为延性系数。锚构件开裂荷载提高了209.2%,屈服荷载提高了8.44%,峰值荷载提高了9.74%。双锚构件的开裂荷载提高了63.1%,屈服荷载提高了5.64%,峰值荷载提高了10.89%。这说明在构件受到反复荷载的初期,锚栓的锚固有效限制了构件的开裂和屈服,但是双锚构件开裂和屈服均早于单锚构件,这是由于锚栓在钻孔施工时对原有混凝土构件造成了截面的削弱,峰值荷载两者差别不大。因此,锚栓的锚固效果与对原有结构的截面削弱状况有关。

(2)将ZJ2015d锚固构件与已做过试验的未锚固构件的数据进行比较[78]可知:单锚构件开裂荷载提高了107.9%,屈服荷载提高了35.79%,峰值荷载提高了32.34%;双锚构件开裂荷载提高了70.62%,屈服荷载提高了27.58%,峰值荷载提高了12.95%。比较结果再次证明了锚固效果与原结构损伤状况的关系,同时也说明锚栓的锚固效果良好,在受到反复荷载时能够有效地提高构件的承载力。

(3)对比构件ZJ2010d和ZJ2015d,二者开裂荷载和屈服荷载差别不大,但是植筋深度15d的构件峰值荷载提高了17.1%,说明随着植筋深度的增加,构件的最大承载力也随之增加。比较二者的极限位移可以看出,植筋深度10d的构件在屈服后承载力迅速下降,是脆性破坏,而植筋深度15d的构件承载力发展平稳,延性较好。这说明对于重要的承重构件,植筋深度10d是不可靠的,植筋深度在15d以上,构件的安全性才能得到保证。

(4)比较各构件的极限位移,除了ZJ2010d和ZJ2010d双锚构件在加载初期承载力下降迅速,其余构件的承载力发展都非常平稳,说明10d植筋的构件由于自身植筋深度不够,容易发生脆性破坏。采用单根锚栓加固后,锚栓的锚固效果良好,它对构件承载力和延性的提高起到了明显的作用,但是在2根锚栓同时锚固以后,锚固效果大大降低,脆性增大,这是锚栓施工时对原有混凝土结构的截面削弱造成的。

2.3反复荷载作用下试件的力位移关系曲线

滞回曲线是结构抗震性能的综合体现,反复荷载作用下各试件的滞回曲线如图3所示,其中,P为水平荷载,Δ为与水平加载点同一高度的相应水平位移。图3反复荷载作用下各试件的滞回曲线

Fig.3Hysteresis Curves of Specimens Under Cyclic Loading由图3可以看出:

(1)构件屈服前,滞回曲线基本上呈直线型;构件屈服后,随着侧向位移、加载循环次数的增加,滞回曲线弯曲,呈现出较明显的非弹性性质,并且刚度随着加载循环次数的增加而降低,滞回曲线呈梭形。

(2)在构件达到屈服荷载后,3个植筋锚固深度为10d的构件承载力均迅速下降,但是随着加载的进行,构件的滞回曲线出现了不同的发展趋势:①无锚固构件的承载力下降速度快,属于脆性破坏;②单锚构件在承载力下降一段后又慢慢恢复,峰值荷载达到了39.1 kN,最终破坏;③双锚构件在承载力突然下降以后,在30 kN左右保持平稳发展,下降缓慢,直至最终破坏。这说明植筋深度10d的构件在反复荷载作用下是不可靠的,后期承载力的提高主要来自于锚栓的锚固作用,但锚栓的锚固效果对后期承载力的发展有重要影响。单锚构件属于延性破坏;虽然双锚构件破坏时的承载力小于单锚构件,但是其延性相比未加固构件有所提高,在持续反复荷载作用的后期,结构仍能够继续承载,满足了“大震不倒”的设计目标。

(3)植筋深度15d的构件在承载力、延性方面都较植筋深度10d的构件有所提高,植筋锚固深度是可靠的。从承载力的发展趋势来看,单根锚栓的锚固效果明显好于2根锚栓的锚固效果。

2.4抗震性能和延性

试验对有锚栓锚固的植筋构件进行单向反复加载,锚栓始终承受着反复荷载的拉拔作用,借助构件的破坏形态和锚栓的动载锚固效果来分析锚栓的抗震性能,判断化学锚栓在地震高烈度地区用于加固、锚固或连接承重构件的适用性。

由表4还可知,经过锚栓加固后的植筋构件比未加固试件的延性系数均有提高,其中由单根锚栓锚固的构件延性系数提高显著,植筋深度10d单锚构件的弹塑性位移提高了855.8%,有效阻止构件发生脆性破坏,其主要原因是锚栓在反复荷载作用下锚固效果很好,限制了构件承载力的下降和位移的增大。3结语

(1)随着植筋深度的增加,植筋构件的破坏形态从脆性破坏变为延性破坏,构件的承载力和延性均有所提高,植筋深度15d构件的承载力比植筋深度10d构件提高了17.1%,延性系数提高了369.2%。这说明植筋深度是影响构件抗震性能的重要因素,植筋深度10d不可靠。

(2)试验中所用锚栓在承受反复拉拔力时锚固效果良好,有效阻止植筋深度10d构件发生脆性破坏,改善了植筋深度15d构件的延性,并且提高了构件的屈服强度和峰值荷载,尤其在试验后期,锚栓在限制构件承载力下降和位移增大方面起到了重要作用。

(3)锚栓施工技术也是影响锚栓抗震性能的重要因素,单锚构件和双锚构件在同样的加载机制下进行比较可以发现,单锚构件的承载力和延性均优于双锚构件。在有限的范围内锚固多根锚栓,容易造成原有混凝土结构截面的削弱,导致构件加固效果反而降低。

(4)通过对试验中构件的承载力和延性分析可知,厂家提供的化学锚栓直径和锚固深度合理。在保证施工质量的条件下,化学锚栓的抗震锚固性能良好,可以用于地震高烈度地区承重构件的连接和加固,亦可以用于受拉区混凝土的锚固或连接。参考文献:

References:[1]SHIRVANI M,KLINGNER R E,GRAVES H L.Breakout Capacity of Anchors in Concrete.Part 1:Tension[J].ACI Structural Journal,2004,101(6):812820.

[2]SHIRVANI M,KLINGNER R E,GRAVES H L.Breakout Capacity of Anchors in Concrete.Part 2:Shear[J].ACI Structural Journal,2004,101(6):821829.

[3]RODRIGUEZ M,LOTZE D.Dynamic Behavior of Tensile Anchors to Concrete[J].ACI Structural Journal,2001,98(4):511524.

[4]JENNIFER H G,RICHARD E K.Dynamic Behavior of Single and Double Nearedge Anchors Loaded in Shear[J].ACI Structural Journal,2001,98(5):665676.

[5]谢群,陆洲导,余江滔.锚栓抗震性能研究综述[J].工业建筑,2006,36(4):7374.

XIE Qun,LU Zhoudao,YU Jiangtao.Summary of Anchor Behavior Under Seismic Loads[J].Industrial Construction,2006,36(4):7374.

[6]王翠坤,肖从真,赵西安.锚栓抗震动力性能试验[J].建筑技术,2004,35(9):691692.

WANG Cuikun,XIAO Congzhen,ZHAO Xian.Test of Antivibration Performance of Anchor[J].Architecture Technology,2004,35(9):691692.

[7]邓宗才,钟林杭,张永方,等.植筋钢筋混凝土锚固构件抗震性能试验研究[J].北京工业大学学报,2011,37(5):707711.

DENG Zongcai,ZHONG Linhang,ZHANG Yongfang,et al.Seismic Behavior of Research RC Structure with Postinstalled Chemically Rebar[J].Journal of Beijing University of Technology,2011,37(5):707711.