时间:2023-05-30 10:34:52
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇数控系统,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
【关键词】数控系统;维修技术;故障
随着微电子、计算机、信息处理、自动检测和自动控制技术的发展,数控系统的应用越来越广泛。它给工业生产的发展创造了机会,提高了社会生产率与产品质量,为社会创造出巨大的财富!数控技术广泛应用到各个领域,特别是工业生产中。出现故障后若不能及时维修处理,将影响正常生产,从而造成经济损失。本文从现代数控系统的基本构成入手,探讨数控系统的故障诊断方法与维修技术。
一、数控系统的构成与特点
1.构成
当前,工厂所使用的数控系统种类繁多,包括有西门子、FANUC、NUM、Heidenhain、华中、广州、航天数控系统等等。生产厂家不同,在设计上各有区别。但无论哪种系统,它们的基本原理和构成是非常相似的。数控系统一般由系统程序、输入输出设备、通信设备、数控装置、可编程控制器、伺服驱动装置和测量装置等构成。
2.特点
(1)数控系统发生故障若得不到及时维修,将影响生产,造成经济损失。因而对数控系统的维修人员的技能水平有更高的要求。
(2)数控系统的工作环境一般为工厂,要求数控系统具有在抗噪音、震动、高温、粉尘、金属屑等恶劣环境条件下工作的能力。
(3)数控系统要与各种数控设备及外部设备通信,通常接口电路复杂、可靠性要求高。
二、数控系统维修工作的基本条件
1.在维修手段方面应具备的条件
必要的参考资料,包括维修手册、线路图、说明书及元器件分配表格等;常备易损坏配件,方便及时更换故障配件,保证设备正常运转; 必要的检测维修工具、仪器、仪表、编程器、计算机。最好有便携式编程器,用以现场修改参数,编写程序,节省维修时间; 建立起技术交流小组,对疑难杂症进行会诊,实现资源的共享。
2.维修工作人员应具备的基本条件
具有严谨的工作态度与良好的职业素养;具有较强的动手操作能力;会使用测试仪器、仪表等维修工具;掌握微机原理与接口技术、模拟与数字电路基础、自动控制与电机拖动、检测技术、可编程控制器原理、编程语言等基础知识和一定的外语水平;并经过专业的数控系统知识的培训。
三、数控系统的故障诊断方法
1.直观检查法
(1)向现场操作人员询问故障产生的现象。故障发生时(或故障发生后)是否有异响、火花亮光出现,它们来自何方,何处发热异常,何处有异常震动等,就能判断故障产生的主要部位。然后,进一步观察可能产生故障的每块电路板或是各种电控元件(继电器、热继电器、断路器等)的表面状况。是否有烧焦、烟熏黑处或元件、连线断裂,从而进一步缩小检查范围;再者,检查系统的各种连接电缆是否有松脱、断开、接触不良等现象,这些也是处理数控系统故障时首先需要想到的。而后,观察指示灯的变化情况:观察各部件有无报警指示(如数控系统、温控装置、装置、变频装置等);观察显示屏上有无提示的故障信号。通常在说明书上有报警信号的处理方法。一般来讲,温控、装置的报警故障比较容易处理。而对于数控系统等部件的报警,维修人员需根据说明书上报警信号的处理方法仔细分析,判断故障点出现的位置,逐步圈定范围,对症处理。也可以利用操作面板或编程器根据电路图和PLC程序,查出相应的信号状态,按逻辑关系找出故障点进行处理。
(2)用手摸。停电检查时可用手轻轻摇拨接线是否有松动、烧坏现象,端子和导线之间结合是否紧固,旋转部件轴是否过紧,电气元器件是否发热及焊接点是否牢固等。各插头座的插接状况、各功率及信号导线(如伺服与电机接触器接线)的联接状况,查看是否有异常情况等
(3)用耳听。听电动机旋转时有无噪声和异常声响,变压器有无蜂鸣声。查看设备各部件工作状态是否正常。振动异常及振动声音过大等应引起注意,这些都会成为故障的因素。
2.仪器测量法
仪器测量法是查找数控机床故障的基本方法。当机床发生故障时,利用手中的仪器、仪表(示波器、万用表等)参照电气原理图和控制系统的逻辑图等资料,沿着发生故障的通道,一步一步地测量,直到找到故障点为止。
用仪器测量法找故障不一定要从起点一直测量到终点,可采用优选法进行,并要求维修人员不但要较好地掌握电路图和逻辑图,而且要较熟悉地了解电气元器件的实际位置,才能迅速地排除故障。
3.接口状态检查法
现代数控系统多将PLC集成于其中,而CNC与PLC之间则以一系列接口信号形式相互通讯联接。有些故障是与接口信号错误或丢失相关的,这些接口信号有的可以在相应的接口板和输入/输出板上有指示灯显示,有的可以通过简单操作在CRT屏幕上显示,而所有的接口信号都可以用PLC编程器调出。这种检查方法,对于诊断动作复杂的机构故障起到极大作用,但要求维修人员既要熟悉本设备的接口信号,又要熟悉PLC编程器的应用。
4.参数调整法
数控系统、PLC及伺服驱动系统都设置有可修改的参数以适应不同设备、不同工作状态的要求。通过参数调整,既可以让电气系统与具体设备相匹配,也可以使设备各项功能达到最佳化。系统参数变化会直接影响到机床的性能,甚至使整机不能正常工作。在设计和制造数控系统时,虽已考虑到系统的可靠性问题,但不可能排除外界的一切干扰,而这些干扰有可能引起存储器内个别参数的变化。这类故障便是我们所说的“软”故障,在维修时是很难克服的。此类故障需要重新调整相关的一个或多个参数方可排除。
5.模板互换法
数控系统大都采用模块化设计,按功能不同划分不同模块,随着现代技术的发展,电路的集成规模越来越大技术也越来越复杂,按常规方法,很难把故障定位到一个很小的区域,而一旦系统发生故障,为了缩短停机时间,我们可以根据模块的功能与故障现象,初步判断出可能的故障模块,用好的备件交换诊断出坏的线路板,并做相应的初始化启动,而后将坏板修理或返修,对于现代数控的维修,越来越多的情况采用这种方法进行诊断,使系统正常工作,敏捷投入正常运转。尽最大可能缩短故障停机时间,使用这种方法在操作时注意一定要在停电状态下进行,还要仔细检查线路板的版本,型号,各种标记,是否相同,对于有关的机床数据和电位计的位置应做好记录并做好标志。 否则不仅达不到目的,反而会把故障扩大。
通过对数控系统的了解,维修技术,诊断方法的认识,在实际中应灵活应用。在维修方法上可能用一种方法就能排除故障,亦可能需要多种方法同时进行。我们在实际的维修工作中应根据情况,运用了各种诊断方法,养成记录的习惯,并进行深层次分析故障原因,并采取适当措施避免故障再次发生,保证设备正常运行。必要时可根据现场条件使用成熟技术对设备进行改进。同时在运用故障诊断的过程中发现自己欠缺的知识,制定学习计划,最终充实自己。
参考文献:
[1]吴国经.《数控机床床故障诊断与维修》 电子工业出版社出版, 2005.
[2]叶蓓华.数字控制技术.北京:清华大学出版社,2002
[3]孙汉卿.数控机床维修技术.北京:机械工业出版社,2002.
[4]刘希金.机床数控系统故障检测与维修.北京:兵器工业出版社,1995.
关键词:FANUC数控系统;参数;设置;应用
中图分类号:TG659 文献标识码:A 文章编号:1006-8937(2014)30-0065-02
FANUC数控系统的参数很多,其中每一位型参数又有八位,因此一套FANUC系统配置的数控机床少说也有近万个CNC参数需要设定,这些参数的合理设置将会直接提升数控机床性能的发挥,提高其使用水平。大量的生产实践证明了只有了解数控系统参数的含义,才能给数控机床的故障诊断和维修带来方便,从而缩减机床故障诊断的时间,最终实现提高机床利用率的目的。此外,对数控机床系统参数的设置也是了解数控系统相关软件设计的窗口。在某些条件下,修改系统参数可以开发数控系统在订购时某些没有表现出来的功能,有助于机床功能的二次开发。因此,对于任一型号系统的数控机床,了解并掌握系统参数的含义显得尤为重要。机床生产厂家在数控机床出厂前,为了配合、适应相配套的数控机床的具体功能情况对数控系统进行了许多初始参数设置,但有些参数需要经过调试来进一步确定。在数控机床故障诊断与维修过程中,有时可以利用某些系统参数来调整机床,根据机床的实际运行状况对部分参数进行适当的修正,故专业的数控维修人员要充分了解机床的这些系统参数,并将已设定好的系统参数进行备份,妥善保管,方便在维修时使用,另外参数调整后要采取相应的保护措施,以防非专业维修人员的误操作引起机床故障。
1 FANUC数控系统参数的设置
FANUC系统参数的更改方法很多,其中比较常用的方法有参数的手动设定方法、通过阅读机/穿孔机接口用计算机传输软件输入参数;使用存储卡输入参数;使用USB口输入参数;在引导系统(BOOT SYSTEM)下用存储卡备份和复原SRAM(参数、程序、刀补等)。以手动设定方法为例说明参数更改的步骤。
将NC置于MDI方式下或按下急停按钮,按功能键[OFS/SET]一次或几次后,再按软键[SETTING],可显示参数设定页面。将光标移至“参数写入”处,设定“参数写入”=1,按软键[ ON:1],或者直接输入1,再按软键[输入],这样参数成为可写入的状态。此时CNC产生P/S100报警(允许参数写入)。解除此报警的方法:按下RESET+CAN或只按下RESET(设置参数No.3116#2=1)。参数修改后:若出现000号报警,需关系统电源;对轴参数进行设置后,需要关设备总电源。按MDI面板上的功能键[SYSTEM] 一次或几次后,再按软键[参数],选择参数页面。从键盘输入想显示的参数号,然后按软键[搜索]。可以显示指定的参数所在页面,光标在指定的参数位置上。参数设定完毕,需将参数设定页面的“参数写入=”设定为0,禁止参数设定。
2 FANUC数控系统参数的备份与恢复
FANUC数控系统中的数据有加工程序、CNC参数、螺距误差补偿值、宏变量、刀具补偿值、PMC程序、PMC数据、工件坐标系数据等,在机床不使用时这些数据是依靠控制单元中的电池进行保存的。如果控制单元损坏、电池更换或电池失效时出现差错,将会造成这些重要的数据丢失。因此在数控机床的使用中,必须做好上述数据的备份工作,当出现数据丢失时,可以选取一定的方法来恢复这些数据,从而使得机床能够正常的运行。
常用数据备份和加载有两种方法:开机时通过数据备份及加载引导画面进行;数控系统工作时通过数据输入输出方式进行。前者备份的数据是系统数据的整体,下次恢复或调试其他相同机床时,可以迅速的完成,但是数据为机器码且为打包形式,不能在计算机上打开;而后者在备份和恢复数据时首先要将20号参数设定为4,然后要在编辑方式下选择要传输的相关数据的画面。若要给备份的数据起自定义的名称,则可以通过[ALL IO]画面进行。
3 FANUC数控系统参数的保护方法
数控系统参数的设置正确与否会直接影响机床能否正常运行。在数控机床总故障数中,约10%的故障是由系统参数引起的,因此数控系统参数故障也是机床的一种常见故障。而大多情况下这些参数故障是由于操作者的误操作,改变了数控机床的某些系统参数造成的。对数控系统参数等重要文件进行保护,以防机床操作者或其他人员的的误操作,也是数控机床在日常维护工作中一个极其重要的环节。本文简要介绍FANUC 0i系统的数控机床在故障诊断与维修中几个常用的系统参数保护方法。
3.1 数控系统参数修改法
方法1:通过面板上的[OFFSET/SETTING]按键,显示参数设定界面,将“参数写入”一栏写入0即可。此方法主要适用于对系统参数不是很了解的机床操作者。
方法2:将3299号参数的第0位(PKY)更改为1,则上述方法1参数设定界面中的“参数写入”无法修改。此方法主要是由于参数的写入保护是由数控系统PMC信号中的“KEYPRM”信号(G46.0)状态决定的,更改上述参数可禁止系统参数写入。
方法3:要想进入系统的参数界面,就必须先按面板上的[SYSTEM]按键,所以把3208号参数的第0位(SKY)更改为“0”,MDI面板的功能键[SYSTEM]将无效,系统也将无法进入参数的设定界面,也就无法对参数进行修改。
由于方法2和方法3在一般的数控机床维修资料中较少提及,所以大部分人员并不清楚这些参数的作用,更不知道如何解除参数的保护,从而起到较好的保护系统参数的目的。
3.2 系统参数修改与系统PMC梯形图结台法
只需查阅相关的资料就可以解除采用上述三种方法的参数保护,因此就需要采用深层次的保护方法来保证系统参数的安全性。由于大部分一线的专业维修人员都无法做到系统PMC梯形图的编写,因此通过更改系统参数和修改系统的PMC梯形图相结合的方法可达到很好保护系统参数的作用。
首先将3299号参数的第0位修改为1,然后把系统的PMC梯形图修改如图1所示,即通过系统的一个“逻辑0”可编程序控制器信号R9091.0来控制G46.4(KEY 2),使该信号一直处于0的状态,用钥匙开关信号X13.1来控制G46.3(KEY 1)、G46.5(KEY 3)和G46.6(KEY 4)3个信号,这样就可以实现对系统参数这一重要数据的保护。
4 系统参数在维修中的应用
数控系统的参数都是经过一系列的理论计算并通过大量的试验、调整而获得的。参数通常情况下存放于数控系统的静态随机存储器(SRAM)中,当受到外界的干扰、电池电量不足以及数控系统长期不通电等情况时,都可能导致部分参数发生变化或丢失,对机床和数控系统的运行产生直接的影响。尤其当数控机床长期的闲置不使用时,系统参数丢失的现象更会容易出现。因此,维修数控机床行之有效、也是一个常用的方法就是检查数控系统并恢复机床的系统参数。此外,由于数控机床经过长时间的运行后,机床的某些运动部件会产生磨损、电器元件的性能也随之发生一定的变化等原因,也需要维修人员对相关的系统参数进行适当的调整。
4.1 参数类故障的维修思路
系统参数在数控系统中占据非常重要的位置,对其设置的是否恰当将会对机床的工作性能和工件的加工精度产生很大的影响。在调试阶段,如果参数设置的不合理或人为不恰当的参数更改,都有可能使得数控系统出现失控现象、加工误差大等故障发生,甚至还会出现一系列的报警或一些无显示信息的报警故障现象。因此,一定要先清楚地掌握系统参数的含义和其对应的功能之后再进行参数的设置。
4.2 参数类故障维修案例
4.2.1 手轮进给方式下摇动手轮无作用的维修
某一FANUC 0i mate D系统的数控车床,在手轮进给方式下摇动手轮不起作用。直接检查8131号参数的第0位(HPG)和7113号参数的数值,发现7113号参数(手轮进给倍率)的设定值正确,而8131号参数的第0位数值不知什么原因变为0了,0状态是取消使用手能,摇动手轮时当然不会有信号输出。修改该参数为1,并把参数设定界面中的“参数写入”一栏写入0即可或将写保护参数8900的第0位改成0后,关掉系统电源并重新启动手轮使用恢复正常。
4.2.2 风扇损坏的维修
一台FANUC 0i系统的数控机床,开机一段时间后画面显示ALM701报警信息。通过查阅FANUC数控机床维修材料,得到是控制单元上部的风扇由于过热的原因而引起的报警。打开该机床后侧的电气柜,发现控制单元上部的其中一个冷却风扇停止工作,用万用表测得风扇的电源正常,因而可以断定是该冷却风扇损坏。考虑到短时间内购买不到同一类型的风扇,只好将8901号参数的第0位更改为“1”先解除上述的报警,然后再用外部冷风进行强制冷却,等待风扇购到后,再将8901参数的第0位数值更改为“0”。
4.2.3 解除软限位超程报警故障的方法
某FANUC 0i mate D数控系统的机床在工作过程中,无故断电,再次通电后界面显示500#报警信息,报警内容为“Z轴方向出现了软限位超程”。
故障产生后,机床的两个轴都被锁定。从十字滑台上分析Z轴停止的位置,得到其停在滑台的中间,由此可判断Z轴不可能超出行程。再查找机床的两个软限位参数――1320号(各轴正方向储存的行程极限)参数和1321号(各轴负方向储存的行程极限)参数,发现这两个参数并没有被改动。当用手左右转动Z轴的丝杠时,向左转动会出现501#报警(即负方向超出行程),向右转动会出现500#报警(即正方向超出行程),由此可判定报警信息来自于Z轴丢失了零点信息。将1320、1321这两个软限位参数分别修改为极限值999999和-999999,并按下系统的复位键,超程报警信息消失,重新使Z轴返回零点后,该故障解除。
4.2.4 解除SV5136 FSSB:放大器数不足的报警
某FANUC 0i系统的数控车床闲置一段时间后再开机,出现SV5136 FSSB:放大器数不足的报警,维修说明书的解释内容为与控制轴的数目比较时,FSSB识别的放大器数目不足。轴数的设定或放大器的连接有误。通过放大器设定画面查找到Z轴的伺服放大器未连接到机床,检查FSSB(FANUC 伺服串行总线)连接正常,且24 V电源供电也正常。将系统的1902号参数的第0位设置为0后,关闭系统电源,再次启动机床后发现报警消失,故障解除。
5 结 语
数控系统参数的设置在机床故障诊断与维修中有着广泛的应用。机床操作者如果能了解并掌握这些参数的含义和作用,将会为数控机床的维护维修带来极大的方便,缩减故障维修的时间,从而提高机床的使用率。需要强调的是,如需更改系统的某些参数,首先要了解该参数的含义,明确该参数发生变动时会产生的现象,以及对其他的参数是否有影响,同时做好详细的记录,以便对比不同参数产生的结果,并选取其中最佳的数值设定到对应的表中;其次在参数修改前,要做好参数备份工作;最后修改好参数后要对其进行必要的保护,以防误操作带来不必要的麻烦。
参考文献:
[1] 刘永久.数控机床故障诊断与维修技术[M].北京:机械工业出版社,2010.
[2] 李晓海,易平波.FANUC 0i(mate)C/D系统参数的简明设定[J].科技信息,2010,(15).
[3] 马正锋,史耀耀,闫飞,等.FANUC数控系统参数丢失后的恢复方法[J].机械制造,2007,(6).
【关键字】数控系统;主流系统;认识体会
当前,西门子(SIEMENS)与发那科(FANUC)都是很好的数控系统,占据了大多数的数控系统市场,都为中国的数控机床业的发展做出了贡献。两相比较,西门子(SIEMENS)对环境要求比较高,发那科(FANUC)能更好的用于工业环境。另一方面,从易用性的角度出来,西门子(SIEMENS)的数控系统一般功能较多,西门子840D是20世纪90年代后期的全数字化高度开放式数控系统,它的人机界面更易操作,更易掌握,软件内容更加丰富,具有高度模块化及规范化的结构。840D的计算机化、驱动的模块化和驱动接口的数字化,这三化代表着当今数控的发展方向。应用于众多数控加工领域,能实现钻、车、铣、磨等数控功能。其采用32位微处理器,实现CNC控制,可完成CNC连续轨迹控制以及内部集成式PLC控制。最多可控制31个轴(最多31个主轴)。其插补功能有样条插补、三阶多项式插补、控制值互联和曲线表插补,这些功能为加工各类曲线曲面类零件提供了便利条件。840D系统提供有标准的PC软件、硬盘、奔腾处理器,用户可在Window98/2000下开发自定义的界面。此外,2个通用接口RS-232可使主机与外设进行通信,用户还可通过磁盘驱动器接口和打印机并行接口完成程序存储、读入及打印工作。通过RS-232接口可方便地使840D与西门子编程器或普通的个人电脑连接起来,进行加工程序、PLC程序、加工参数等各种信息的双向通讯。它的硬件结构更加简单、紧凑、模块化,软件内容更加丰富,功能更强大,其软件系统开放式系统理念的一个重要特点是,可以在数控核心部分,使用标准的开发工具对用户指定的系统循环和功能宏进行调整,代表并引领着当今数控技术的发展方向。因此, SEIMENS数控系统最突出的优势在于功能非常丰富和强大,它是一个全数字化、高度开放的系统,因此,设备制造商可以比较容易地在进行二次开满足不同的应用需求。
发那科(FANUC)数控系统也很典型,其系统稳定易用,操作界面友好,实用性很强,发那科更加容易上手, 应用非常广泛。常见的FANUC O系列,系统各系列总体结构非常的类似,具有基本统一的操作界面。FANUC系统可以在较为宽泛的环境中使用,对于电压、温度等外界条件的要求不是特别高,因此适应性很强。FANUC系统具有主轴控制回路为位置闭环控制,主轴电机的旋转与攻丝轴(Z轴)进给完全同步,从而实现高速高精度攻丝。复合加工循环可用简单指令生成一系列的切削路径。比如定义了工件的最终轮廓,可以自动生成多次粗车的刀具路径,简化了车床编程。适用于切削圆柱上的槽,能够按照圆柱表面的展开图进行编程。可直接指定诸如直线的倾角、倒角值、转角半径值等尺寸,这些尺寸在零件图上指定,这样能简化部件加工程序的编程。可对丝杠螺距误差等机械系统中的误差进行补偿,补偿数据以参数的形式存储在CNC的存储器中。CNC内装PMC编程功能,PMC对机床和外部设备进行程序控制。机床随机存储模块可在CNC上直接改变PMC程序和宏执行器程序。由于使用的是闪存芯片,故无需专用的RAM写入器或PMC的调试RAM。
国内中高端用户大多采用的即是SEIMENS、FANIC等这些国际知名公司的数控系统,尤其是在制造业这样的生产线上,这些品牌的数控系统占据着中高端的主流市场,主流数控系统以SEIMENS 840D和820D数控系统为代表,我所在的公司于2006年全面启动新厂搬迁建设,一期、二期购置了多台当今主流数控系统的进口数控设备,设备非常先进,目前共有数控机床几十台,其中有大约1/3的数控机床是欧洲一些国家的厂商生产的,所配备的数控系统大部分是当今主流的SEIMENS 840D系统,占整个车间数控系统的70%以上,还有部分是FANIC数控系统,从2008年投产使用到现在,单从数控系统来看,我认为:SEIMENS 840D系统技术先进、功能较强、程序比较完善;发那科数控系统的稳定性发挥得特别好,而且NC程序也比较容易理解。SEIMENS 840D数控系统显著的技术优势在于计算机化,驱动的模块化,控制与驱动接口的数字化,这也代表着当今数控技术的发展方向。它的硬件结构更加简单、紧凑、模块化;软件内容更加丰富,功能更强大。SEIMENS 840D可用于完成CNC连续轨迹控制以及内部集成式PLC控制,其典型特征是德国NILES公司的N40、N50车铣复合加工中心,其数控系统具有大量的控制功能,如钻削、车削、铣削、磨削以及特殊控制,这些功能在使用中不会有任何相互影响。
当然,相对来说,西门子数控系统价格较高,在我厂的实际生产运行中稳定性不够好,特别是系统报警故障、电源模块和伺服驱动模块容易烧坏等出现的故障,对我们的生产尤其是维修工作影响较大,有时要花费大量费用用于请外国专家修理和更换部件,费用比较工时比较大。一年少则一次多则大约会发生多次此类情况。能尽量将所有技术资料进行汉化,这样更有利于其技术和产品的推广。
在这几年的大批量生产工作中,数控系统的稳定性发挥得特别好是日本的FANIC系统的数控设备,而且其使用的年数比这些新购置的设备早,NC程序也比较容易理解,价格也较便宜。FANIC数控系统的特点是性能稳定,操作界面友好,系统在设计中大量采用模块化结构,各个控制板高度集成,使可靠性有很大提高,而且便于维修、更换。其数控系统具有很强的抵抗恶劣环境影响的能力,其工作环境可以在较为宽泛的环境中使用,对于电压、温度等外界条件的要求不是特别高,对自身的系统采用了比较好的保护电路,因此可以说适应性很强,很泼辣。
在实际生产中,生产单位工作现场的数控机床、数控系统的维修和调整问题还是比较频繁的,这些问题带来的维修费用和停产损失一直是生产单位十分头痛和无法承受的损失,生产单位也迫切希望供应商、商能积极地帮助解决这些问题,特别是加强技术和应用方面的培训,包括操作、编程、调整和维修等。另外,用户对备件储备、快速响应服务等也提出了一些期望。相信数控系统将来也会进一步降低成本价格,提高集成性、可靠性和操作的舒适性,体积更加密集型、系统柔性和开放性及拓宽功能会更加全面,最终将大大提高数控机床生产能力的效率。
【参考文献】
[1]李佳特.NC技术的回顾与展望[J].设备管理与维修,2006(1).
在计算机系统中,总线接口对整个系统的性能和功能都有直接影响,有关专家预测,在下一世纪里,串行总线将逐渐取代并行总线。
在数控系统中,个人计算机技术与数控技术越来越紧密地结合,由此而产生的具有开放性的PCNC数控系统,正在取代传统形式的数控系统,并成为市场的主流产品。计算机总线结构的变革,必将影响数控系统的体系结构,串行总线的应用将极大地改变现有的传统数控系统的结构形式。
2 串行总线的优点
同并行总线相比,串行总线具有许多优点。串行总线连接引脚数量少,连接简单,成本较低,系统可靠性高。串行总线对系统体系结构具有重大的影响,它的应用有助于数据流计算机体系结构的实现。
对于高速计算机系统,串行总线比并行总线更容易使用。在并行总线中,传输数据的各个位必须处于一个时钟周期内的相同位置,频率越高,对器件的传输性能和电路结构要求越严格,系统设计难度加大,致使系统成本提高,可靠性降低。相比之下,使用串行总线时,数据的各个位是串行传输的。在串行总线设计时,既可以嵌入时钟信号作为同步信号,也可以采用锁相环的时钟恢复方式;同并行总线相比,串行总线的传输线效应比较容易处理,从而降低设计难度和系统成本。
另外,以串行信息包为基础的系统,不需要编写驱动程序。当断开任何一根互连线,对全部信息包进行解码时,串行总线将这些信息包移入存储器并中断处理器,这是一种局部的中断或事件。随后微处理器将查看这些信息包,而不需要用驱动程序进行上述工作。系统将成为一种信息传递系统,而不是事件驱动系统。
外围串行总线方式,如IEEE-1394/火线和USB(通用串行总线),已能成功应用。某些供应商准备采用某种串行总线方式替代PCI(外围器件互连)系统总线。例如,Intel公司在1998年秋季披露,下一代I/O(NGI/O)串行总线能替代个人计算机中的PCI总线。
为了适应串行总线系统的要求,一些从事前沿技术研究的计算机公司,如Mercury Computer Systems公司正在研究光学底板及光学接口等技术。可以预料,光学链路将会在串行总线系统中发挥重要作用。
3 国外数控系统总线接口的发展概况
在数控系统行业中,世界上最大的数控系统生产厂日本FANUC公司最近推出的15i/16i/18i/21i系列数控系统,便是一种串行总线结构形式的数控系统。该系列数控系统以其独特的结构、优良的性能引起了关注。其中配备18i系统的钻削中心已在我国销售。
根据日本FANUC公司提供的资料,我们以15i系统为例进行简要介绍。
15i系统是目前世界上最高性能的CNC数控系统,最多可进行24轴控制,可控制5轴机床完成如航空部件,模具等零件的高速、高精度加工。插补精度为1nm(被称为NANO插补),改进加减速控制(Fine HPCC),适应高速、高精度加工的要求。
传统数控系统和每台伺服单元相连都需要一根电缆线,系统连接比较复杂。15i系统与各轴伺服单元是通过高速串行总线连接的,仅需一根光缆就可以连接8台伺服单元。另外通过一根电缆即可与I/O模块相连,I/O模块可以扩展。操作单元采用14"彩色液晶显示触摸屏,用户的机床操作可在触摸屏上进行,大大简化了电气配线,整个系统连接非常简单,从而降低了成本和维修难度,提高了可靠性和灵活性。
该系列产品在市场中具有很强的竞争力,在未来几年中FANUC i系列数控系统将逐渐取代FANUC 0系列数控系统,成为该公司的主导产品。
1990年德国一些著名的CNC系统和伺服系统制造商,例如SIEMENS、BOSCH、AMK等公司,与科研机构共同发起成立了SERCOS协会,并制订了串行实时通讯协议(Serial Real Time Communication Specification),以便在德国建立一个统一的CNC系统与数字伺服系统接口标准,并开发相应的产品。1992年4月,该协议已经被建议作为新的德国标准和国际标准DIN/IEC44。目前该协议已经被欧洲主要CNC系统和伺服系统制造商所接受,引起国际同行业的重视。THOMSON公司已经取得SERCOS接口硬件的生产许可,生产出SERCOS接口控制器SERCOS410A ASIC芯片,供CNC系统和伺服系统生产厂家使用。1997年日本也成立了SERCOS协会。
另外,欧洲的一些公司已推出具有CAN总线接口的伺服控制单元,并投入实际应用。
4 我国的现状和对策
在我国市场上,国外数控系统仍占统治地位,传统数控系统还占据着市场的绝大部分份额,中国市场成为其落后技术及库存的倾销地。
虽然中华Ⅰ型、航天Ⅰ型、华中Ⅰ型等PCNC系统相继推出,但总体设计仍未摆脱传统数控系统的框架,成本较高,目前还难以取代传统数控系统的市场地位。但随着个人计算机及网络技术在数控系统中的应用,传统数控系统不可避免地将被更具有竞争力的串行总线计算机数控系统(SCNC)所取代。串行总线计算机数控系统将成为数控系统未来发展的方向,对串行总线系统结构的研究应引起我们的高度重视。
在学习消化国外先进技术的基础上,尽快研究、建立有关的标准和协议,选择适用的实时操作系统,开发相应的数控软件、串行接口芯片和伺服系统,推出我国自主版权的新一代数控系统,为参与国际市场竞争打下良好的物质基础。
5 结束语
串行总线计算机数控系统(SCNC)是数控系统的发展方向,我们不能完全依赖国外进口,应加强对新技术、新方法的研究。国内同行应团结一致,共同努力,联合相关行业,寻求发展,振兴我国数控系统产业。
作者单位
郑立新,北京朝阳区东直门外望京路4号,北京机床研究所数控工程中心,邮编:100102
参考文献
PLC以其可靠性高、逻辑控制功能强、体积小、适应性强和与计算机接口方便等优势在工业测控领域广泛运用,已大量替代由中间继电器和时间继电器等组成的传统电器控制系统。近年来,PLC技术发展迅猛,新产品层出不穷。高端PLC不仅擅长开关量检测和逻辑控制,而且能够处理模拟信号、进行位置控制和回路控制,还可以连接各种触摸屏人机界面并具有强大的网络功能。高端PLC配备适当的位置控制单元和触摸屏人机界面,并根据计算机集成制造系统(CIMS)或柔性制造系统(FMS)的具体要求,配置相应的网络模块或网络单元,即可实现网络互连,构成开放的数控系统。本文介绍一种基于OMRON高端PLC的磨削数控系统,这种数控系统装备的位置控制单元可以实现两轴联动,并可根据实际需要,任意扩展控制轴数;触摸屏人机界面可以根据操作需要灵活设计;还可通过DeviceNet、ControllerLink和TCP/IP协议单元进行多层次的网络互连。这种数控系统目前已在3MZ2120磨床数控技术改造中获得成功应用。
1.数控系统的开放特征与典型模式
开放式数控系统一般基于PC平台,具有模块化、标准化、平台无关性、可二次开发和适应联网工作等特征。基于PC平台的开放式数控系统目前有3种典型模式。第一种为衍生型(专用NC+PC),在传统CNC中插入专门开发的接口板,使传统的专用CNC带有PC的特点。此种模式是由于数控系统制造商不能在短期内放弃传统的专用CNC技术而产生的折中方案,尚未实现NC内核的开放,只具有初级开放性;第二种为嵌入型(PC+NC控制卡),将基于DSP的高速运动控制卡(NC控制卡)插在PC的标准扩展槽中,由PC机执行各种非实时任务,NC控制卡处理实时任务。是目前基于PC平台的开放式数控系统的主流;第三种为全软件数控系统,PC机不仅能够完成管理等非实时任务,也可以在实时操作系统的支持下,执行实时插补、伺服控制、机床电器控制等实时性任务。这种模式的数控系统实现了NC内核的开放和用户操作界面的开放,可以直接或通过网络运行各种应用软件,是真正意义上的开放式数控系统。与PC平台开放式数控系统相比,基于高端PLC的数控系统的开放性主要体现在网络层面和系统扩充层面。高端PLC采用类似于PC的总线结构和面向操作的梯形图语言编程,模拟量处理单元、位置控制单元、回路控制单元、网络模块或网络单元等高端部件都有专用控制语句,具有系统构建灵活、扩充能力强、应用软件设计便捷等优点。编程语言标准化和部件可互换性的不断增强,现场总线技术和工业以太网络标准的普遍采用,都使基于高端PLC的数控系统变得更加开放,将成为面向CIMS或FMS的设备层的重要组成部分。
2.基于高端PLC的磨削数控系统
2.1开关信号监测与逻辑控制
当前系统输入输出单元是PLC的基本组成部分,在磨削数控系统中承担所有开关信号的监测和全部逻辑控制功能。监测信号主要有:机械手进出、机械手上下、料盘正反转、修整器起落等动作的位置信号,磨削设备和辅助装置上的各种工作状态信号和异常报警信号。系统输出单元控制磨削设备上所有电磁阀和机床电器系统等,通过磨削设备上的液压系统,控制机械手、料盘、工件卡盘、砂轮轴、床身、修整器等基本部件和冷却、、过滤等辅助装置按照磨床动作和磨削工艺要求工作,实现磨削加工过程的自动化。
2.2工件与砂轮运转速度控制
保持工件与砂轮转动速度恒定,对提高磨削加工质量十分有利。为此系统配备了2台带RS-485串口变频器,分别驱动工件轴和砂轮轴。PLC采用联机随动控制保证两者之间速度的配合与稳定。操作人员依据磨削加工要求设定工件轴变频器速度参数,PLC接收该参数后,参照砂轮直径(设定或记忆值)和转动速度比例关系,计算并自动设定砂轮轴变频器的速度参数。在磨削加工过程中,PLC对砂轮在磨削及修整过程中的损耗给予速度自动补偿。PLC最多可以控制32台变频器,不同厂家的变频器可采用协议宏通信联接。PLC按照变频器地址(0-31)、指令代码和相关数据顺序向变频器传送命令,对变频器运行、停止、正转、反转等实施控制;PLC还可以监视变频器运行状态,当变频器发生过电流、过电压、变频器过载、硬件异常、电机过载、过力矩检测、电源异常、通信超时等情况,可将异常参数传输给PLC,由PLC作出相应处理。
2.3位置控制单元(PCU)与位置控
制高端PLC配备单轴位置控制单元,与步进电机或交流伺服电机驱动器配套使用,可以完成开环或半闭环位置控制及速度控制,配备两轴联动位置控制单元可以进行实时插补控制,实现直线和圆弧曲面等加工控制。目前全球各主要PLC制造商都已推出与高端PLC配套的PCU,具备高速和高精度的位置控制功能。OMRON公司的CJ1MCPU自带PCU的位置脉冲速度为1kBPS,高级PCU的速度可达到500kBPS,松下PP2或PP4系列的位置控制速度高达1MBPS。采用高端PLC设计数控系统,需根据控制精度、运行速度和运行轨迹要求选择适合的位置控制单元(PCU)。磨削数控系统控制精度要求较高(F1μm),一般选择数字交流伺服系统。OMRON高端PLC专用高级指令控制脉冲输出,可选择梯形、S形或三角形速度曲线运行,实现定程、点动、返回原点和原点搜索等运动控制。程序设计可选择相对坐标系或绝对坐标系,按照图2所示的梯形图编程运行,可实现各种磨削加工所应遵循的运行曲线。图3表示该数控系统准确实现铁路轴承内套挡边粗、精、光磨削加工和3MZ2120磨床快进、快退几个阶段的速度控制和位置控制的运动轨迹。
2.4触摸屏人机界面设计
基于高端PLC的磨削数控系统可选用触摸屏人机界面(ProgrammableTer2minal,PT),采用组态工具软件和图形库(开关、灯、棒图等)以及动画功能等,按照磨削工艺流程要求进行系统操作界面设计。下面以3MZ2120磨削数控系统操作界面为例介绍设计过程和效果。根据磨削数控操作和显示的需要,该系统主界面下设8个子画面(图4)。系统上电自动进入主界面,核对操作密码后弹出主菜单,在主界面上点击操作可转移相应的子界面。加工参数和修整参数设置界面提供设置数控磨削相关参数提示;手动操作和手动修整界面用于快前、快退、慢前、慢退、返回等手动位置控制和手动修整砂作,为设备调试提供便利;自动报警界面利用触摸屏人机界面本身具有的报警功能设计,对油雾、液压系统、机床电器系统、料槽状态、冷却系统和伺服电机等实施监测和自动报警,当发生故障时触摸屏立刻弹出报警信息(报警时间、故障代码及应对措施等);自动运行界面(图5)采用棒图显示当前磨削余量值;采用动画方式实时显示加工状态和加工位置等。还设有“紧急停车”等应急按钮。PT有RS232/422/485通讯口,能够兼容众多厂家的PLC。人机界面应用程序可脱机编制和调试,然后下载到PT上运行,PLC一般通过RS232接口与PT相连。许多PT还配备并行接口,可直接与打印机连接,实时打印数据或进行屏幕拷贝。
2.5网络结构与联网功能灵活的网络结构和强大的联网功能是高端PLC的重要特征。OMRON高端PLC配有标准RS232接口连接触摸屏人机界面、上位机或编程工作站。还可扩展DeviceNet通信单元,使各种符合DeviceNet通信协议的产品都可以连入系统中,以构成基于DeviceNet开放式现场总线的数控系统;系统与车间管理层计算机及车间其它高端PLC的连接可以采用ControllerLink方式,在PLC中扩展ControllerLink通信单元,车间管理层计算机装备ControllerLink支持卡即可实现互连,由底层DeviceNet设备、基于高端PLC的数控系统或其它测控设备和车间管理层计算机构成3层递阶结构的网络测控系统。高端PLC一般都可配置符合TCP/IP协议标准的以太网单元,全面支持远程监控等应用。
【关键词】气体压力 数控系统 精确控制
一、引言
近年来,用于切割金属板材的数控激光切割机床得到快速发展。数控激光切割机床加工金属板材时,需要气体(如氧气、氮气等)来辅助进行切割。这种方式的加工具有高速高效性,辅助气体气压的精确与稳定,直接影响着板材的切割效率与质量。因此数控激光切割机床精确控制气体压力的大小至关重要。
二、气体压力控制描述
气体压力由电磁比例阀通过电信号控制,电信号是系统向模拟量模块发送指令传输出来的。电磁比例阀接收到电压信号后,开启相应量的阀门使气体流过,从而输出气压。理论上气压大小应与电磁比例阀上接收的电压大小成正比,但由于气体受到管路限制和电路内电压的衰减,气体压力与电磁比例阀电压值大小不是简单的比例关系。
尽管如此,但对于一套固定的气路装置来说,管路对气体的限制,电路内电压的衰减都是有规律性的。我们在实际中需要反复多次测量,从而找出气体压力与电磁比例阀电压值之间的关系。
三、原理分析
经过我们的多次测量,发现气体压力与电压具有多线型关系。因此我们可以进行以下研究。
此处假定电磁比例阀内通过的气体压力值是P,其接收的电压V是范围值0-10V。给定电压值V1,V2,…,V10共10个值,使用气压表测定出实际的气压值P1,P2, …,P10。通过对气体压力和电压的实际测量分析,发现两者之间多线型关系图(见图一)。
图一
从图中可以看出,气体压力和电压在局部线段内仍具有线性关系。因此,我们可以得出下面的运算程式,给出相邻两点之间气压P与电压V的关系。
设前点为(P1,V1),后点为(P2,V2)。
两点之间的线段斜率为K,则 K= (V2-V1)/(P2-P1)。
线段的常量为M,则M=V2-(K*P2)。
因此,两点之间气压P与电压V的关系式为,V=(K*P)+M。
四、系统实现方式
我们首先要做的是在数控系统的PLC内编写一个气压函数,此函数需要准确的写出之前得到的气压P与电压V的关系。此函数的调用要具有即时性,当外部变量气体压力P发生变化时,系统快速地会根据此函数计算出指令电压V。
我们在系统数据库内建立一个数据模块,记录实际采集的10组气压与电压的数据值。
表一
我们按照表一所列的内容,实际采集10组数据。而后将这10组数据,录入到数据库内。其中数据库录入条目举例如下:
*gas.table.volt1 : 0.25
*gas.table.pressure1 : 0.3
依次将10组数据写入数据库内,从而完成数据模块的建立。
数控系统从工件程序内读取所需的气压值P,而后系统将气压值P与数据库采集数据进行比较,从而找到P所处于范围的两个端点。下一步系统会从数据库内调用这两个端点的数据,使用气压函数得出所需的电压值V。
系统发出指令信号到模拟电压模块,模拟电压模块根据指令输出相应的电压模拟量信号。此电压信号经过电缆传送到电磁比例阀,从而电磁比例阀输出所需的气压。
[关键词]数控系统伺服电机直接驱动
近年来,伺服电机控制技术正朝着交流化、数字化、智能化三个方向发展。作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。本文对其技术现状及发展趋势作简要探讨。
一、数控机床伺服系统
(一)开环伺服系统。开环伺服系统不设检测反馈装置,不构成运动反馈控制回路,电动机按数控装置发出的指令脉冲工作,对运动误差没有检测反馈和处理修正过程,采用步进电机作为驱动器件,机床的位置精度完全取决于步进电动机的步距角精度和机械部分的传动精度,难以达到比较高精度要求。步进电动机的转速不可能很高,运动部件的速度受到限制。但步进电机结构简单、可靠性高、成本低,且其控制电路也简单。所以开环控制系统多用于精度和速度要求不高的经济型数控机床。
(二)全闭环伺服系统。闭环伺服系统主要由比较环节、伺服驱动放大器,进给伺服电动机、机械传动装置和直线位移测量装置组成。对机床运动部件的移动量具有检测与反馈修正功能,采用直流伺服电动机或交流伺服电动机作为驱动部件。可以采用直接安装在工作台的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。系统的直线位移检测器安装在移动部件上,其精度主要取决于位移检测装置的精度和灵敏度,其产生的加工精度比较高。但机械传动装置的刚度、摩擦阻尼特性、反向间隙等各种非线性因素,对系统稳定性有很大影响,使闭环进给伺服系统安装调试比较复杂。因此只是用在高精度和大型数控机床上。
(三)半闭环伺服系统。半闭环伺服系统的工作原理与全闭环伺服系统相同,同样采用伺服电动机作为驱动部件,可以采用内装于电机内的脉冲编码器,无刷旋转变压器或测速发电机作为位置/速度检测器件来构成半闭环位置控制系统,其系统的反馈信号取自电机轴或丝杆上,进给系统中的机械传动装置处于反馈回路之外,其刚度等非线性因素对系统稳定性没有影响,安装调试比较方便。机床的定位精度与机械传动装置的精度有关,而数控装置都有螺距误差补偿和间隙补偿等项功能,在传动装置精度不太高的情况下,可以利用补偿功能将加工精度提高到满意的程度。故半闭环伺服系统在数控机床中应用很广。
二、伺服电机控制性能优越
(一)低频特性好。步进电机易出现低速时低频振动现象。交流伺服电机不会出现此现象,运转非常平稳,交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能,可检测出机械的共振点,便于系统调整。
(二)控制精度高。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。例如松下全数字式交流伺服电机,对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。
(三)过载能力强。步进电机不具有过载能力,为了克服惯性负载在启动瞬间的惯性力矩,选型时需要选取额定转矩比负载转矩大很多的电机,造成了力矩浪费的现象。而交流伺服电机具有较强的过载能力,例如松下交流伺服系统中的伺服电机的最大转矩达到额定转矩的三倍,可用于克服启动瞬间的惯性力矩。
(四)速度响应快。步进电机从静止加速到额定转速需要200~400毫秒。交流伺服系统的速度响应较快,例如松下MSMA400W交流伺服电机,从静止加速到其额定转速仅需几毫秒。
(五)矩频特性佳。步进电机的输出力矩随转速升高而下降,且在较高转速时转矩会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩。三、伺服电机控制展望
(一)伺服电机控制技术的发展推动加工技术的高速高精化。80年代以来,数控系统逐渐应用伺服电机作为驱动器件。交流伺服电机内是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高。目前交流伺服系统已在很大范围内取代了直流伺服系统。在当代数控系统中,交流伺服取代直流伺服、软件控制取代硬件控制成为了伺服技术的发展趋势。由此产生了应用在数控机床的伺服进给和主轴装置上的交流数字驱动系统。随着微处理器和全数字化交流伺服系统的发展,数控系统的计算速度大大提高,采样时间大大减少。硬件伺服控制变为软件伺服控制后,大大地提高了伺服系统的性能。例如OSP-U10/U100网络式数控系统的伺服控制环就是一种高性能的伺服控制网,它对进行自律控制的各个伺服装置和部件实现了分散配置,网络连接,进一步发挥了它对机床的控制能力和通信速度。这些技术的发展,使伺服系统性能改善、可靠性提高、调试方便、柔性增强,大大推动了高精高速加工技术的发展。
另外,先进传感器检测技术的发展也极大地提高了交流电动机调速系统的动态响应性能和定位精度。交流伺服电机调速系统一般选用无刷旋转变压器、混合型的光电编码器和绝对值编码器作为位置、速度传感器,其传感器具有小于1μs的响应时间。伺服电动机本身也在向高速方向发展,与上述高速编码器配合实现了60m/min甚至100m/min的快速进给和1g的加速度。为保证高速时电动机旋转更加平滑,改进了电动机的磁路设计,并配合高速数字伺服软件,可保证电动机即使在小于1μm转动时也显得平滑而无爬行。
(二)交流直线伺服电机直接驱动进给技术已趋成熟。数控机床的进给驱动有“旋转伺服电机+精密高速滚珠丝杠”和“直线电机直接驱动”两种类型。传统的滚珠丝杠工艺成熟加工精度较高,实现高速化的成本相对较低,所以目前应用广泛。使用滚,珠丝杠驱动的高速加工机床最大移动速度90m/min,加速度1.5g。但滚珠丝杠是机械传动,机械元件间存在弹性变形、摩擦和反向间隙,相应会造成运动滞后和非线性误差,所以再进一步提高滚珠丝杠副移动速度和加速度比较难了。90年代以来,高速高精的大型加工机床中,应用直线电机直接驱动进给驱动方式。它比滚珠丝杠驱动具有刚度更高、速度范围更宽、加速特性更好、运动惯量更小、动态响应性能更佳,运行更平稳、位置精度更高等优点。且直线电机直接驱动,不需中间机械传动,减小了机械磨损与传动误差,减少了维护工作。直线电机直接驱动与滚珠丝杠传动相比,其速度提高30倍,加速度提高10倍,最大达10g,刚度提高7倍,最高响应频率达100Hz,还有较大的发展余地。当前,在高速高精加工机床领域中,两种驱动方式还会并存相当长一段时间,但从发展趋势来看,直线电机驱动所占的比重会愈来愈大。种种迹象表明,直线电机驱动在高速高精加工机床上的应用已进入加速增长期。
参考文献:
[1]《交流伺服电机控制技术的研究》,中国测试技术,郑列勤,2006.5.
随着国民经济快速的发展,汽车、船舶、工程机械、航空航天等行业将为我国机床行业提供巨大的需求。预计到2015年,我国数控机床所需的数控系统需求将达到40万台套以上(不包含进口机床所配套数控系统),其中中高档占比预计在60%左右,数控系统市场需求将超过92亿元。
《高档数控机床与基础制造装备》国家科技重大专项要求,到2020年,我国将实现高档数控机床主要品种立足于国内:航空航天、船舶、汽车、发电设备制造所需要的高档数控机床与基础制造装备80%实现国产化;国产中、高档数控机床用的国产数控系统市场占有率达到60%以上:高档数控系统市场占有率将从现在的1%提高到20%。
正是基于这些需求,中国机床工具工业协会副理事长、数控系统分会理事长陈吉红表示,数控系统行业“十二五”努力的方向是:抓住行业发展的重要战略机遇,以发展数控机床为主导、主机为龙头、完善配套为基础,重点突破数控系统和功能部件薄弱环节,加快高档数控机床产业化。依托科技重大专项,坚持科技进步和自主创新。加强创新人才队伍建设,提升企业核心竞争力,推动我国由机床工具生产大国向强国转变。
数控系统的三种发展模式
长期以来,我国数控系统与数控机床的发展呈现“两张皮”的现象比较突出。两者没有形成互相支持、互相促进和共同进步的局面,也没有形成开发与应用产业联盟和利益共同体的战略合作关系,这不仅制约我国数控机床产业的发展和市场竞争力,更制约了我国数控系统行业的发展。
陈吉红介绍说,目前,国际上发展数控系统产业有三种模式,每种模式各有优劣。
西门子模式:系统厂专业生产各种规格的数控系统,提供各种标准型的功能模块,为全世界的主机厂提供批量配套。这种模式的优点是:主机厂和系统厂发挥各自的优势,有利于形成专业化、规模化生产。缺点是:系统厂和主机厂主要是买卖关系,双方结合不够紧密主机厂为了保护自己的知识产权,不太愿意将这些特色技术提供给系统厂。
哈斯模式:主机厂独立开发数控系统,并与其自产的数控机床配套销售。这种模式的优点是:主机销售带动系统推广;其缺点是:主机厂独有品牌的数控系统很难被其他主机厂选用。
马扎克模式:主机厂在系统厂提供开发平台上,研发自主品牌的数控系统,并与所自产的数控机床配套销售。这一模式既避免了“西门子模式”和“哈斯模式”可能出现的缺点,又发扬了其自身的优点。这使得主机厂所需要的特殊控制要求、加工工艺和使用特色要求可方便地融入到数控系统中:主机厂用较少的投入,形成了自己的特色技术、知识产权和数控系统产品;主机厂自主品牌的数控系统的推广,还可以进一步强化主机厂的机床品牌,增加用户对主机厂的忠诚度;降低主机厂采购数控系统的成本同时带动数控系统产业的发展。
“根据多年经验分析,马扎克模式是主机厂发展数控系统产业最适合的模式,数控系统厂和机床厂以资产为纽带,建立战略合作关系,实现主机厂、系统厂、用户多方共赢。”陈吉红举例说,“十一五”期间,华中数控积极与大连机床、北一机床、武重集团、南通机床等重点机床企业建立战略合作关系,大大促进了中高档国产数控机床和数控系统发展。如华中数控与大连机床以资产为纽带,建立战略合作伙伴关系,在华中数控系统开放式平台的基础上,大连机床集成了用户工艺,开发特色功能和界面,研制了“大连数控”品牌的数控系统。这使得大连机床的整机性价比得到提高,用户得到了实惠,也改变了大连机床以往中、高档机床全部配置国外系统的状况。
为与主机全面配套奠定基础
“十一五”期间,国家启动实施《高档数控及基础制造装备》国家科技重大专项,国产数控系统技术水平和可靠性都取得了显著提升。陈吉红说,数控系统的研制与开发在关键技术方面取得了明显突破,已在国产机床上得到应用,为与主机全面配套奠定了基础。
例如,“十一五”期间,华中数控研制的五轴联动高档数控系统填补国内空白,打破国外封锁,300台五轴系统在军工等重点行业使用。基于“高档数控装置”、“国产CPU”、“全数字驱动及电机”三个重大专项课题研制而成的华中HNC-8型总线式高档数控系统,采用开放式软硬件体系结构及总线技术。目前,华中8型数控系统已与10类44台重大专项高档数控机床配套应用,主要技术指标已与国外高档数控系统相当。
广州数控研制的全数字高档数控系统具有高速程序预处理、多通道多轴联动控制、多通道及复合加工控制、等功能,系统基于工业以太网,具有自主知识产权的高速实时串行总线协议GSK—Link,支持EtherCAT,NCUC-Bus、GSK—Link三种协议的高速实时串行总线。
沈阳高精数控研制的高档数控系统系统,为基于多处理器,支持8通道、8轴联动、64轴控制,最小控制分辨率1纳米,具有7200段/秒、2000段前瞻的高速处理功能,可与5轴联动高速加工中心等数控机床配套应用。
大连光洋数控研制的总线数控系统,强大的多通道控制能力;优秀的五轴加工能力,支持多种五轴机床结构,支持斜面加工、定向退刀,支持3维刀具半径补偿;高速高精度控制。配合伺服驱动,可适配0.75~110KW交流同步伺服电机、交流异步主轴电机、力矩电机、直线电机;基于新一代光纤现场总线。
技术与市场差距
“十一五”期间,国产高档数控系统技术有了突破,但和国外高档数控系统相比,差距依然较大,陈吉红认为一方面是技术方面的差距。首先,产品在功能上存在差距:功能还不够完善,在实际应用中验证还不全面,在高速、高精、多通道控制、双轴同步控制等技术上不足;第二,产品的系列化不足:产品品种不齐、规格不足、成套性差、机电接口不一,影响配套。第三,产品的应用验证不够:产品生产完成后验证考核数量、时间不够,可靠性测试结果不能令人信服;第四,产业尚未起步:由以上等原因,导致产品的市场占有率偏低,用户认可度不高。
另一方面,是市场方面的差距。据工信部的《机床工具行业“十二五”发展规划》显示,“十一五”期间,数控系统发展滞后已成为制约行业发展的瓶颈。国产中档数控系统国内市场占有率只有35%,而高档数控系统95%以上依靠进口。
因此,为解决与国外高档数控系统的差距,需要通过在数控系统的关键共性技术、应用技术上取得突破,以此带动国产中高档数控系统的生产。陈吉红建议说,首先,以利益为纽带,整合国内的技术和人力资源,集中国家的财力支持建立国产数控系统软件、硬件和共性技术研发平台。建立技术研发管理机制,建立软件开发的质量管理体系(CMM)。
【关键词】828D数控系统 电路设计 PLC设计 系统调试
1改造概述
VMC-1250数控铣床由美国CINCINNATI公司制造,机床原采用SIEMENS A2100数控系统,现选用西门子公司的SINUMERIK 828D数控系统作为机床控制系统。
具有80位浮点数纳米计算精度(NANOFP),组织有序的刀具管理功能,Easy Archive--备份管理功能,可配置最大轴数:车床版8轴 / 铣床版6轴, Operate操作系统等优点。
2 SIEMENS 828D数控系统调试概述
机床是否能够安全可靠的操作运行,主要是由数控系统的PLC,NC控制的。 当系统及电气连接正确无误后才可以上电进行系统调试。系统调试分为(1)PLC程序调试;(2)驱动器调试;(3)NC调试。在使用PLC子程序之前,需要进行系统初始化。系统初始化就是利用计算机与机床通讯将标准车床或铣床的初始化文件传入828D系统,初始化不仅对系统的坐标进行配置,还对车床和铣床的工艺参数进行了配置,而且安装了车床或铣床的加工工艺循环。标准机床指的是符合系统初始化后所规定的机床坐标配置的机床,有车床和铣床之分。系统初始化后,所有的机床参数均有缺省值。
3 PLC程序调试
在系统的各个部件正确连接后,首先应当设计并调试PLC控制程序。 828D是基于SIMATIC S7-200的PLC构架,使用“Programming Tool PLC828”软件进行PLC程序的编辑、诊断。
为了让PLC程序简单明了,方便诊断故障应遵循以下规则:
(1)尽量避免使用局部变量;(2)OB1只能用来调用子程序;(3)网络中编写程序的宽度不要超过显示宽度;(4)尽量避免使用复杂指令;(5)尽量使用简单的逻辑关系;(6)一个输出线圈的使能、置位、复位在整个程序中最好只出现一次;(7)临时变量只能在同一子程序中出现;(8)不要使用间接寻址;(9)程序中尽量避免使用M作为中间变量,使用用户自定义数据块。
PLC用户报警为机床维护、操作人员提供了有效地诊断手段。828D提供了248个用户报警(700000-700247)对应接口信号为DB1600.DBX0.0-DB1600.DBX30.7,
每个报警具有一个配置8 位参数MD14516[0]~ [247]“USER_DATA_PLC_ALARM”。可以根据实际情况设定每个报警的清除条件和报警响应。如果参数第6~7位都为“0”, 表示报警为“自清除”报警;如果0~5位都为“0”,表示报警为“只显示”报警;828D可以在HMI上创建报警文本,编写完的报警文本直接保存在系统CF卡/oem_alarms_plc_chs.ts文件中。
在PLC启动过程中,MCP所有的灯不停闪烁,利用Programming Tool PLC828软件,借助上位计算机来对系统PLC程序进行传输。调试各个PLC块信号,使MCP和NCK能正常启动,并无报警信息。先建立系统组织块 OB1;然后根据实际系统配置和机床硬件要求,使用LADDER语句和STL语句,完成相应的机床功能子程序块的设计。并将整个PLC软件系统进行配置和连接。在系统调试前,需要建立轴控制使能链。轴使能链至关重要,如果机床下电时序不正确轴就会处在自由停车状态,既机床下电后轴还会运动一段距离。轴使能上电时序有关的有10个信号:
急停信号: DB2600.DBX0.1,DB2600.DBX0.2;EP使能:电源模块上的X21.3端子信号;OFF1使能:PPU的X122.1端子信号;OFF3使能:PPU的X122.2端子上信号自定义到信号Q0.3上;轴控制使能:DB380*.DBX2.1;轴脉冲使能: DB380*.DBX4001.7;第一测量循环:DB3800.DBX1.5;通道进给保持:DB3200.DBX6.0;轴进给保持 DB3*.DBX2.1,DB3*.DBX21.7;
系统上电的第一步是给电源模块加EP使能,间隔100ms后加OFF1使能,OFF1使能加上后可以加OFF3使能,加OFF3的同时可以给各轴加脉冲使能和控制使能。
按下急停开关时,首先要断掉OFF3使能,待所有轴出现静止信号DB390x.DBX1.4时,才可以同时断开OFF1,脉冲使能和控制使能,OFF1断开后延时100ms断开EP使能。
4 驱动器调试
当PLC 应用程序的正确无误后,即可进入驱动器的调试。驱动器调试步骤:
(1)驱动器固件升级;(2)驱动器配置,;(3)电源配置;(4)分配轴。
除非调节型电源模块外,SINAMICS 部件内部均具有固化软件,简称固件;为保证驱动器与数控系统软件的匹配。固件升级期间,驱动器进线电源模块和电机模块上指示灯:READY 以2Hz 的频率,绿/红交替显示,表示固件升级在进行中;固件升级期间严禁断电!当升级结束后,HMI会出现重启系统及驱动的提示,这时必须重启整个控制系统驱动固件升级才能生效。
828D分配轴可以使用Startup-tool软件自动设定机床数据,可视化的分配轴界面非常方便。
5 NC调试及优化
配置完参数后为了让机床的电气和机械特性相匹配,得到最佳的加工效果,还需要对伺服进行优化。828D系统在HMI上集成了先进的在线伺服优化软件,可以对速度环和位置环进行自动优化。自动优化是各轴独立运行的,在所有轴都优化以后,需要进行各轴的匹配。其中比较重要的是,如果优化后手轮移动轴时有震动现象,需要设置MD32420-1激活手轮模式下的JERK功能。再将MD32430设为20-50即可消除震动。
6结语
西门子828D数控系统具有的高度模块化、开放性以及规范化的结构,适用于各中小型机床,调试简易方便。通过这种先进的功能性强的数控系统来改造老机床延长老旧设备的使用寿命节约成本增加效益才是老旧设备未来的出路。
参考文献:
关键词:FANUC数控系统应用中心;建设;实践
一、FANUC数控系统应用中心建设思路
1.产业基础。制造业是我国国民经济的支柱产业,装备制造业是国家重点振兴行业,数控行业是装备制造业的核心。近年来,随着我国工业现代化水平的快速提升,装备制造业的规模和水平也迅速提高,目前中国已发展成为全球最大的数控机床市场。数控行业对人才数量的需求迅速增加,对人才水平的要求也迅速提高,行业高水平与综合型技能人才的供需矛盾日益突出。为进一步促进我国职业教育的发展,提高我国职业院校数控维修专业领域职业教育水平,推进技能型紧缺人才培养,满足装备制造业的人才需求,教育部与北京发那科机电有限公司合作,选择国家重点建设的职业院校,设立“FANUC数控系统应用中心”,支持合作院校培养综合技能型数控装调维修应用人才,促进院校职业教育与企业数控技术应用人才需求紧密结合,更好地服务于制造业。
2.行业背景。本次教育部与北京发那科合作,计划从2011年1月至2015年12月,选定列入国家建设项目的、具有区域代表性的职业院校,合作设立30个“FANUC数控系统应用中心”。北京发那科将捐赠价值总计1815万元的设备等用于支持合作项目,协助合作院校建立FANUC数控系统应用中心;与合作院校联合开发FANUC数控技术应用教材和培训资料;免费为合作院校培养师资,为合作院校的数控类专业建设提供支持;与合作院校联合开展面向数控系统应用技术的数控专业学生培养、师资培训、企业员工培训、企业技术服务等业务,为学校所在地区的制造业人才培养服务,同时服务当地FANUC用户。北京发那科在专业教学改革、师资培养、教学资源建设等方面给予支持和配合。
在教育部支持下,双方将以FANUC数控系统应用中心为合作平台,进一步开展各类形式的校企合作,共同探索职业教育新模式和人才培养新机制,为我国数控专业领域的技能人才培养做出更大贡献。
二、FANUC数控系统应用中心建设方案
1.FANUC数控系统应用中心定位主要是面向数控系统的安装、调试及维修维护应用技术,开展机电大类专业学生培养、师资培训,以及面向企业培训和技术服务的一体化的综合学科平台。其中,教学包括课程建设、学生培养;师资培训是培养本校教师的专业能力,对相关职业院校教师的数控专业培训;企业培训包括承担当地机床厂,机床用户的培训;企业服务包括机床电气设计、维修维护等服务。
中心设备配备包含CNC电气安装调试实验台以及数控机床综合调试模块,可以满足以下几项教学及培训功能。①以FANUC数控系统为核心的机床电气安装及调试。其中包含:CNC系统硬件连接;机床PMC控制电气连接;CNC系统参数设定与调整;PMC编程;CNC操作与编程。②以机床机械光机为核心的数控机床机械安装与调整。其中包含:数控机床机械结构的认识;机械元件的结构;机床机械的安装及基本的精度测量方法和调整方法。③数控机床的电气,机械综合连接及调整;数控机床基本运行调整及优化;数控机床基本精度测量及调整。④数控机床零件加工操作及编程。⑤数控机床常见故障设置、分析及解决,通过实验设备,设置数控机床常见的故障,培养学生对于机床故障的分析思维方法,使其能够具备基本的故障分析及解决能力。
2.硬件配置的电气方面配备当前国内广泛使用的FANUC?摇0I-D系列CNC,包含:0I-MD,0I-MATE?摇MD,0I-TD,0I-MATE?摇TD四种产品,共配置20套左右。将FANUC系统做成相应的实验台,以满足电气安装及调试教学与实训。机械配置方面选择小型车床、铣床或加工中心的机械光机,去掉防护等配件,保留各轴核心的传动机构及工作台,使机械结构便于拆装和调整。将伺服电机安装在机械上,便于与电气实验台连接,以实现综合调整。故障设置模块是通过计算机软件以及硬件辅助模块的配合,设置数控机床工作现场中常见的故障,用于机床维修方面的培训。数控机床综合调试模块是以企业常用的车床或加工中心为对象,并对其结构进行适当改造,使其便于教学和培训,但保留真实的机床结构,使学生掌握数控机床的结构,以及工厂中数控机床的综合调试及维修维护方法。
三、FANUC数控系统应用中心建设的主要内容
1.实验室建设:陕西工业职业技术学院FANUC数控系统应用中心于2011年12月由陕西工业职业技术学院和北京发那科机电有限公司、陕西法士特汽车传动集团有限公司共同建设。本中心得到了FANUC公司大力支持援助,旨在加强校企合作,推广应用可靠性高、性能好的FANUC数控系统,提高学校教学设备档次,提高教学水平,积累相关教学经验。该中心目前拥有系列化FANUC数控系统培训设备。其中:FANUC?摇0i-MD数控系统电气实验培训装置2套,FANUC 0i-TD数控系统电气实验培训装置1套,FANUC 0i Mate-TD数控系统电气实验培训装置12套,FANUC 0i Mate-MD数控系统电气实验培训装置4套,以及与之配套的教学考核系统18套,机械十字滑台8套,半实物数控车床4台,半实物数控铣床4台和伺服调整装置5台等。中心设有多媒体专用培训教室,可以满足不同层次、不同需求的学员学习需要。
中心可以进行的实验实训项目有:FANUC数控系统系列产品综合介绍、数控系统机床操作、数控系统加工编程、数控系统硬件连接设计、参数设置调试、PMC编程开发、常见故障维修分析等。中心可以培训的对象是:数控维修、数控技术、机电一体化、机械制造、模具加工、电气自动化等专业学生;从事机床编程操作加工、数控系统电气设计与维护、数控机床生产、电气改造等企业技术人员以及在大专院校、技校、高职等学校从事数控技术教学的人员。中心可以承接的对外技术服务有:FANUC数控系统技术咨询;数控机床电气设计、PMC编程开发、电气调试:零件加工编程;机床改造、数控机床故障诊断与维护等。
2.教学研究:主要是分析和研究当前高职机电一体化类专业数控系统装调与维修教学的方法,提出关于提高学生数控系统装调与维修技能的建议以及专业技能提高的具体意见,形成较为系统、完整的结论和观点;提出关于高职机电一体化类专业数控系统装调与维修技能提高及实验实训建设的基本思路,明确高职机电一体化类数控系统装调与维修教学的基本要求,为数控系统装调与维修教学建设工作提供借鉴和帮助。
3.师资培训:在进行学生教学的同时,中心需要承担对院内外相关专业教师的培训,我们的培训得到了各院校同行的认可与好评;对企业员工的培训也得到了认可,社会反响良好。
4.教材建设:研究建立高职机电类专业的FANUC数控系统装调维修教学体系,形成一整套电子教材、课程电子教案、指导性的教学文件(教学大纲、授课计划),配备了实训指导书,为教师备课、学生学习提供了很大的帮助。
四、FANUC数控系统应用中心建设的体会
1.探索职业教育新模式,人才培养新机制。北京发那科机电有限公司是北京机床研究所与日本FANUC公司在中国合资的子公司,是世界主流的数控系统制造商,是北京市高新技术企业。公司主要承担FANUC CNC产品在中国市场的业务。长期致力于帮助中国用户选好用好FANUC系统。通过“应用中心”的建立,我院相关专业的教师将获得发那科机电有限公司的技术培训与技术支持,形成一个专业团队,共同开发教材和培训资料,共同带领学生为企业服务,形成一个“企业带着学校走”的新模式,进而达到“教师带着学生服务企业”的目的。
2.紧跟数控领域新技术,使学生不断掌握新技能。发那科机电有限公司的产品更新换代时,公司将尽快地对“应用中心”团队的教师进行培训,使其掌握新的技术,并进而带领学生掌握这些新技能,以期更好地为企业服务。
3.加强横向联系,学习先进经验。“FANUC应用中心”建设团队中的学校大多是沿海经济发达地区的学校,而且大多是国家示范院校。他们在许多方面值得我们学习。在“应用中心”这个团队中,通过教材建设、年会交流等多种形式,我们可以加强与这些兄弟院校的交流,学习其先进的教学理念和教学方法,从而提高我院机电大类的人才培养质量。
五、FANUC数控系统应用中心建设后的应用
1.中心建成后,我院与多家企业合办了全国性的“中职教师数控装调维修培训班”,取得了较好的效果,后续培训仍在进行中。
2.完成了我院承办的国家级培训项目——高职教师“数控设备装调维修专业”为期一年的教学培训工作。
3.在应用中心的平台上,主持了教育部数控设备应用与维护专业教学资源库建设项目子项目——《数控设备改造》课程的建设工作。
4.完成了我院2010级机电一体化专业、数控维修专业300余名学生的“数控设备装调维修”课程理实一体化教学工作。
5.完成了2012年全国职业院校技能大赛陕西选拔赛“数控设备装调维修”项目的学生训练工作,学生在大赛中取得较好的成绩。
FANUC数控系统应用中心是一个技术交流的平台,是一个提高技能的平台,我们要更好地利用这个平台进行学习和研究,不断提高教师的理论和实践技能,培养出更高水平的学生,服务于企业生产,服务于社会。
参考文献:
[1]祝战科.FANUC数控系统应用中心建设方案[R].2011.
制造业是国民经济的物质基础和产业主体,是国民经济高速增长的发动机,是科学技术的基本载体,是国家核心竞争力的重要体现,是国家安全的重要保证[1]。长期以来我国对制造业不够重视,以上对制造业地位的确立是我们几十年血的教训得来的,已经成为制造业学科泰斗们和国家的共识。当前随着经济全球化趋势迅速发展,国际上产业结构调整和产业转移步伐加快,国际竞争更加激烈,这既对我国提出了严峻的挑战,也提供了历史性的发展际遇。数控机床是制造业的工作母机,是制造业的基础和根本。笔者将蓝牙无线通信技术引入数控系统,并对其应用前景进行了有益的探索。
将蓝牙技术与数控系统的结合,可考虑从以下三个方面提升现有数控系统的性能:
(1)实现技术人员对数控机床的无线监控,方便了用户生产和维护。在生产过程中用户方技术人员可以通过便携的蓝牙监控设备对数控设备进行实时监控和干预机床的运行。
(2)通过建立高速无线数据链路提高数控系统的实时自动监控能力。现有数控系统是基于操作者监控的系统。当数控机床进行加工工作时,操作者主要依靠肉眼的观察和自身的经验来判断机床的运行情况并作出适当的干预,例如停止主轴、系统停机等。这一过程是人工的,其最大的缺陷在于实时性差,当操作者发现异常情况时,可能已造成工件的损毁、机床的破坏等无法弥补的损失。通过引入蓝牙技术,在数控主机与蓝牙监控机之间建立高速数据链路,将数控系统的运行参数实时地传送给蓝牙监控机,由监控机实时地、自动地监控和记录数控系统的运行状态并对数控系统主机发送相应的操作命令。
(3)通过蓝牙监控系统对数控系统运行状态的实时和完整的记录提高数控系统的可维护性。提高机床的维护效率,缩短维护时间是提高数控机床利用率和节省人力、资金的重要途径。2003年9月的数据表明我国机床设备利用率在20%~30%之间。蓝牙技术引入数控系统后,通过对系统运行状态的完整保存,得以对故障进行再现、和分析,可以大大提高系统的非机械性故障的维护效率。
1.蓝牙技术简介
蓝牙技术(Bluetooth)是一种短距无线通信技术,其目的是替代数字设备和计算机外设间的电缆连线以及实现数字设备间的无线组网。1998年爱立信、诺基亚、东芝、IBM和英特尔成立了蓝牙特殊利益小组(SIG),负责制定蓝牙规范。
蓝牙规范规定了蓝牙应用产品应遵循的标准和需要达到的要求。到目前为止,SIG已经颁布的蓝牙规范有110、110B、111三个版本,目前最新的111版本于2001年4月公布。蓝牙规范由两部分组成:蓝牙核心协议、蓝牙应用框架。
蓝牙技术产品体积小、功耗低,可以方便地集成到几乎任何数字设备中。使用的产品包括手机、PDA、笔记本电脑、打印机、数码相机等。蓝牙无线技术的应用大体上可以划分为替代线缆(CableRe2placement)、因特网桥(InternetBridge)和临时组网(AdHocNetwork)3个领域。
2.技术路线分析
蓝牙技术是现今技术最复杂的一种无线通信技术。蓝牙技术的复杂性并不体现在它的硬件上而是体现在其协议本身的庞大和兼容性上。要实现以蓝牙为数据链路的应用,技术路线的探索和确定是一个关键环节。
根椐数控系统的整体设计要求,系统平台为WindowsNT操作系统。研究的总体目标是“以蓝牙无线通信技术为传输载体,实现数控主机与PC和便携设备的互连,完成数据在数控主机与PC及便携设备的互传,以实现对数控系统的实时监控和高效率维护。”在总体目标确定的情况下,在组织研究的基础上确定了以下三种技术路线:
(1)独立开发蓝牙的HCI层以下协议栈以及上层独立的通信协议,在此基础上完成系统控制和收发模块的开发工作,实施对接后完成整个开发工作。这一方法无疑是最具吸引力的一种方法。其优点有:
①可以独立掌握蓝牙的核心技术;
②蓝牙的所有指令可以在控制模块中直接得以执行,我们可以直接控制蓝牙设备的工作状态、设备连接、通信速率和通信时机;
③减少HCI层以上的协议层,加快程序执行速度。
这种方法所需的工作量极大,蓝牙设备的驱动程序、HCI层以下协议栈和HCI上层控制模块在短时间内独立完成。
(2)利用第三方提供的蓝牙开发平台,开发出所需的通信模块。这种方法的优点是开发周期短、开发难度低,但需购买蓝牙开发平台。
(3)利用蓝牙市场上成熟的蓝牙设备,以蓝牙的RFCOMM上层协议栈为平台,开发蓝牙通信模块。
这种方法的优点是投资少、开发相对容易。
我们对第一种方法和第三种方法都做了研究,在综合考虑后最终采用第三种技术路线开发成功,其通信模型如图2。
3.系统设备选型及网络组织
3.1蓝牙的拓扑结构蓝牙支持点对点和一点对多点的通信,最基本的网络组成是微微网。微微网由主设备单元和从设备单元两种设备单元构成。主设备单元负责提供时钟同步信号和调频序列。而从设备单元一般是受控同步的设备单元,并接受主设备单元的控制。在同一微微网中,所有设备单元均采用同一调频序列。每个从设备单元的起始频率和占用信道由主设备单元控制。一个微微网中,一般只有一个主设备单元,而从设备单元目前最多可以有7个。不同的微微网之间可以互相连接。
设备选型要想实现数控系统与蓝牙监控系统之间的数据传输,数控系统和蓝牙监控系统上必须有相应的蓝牙硬件。设备选型涉及到数控系统和蓝牙设备软硬件,整个系统必须能够紧密配合,否则无法实现系统的整体功能要求。系统的设备选型决定了整个系统的硬件成本、开发平台、软件开发难度、开发周期等一系列问题,是一个系统工程,关系到整个系统的研发成败。设备选型主要集中在数控系统本身蓝牙设备的选型和蓝牙监控设备的选型上。
在数控系统本身的设备选型上,我们采用了IPC+蓝牙USBDongle的硬件组合,它具有以下优点:
•系统的成本低。IPC和蓝牙USBDongle都是成熟的工业产品,销售渠道多采购方便,采购成本低。
•便于开发平台的选择和统一。IPC严格符合业界的各种PC机标准,PC机的操作系统和丰富的软件开发平台都可以使用。蓝牙USBDongle符合蓝牙1.1技术规范,蓝牙丰富的上层协议为我们实施开发提供了丰富的协议接口。
•蓝牙USBDongle与数控IPC是独立的硬件,大大增加了硬件的灵活性,避免了硬件的独特性给采购带来的麻烦。
蓝牙的固定监控主机基本与数控系统本身的相同,可以采用IPC+蓝牙USBDongle或笔记本PC+蓝牙USBDongle的组合。
基于以下几点,蓝牙移动监控设备采用了HPiPAQPocketPCh5450PDA:
•简化了开发平台的选择和开发。该PDA采用MS的PocketPC210(即WindowsCE310)操作系统,该系统支持主流的X86系列微机在WindowsNT下软件的嵌入式版本,软件资源丰富。因此软件开发平台可选择免费eVC或eVB,而避免了其它主流嵌入式操作系统如PalmOS和Linix所带来的软件资源不够丰富,节省了昂贵的开发平台采购费用。
•该PDA集成了符合蓝牙协议规范111标准的蓝牙模块,避免了PDA上蓝牙设备的开发和选型问题。
•HPiPAQPocketPCh5400PDA采用了ARM体系结构的IntelmPXA250应用处理器,它的主频为400MHz。该系统功耗低、性能高,能够满足蓝牙监控系统要求的系统运行速度。
•HPiPAQPocketPCh5400PDA的系统操作界面与主流的Windows操作系统的界面布置和使用方法相似,界面友好、便于操作。便于使用人员的培训和使用。
整个硬件系统的硬件组织和网络拓扑结构见图4。
4.系统软件结构模型及功能
软件结构模式是指软件的组织管理方式,即系统任务的划分方式、任务的调度机制、任务间的信息交换机制以及系统的集成方法等。研究结构模式是为了解决CNC系统软件集成的问题,也是开发新系统首先要解决的问题,是决定数控系统开发的成败和性能高低的第一要素。系统的整体软件结构模型见图5。
数控系统是基于WindowsNT的全软件型数控系统,软件构架采用“线形系统结构”,这种软件结构具有结构简单、系统模块化程度高、开发维护简单等优点。数控系统与蓝牙结合并实现实时自动监控的首先要解决的问题是实时数据的高速实时采集。通过将蓝牙数控模块嵌入数控全软件数控系统的位控、速控模块,问题就得到了很好的解决。系统运行过程中,蓝牙收发模块将位控模块采集的数控机床的各传感器的信息和机床的运动坐标状态实时地发送到蓝牙监控系统的蓝牙数据收发模块,蓝牙监控系统的蓝牙数据收发模块将发送过来的数据分别送入实时自动监控模块,实时自动监控模块对运行的状态信息按一定的监控算法进行分析检查,如发现有异常则发送指令回CNC部分完成对机床的控制,实时监控模块负责将系统的状态数据存入状态数据库。同时,故障自动检测模块调用系统信息数据库中的机床实体三维信息和被加工工件的三维实体信息结合机床的实时加工状态信息检测可能发生的故障,并实施自动干预措施。人工干预模块是一个人工干预命令集合,在加工过程中技术人员可通过该模块人工发送指令,控制机床的工作状态和实时修改加工参数。故障回放模块是一种事后处理系统。数控系统和蓝牙监控系统之间的工作是相互独立地实时并行工作,因此无论CNC部分发生怎样严重的故障,并行部分都能完整的记录系统的状态信息。故障回放和故障仿真模块调用系统状态数据库中的信息,完成其对机床故障的重现,帮助技术人员排除故障、积累避免故障的经验。
5.实现及结论
在现代制造系统中,由于英特网和分布式计算技术的出现,产品的设计和制造日益分散化,协同合作制造日益成为更快速、更经济的生产高质量产品的有效模式。目前的数控系统正在向着集成化(Integrated)的方向发展,其目的在于为产品生产过程中的各个独立部门提供有效的协同工作环境。传统的CIMS技术大而全,在一般的中小企业很难实施,于是INC应运而生。
2.INC的概念与关键技术
2.1INC的概念集成化数控(IntegratedNumericalControl,INC)将CIMS中的功能实现(如CADPCAMPCAPPPNCP等)抽象为一系列独立的功能模块,再将这些功能模块集成在一起便可组成一个具体的数控系统。
以水射流机床所使用的INC系统的整体工作流程为例(见图1),其整个系统是建立在工程数据库的基础上,数据库包括花样库、切削用量库、夹具库、喷嘴库、工艺库、NC代码库等,它们通过IntranetPInternet集成在一起,构成了工程数据库。INC系统可分为6个子部件模块:辅助设计(CAD)、辅助工艺(CAPP)、优化决策、数控加工(CNC)、系统监控和总体规划。
2.2INC与ONC、DNC的区别
开放式数控(OpenNumericalControl,ONC),与传统的CNC系统相比较,ONC的核心在于其开放性,它必须提供不同应用程序运行于系统平台之上的能力;提供面向功能的动态重组工具;提供统一、标准化的应用程序用户界面。世界各国相继启动了有许多关于开放式数控的研究计划,其中影响较大的有美国OMAC(OpenModularArchitectureController)计划,欧共体的OSACA(OpenSystemArchitectureforControlwithinAutomation)和日本的OSEC(OpenSystemEnvironmentforController)计划等[3]。直接数控(DirectNumericalCon-trol,DNC)和分布式数控(DistributedNumericalControl,DNC)系统的主要目标是更加有效地控制一组数控机床或是整个工厂的生产,它实际上是一种分布式制造。
与ONC、DNC不同,INC是以数控为核心,它的各个模块都是面向数控,它的一切工作都是为数控加工服务。例如,一般的CAM系统注重特征识别、零件几何造型的建立以及零件加工轨迹的定义等,而INC的CAM模块中注重的是对零件加工过程的仿真和生成数控加工代码,其目的是便于检验零件的手工编程或自动编程的数控加工程序是否正确。与分布式制造(DistributedManufacturing)相比较,INC更接近于一种协同制造(CollaborativeManufacturing)。
2.3INC的关键技术
INC有三点关键技术:面向数控的CAD技术;面向数控的CAPP技术和基于CADPCAPP信息集成的CNC技术。
面向数控的CAD技术包括图像预处理、智能识别、图像矢量化和CADPCAPP集成技术等。面向数控的CAPP技术则包括路径优化、步骤优化、CAPPPCAM集成、工艺数据库的建立和管理技术等。
基于CADPCAPP信息集成的CNC技术,主要是与CADPCAPP集成系统的接口和交互的技术(基于STEP标准扩展的接口和交互技术)、嵌入式设备研制技术和实时技术等。
本文将对基于CADPCAPP信息集成的接口和交互的技术进行讨论与研究。
C与CADPCAPP的接口和交互技术
目前在工业化应用中的NC所采用的编程方式还是基于ISO6983(GPM代码)标准,随着计算机辅助系统CAX技术、系统集成技术等的飞速发展和广泛应用,该标准已越来越不能满足现代NC系统的要求,成为制约数控技术乃至自动化制造发展过程中的瓶颈问题。
1997年欧共体提出了OPTIMAL计划,将STEP技术延伸到自动化制造的底层设备,开发了一种遵从STEP标准、面向对象的数据模型(称为STEP2NC),将产品模型数据转换标准扩展到CNC领域,重新制定了CADPCAPP与CNC之间的接口,为实现CADPCAPPPCNC之间的无缝连接,进而实现真正意义上的完全开放式数控系统奠定了基础[4]。
传统数控系统与CADPCAPP之间的数据交换是单向传输,现场对NC程序的任何修改都无法直接反馈到CADPCAPP系统,生成NC程序时记录最初加工需求的信息已经丢失。而使用STEP2NC可减少加工信息容易丢失的问题,实现双向数据流动,能够保存所做的修改,使零件程序和优化的加工描述及时地反馈到设计部门(CAD),以便设计部门及时进行数据更新,获得完整、连贯的加工过程数据文件。
图2所示是基于STEP2NC标准的数据模型,其中包含了加工工件的所有任务,其基本原理是基于制造特征(如孔、型腔、螺纹、倒角等)进行编程,而不是直接对刀具与工件之间的相对运动进行编程。这样,CNC系统可以直接从CAD系统读取STEP数据文件,消除了由于数据类型转换而可能导致的精度降低问题。
图3所示为一种采用了STEP2NC标准的数控系统结构模型,该结构模型包含了当前STEP2NC与数控系统结合的3种模式,模式1是一种过渡形式,上层符合STEP标准的CADPCAPP系统与STEP2NC接口实现双向数据流动,下层通过增加符合STEP2NC标准代码转换接口,将STEP2NC数据代码转换为GPM等代码,进而实现对现行数控系统的控制。模式2是一种比较简单、初级的模式,与模式1的区别在于下层采用了新型STEP2NC控制器,直接读取STEP数据格式加工文件。模式3是模式2的发展与完善,它使系统的集成度更高、设计层与车间层之间的功能重新划分,实现CAPP系统宏观规划与CAD系统集成、微观功能与车间层集成。鉴于ISO6983标准在数控领域内的广泛应用,在短期内用ISO14649标准将其完全取代不太现实,因此在STEP2NC控制器广泛使用之前,模式1将长期保留在系统之中[5]。
基于STEP2NC标准的CADPCAPPPCNC之间将会实现无缝连接,CADPCAPP与CNC的双向数据流动,使得设计部门能够清楚地了解到加工实况,并且可根据现场编程返回的信息对生产规划进行及时快速的调整,生产效率将得到极大的提高。另外,CAD、CAPP、CNC之间的功能将会重新划分:CAPP系统的宏观规划与CAD系统集成,微观功能与CNC集成。
4.应用实例
AWJ水射流机床(国家专利产品)是通过高压管道形成高压水射流或磨料射流,来实现对工件的切割以及抛光等操作。初始条件为工件的数码图像,经过INC的CADPCAPP集成系统处理后直接将数据传输到CNC子模块,由CNC子模块生成加工仿真。INC系统是基于Windows平台,应用于水射流切割机的集成化数控加工。
图5所示是将经过处理后的轮廓输入CAD软件稍加修改,再由集成到CAD软件内部的CAPP软件设计出合适的加工工艺。最后生成NC代码输入模拟仿真软件,如图6所示,可以进行仿真切割加工。这样便完成了INC系统中由数码图像到成品加工的一系列工作。