时间:2023-05-31 09:33:18
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇光电材料,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
中图分类号:TB34
新材料研制和国家科学技术与生产力发展密切相关,同时也是国家经济发展根本保障之一。在世界范围内,新材料研制是国家计划中的重点研究内容。本世纪正处于光电子时代,而光电信息功能材料不但有电子材料稳定性特点,还有光子材料先进性特点,广泛应用于电子时代,发展前景极好。
1 概述光电信息功能材料
信息科学发展进程中,材料研究作为技术发展先导,是发现与完善现代化科学规律重要基础。人们从量子论发展中得到原子中电子物理运动规律,特别是最外层的电子运动规律,最先研究的功能材料是金属,例如:不锈钢、有色金属、黑色金属和特殊钢材等,并且电子层次微观物理逐渐应用量子论。
其次,半导体材料开发和利用,电力材料的技术科学发展地位有所提高,研究功能材料是科学发现的前提保障,同时也是技术开发的物质基础,在整个科学技术领域中都有所体现。并且由于新兴起来的光纤技术,将激光技术和光纤技术结合使用,为发展信息技术奠定坚实基础。正是由于光存储和光集成技术,光电信息功能材料研究范围越来越广,走入到微观物理层次,覆盖包括无机和有机、金属和非金属、静态和非静态科学技术,将计算机应用在信息高智能存储,传输与处理方面,使得信息技术发展迅速。
2 光电信息功能材料研究重点
2.1 半导体光电材料
半导体介于绝缘体和导体之间的一种材料,半导体光电材料可将电能转化为光,将光转化为电,也可处理和扩大光电信号。21世纪上半叶至今,半导体量子和异质结构材料仍然把光电信息功能材料作为研发主要内容。
2.1.1 硅微电子材料。微电子技术基础是集成电路为主要核心的半导体器件,是一种高新电子技术。半导体光伏太阳能电池和集成电路主原材料,是新能源与信息基础。随着半导体产业和光伏产业迅速发展,我国硅材料规模迅速壮大和发展。并且,硅微电子信息功能材料与现代化信息时代相联系,其具有质量轻、可靠性高和体积小等特点。半导体硅微光电信息功能材料,可提高硅集成电路使用性能成品率,但是从成本角度分析,解决硅片直径的增大问题形成了一系列缺陷密度与均匀性变差。并且,从半导体器件特征性尺寸角度;硅集成角度来看,硅材料是未来研制方向。在锗化硅材料生长应变硅材料技术基础上,其可提高器件驱动的电流和晶体管速度,其广泛应用性可能会替代65nm以下的互补性金属氧化物的半导体电路主流技术。在硅材料技术应用的同时,人们也在研制双栅-多栅器件、高K栅介质、铜互连技术和应变沟道技术。目前,硅微电子技术难以满足庞大市场需求和信息量,需要在全新原理材料、电路技术和器件技术深入研究,例如:纳米电子技术、光计算机技术和量子信息技术。
2.1.2 量子级联的激光器材料。在通信和移动通信领域,广泛使用超晶格和量子阱材料,量子阱材料集分子束外延和量子工程为一体,打破了半导体使用限制性,真正体现出了国家纳米级量子器件的核心技术。并且其发展到现在,QCL在远红光外源、红外对抗、遥控化学和自由空间内通信等较为突出。QCL高新技术研究面也更加广阔,其中,可调谐中红外激光器在国外步入工业化阶段。
2.1.3 光子带隙功能材料。光子带隙材料常称为光子晶体,其具有介电函数、周期性变化调制材料的光子状态运行模式。根据周期性的空间排列规则和特点,光子晶体分为一维、二维与三维形式。重点分析二维光子晶体,半导体薄片堆层其可以进一步制出硅基二维光子晶体和高品质因数光子微腔含单量子点砷化镓基二维光子晶体微腔,有较广阔的应用空间。例如:借助于圈内反射可限制光电在晶体内的反应,也就是光子晶体反应,以便控制光色散;其次,光子晶体可制作出计算机芯片,计算机的运行和运算速度均有所提高。对于三维光子晶体,特别是可见光的三维光子晶体和近红外波受到一定条件限制,因此,制备工艺较难。
2.2 纳米光电功能材料
所谓纳米材料,其是粒子尺寸介于1-100纳米材料。纳米光电功能材料是将光能转化成化学能或电能一种纳米行材料,其发展前景广阔,性能好,被广泛应用于光存储、光通信、光电探测器和全光网络等方面。
尺度位于宏观物体和原子簇交接区域,纳米材料有小尺寸效应、表面效应、宏观量子隧道效应和量子尺寸效应,产生点穴、光学、化学、热血和磁学特征等,其中,表面效应属于纳米光电材料重要特征之一,粒子性能决定性因素是表面原子,当表面原子数量增加到一定范围内,原子数量越多,缺陷程度就会越大,纳米光电材料活性就越高。正是由于量子尺寸影响电学性质,纳米材料才会比一般性的光电材料光催化活性高。
2.3 光折变功能材料
光折变功能材料光照条件下会吸收光子,使电荷发生转移,形成一定的空间电场,进而借助于电光效应改变折射率。这种光电材料需要低功率就可以在室温下进行光学信息处理和运算,因此有很好的发展前景。人们对光折变材料进行高密度数据的存储、空间光调制、光放大、光学图像处理和干涉测量等研究,并随着对光折变效应深入了解和发现新型材料,使得光折变材料应用范围更加广泛。
3 光电信息功能材料制备方法
光电信息功能材料根据性能与尺寸的不同要求,因此包括有很多制备方法。常见的制备方法有:高温固相反应、溅射法、Sol-gel、PCVD、CVD等。
3.1 微波反应烧结
我国通过微波辐射法合成物质有硅酸盐、氧化物、硫化物、磷酸盐、钨酸盐和硼酸盐等荧光体,利用各种物质选择光激励,从而实现了温室光谱烧孔。
3.2高温固相反应
高温固相反应是使用最广泛的制备新型固体功能材料方式,我国上海硅酸盐研究所使用提拉法技术生产出闪烁BGO晶体,欧洲核子研究所用晶体制造出正负电子撞机电磁量能器,出口总量高达千万美元,经济效益很好。
3.3 溅射法
溅射镀膜法通过直流或者是高频电场让惰性气体形成电离反应,此过程产生辉光放电离子体,其正离子与电子对靶材进行高速轰击,溅射出靶材分子和原子,从而将这两种物质沉积在基材上,形成薄膜。
3.4 CVD(热分解化学气相沉积技术)
CVD主工艺过程是借助于过载气输送反应物到反应器中,并在一定反应条件下,发生一定的化学反应,形成颗粒大小的纳米。随着反应基质粒子和纳米颗粒共同沉积到基片上,形成一层薄膜。薄膜形式有:反应气体和气体扩散吸附于生长、扩散和挥发沉底表面,这种方法可制备出氟化物、氧化物和碳化物等纳米复合型薄膜。
4 结束语
光电信息功能材料开发与研究需要通过量子物理支撑,目前其限定于光子、电子、电波和光波为主要信息载体,对研究量子物理,分析光电信息功能材料有重要作用。
参考文献:
[1]王藜蓓,陈芬,周亚训.集中光电信息功能材料的研究进展[J].新材料产业,2011(05).
[2]周舟,陈渊,黄轶.光电信息功能材料与量子物理研究[J].科技创新与应用,2013(07).
关键词:创新平台 光电子材料 教学改革
中图分类号:G420 文献标识码:A 文章编号:1672-3791(2016)11(b)-0105-02
随着材料科学的飞速发展,光电子材料已经成为新材料产业和当代信息技术产业的重要组成部分,引领着光电子、通信、新能源等产业的发展[1,2]。对于光电子材料相关专业的高校本科生,需要具备较强的光电子材料方面的实践能力,以及与这些技能相匹配的理论基础知识。通过《光电子材料》课程的学习,能够加深学生对光电子技术理论知识的理解,帮助学生将光电子技术知识与光电子相关的实验和实践能力紧密结合起来。因此,当代光电子材料相关专业的大学生亟需学习光电子材料的相关知识,以满足科技日益发展的社会需要。[3,4]
光电子材料课程的学习需要学生有良好的电磁学和光学等物理学科的理论基础知识,同时也是一门实用性强、对动手能力要求较高的课程;其课程目标主要是培养学生掌握扎实的专业知识,同时学习实验和实践相关的基本技术,性能检测的方法,培养学生的实际动手能力[5]。通过光电子材料实验可巩固和加强对有关专业理论的理解,提升学生分析和解决问题的能力,使理论与实践教学有机结合[6]。在以往理论教学中, 激光原理,光纤导光原理,光调制,非线性光学和光电探测等理论知识,涉及较多的电磁学,光学,固体物理和量子力学等专业知识,对于本科生较难理解,而实验和实践方面又要求学生在掌握理论的基础上具备较强的动手操作能力。因此,由于理论知识较难,必须进行较长时间的理论教学,实验和实践操作时间被压缩,枯燥的理论教学不能激发学生对该课程的兴趣,最终导致教学效果较差。因此,如何增加实验和实践教学的比重,使学生对该门课程产生浓厚兴趣,并将光电子材料基础理论知识与实验和实践结合起来,使学生掌握课程的主要知识和基本的操作技能,是达到良好的教学效果的关键。
1 光电子材料课程改革目标
《光电子材料》课程是材料物理(光电材料)专业的专业必修课,涵盖了《光学》、《电磁学》、《固体物理》、《量子力学》等课程相关知识,含有较多的物理公式,具有很强的理论性。根据笔者所在校培养应用型人才的办学特色,结合课程理论性强的特点,该课程目标如下:
(1)通过该课程的学习让学生了解当前光电子技术及研究的最新进展和实际的应用情况。加深学生对光电子技术及其发展的相关认识,并通过讲授光电子技术的发展历程激发学生的研究兴趣和开拓他们的思维与知识面。
(2)将该课程的理论教学与光电材料综合实验等实验课程进行有机结合,力争形成理论和实际相结合,培养学生理论基础知识的同时提升学生的综合实践能力。
2 光电子材料课程教学方法和手段改革
根据教育部的专业规范和学校的课程体系,和笔者所在校培养应用型课程人才的办学理念和材料物理专业的特点与培养目标,结合《半导体器件物理基础》理论性强的特点,在该课程建设过程中,以提高教学质量、培养学生主动学习能力和创新能力为目的,采用启发、互动式教学,讲解与讨论相结合,讲授与自学相结合。借助多媒体和实物教具进行形象化教学。充分运用该校多媒体教室所拥有设备以及网络平台来实现教学手段的现代化,充分运用实物、互联网资源以及企业资源,沓涫悼翁玫哪谌荩使其内容具体丰富。
具体采取的教学方法、手段如下:
(1)制作一系列教学video,辅助课堂教学,活跃教学气氛,增加课堂互动,有效调动学生学习积极性。
(2)建设课程网站,通过学生熟悉的微博、小木虫等平台实现“光电子技术基础”网络资源库的建立;并上传精品课时,在互联网上进行国内外的共享。
(3)课堂教学中通过课前回顾、课前提问等方式保持课程的连贯性和逻辑性,采取引入实物、实验演示及参观等方式使教学更加形象化,运用布置课后作业、小论文等方法使学生在课下更好地巩固已学内容,同时对学生掌握知识的程度得到及时的反馈,为学生打下扎实的理论基础。
(4)针对该课程公式偏多的特点,在课上带领学生推导重要的公式,使学生更好地理解公式的物理意义,掌握光电子材料与器件制造及设计的依据。
(5)针对该课程与《光电材料综合实验》等实验课程的密切关联性,在该课程理论教学中先引入关键实验课程,并逐步与《光电材料综合实验》等实验课程进行有机结合,力争做到理论联系实际,学生们学到的知识有的放矢。
(6)通过教师指定报告内容或者讨论主题,让学生进行分组报告或者分组讨论等方式,了解半导体器件物理知识在新器件制造及工艺当中的实际应用,分析和研究实际生活中有关的问题,达到理论联系实际,学以致用的目的,提高学习的深度和广度,促进学生学习能力发展。
(7)课程考核可采取过程考核的形式,即降低学期末考试成绩占总评成绩的比重(50%),另外50%的成绩根据过程考核的成绩进行评定,过程考核主要包括学生的考勤、课堂表现、分组报告或分组讨论和团队作业等多个部分。这种核算成绩的方式可以有效降低学生平时对课程重视度不够,只靠期末进行突击复习的弊端。督促学生平时对课程的各个环节进行高度重视,上课积极回答问题,积极思考如何将理论与实际应用结合起来,并且善于进行与团队协作完成作业。
3 结语
光电子材料的研究和应用不但需要较强的光电子技术基础理论知识,还需要较强的理论联系实际,动手操作的实践能力。因此,为满足社会光电子材料专业人才的需要,在协同创新平台的基础上,通过改善原有课程中“学”与“用”脱节的现象,进行有针对性的教学,能够促进学生对理论知识的理解以及知识运用和动手操作的实践能力,促进创新实践能力的专业人才的培养。
参考文献
[1]叶莉华,崔一平,胡国华.“光电子技术”课程教改探索[J].电气电子学报,2007,29(2):10-12.
[2]陈湛旭.《光电子学》课程教学改革与实践[J].广东技术师范学院学报:自然科学版,2015(2):108-109.
[3]范东华,代福.基于协同创新理念的光电子专业生产实习课程教学方法改革[J].时代教育,2015(2):199-200.
[4]赵洪霞,包蕾,徐达文,等.应用技术型本科院校光电子技术课程教学改革[J].科教导刊,2015(2):125-126.
光电化学是在电化学的基础上发展起来的一个新学科,是研究光直接对电极或界面材料的影响以及伴随的光能与电能和化学能转化的学科。1839年,Becquerel首次在由两个相同金属电极和稀酸溶液构成的体系中观察到电极在光照下产生电流的现象(即Becquerel效应)10。20世纪50年代中期,Brattain和Garrett12将半导体的光电化学性质与其电子结构特性结合起来,推动了光电化学相关学科的繁荣发展,并为现代光电化学奠定了基础。进入60年代,DewaldH提出了半导体光电极产生光电势的机理,进一步从理论层面对光电化学进行了阐述。1966年,Gerischer[4提出了半导体电极光分解理论,并首次系统研究了半导体/电解质溶液界面的电化学和光电化学行为;随后Kolb等0对半导体/电解质溶液理论不断丰富和发展,这些理论的阐明进一步为现代光电化学的发展奠定了理论基础。自1972年Fujishima和Honda0发现可以利用TiO2作为光阳极在紫外光照射下催化水的分解以来,光电化学特别是半导体光电化学领域的研究开始得到广泛关注。近年来,随着对半导体新型电极和电解质溶液体系在光照下的电化学行为和光电转换规律研究的深入,固体物理中一些概念、理论的引入与交叉,以及当前能源、环境、分析等学科领域的不断需求,光电化学方面的研究已广泛深入和应用到了光电催化CO:还原、光电化学太阳能电池、光电化学分解水、光电化学分析等领域,并呈现出蓬勃发展的趋势。
光电化学包括光电转化和电化学两个过程。其中光电转换过程,是具有光电化学活性的物质吸收光子而处于激发态,所产生的载流子通过与一些分子发生电子交换而产生电荷分离和电荷传递,形成光电压或光电流,实现光能向电能转化的过程,这是光电化学的核心过程?。另一方面,电化学过程又包括电子传递和界面反应两个过程。实现分离的电子和可分别向基底电极表面和电极材料与电解质溶液的界面转移,并在溶液界面处发生氧化还原反应,实现能量转换,形成光电流或光电压。
具有光电化学活性的材料通过光电化学过程产生光电响应的机理主要有以下两种:(1)当在周围电解质溶液中存在还原性物种时,处于激发态的光电活性物质可以被还原至基态,从而使光电化学过程持续循环进行,进而产生持续光电流;(2)当电子供体或受体作为猝灭分子存在时,在激发态分子与猝灭分子之间会发生电子转移(ET),进而发生氧化还原反应或电极表面电子转出,形成光电流,并使光电材料恢复至基态参与下一次光电响应M。以半导体材料为例,在外界光照、温度、电场、磁场等的作用下,半导体材料价带和导带上的电子态会发生一定的变化而表现出较为敏感的响应,并具体表现为光电、热电、光致发光、电致发光等现象和效应。在半导体材料受到光辐射激发时,光子能量大于禁带宽度时,价带电子就会吸收光子能量而被激发至导带上,而在价带上留有,产生载流子(即电子)。载流子中的电子和可以发生复合并将能量以其他形式释放,如果在一定的条件下发生分离,继而会产生光电压或光电流,实现光能与电能的转化M。如图1所示,当半导体的能带位置与电极的能级匹配时,导带位置上的电子可以转移至电极表面,同时产生的被电子供体捕获完成电极反应,形成阳极光电流;如果导带电子转移至电解质溶液界面处,并与溶液中的电子受体反应,电极表面的电子就会转移至半导体的价带并捕获,形成阴极光电流。因此,光电化学过程不仅伴随着能量转换,同时还伴随着电荷分离、电子传递、能量转移、界面反应等过程。光电化学过程的进行直接关系到光电转换效率、光电化学反应动力学及其应用。另外,光电化学过程的实现不仅与激发光的波长和强度有关,而且与光电材料的类型、性能有着直接且紧密的关系,光电材料本身的光电化学性质、制备方法、复合效果、形貌控制、电荷传导速率等对于光电化学过程的顺利实现有重要影响。
2光电化学传感器概述
随着分析科学的不断发展,新的分析方法不断涌现。自20世纪60年代光电化学过程阐明到21世纪初,光电化学分析方法作为一种新的分析方法开始出现并不断快速发展。光电化学分析是在光照射下基于被分析物、光电材料和电极三者之间电荷转移发展起来的一种分析检测技术14。光电化学分析的基本原理是基于光电化学过程。在电化学(电子传递和界面反应)和光电转换(能量转换)两个过程的基础上,利用被分析物对传感识别过程(界面识别或反应)的影响所产生的光电流或光电压的变化,建立起光电响应变化与被分析物之间的定量关系,从而构建出用于生物、环境等方面分析的光电化学传感器。
光电化学传感器主要分为电位型和电流型两种。其中电位型光电化学传感器主要是指光寻址电位传感器(LAPS)。目前研究较多的是电流型光电化学传感器,它是利用被测物质与激发态的光电材料之间发生电子传递而引起光电材料的光电流变化进行测定或根据待测物质本身的光电流对其进行定量分析。
光电化学传感器将传统的电化学传感器和光电化学结合起来,同时具有电化学和光化学传感器的优点。一方面,该检测方法与目前已经建立起来的电化学发光(ECL)方法在过程上正好相反,ECL采用电作为激发信号,检测的是光信号;而光电化学分析使用光作为激发信号,检测的是电信号,通过采用不同形式的能量作为激发信号和检测信号,使激发和检测信号互不干扰,因而背景信号较低,可获得较高的灵敏度;另一方面,由于采用电化学检测,因而具有设备简单、价廉,易于微型化的优点。
光电化学传感器以其独特的优点,在分析中有着广泛的潜在应用价值。光电化学分析通过与纳米材料的制备、免疫分析体系的构建、生物功能分子的应用等方面的结合,进一步拓宽了其应用范围。目前,光电化学传感器在生物活性分子分析(如半胱氨酸M、NADH21,22、谷胱甘肽E3,24、活性蛋白25,26等)、DNA分析、酶传感分析、免疫分析B6^、细胞相关分析、环境分析(如溶解氧、化学需氧量、有机污染物、重金属离子、有机磷农药、植物调节剂等)领域有着较为广阔的研究。
3光电化学传感器的材料选择与设计
从光电化学传感器的发展过程及其基本原理来看,光电化学传感器在功能结构上分为光电转换单元和传感识别单元两部分,其中前者主要在于选择具有较好光电化学活性和稳定性的光电活性物种来构建光电转换层,后者主要在于通过不同的分析传感策略来实现对目标物的检测。因此,光电化学传感器的构建主要从光电材料的选择修饰和传感信号产生模式两个方面来考虑和设计。
近十年来,随着光电化学传感器研究的不断增多,可用于光电化学分析的光电活性物种也得到了广泛关注。最近,有多篇综述对应用在光电传感器中的不同光电活性物种进行了总结6,5455。可用于光电转换层的材料主要包括有机光电分子、导电高分子、无机半导体及其复合材料等。
3.1有机光电分子
有机光电分子是相对于有机高分子聚合物来说的,主要是指在光照激发下能够发生电子从最高占据轨道(HOMO)到最低空轨道(LUMO)跃迁产生相应激发态和电荷转移的有机分子。该类分子的典型代表主要包括卟啉类、酞菁类、偶氮染料、蒽醌类以及有机金属配合物类等。其中有机金属配合物是有机光电分子中重要的一类,主要是利用具有较大离域电子体系的配体与某些金属离子构成的具有光电化学活性的一类物质。目前研究和应用比较多的是金属钌的一些配合物。Weber等53提出了使用钌-联吡啶作为光电化学信号标记物并给出了其光电化学转化过程。Ru(n)配合物受到光激发后形成活化的Ru(n)*,Ru(n)*失去电子变为Ru(m),然后Ru(m)被电子供体还原为Ru(n)。Dong等制备了钌联吡啶衍生物,并将其作为光电化学信号发生分子修饰到SnO2纳米半导体电极上,第一次通过光电化学法定量测定了生物素亲和素的识别作用。Gao等在ITO表面修饰具有较好稳定性和光响应的核酸加合物(PIND-Ru^PIND),通过ITO表面的核苷酸与目标核酸杂交,第一次用光电化学方法实现核苷酸检测。
有机光电分子一般具有较大的离域电子体系,对可见光有较强的吸收能力,并具有较强的电子注入和电子转移能力等B9’6a。另外,对于有机光电分子,可以根据需要直接合成或进行基团修饰,具有很好的可修饰性。Ikela等合成了一种有机光电材料--5,10,15,20四(4吡啶基)卟啉,并将其沉积在ITO电极上做成传感器,通过光电流的降低可重复检测核苷酸,其检测浓度达到^M级。Yamada等62以蒽醌(AQ)作为光敏剂制备出了蒽醌寡聚核苷酸复合物,并结合转移产生光电流的方法,实现了对DNA胞嘧啶甲基化的光电检测。Pandey等63报道了流动注射分析体系(FIA),选用具有光电化学活性的9,10肩醌衍生物作为信号发生分子,利用激发态蒽醌分子与电子供体(葡萄糖)反应产生的光电流,首次对嵌入DNA中的复合物进行了检测。
但该类材料单独作为光电转化层所产生的光电流较弱,需要与其他传导材料进行复合,以提高光电流信号和检测的灵敏度。如Hu等通过在石墨烯表面负载金纳米粒子,并进一步修饰巯基化卟啉制备出卟啉/AuNPs/石墨烯纳米复合物,以此作为电极修饰材料用于氢醌的光电化学检测,取得了较好的效果。
3.2导电高分子及其复合物
导电高分子是由具有共轭T键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体、半导体的一类高分子材料。由于材料的T电子共轭体系的成键和反键能带之间的能隙比较小,一般约为1.5-3.5eV,接近于无机半导体的导带和价带之间的能隙,因此,共轭高分子材料大多具有半导体性质。目前研究比较多的主要有聚吡咯、聚噻吩、聚苯胺等。导电高分子主要应用于与无机半导体复合和构建可以特异性识别目标分子并具有一定光电化学活性的分子印迹膜。其应用将在后文中进行阐述。导电高分子制备相对简单,并可以实现可控聚合或有目的性的识别基团修饰,具有较强的可设计性,因而有较大的研究潜力。
3.3无机纳米半导体及其复合物
无机半导体材料是目前研究和应用最为广泛的一类光电材料。该类材料可以通过多种方法制得,并可以通过形貌和尺寸控制表现出优异的光电化学性质。由于量子限域效应的存在,无机纳米半导体材料具有比块体材料更优异的光电化学活性。这类材料主要包括以TiOi、ZnO、WO;等为代表的金属氧化物半导体,以CdS、CdSe、ZnS、ZnSe等量子点(QDs)为代表的金属硫族化物半导体。
其中TiOi以其较好的稳定性、较快的电荷传导速率和较好的生物相容性等优点受到了广泛关注,基于TiO:的研究也最多和较为全面。但由于TiO2的禁带宽度较大,只能被紫外光激发;而在紫外光区域,很多检测体系会受到干扰或破坏,从而限制了其进一步的应用。因此很多研究通过使用有机分子、导电高分子、量子点或其他窄能带半导体等对TiO2进行敏化,来拓宽其应用光谱范围。鞠煜先课题组M报道了使用磺酸基铁卟啉功能化TiOi纳米粒子,构建了一种在较低电位下检测生物分子的光电化学传感器。徐静娟课题组M使用CdS与TiOi构成杂合物来构建光电转换层,通过免标记免疫法实现了对目标蛋白的检测。蔡青云课题组69通过CdTe/CdS共敏化TiO2纳米管阵列构建了一种用于八氯苯乙烯检测的免标记光电化学免疫传感器。通过使用P3HT与TiOi复合修饰电极,建立了一种在可见光下零电位检测有机磷农药的光电化学传感器。另外,也有用导电高分子与贵金属粒子共同修饰TiOi的报道。利用导电高分子与TiOi形成的多级电荷分离体系,并结合Au、Ag等贵金属的掺入对电极表面过电位的降低及对转移的促进,可以提高半导体材料的光电化学性能,这也为光电化学分析提供了新的材料复合。
无机半导体中,另一种常用的材料是CdS(Se、Te)纳米材料或QDs,目前已有综述对这类材料的优缺点及应用进行了总结B4,73。针对该类材料具有较高的电荷复合速率和光稳定性差的缺点,通过分子/电子传递体系或有效电子传导阵列,减少半导体中电子的复合,对提高其光稳定性和光电转换效率是十分重要的。近年来,随着对碳材料研究的不断深入,碳纳米管(CNTs)、石墨烯(GR)等材料以其优异的电子学性质,在促进光电极材料的光电化学性质方面有着较多应用。Wang等M合成了CdS修饰GR的复合材料,并构建了用于灵敏检测有机磷的光电化学传感器。使用一步快速溶液反应制备了GR~CdS纳米复合材料,并用这种新合成的GR~CdS纳米复合材料构建了用于检测谷胱甘肽(GSH)的光电化学生物传感器。Li等M通过苯并b]芘磺酸盐与还原的氧化石墨烯(RGO)之间的mi堆积(stacking)作用对RGO进行非共价功能化,并结合CdS纳米粒子的原位生长制备了RGO^CdS纳米复合物;以此材料为光电转换层免疫检测了前列腺特异性抗原(PSA)。制备了具有较好光电化学活性的Cd0.5Zn0.5S/RGO纳米复合材料,并基于此复合材料构建光电化学传感器,用于Cu2+的选择性检测。碳材料作为电子传导基质的引入,不仅提高了量子点的光电转换效率,也为提高其他半导体材料的光电化学活性提供了重要思路和方法。
此外,氧化钨作为一种本征型半导体氧化物,具有耐酸性和耐高温的能力,并有较高的抗光腐蚀性;其能带宽度约为2.6eV,对可见光中的蓝光有较强的吸收;由于其能带宽度较TiOi小,可直接利用太阳光,因而具有巨大的潜在应用价值62’83。我们课题组M以WO;为基础材料并与石墨烯和原卟啉复合,构建了一种多级电荷分离体系用于半胱氨酸的光电检测。Zhang等M制备了WO;修饰TiC/C核壳纳米纤维复合电极,用于H2O2的无酶光电化学检测。纳米硫化铋是一种重要的窄能带直接半导体,其禁带宽度可以调节(Eg=1.30~1.70eV),表现出具有较宽的吸收光谱和较高的吸收系数(一般在扣4?^5^-1)B5-86。我们课题组在进一步研究B^h的光电化学性质的基础上,分别构建了用于检测DNA甲基化67]、DNA甲基转移酶活性和miRNA89的光电化学生物传感器。
3.4其他
除了以上讨论的这些光电活性物质外,全碳材料M和QN4复合材料M也逐渐引起了人们的关注。另外,某些生物材料如细胞、DNA、荧光蛋白等也具有光电化学活性,利用它们自身的光激发电荷转移过程引起的光电流变化,可以研究生物分子与其他物质间的相互作用92,该领域仍需深入研究。
4光电化学传感器信号产生与传感模式
4.1直接电荷转移与氧化还原
在光电化学传感器的设计上,一般采用较多是阳极光电流。在该传感模式中,光电极的电极反应只涉及电荷转移和电子或参与的直接氧化还原反应,一般不包括分子识别、酶催化等其他过程;信号产生的重要环节是实现电荷的有效分离。在光激发下,光电活性物质发生电子跃迁产生电子,电子转移至电极表面,而留在光电层中的与电解质溶液中的待检测物分子发生氧化还原反应。被检测物一般是具有还原性的物质,通常将其作为电子供体以一定浓度直接加入到电解质溶液中。被检测物分子的加入使得光电层中产生的电子可以有效分离,减少其复合,使光电流增加。光电流的增加会随待测物浓度的增大而增强,因而可以通过光电流与被检测物分子的数量关系实现对待测物的定量分析。Cooper等63制备了亚甲基蓝和亚甲基绿固定的磷酸锆修饰的铂通道光电极,在波长620~670nm的可见光照射下,光氧化的染料与抗坏血酸发生反应产生光电流;基于该电极构建的传感器对抗坏血酸的定量检测浓度可达到1mM。鞠煜先课题组64使用磺酸原卟啉功能化的ZnO纳米粒子修饰ITO电极构建了一种光电化学传感器。所制备的电极在360nm的光照下表现出有效的光电流响应;加入的半胱氨酸作为电子供体,可有效地捕获光生而使光电流增强。基于这种光电流信号增强检测半胱氨酸的线性范围为0.6~157^M,检测限为0.2+M。另外,鞠煜先课题组M还应用基于抑制电荷复合的光电化学策略来检测多巴胺。该光电化学传感器是通过将表面未钝化的CdTeQDs直接涂覆在含氟导电玻璃(FTO)基底上制得。量子点在405nm的光激发下,产生电荷分离,电子转移至溶液中的02使其还原为O2_.,促进电荷分离。能级处于量子点价带和导带之间的电子供体可以捕获,从而抑制载流子的复合,使光电响应增强。
虽然基于直接电荷转移与氧化还原的策略具有直接、简便、易行的特点,并且灵敏度较高,但存在的问题是可用于直接检测的目标物较少,且体系抗干扰能力较弱,在选择性上往往不能给出比较满意的结果。为了提高选择性,可以通过一定的前处理过程,将目标分子有选择的转化为可用于光电流信号产生的物质,以间接的方式来达到检测目的。如Li等M首先将待检测的甲基对硫磷通过简单水解反应得到对硝基苯酣,然后以对硝基苯酣作为电子供体,在由PTCA/TiOl作为光阳极构成的光电化学池中检测光电流信号,从而间接地实现了对有机磷的检测。
4.2基于分子结合导致的位阻效应引起的光电流抑制策略
基于分子识别和结合引起的光电层表面空间位阻效应建立起的光电化学传感器,在很多方面得到了研究和应用。通过前面的介绍可知,一般对于阳极光电流的产生,需要在电解质溶液中有电子供体来捕获来完成光电极反应。在用于光电检测的光电化学池中,无毒且氧化电位较低的抗坏血酸通常会被作为电子供体加入到电解质溶液中B7]。如果在光电层与电解质溶液层之间嵌入具有空间阻隔效果的分子复合物,就会阻碍电子供体向光电层的迁移和捕获,从而使光电流降低。基于这种光电流的降低与位阻效应的定量关系可以用于目标物的分析。目前文献报道的基于分子识别和结合产生位阻效应最常用的方式是形成生物分子间强作用亲和物(如生物素亲和素、抗原~抗体、分子受体等作用方式)。Cosnier课题组M使用生物素标记的吡咯基-Ru配合物为前驱体,利用电化学方法合成了含生物素的聚(吡咯-Ru(n))复合膜,通过生物素和亲和素之间的亲合作用,将亲和素标记的霍乱毒素(choleratoxin)固定到电极表面,并利用抗原抗体结合,以光电流降低法检测了霍乱毒素抗体。徐静娟课题组99利用层层组装法将正电性的聚二甲基二烯丙基氯化铵(PDDA)和巯基乙酸(TGA)修饰的带有负电性的水溶性CdS量子点(TGA^CdSQDs)交替组装在IT0电极表面,再通过TGA表面的一C00H与IgG的一N%结合将IgG修饰到电极表面从而制备出免标记的光电化学免疫传感器。在含有0.1M抗坏血酸(AA)为电子供体的磷酸缓冲溶液中,不加抗原时该光电极有较强的光电流响应,在加入抗原后,抗原与抗体形成免疫复合物,增加了光电极表面的空间位阻,阻碍了电子供体的传质过程从而使光电流减小,该传感器在最优条件下对抗原的检测,表现出较好的选择性、灵敏度和稳定性。
还有一些文献报道了基于aptamer与生物材料之间的作用产生位阻效应来检测目标物的方法。Zhang等_分别在层层组装的CdSe纳米粒子光电层上固定了可特异性识别目标细胞和溶菌酶的aptamer,利用aptamer与目标物形成的复合物增加电子供体传输的位阻,以抑制法实现了对Ramos细胞和溶菌酶的检测。另外,也有利用修饰在电极表面某些可以与靶细胞表面残基特异性识别的分子,将被测细胞键合在电极表面形成位阻效应。如Zhao等刚将叶酸固定在GR/CdS修饰的IT0电极表面,利用叶酸与癌细胞表面叶酸受体之间的结合作用将细胞固定在电极上,以抑制法实现对目标癌细胞的检测。徐静娟课题组M以苯硼酸功能化的卟啉敏化TiOi作为光电层,利用硼酸基团与目标细胞表面的睡液酸残基结合形成的复合物来产生位阻效应,以抑制法检测目标细胞。
4.3酶抑制及酶催化法
光电化学分析中基于酶催化活性来实现信号产生和变化也是一类重要的策略。在光电化学分析中常用到的酶主要有乙酰胆碱酯酶(AChE)、辣根过氧化物酶(HRP)、葡萄糖氧化酶(GOx)、碱性磷酸酶(ALP)等。
在光电化学分析中,电极光电层表面固定的AChE可以催化硫代乙酰胆碱生成胆碱,胆碱具有一定的电活性,在被氧化后,两分子的胆碱可以通过S-S结合形成没有电活性的二聚体,同时产生光电流。该过程需要利用固定在电极上的AChE的酶催化反应来完成。当有AChE酶抑制剂存在时,AChE的活性就会降低,进而会导致生成的胆碱量减少和光电流降低_。通过这种策略既可以分析AChE酶的活性,也可以对抑制剂进行定量&04,105。如Wang等和Gong等刚分别用AChE修饰CdS/GR和BiOI光电层,利用有机磷农药对AChE酶活性的抑制作用,以光电流抑制法实现了对有机磷农药的检测。
HRP的应用主要有两个方面,一是与%02一起用于生物催化沉积(BCP)。利用固定有HRP的CdS/TiOi修饰电极,通过HRP在H2O2存在下催化氧化4氯4萘酣(4-CN),在电极表面的沉积物,阻碍电子供体传质过程,使光电流降低,并以此建立起对H2O2的光电化学检测。该课题组M还基于生物催化沉积(BCP)构建了连有HRP的三明治结构的光电化学免疫分析阵列,并考察了对鼠IgG(抗原Ag)的协同超灵敏检测。HRP在该体系中主要有三个作用:(1)HRP标记的二抗(Ab2)通过生物结合后可以增强空间位阻,(2)HRP与%O2共同催化促进BCP过程,进一步增强位阻效应,(3)HRP可以吸收部分光子,使信号降低。综合BCP^PEC免疫分析阵列的多信号协同结果,该电极表现出对抗原较好的分析性能。HRP应用的第二个方面是催化%O2分解,该方面在信号传感中又可以以两种形式实现。第一种是HRP直接催化&O2分解,促进电极与电解质溶液之间的电子传递和光电流的产生M。第二种是通过HRP标记的待测分子与未标记的待测分子之间的竞争和HRP催化共同实现的。如Kang等aw]使用抗体(Anti-PAH)修饰的TiO2纳米管(TiO2NTs)与多环芳香化合物(PAH)和HRP双功能化的纳米金(BGNPs)复合,用于PAH超灵敏光电化学免疫分析。在不加入PAH时,Anti~PAH的表面被BGNPs所饱和,BGNPs上的HRP可以催化H2O2的还原,促进电极和电解质之间的电荷传递,从而产生光电流;而在加入PAH后,PAH会与BGNPs竞争与Anti-PAH的结合位点,使BGNPs的结合减少,并导致光电流降低。除了不参与BCP外,GOx与HRP的应用基本类似。
ALP是生物体内广泛存在的一种酶,可以催化水解生物体内的许多磷酸酯。最近,徐静娟课题组112提出了以ALP标记二抗并通过纳米金扩增,催化底物中的抗坏血酸磷酸酯(AAP)原位产生抗坏血酸作为电子供体,以光电流信号增加的方式免疫检测了前列腺癌抗原(PSA)。随后他们M又报道了将ALP固定到TiOi层,催化AAP产生抗坏血酸盐,利用抗坏血酸盐与TiOi表面的缺陷形成配体金属电荷转移复合物,使得TiO2在可见光区域有了较强的吸收带,进而产生光电流响应,并在此基础上考察了2,4-二氯苯氧乙酸(2,4-D)对ALP酶活性的抑制作用。
此外在光电化学分析中应用到的酶还有肌氨酸氧化酶以及类酶M等,如利用FePt的类过氧化物酶活性检测%O2ai6,117];某些DNA酶也具有类过氧化物酶活性,可以通过BCP或基于%O2分解引起的信号产生用于光电化学分析49。除了直接对酶活性进行分析以外,也可以通过间接法进行分析,如Willner课题组_曾报道过间接法测定酪氨酸酶(Tyrosinase)活性的方法。
4.4贵金属纳米粒子的局域表面等离子体效应(LSPR)与激子等离子体激元反应(EPI)
贵金属(Au、Ag、Pt等)在分析化学中有着广泛的应用。LSPR是入射光的电磁场频率与金属自由电子的集体振荡频率发生共振时产生的一种物理光学现象,该现象与纳米粒子的形状、大小、间距、介电性能以及周围环境等有关M。利用LSPR的性质,目前已经发展了基于散射、消光等技术的LSPR光学传感器_。基于TiO2或ITO电极负载的Au、Ag等贵金属纳米粒子的LSPR光电化学性质,可以开发新的光电化学分析方法。在可见光的照射下,负载在电极表面的金属纳米粒子由于表面LSPR的存在而引起电荷分离,当电极基底材料的导带态密度比金属纳米粒子的更高时,就会有金属纳米粒子的光激发电子向电极转移12fl,氧化态的金属纳米粒子从溶液中捕获电子,从而产生光电流。Zhao等122以液相沉积TiOi为基底,以AuNPs为LSPR产生源,考察了%O2对AuNPs在TiOi表面的生长调控,并结合GOx催化氧化葡萄糖促进电荷转移,以信号增强的方式检测了葡萄糖。
陈洪渊课题组在研究了CdSQDs与贵金属纳米粒子(AuNPs、AgNPs)光电化学过程的基础上还提出了激子等离子体激元(EPI)相互作用的信号产生模式,并以此策略实现了对DNA的检测。以CdSQDs与AuNPs之间的作用为例,其作用原理如图2所示。在一定能量光子激发下(过程1),量子点价带上的电子发生跃迁至导带上(过程2),产生电子。如果电极处在合适的溶液中并且材料与电极能级合适,溶液中的电子供体就会捕获(过程3),导带上的电子也会向电极方向转移(过程4),就会有光电流的产生,这种情况和前面讨论的情况一致。但是激发产生的载流子难免会发生复合(过程5和6)。在复合过程中,经过弛豫之后的辐射跃迁会发射出荧光;如果所发射的荧光与AuNPs的吸收谱发生重叠,就可以引起AuNPs的LSPR,将这部分能量吸收(过程7)。同时,LSPR所产生的局域电场会反过来加强过程6的进行(过程8),从而建立起CdSQDs(激子)与AuNPs(等离子体)之间的能量传递(总和为过程9),使得光电材料的效率降低。将AuNPs换成AgNPs也有类似的过程。目前,基于这种策略的研究还比较少。
3.5其他传感模式
除了以上传感模式外,基于电极表面原位沉积导致的光电流变化策略、基于分子印迹识别的光电分析策略(MIP-PEC)、光电活性物质tlsDNA嵌合策略、化学发光激发的光电化学检测体系及某些signal-on策略也得到很多关注。
基于电极表面原位沉积导致的光电流变化策略主要用于某些金属离子和阴离子的检测。电极表面的原位沉积一般是指通过一定方法在修饰电极表面形成新光电活性中心的过程。新光电化学活性中心的生成主要是利用电极表面已有的光电材料与溶液中的某种待测离子发生离子交换,或是借助一定的辅助物与被测金属离子作用形成沉积。Shchukin等125首先将新制的CdO修饰电极放入含S2-的溶液中,在CdO表面形成CdS沉积;然后将CdO/CdS修饰电极在另一不含捕获剂的电解质中检测其光电流响应,来检测S2-。该检测策略用于检测的金属离子比较多的是Cu2+和Cd2+。由于CuS的溶度积常数比CdS的小,当把以CdS或其复合物作为光电层的修饰电极浸入含有Cu2+的溶液中,通过离子交换会在CdS的表面生成CwS。所生成的C^S在CdS表面相当于是一个激子阱(excitontrapping),由于它的形成使得载流子易于在激子阱中复合,从而导致光电流的降低,以此可以实现对Cu2+的定量分析a26?12a。对于Cd2+的检测一般是采用在电极表面沉积CdS或CdSe的方式来进行。田阳课题组&29]将TiO2NTs电极浸入含有%SO4和SeO2的体系中,随着Cd2+加入量的增多,在TiO2NTs上原位电沉积出CdSe纳米簇,对TiOi起到敏化作用,使光电流增加,以此实现对Cd2+的定量分析。基于类似的方法,该课题组㈣还在TiOiNTs和CdSO^溶液体系中,利用&S与Cd2+反应生成的CdS在TiO2NTs上沉积敏化来检测H2S。
对于某些非电活性的被测物,可以选择分子印迹(MIP)与光电化学分析相结合的方法来实现高选择性检测的目的。Shi等131首次在TiOiNTs负载吡咯基聚合物作为增强光电层和MIP识别单元,以信号增加的方式实现了对2,4~D的灵敏检测。同一课题组的Chen等_和Lu等_分别利用类似的方法实现了对微囊藻毒素(Microcystin~LR)和双酣A的检测。于京华课题组134,135先后报道了利用聚邻苯二胺分子印迹膜修饰TiOiNTs构建光电化学传感器,并用于毒死啤(Chlorpyrifos)和林丹(Lindane)的特异性识别和检测。
在与DNA分析有关的检测中,比较常用的方法是基于Ru联吡啶配合物与双链DNA的嵌合作用。郭良宏课题组在这方面做了很多工作。如果先将Ru联吡啶配合物固定在电极表面作为光电活性中心,当溶液中加入未损伤的双链DNA时,双链DNA就会键合在电极表面,使光电流降低136;而当DNA受到损伤后,损伤的DNA会将Ru联吡啶配合物暴露出来,使光电流响应增强。另一方面,如果先将双链DNA固定在电极表面,当DNA以双链完整形式存在时,具有光电化学活性的Ru联吡啶配合物就可以嵌入到DNA双螺旋结构的凹槽中,会产生较大的光电流;当DNA受到损伤后,Ru联吡啶配合物就会从DNA中脱离出来,光电流降低。通过对比前后的光电流变化就可以对双链DNA损伤进行检测。随后,该课题组将Ru-联吡啶配合物与双链DNA的嵌合作用推广到了Hg2+6141、DNA8~oxodGuo损伤_和DNA甲基化损伤检测等方面。
除了外加物理光源为激发源的检测过程外,以化学发光(CL)作为激发源,并与光电化学检测结合起来的方法也有报道。张书圣课题组143报道了以异鲁米诺4^O2~Co2+化学发光体系为光源,通过间接法检测了癌细胞中的巯基化合物。Willner课题组144以Hemin/G四联体4^O2化学发光共振能量转移(CRET)体系为激发源,实现了对GOx酶活性和DNA的分析。
此外,为了提高光电化学检测的灵敏度,通过其他途径实现signals检测的策略也引起了人们的研究兴趣。张书圣课题组先后报道了基于aptamer与目标分子的识别反应间接signals检测癌细胞中的三磷酸腺苷(ATP)a45和基于溶菌酶与aptamer之间识别反应的反位阻效应signals检测溶菌酶146。类似地,Zhang等M先将可以与双酣A特异识别的aptamer固定在光电层上,当在体系中加入双酣A后,双酣A与aptamer的识别反应使aptamer脱离光电层,实现了signal~on检测双酣A。
5光电化学传感器的发展前景
目前光电化学传感器中光电活性材料选择主要集中在TiO2、ZnO、CdX(S、Se、Te)、Ru金属配合物、有机染料等。为了促进电荷分离和电子传递,构建多级电荷分离体系、光电材料电子传输介质复合等手段在光电化学体系的设计上得到了一些应用;在信号识别和传感模式上也有了多种实现方式。近年来,随着流动注射系统、微流控系统等的快速发展,将这些技术与光电化学分析结合起来,共同开发可用于多组分、多样品、高通量阵列检测系统逐渐引起了人们的关注。此外种廉价、可快速制备的纸基光电分析体系也引起了人们的研究兴趣。
*是中国光学科技的发源地,经过几十年的建设,*已成为中国光电子领域科研、产业和人才快速发展的地区,被誉为中国光学科技和光电人才培养的摇篮。2*年*月,*被国家批准为光电子产业基地。20*年8月,*市成功承办了第二十届国际光学大会。*光电子产业的独特优势和市场前景为投资者提供了巨大商机。
*具有促进光电子技术及产业发展的创新能力。*有27所高等院校,98个研究院所,19个国家重点科研开放实验室,41万名各类专业技术人员。在光电子领域,有3个国家重点实验室,设置35个相关的学科,拥有全国最大的光电子研究所和全国唯一的以光电子专业为主要学科的大学,在光显示技术、发光学、现代应用光学、光学工程等优势学科领域积累了丰富经验,取得了一批具有自主知识产权的创新成果。
*的光电子信息产业已形成良好的势头。*的光电信息产业是以实现自主创新的技术成果产业化为基础发展起来的,目前投放市场的500多种光电子产品中,80%是自主研发的技术。2000年以来,*平均每年有30种光电子及信息技术产品问世,这些产品主要集中在光显示器件及上下游产品、光电子器件与材料、光电仪器仪表与设备、汽车电子、嵌入式软件等领域。在光显示器件及上下游产品方面,*拥有一支从事平板显示技术开发和产品生产的优秀团队,产品覆盖了TFT-LCD、CSTN-LCD、OLED、PLED、白光二极管、发光材料等领域。*建成了中国第一条TFT-LCD生产线,是中国开展液晶技术研发的重要基地;在光电子器件与基础材料方面,研制和生产全固体激光器,光电编码器,指纹识别模块,紫外写入光栅,彩色光学玻璃,光学晶体及镀膜材料,荧光粉及电致发光材料等100多种产品,其中90%在国内处于领先,部分技术在国际上达到先进水平;在光电仪器仪表与设备方面,主要研制和生产光电医疗仪器设备、电化学仪器、地学仪器、高温金相显微镜、MPT光谱仪、夜视仪、指纹识别仪、车用仪器仪表、COG绑定机、激光调阻机等产品;在汽车电子方面,以车身电子系统、车载电子系统、车辆控制系统等为重点的汽车电子产业成为*光电子产业的发展重点;在软件方面,生物识别、信息安全、车载通讯及与光电子技术和汽车电子技术相融合的嵌入式软件等领域的产品已成为国产软件的知名品牌。围绕五个优势领域的发展,*将在研发中心及产品检测中心等公共平台建设、重大技术成果的产业化、风险投资及终端产品制造商的引进等方面对外开放,外商可通过各种方式开展独资、合资和合作。
*具有良好的投资环境。*作为国家光电子产业基地,可以享受国家的专项扶持政策和振兴东北老工业基地的特殊政策。20*年*月,国家实施振兴东北老工业基地战略,东北地区工业企业的固定资产,可在现行规定的折旧年限基础上,按不高于40%的比例缩短折旧年限以及增值税抵扣政策。20*年,国家实施了扶持液晶产业政策,包括:进口TFT材料免征关税、净化器材免征关税和增值税、允许三年折旧以及液晶产品出口退税由13%提高到17%等。20*年*月,*市把光电信息产业确定为未来五年重点扶持的三个主导产业之一,以开发区为主体,为投资者建设完备的配套环境、服务环境,让投资者享受到国家级高新技术产业政策和经济技术产业政策。
20*年年初,组建了*国家光电子产业基地发展股份有限公司,会同高新、净月、汽车、经开等开发区,整合调配各类资源,编制了光电子、汽车电子嵌入式软件工程中心、光电子产业基地工程中心和*国家汽车电子产业园区规划等可研报告,并正式向国家信息产业部申报国家汽车电子产业园区,目前正在审评中。为推动基地与园区建设,分别与高新、净月、汽车等开发区和吉大科技园就光电信息产业发展的投融资体系、风险投资机制、中小企业担保、企业孵化中心建设等问题进行了探讨和论证。形成了以高新区磐谷国际商务港为总部,以经开区中科院光机与物理所为产业化孵化器,以净月启明工业园、汽车区汽车电子工业园、高新区吉大科技园、软件园为依托的*国家光电子产业基地总体方案,编制了申请国家开行资金支持的项目可研。目前,该平台项目正在申报中。综合技术服务平台项目启动后,将进一步推动国内外光电信息企业和项目向向*国家光电子产业基地集聚。
[关键词]光电子技术;电能;光能
光电子技术主要由光子技术和电子技术两者结合组成,同时,技术中包含的技术理论十分广阔。光电子技术主要涉及光学、电子学、计算机学、光电子学等多个学科领域的专业知识理论,是一种典型的多学科交叉渗透的现代技术,对世界科学技术的发展,对社会经济进步,起着重要的推动作用。光电子技术的研究核心是众多学科中的光子学,支撑技术主要是电子学,这电子学是一种近年来兴起的新型研究学科。因此来说,光电子技术具有很强的兼容性,其中的电子技术相对于微电子技术来说,有着更多的发展空间,优势更加明显,能够在更加广泛的领域得以应用。
1光电子技术相关概述
所谓光电子技术,其全称是光电子信息技术,该技术的核心内容是进行电能和光能的转换,是科学技术中的一种全新的技术,其涵盖了材料科学、精细加工、半导体材料以及固体物理等,是多个领域的综合体。光电子技术的诞生是在20世纪60年代,并在当时开始光电子技术相关设备的生产,从一开始的单一的领域应用,迅速发展至今,已经广泛应用在各个领域和各个行业,比如在军事武器的制造业、医疗行业、电子信息行业以及其他高新制造业等领域,应用十分广泛。而最初的光电子技术的发展,主要得益于无线激光器设备的出现,为光电子技术的发展提供了重要的光频波段支持,随着发展和研究的深入,光电子技术逐渐实现了信息的处理、存储、传输等功能。光电子技术能够通过对光子以及电子的利用,来促使产生一种全新的光子物理现象。随着科学技术的发展,由光电子技术原理构造成的相关硬件设备,组成信息技术中重要的应用成分,也为信息技术的发展提供了无限的可能和广阔的发展空间。比如,可以通过光电子技术将全球所有范围内的电子计算机进行联机,这是通过光电子技术能够简单实现的。当然,也可以利用光电子技术实现卫星和地球的联系,从而组成宇宙性质的联系网络,通过光电子技术,这在未来也是有希望得以实现的。当前,光电子技术可以说是互联网当中最重要的支撑性技术,主要应用在高新技术领域。而在我国来说,光电子技术的起步较晚,但是发展的速度是极快的,已经在我国国内诸多领域得以应用和推广。在光电子技术的应用中,体现出诸多方面的应用优势,具有极高的速度和极大的容量,对于日益增长的信息量处理要求和信息化发展时代要求来说,无疑是至关重要的技术,这也是传统的电子学以及微电子学难以实现的。光电子技术能够实现对信息的高速度和高频率处理,能够将信息从探测到最终处理整个流程融为一体,一气呵成,从而在信息技术领域占据着不可动摇的地位。
2光电子技术的发展现状
21国内发展现状
我国的光电子技术发展起步较晚,但是在我国的发展十分迅速,已经达到世界先进水平,与最先发展光电子技术的发达国家之间的差距不断缩小,已经达到接近水平。光电子技术在国内取得如此大的成就,主要受益于我国政府对科学技术的重视和大力投入。在电子领域的各个方面,我国皆取得了不错的发展成绩,许多方面达到了世界的先进水平,比如在光收发模块、探测器等一些光电子器件上,水准很高,技术水平相当先进,市场份额占比不论是国内还是世界范围内,都有极大的竞争力。在我国,光电子技术的发展存在明显的地区差异性,光电子技术的先进发展主要集中在我国的几个发达地区,比如珠江三角洲地区、长江三角洲地区以及渤海湾地区,这主要是由目前我国区域经济发展现状决定的。另外,在这些发达的地区,高等院校较多,研究所也多,给光电子技术的研发和发展提供了巨大的技术力量保障。
22国外发展现状
国外的光电子技术的发展和应用参差不齐,最为先进的是美国、日本以及欧洲一些国家。尤其是美国,特别看重光电子技术在未来的发展和应用,并将光电子技术列为21世纪最为重要的战略性技术之一,并进行了大量的研究投入。日本在光电子技术方面,近些年来发展十分迅猛,在国际市场上占据着重要地位。欧洲地区的光电子技术发展和应用,以德国最为先进和典型,德国对光电子技术的投入研究较早,进行了大量的研究,因此积累了许多宝贵的研究成果和发展经验,技术基础十分强大。随着全球化的深入发展,“地球村”理念逐步形成,使全球范围内的人类更加紧密地联系在一起,信息通信十分便捷和快速,并对未来的信息产业提出了更高的需求。光电子技术在信息产业方面所做出的重大贡献,对于全球信息交流的促进有着关键的作用。另外,当今世界的互联网技术发展迅速,俨然已经成为互联网的时代。在高速发展的互联网环境下,对信息传输的需求无论是数量上还是效率上,都有着更高的要求,为了满足这个巨大的要求,发展光电子技术无疑是最佳选择。
3光电子技术的应用领域
31信息领域
当今时代,是一个信息化高速发展的时代,无论是现在还是未来,都离不开信息化的支撑。在信息化发展过程中,信息传输和处理流量正呈现质的增长,传统的电子技术已经无法满足当今时代巨大的信息传输和处理。而光子技术的应用,与电子技术进行完美的融合,并产生全新的光电子技术,能够极大扩大信息容量和信息传输速率,比起传统的电子技术优势巨大,能够有效促进信息产业的快速发展。当前在信息领域已经开始大范围开展光电子技术的应用,并取得了极好的影响效果,为信息产业的蓬勃发展带来了更多的可能和广阔空间,提升了信息领域的发展潜力。
32能源领域
能源是地球上赖以生存的重要发展来源。在过去的许多年发展中,世界对能源的需求巨大,依靠传统能源取得了良好的发展成效。但是与此同时,世界发展在能源方面也逐渐显现出诸多发展瓶颈,主要是传统能源的枯竭,以及世界对环境保护的呼声越来越大。因此,当前的主要办法就是进行清洁能源的生产和利用。如何研发出既清洁环保,又能够高效利用的新能源,成为当今世界能源研究的主要议题。而光电子技术,能够将光能转化成热能的这一伟大功能,使得其在新能源领域备受关注,具有极大的新能源产业潜力,市场前景十分广阔。目前在世界范围内,尤其是在一些发达国家中,利用光电子技术获取新能源的方式已经得到应用,在我国也已经进行了初步的应用。
33汽车领域
汽车是当今世界最主要的交通工具之一,随着社会经济的发展和人们生活水平的提高,人们对汽车的市场需求不断扩大。在汽车领域,人们开始越来越注重汽车的整体功率、能耗、舒适度以及外观等因素,这就意味着需要更加先进的汽车生产技术。光电子技术在汽车领域的应用,使得汽车的功率转化大大提升,并且通过光电子技术,能够对汽车生产材料进行高精度的加工,极大提升了汽车的整体质量和舒适度,减少汽车在使用中的损耗。
34环境领域
地球环境是人类生存的基本条件,保护环境,是人类共同的责任。步入21世纪以来,世界范围内的工业生产已经到了一个相对成熟的水平,与此同时,工业的生产和发展对环境造成了极大的损耗,比如逐渐出现的全球变暖问题和厄尔尼诺现象等,给地球环境造成了恶劣的影响。当前,人们对生活质量的要求越来越高,环境保护意识越来越强,亟须研发出能够遏制环境逐渐恶化的先进技术。在这种情况下,光电子技术给环境保护和污染治理带来了全新的希望,其通过高精度传感器的制造,能够对环境中污染物的浓度进行准确的测量,并进行有效的治理与防护。
35军事领域
一个国家的军事基础,是一个国家安全力量的巨大保障。光电子技术在军事领域的应用,能够极大加强国防军事力量,并有着广阔的应用前景。通过光电子技术,能够制造先进的激光制导武器,目前,这方面许多发达国家正在加大力度进行研发和应用。另外,光电子技术能够形成更加有效的图像传感器,使得单兵作战更加强化,得到许多国家的重视。
36医疗领域
随着生活水平的提升,人们越来越开始注重医疗健康。光电子技术在医疗领域的应用主要是通过激光来治疗一些以传统治疗手段难以解决的疾病,比如通过激光进行角膜的切除手术和治疗,能够帮助人类矫正视力。随着光电子技术在医疗领域中的应用,以相关设备进行手术,能够使手术更加精准,治疗效果更好,提升手术的成功率和稳定程度。
4发展趋势
光电子技术的应用前景十分广阔,发展潜力十分巨大。在未来,光电子技术的发展趋势主要会从集成化、扩大化、强适应性三个方面进行优化发展。
光电子技术的发展还需要诸多辅助材料的发展来促进,比如半导体激光以及相关电气元件,这些辅助材料和技术的发展,才能够推动光电子技术更加迅速和完善发展。在导体激光以及半导体激光的迅速发展之下,通过各种辅助材料和技术与光电子技术的融合,在未来,光电子技术将会呈现集成化发展状态,并不断研发出新的设备以及材料。这些新设备和新材料与光电子技术的融合应用,将会推动光电子技术的应用效果,并且在光电子技术的应用经济性以及简便性方面得到较大提升与优化。
5结束语
综上所述,光电子技术是当今世界最重要的高新技术之一,对世界经济发展具有至关重要的推动作用。当前,光电子技术已经在众多重要领域得到了初步的应用,在未来,光电子技术的用前景相对广阔,有着无限的发展可能。
参考文献:
[1]杨娇瑜光电子技术的发展现状及应用探讨分析[J].信息通信,2014(11):129
【关键词】 红外线 发电 银氧铯
1 模型设计方案
1.1 工作原理及设计思路
对于本次试验模型,主要根据爱因斯坦光电效应理论设计,并在两年前学年论文的基础上进行改进。本套试验模型主要有四大部分组成,分别为红外线发射装置、红外线接收及转化装置、电流检测装置、电能的储存装置。图1为设计模型示意,中间实心球体为红外线的发射装置,外周的大球为红外线接收及转化装置,外部用导线连接,导线上发光二极管为电流检测装置,电容器为电能的储存和发射装置。
1.2 材料分析
1.2.1 材料的选取
目前光伏电池采用的材料大多为硅材料,其有着效率高成本低的因素,但其吸收光谱的频率是有限的,只能局限于一些可见光,这样就标志着其只能在白天进行正常工作。还有一种新型材料为锑铯,其吸收光谱的敏感光为紫外线,若光伏电池阴极采用这种材料吸收的多为紫外线,其限制条件也为自然光,也就是阳光。本文采用的光伏电池阴极材料为银氧铯,其敏感光为红外线,红外线其最主要的特征为热效应,无论在白天还是黑夜,只要物体存在温度就会释放一定量的红外线,银氧铯这种阴极金属化合物就是将这一部分的红外线进行收集与转化,并且释放出电能。根据查阅其他著作,可以了解银氧铯的感应特性,并以此来计算出其光能转化率。
1.2.2 银氧铯光电阴极的研究以及制备方法
对于银氧铯阴极的研究,完全可以借鉴超高速光电管中反射式银氧铯光电阴极的研究。光电阴极是超高速光电管中的重要组成部分,其主要作用就是将光信号转化为电信号,也就是起到了光电转化的作用。超高速光电管中的关键也就是本设备的关键,即材料和工艺。参照其工艺就可以免去重新制作的过程,节省了资金以及时间。
银氧铯的光谱响应范围为300―1100nm,灵敏度20μA/Lm。纵观目前的光电材料来说,银氧铯(Ag-O-Cs)光电阴极最为独特。目前为止,银氧铯阴极是红外线区具有响应的实用型真空光电材料。
D.G.Fisher、Sayama等人已经通过实验测试对银氧铯进行了一些化学分析,在氧化完全的氧化银基座上制备银氧铯表明,银和铯比率为1:1,铯和氧含量比率为2:1,这就说明了银氧铯阴极制备就符合表达式Ag2O+2Cs2Ag+Cs2O。但是按照目前技术水平来说,铯的化学分析精度还不够准确,是否存在未氧化的铯或者存在铯的其他氧化物,另一个问题就是银是否一定以单个粒子的形式存在,等一系列问题,那么这种粒子大小是否具有临界的重要性就是一个至关重要的问题。尽管人类对银氧铯这种材料已经研究了几十年,但是其精确的结构还是不能确定,因此,所有的讨论大多都是定性的。
长波响应主要是由于阴极中的银粒子的体积效应引起的,由于反射的作用,入射光中只有一小部分能被吸收,所以体积形式的银的量子产量(电子/入射光子)是较低的。薄银膜具有相比低的反射和高的吸收,对于入射光银氧铯阴极膜的吸收可以高达50%。光的吸收的增加就使银氧铯阴极的量子产额比体积银高出很多倍。
但是,一个问题应当引起注意,银氧铯阴极与碱锑化物阴极相比,其量子产额任然很低,其原因为激发光是以带间跃迁而非带内跃迁的方式吸收,故光子更可能被激发到真空能级。另外,银氧铯阴极中的Ag对350nm以上波长的吸收,有一部分为带内跃迁,因此他降低了电子的逃逸几率,导致其量子产额的降低。
银氧铯阴极的相应曲线是非常具有特征的,在可见光谱内,550nm附近有一个下沉,在紫外线区350nm处出现一个极大值,320nm处出现一个尖的极小值。
1.3 运行分析[4]
介于以上对于银氧铯阴极特性的研究,可知在红外线区出现的峰值为800nm,为了能够最大限度的达到实验效果,可以选择发射波长为800nm的红外线发光二极管作为光源,这是光电转换的核心元件。当实验成功后可以用自然界中的红外线作为光源来替代人造光源。
红外线发光二极管可以特别制造,通过改变电流去改变红外线的强度。电子从较低能级跃迁到较高能级,需吸收能量;反之,电子从较高能级跃迁到较低能级,会释放能量。跃迁时电子吸收或释放的能量为两个能级之间的差值,是以光子的吸收或发射方式完成的。只要选择合适的材料就能使发光波长集中在某单一波长,从而使其发光效率达到一个最优的效果。实际生产中,所用的材料多为砷化镓等半导体材料,这些材料发出的光的波长能够集中在一个很窄的范围内,其中心频率正好为可见光之外的红外线区域。当半导体材料正常工作的时候,其温度恒定,那么其发光频率就完全由通过其本身的电流大小直接决定,这样就可以通过控制电流来控制其发光的波长、频率,达到实验要求。
2 结语
纵观国内外,对于红外线发电还处于初级阶段,并未出现可以在无可见光的条件下利用红外线发电且应用的实例。但展望红外线发电这一技术,它的成功将使人类发电技术迈上一个新的台阶,它可以将发电成本大大缩小化,又可以将发电地区普及化,最关键的是它可以将时间任意化。它的成功与应用,将彻底扭转现今电子产品供电续航能力差的局面。
参考文献:
[1]萨法・卡萨普.电子材料与器件原理[M](第三版上册).西安:西安交通大学出版社,2009.6:165.
[2]王晓耘.超高速光电管中反射式银氧铯光电阴极的研究[J].
[3]史久德.复蒸银对银氧铯光电阴极特性的改进[J].1992.6.
关键词:137Cs;γ射线;不同物质;能谱变化
1 概述
原子核能级间的跃迁产生γ射线,γ射线按强度的分布即γ射线能谱,简称γ能谱。测量γ能谱一般使用闪烁γ能谱仪,其利用闪烁体在带电粒子作用下被激发或电离后,能发射荧光(成为闪烁)的现象测量能谱。γ射线通过光电效应,康普顿散射,(电子对效应)三种方式与物质进行相互作用。探测γ射线通过物质时能量谱的变化,可以深入了解γ射线与物质相互作用。
2 实验
2.1 实验原理
光电效应:
光电效应是物质在高于某一特定频率的电磁照射下放出光电子的现象,当能量为hv的入射γ光子与物质的原子中束缚电子相互作用时,光子可以把全部能量转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失,发射光电子的动能为:
E=hv-Ei≈hv
这是闪烁体探测器探测到的全能峰(光电峰)的来源。
2.2 实验仪器
滨松闪烁体探测器;四川大学一体化能谱仪,137Cs放射源;若干铝片,铜片,铅片。
3 实验步骤
3.1 仪器组装
检查实验仪器的线路连接。
3.2 准直与调节
将各个部分中心置于一条直线上,打开放射源屏蔽体开关,微调光电探测器的角度,直至计数率最高,即已准直。固定设备开始测量。
3.3 测试与记录
3.3.1 相同材料,不同厚度
取同种材料薄片,多片叠加为不同厚度的等效屏蔽物质并进行测试。
3.3.2 相同厚度,不同材料
考虑到实验室材料的实际情况,难以保证严格相同的厚度,因此使用上述测试结果中9mm左右和18mm左右两组数据直接进行对照。
3.3.3 无屏蔽测试
取下所有屏蔽材料,令放射源直射探头,进行60s测试后记录数据。该记录位于后文air线。
4 结果及分析
4.1 相同厚度,不同材料
由常规刻度图像可以看出,材料的加厚显著减弱了整个能谱中每一道的计数率,全能峰与康普顿坪均明显下降,可认为材料与γ射线的相互作用降低了能够通过材料抵达探测器的γ光子数,与理论预期相合。
由对数刻度图像可以看出,随材料加厚,整条能谱曲线基本不变形地向低计数方向平移。由于纵轴为对数刻度,较高的全能峰与较低的康普顿坪呈现同样幅度的下降,意味着厚材料的全能峰相对于薄材料下降的比例应当高于康普顿坪下降的比例。
由铅砖可以看出,在全能峰之后的更高能量范围依然存在均匀计数,且图像呈现白噪样。由于该系统中不存在高于全能峰的有效信号,因此这些计数应为噪声,可用于估计系统噪声的大小。对全能峰后的所有道进行统计,得每道平均计数率为每秒0.024个信号。
可以看出,随着材料的原子序数增大,整个能谱计数明显降低。
4.2 数值分析
对相同材料、不同厚度的数据,考虑到计数时间较短,为确保变化可观察,对铝和铜取最薄和最厚一组,对铅取全部数据进行处理。对每组数据的康普顿坪与全能峰部分计数进行积分,并以全能峰总计数除以康普顿坪总计数,得到峰-康比如表1所示:
对于相同材料不同厚度的材料,得出的结论是谱型没有明显变化,但是对整个谱进行积分,探测到的粒子数变少。再对得出谱进行更细致的分析,对每个谱分别积分其康普顿连续谱和全能峰谱的计数,得到同种物质不同厚度的峰康比。发现随着物质厚度的增加,峰康比变小。这是由于窄束γ射线在穿过物质时被吸收,强度随物质厚度的衰减服从指数规律,即:
I=I0e-?滓?篆x=I0E-?滋x
其中I与I0分别是穿过物质之后,穿过物质之前γ射线的强度。N为吸收物质单位体积的原子数。σ是光电效应,康普顿,电子对三种效应截面之和,μ为物质的线性吸收系数,它是原子序数Z和γ射线能量的函数,且μ=μph+μc+μp,式中μph、μc、μp分别为光电、康普顿、电子对效应的线性吸收系数,其中 、 、 (Z为物质原子序数)。同种物质,穿过距离x越长,则γ射线强度越低,总计数越少。γ射线在与铜铝等物质相互作用时,虽然发生光电效应和康普顿效应的光子数都会增加,但是发生康普顿散射的一部分粒子仍能被探测到,所以峰康比会减少。
特别说明,对于铅而言,能谱的低能段(康普顿坪)会被薄铅强烈吸收,而高能段(全能峰)被吸收的比例相对不那么高,因而导致在薄铅测试时峰康比异常高。在铅砖测试时,其厚度已经将全能峰和康普顿坪抑制到接近噪声的程度,难以再降低计数,因此峰康比明显下降。
对于相同厚度不同材料来说原子序数越高,射线经过物质后强度越小,总计数也就越小。此外,对于铅砖来说,几乎探测不到计数,可见铅砖对于实验室放射源的屏蔽十分有效,铅块足以起到防护作用。
参考文献
[1]格伦F.诺尔.辐射探测与测量[M].陈进贵,译.北京:原子能出版社,1988,5:167-168,180.
[2]卢希庭.原子核物理[M].北京:原子能出版社,2000,10:165-184.
纳米光电子主要是研究在所有纳米结构中各个电子以及光子存在的相互作用。将光电子以及纳米电子的相关技术相互结合共同组成了纳米光电子技术。传统的半导体硅并不具备发光的基本功能,但是引进了纳米技术以后,能够发出一种非常耀眼的光,同时开设了一门新兴的纳米光电子。
二、纳米光电子技术的发展
新时代的纳米电子技术能够快速的制作各种单电子存储,同时还可以制作一些非常精巧完美的微电子机械以及电机械系统。随着现代纳米技术的不断进步与发展,集成电路也将成为一种比较先进的半导体器件,并成为了未来发展的新方向。如今的信息社会对于所有使用的集成电路具有的集成度的各种要求也逐渐增高,这就导致人们不断突破尺寸具有的极限途径。在新的社会形势下,纳米电子以及纳米电子光技术应运而生,并成为了半导体科学以及各种工程研究的重要领先技术。光电子技术属于电子技术以及光电子技术的结合体。二十世纪以后,光电子技术逐渐发展,并取得了一定的进步。将光电子技术以及纳米技术巧妙的相互融合最终形成了纳米光电子技术,成为了未来电子技术不断发展的新领域。如今的二十一世纪,也为光电子技术以及纳米光电子技术发展提供了新的机遇。
三、纳米光电子各个器件的具体分类
3.1纳米光电技术探测器
如今的纳米光电技术探测器主要是利用纳米光电子的基本材料进而不断发展而来。这种微型的探测器主要由纳米丝以及各种纳米棒共同组成,例如,超高灵敏度红外探测器等。
3.2纳米发光器件
引进纳米光电子的相关技术并利用纳米光的基本材料,利用纳米光刻技术,最终研制出新兴的纳米发光器件。主要有利用纳米粒子等材料制作完成的一种硅发光二极管,使用各种纳米尺寸制成的可以实现调谐的纳米发光二极管。
3.3纳米光子器件
纳米量子机构以及量子电路等各种集成技术都蕴含着非常深奥的研究内容。例如,利用三维光电子自身的晶体天线,还可以利用光子晶体技术二极管,以及无损耗产生的光电波,光开关等,这些都属于先进的纳米光子器件,在量子保密通信中的各种重要的关键器件,都是利用纳米光子器件完成的。
3.4纳米显示器
纳米显示器主要包括碳纳米管显示器,还有一种碳纳米发生显示器等。如今的纳米电子学还有纳米光子学以及先进的磁学微电子,自身具有的极限线宽都是70nm,这种先进的技术通过几十年的研究就完成了。为了能够在最短的时间内完成新兴的器件,使用单原子具体的操作方式成为重要的研究方向,并且,利用这种先进的技术能够制成计算机,并且能够有效的提升计算机自身的计算能力,甚至可以提高上千倍,但是需要使用的功率只有现在计算机的使用功率的百万分之一。如果使用先进的纳米磁学,计算机具体的信息存储量甚至能够达到上千倍。使用纳米光电子能够提升通信带宽的上百倍。另外,除了以上介绍的各种器件,还可以从广义上分析,纳米器件还有分子电子器件,这种器件无论是在材料上还是在使用的原理上都与上述的半导体量子器件存在较大的差异。
四、结束语
1.太阳能电池的性能特点及
应用领域
太阳能电池又称为“太阳能芯片”或光电池,是一种利用太阳光直接发电的光电半导体薄片。它只要被光照到,瞬间就可输出电压及电流。在物理学上称为太阳能光伏(PV),简称光伏。
太阳能电池的作用,是通过光电效应或者光化学效应,将太阳的光能直接转换为有用的直流电能,是太阳能光伏应用的关键器件。太阳能电池具有输出直流电压、单个电压低、使用寿命长、运行无噪音、安全可靠、无污染、无辐射;能量随处可得,无需消耗燃料;无机械转动部件,维护简便,使用寿命长;建设周期短,规模大小随意;可以无人值守,也无需架设输电线路,还可方便与建筑物相结合等优势。这些都是常规发电和其它发电方式所不及的。
最早问世的太阳能电池是单晶硅太阳能电池。硅是地球上极丰富的一种元素,几乎遍地都有硅的存在,可说是取之不尽。用硅来制造太阳能电池,原料可谓不缺。但是提炼它却不容易,所以人们在生产单晶硅太阳能电池的同时,又研究了多晶硅太阳能电池和非晶硅太阳能电池,至今以商业规模生产的太阳能电池,还没有跳出硅的系列。其实可供制造太阳能电池的半导体材料很多,目前已进行研究和试制的太阳能电池,除硅系列外,还有硫化镉等许多类型的太阳能电池。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。
标志太阳能电池性能指标的参数较多,但是从实际使用的角度来说主要有以下基本特征。
硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。太阳能电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。随着日照强度的加大输出电压呈上升状态,输出电流基本不变输出功率也在快速地上升。当达到一定程度时,曲线呈下降趋势,并出现一个最大的功率点。太阳能电池在实际使用中为了发挥其最大的发电效益,通过相应的技术控制手段使得其工作时的输出在最大的功率点附近。P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱下时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。这种用光的颜色波长与所产生电能的关系就用分光感度来表示,而不同的太阳能电池具有不同分光感度的特性曲线。比如在日光下使用时,选用单晶硅太阳能电池可以获得较好的发电效果;在室内荧光灯下使用时计算器、充电器等就要选用非晶硅太阳能电池以获得较好的使用效果。
2.太阳能电池的主要种类
多元化合物太阳能电池指不是用单一元素半导体材料制成的太阳能电池。现在各国研究的品种繁多,大多数尚未工业化生产,目前进入商品化的常用太阳能电池产品种类按照其所采用的制造材料、技术原理和使用方式等可以分为几种不同的类型,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。
硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%。在大规模应用和工业生产中占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜作为单晶硅太阳能电池的替代产品。多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。因此多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力,但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是最理想的替代产品。砷化镓(GaAs)III-V化合物电池化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。但是GaAs材料的价格不菲,因而限制了GaAs电池的普及。
铜铟硒CuInSe2简称CIC,是一种性能优良太阳光吸收材料,具有梯度能带间隙(导带与价带之间的能级差)多元的半导体材料,可以扩大太阳能电池吸收光谱范围,进而提高光电转化效率。CIS材料的能降为1.leV,适于太阳光的光电转换。另外,CIS薄膜太阳能电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目,以它为基础可以设计出光电转换效率比硅薄膜太阳能电池明显提高的薄膜太阳能电池,可以达到的光电转化率为18%。而且,此类薄膜太阳能电池到目前为止,未发现有光辐射引致性能衰退效应(SWE),其光电转化效率比目前商用的薄膜太阳能电池板提高约50~75%,在薄膜太阳能电池中属于世界最高水平的光电转化效率。由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到成本上的限制。
有机太阳能电池,顾名思义就是由有机材料构成核心部分的太阳能电池。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的。有机太阳能电池以具有光敏性质的有机物作为半导体的材料,以光伏效应而产生电压形成电流。有机太阳能电池按照半导体的材料可以分为单质结结构、P-N 异质结结构、染料敏化纳米晶结构。
纳米晶体化学学能太阳能电池是新近发展的,以染料敏化纳米晶体太阳能电池(DSSCs)为例,这种电池主要包括镀有透明导电膜的玻璃基底、染料敏化的半导体材料、对电极以及电解质等几部分。染料分子吸收太阳光能跃迁到激发态,激发态不稳定,电子快速注入到紧邻的TiO2导带,染料中失去的电子则很快从电解质中得到补偿,进入TiO2导带中的电于最终进入导电膜,然后通过外回路产生光电流。优点在于它廉价的成本、简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳能电池的1/5~1/10。寿命能达到20年以上。此类电池的研究和开发刚刚起步,估计不久的将来会逐步走上市场。
目前太阳能电池主要包括晶体硅电池和薄膜电池两种,它们各自的特点决定了它们在不同应用中拥有不可替代的地位。但是,未来10年晶体硅太阳能电池所占份额尽管会因薄膜太阳能电池的发展等原因而下降,但其主导地位仍不会根本改变;而薄膜电池如果能够解决转换效率不高、制备薄膜电池所用设备价格昂贵等问题,会有巨大的发展空间。
3.太阳能电池的结构原理
太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程,后一个过程是热—电转换过程。太阳能热发电的缺点是效率很低而成本很高,因此,目前只能小规模地应用于特殊的场合。光—电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管。当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的。
太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式两大类,而前者又分为单结晶形和多结晶形。按材料可分为硅薄膜形、化合物半导体薄膜形和有机膜形,而化合物半导体薄膜形又分为非结晶形、ⅢV族、ⅡⅥ族和磷化锌等。太阳能电池是一种对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅, 非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体硅为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差;当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是光子能量转换成电能的过程。太阳能电池的发电原理,主要是通过使用半导体材料将较薄的N型半导体置于较厚的P型半导体上,当光子撞击该装置的表面时,P型和N型半导体的接合面有电子扩散产生电流,可利用上下两端的金属导体将电流引出利用。太阳能电池是一种可以将能量转换的光电元件,其基本构造是运用P型与N型半导体接合而成的。半导体最基本的材料是“硅”,它是不导电的。但如果在半导体中掺入不同的杂质,就可以做成P型与N型半导体,再利用P型半导体有个电洞,与N型半导体多了一个自由电子的电位差来产生电流。所以当太阳光照射时,光能将硅原子中的电子激发出来,而产生电子和电洞的对流,这些电子和电洞均会受到内建电位的影响,分别被N型及P型半导体吸引,而聚集在两端。此时外部如果用电极连接起来,便会形成一个回路。太阳光照在半导体P-N结上,形成新的空穴-电子对,在P-N结电场的作用下,空穴由N区流向P区,电子由P区流向N区,接通电路后就形成电流。
太阳能电池能量转换的基础是光生伏特效应。当光照射到PN结上时产生电子一空穴对,在半导体内部结附近生成的载流子没有被复合而到达空间电荷区,受内建电场的吸引,电子流入N区,空穴流入P区,结果使N区储存了过剩的电子,P区有过剩的空穴。它们在PN结附近形成与势垒方向相反的光生电场。光生电场除了部分抵消势垒电场的作用外,还使P区带正电,N区带负电,在N区和P区之间的薄层就产生电动势,这就是光生伏特效应。
近年来超级电容发展快速,容量超大,面积反缩小,加上产品价格低廉,因此有部分太阳能产品开始应用超级电容来充电,因而改善了太阳能充电的许多问题。例如充电较快速,寿命长5倍以上,充电温度范围较广,减少太阳能电池用量(可低压充电)。目前太阳能电池的成本还较高,要达到足够的功率,需要相当大的面积放置电池。光热转换即靠各种集热器把太阳能收集起来,用收集到的热能为人类服务。
4.硅太阳能电池的功用特点
硅半导体类太阳能电池是使用的最早、最为广泛的一类太阳能电池。可分为下列主要的类型。
单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的结构和生产工艺已定型,产品已广泛用于空间和地面。大部分单晶硅的4个角落都会有空隙,从外观上很容易分辨。单晶硅太阳能电池以高纯度的单晶硅棒为原料,纯度要求达到99.999%,制作时将单晶硅棒切成片,一般每片厚度约为0.3mm。硅片经过抛磨、清洗等工序,制成待加工的原料硅片。加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。扩散是在石英管制成的高温扩散炉中进行,这样就在硅片上形成PN结。然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂敷减少光反射材料,以防大量的光子被光滑的硅片表面反射掉。制成单晶硅太阳能电池的单体片经过抽查检验,即可按所需要的规格采用串联和并联的方法构成有一定输出电压和电流能力的太阳能电池组件,最后用框架和密封材料进行封装。根据系统设计,可将太阳能电池组件分成各种大小不同的太阳能电池方阵,亦称太阳能电池阵列。单晶硅太阳能电池的光电转换效率为17%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,目前厂商一般都提供25年的质量保证。
单晶硅太阳能电池组件是当前发展最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于空间和地面。这种太阳能电池以高纯度的单晶硅棒为原料,单晶硅太阳能电池由圆柱形的晶锭切割而成,并非是完整的正方形,造成了一些精炼硅料的浪费,所以制程较贵。单晶硅太阳能电池的特征如下:硅原料的储藏丰富、密度低、材料轻其本身对环境的影响低;光电转换效率最高,使用寿命长;发电特性稳定,约有20年的耐久性。由于在太阳光谱主区域内光吸收系数相当小,为了吸收太阳光谱电池需要100μm2厚度的硅,因此使用的硅材料多、价格高。在太阳能光谱的主区域上,光吸收系数只有10000cm,相当小。为了增强太阳能光谱吸收性能,需要100um厚的硅片。目前单晶硅太阳能电池的研发课题是降低成本和提升效率。单晶硅太阳能电池的转换效率为15%~17%,而太阳能电池组件的转换效率为12%~15%。太阳能电池组件的转换效率是以该组件中转换效率最低的太阳能电池的转换效率为基准,而不是取太阳能电池的平均转换效率。
多晶硅太阳能电池的生产需要消耗大量的高纯硅材料,而制造这些材料工艺复杂,电耗很大,在太阳能电池生产总成本中已超二分之一。加之拉制的单晶硅棒呈圆柱状,切片制作太阳能电池也是圆片,组成太阳能组件平面利用率低。目前太阳能电池使用的多晶硅材料,多半是含有大量单晶颗粒的集合体,或用废次单晶硅料和冶金级硅材料熔化浇铸而成。其工艺过程是选择电阻率为100~300欧姆·厘米的多晶块料或单晶硅头尾料经破碎,用1:5的氢氟酸和硝酸混台液进行适当的腐蚀,然后用去离子水冲洗呈中性,并烘干。用石英坩埚装好多晶硅料,加入适量硼硅,放入浇铸炉,在真空状态中加热熔化。熔化后应保温约20min,然后注入石墨铸模中,待慢慢凝固冷却后,即得多晶硅锭。这种硅锭可铸成立方体,以便切片加工成方形太阳能电池片,可提高材制利用率和方便组装。多晶硅太阳能电池的制作工艺与单晶硅太阳能电池差不多,其光电转换效率约12%左右,稍低于单晶硅太阳能电池。但是材料制造简便,节约电耗,总的生产成本较低,因此得到大规模生产。多晶硅太阳能电池的制作工艺与单晶硅太阳能电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约15%左右。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大力发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单晶硅太阳能电池还略好。多晶硅太阳能电池的原材料丰富制造较为容易,成本低,使用量已经超过了单晶硅太阳能电池;光电转换效率较高,使用寿命长;存在着电池结晶结构较差的问题,应当在提高其性能的稳定性上作进一步的研究。单晶硅太阳能电池虽有其优点,但因价格高,在低价市场上的发展受到阻碍。而多晶硅太阳能电池则首先是降低成本,其次才是提高效率。多晶硅太阳能电池与单晶硅电池虽然结晶构造不一样,但光伏原理一样。
非晶硅太阳能电池是1976年出现的新型薄膜式太阳能电池,它与单晶硅和多晶硅太阳能电池的制作方法完全不同,硅材料消耗很少,电耗更低,非常吸引人。它的主要优点是在弱光条件也能发电。非晶硅太阳能电池的原子排列呈现无规则的状态,并且存在着早期的劣化特性,制造工艺简单、易于大批量的生产;使用寿命长,使用的硅量较小,一般厚度为数微米,可以制成薄形的结构便于在特殊的场合使用。但非晶硅太阳能电池存在的主要问题是光电转换效率偏低,目前国际先进水平为10%左右,且不够稳定,随着时间的延长,其转换效率会衰减。这就需要进一步提高光电的转换效率解决电池存在的早期劣化等问题。
非晶硅太阳能电池的结构有很多不同方式,其中有一种较好的结构叫PiN电池,它是在衬底上先沉积一层掺磷的N型非晶硅,再沉积一层未掺杂的i层,然后再沉积一层掺硼的P型非晶硅,最后用电子束蒸发一层减反射膜,并蒸镀银电极。此种制作工艺,可以采用一连串沉积室,在生产中构成连续程序,以实现大批量生产。同时,非晶硅太阳能电池很薄,可以制成叠层式,或采用集成电路的方法制造,在一个平面上,用适当的掩模工艺,一次制作多个串联电池,以获得较高的电压。普通晶体硅太阳能电池单个只有0.5V左右的电压,现在日本生产的非晶硅串联太阳能电池可达2.4V。目前非晶硅太阳能电池存在的问题是光电转换效率偏低,国际先进水平为10%左右,且不够稳定,常有转换效率下降的现象,所以尚未大量用于大型太阳能电源,而多半用于弱光电源,如袖珍式电子计算器、电子钟表及复印机等方面。估计效率衰降问题克服后,非晶硅太阳能电池将促进太阳能利用的大发展,因为它成本低,重量轻,应用更为方便,它可以与房屋的屋面结合构成住户的独立电源。
5.多元化合物太阳能电池的
功用特点及发展趋势
除了常用的单晶、多晶、非晶硅电池之外,多元化合物太阳能电池指不是用单一元素半导体材料制成的太阳能电池。现在各国研究的品种繁多,大多数尚未工业化生产,主要有以下几种:
硫化镉太阳能电池是以硫化镉为基体材料的太阳能电池,早在1954年雷诺兹就发现了硫化镉具有光生伏打效应。1960年采用真空蒸镀法制得硫化镉太阳能电池,光电转换效率为3.5%。到1964年美国制成的硫化镉太阳能电池,光电转换效率提高到4%~6%。后来欧洲掀起了硫化镉太阳能电池的研制,把光电效率提高到9%,但是仍无法与多晶硅太阳能电池竞争。不过人们始终没有放弃它,除了研究烧结型的块状硫化镉太阳能电池外,更着重研究薄膜型硫化镉太阳能电池。
砷化镓太阳能电池中砷化镓的禁带较硅宽,使得它的光谱响应性和空间太阳光谱匹配能力较硅好。砷化镓是一种很理想的太阳能电池材料,它与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳能电池。由于镓比较稀缺,砷有毒,制造成本高,此种太阳能电池的发展受到影响。常规上,砷化镓电池的耐温性要好于硅光电池。有实验数据表明,砷化镓电池在250℃的条件下仍可以正常工作,但是硅光电池在200℃就已经无法正常运行。砷化镓较硅质在物理性质上要更脆,这一点使得其加工时比硅容易碎裂,目前常把其制成薄膜并使用衬底,来对抗其在这一方面的不利,但是也增加了技术的复杂度。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,特别适合做高温聚光太阳能电池。
常用薄膜电池转化率较低,因此新型的高倍聚光电池系统受到研究者的重视。聚光太阳能电池是用凸透镜或抛物面镜把太阳光聚焦到几倍、几十倍,或几百倍甚至上千倍,然后投射到太阳能电池上。这时太阳能电池可能产生出相应倍数的电功率。它们具有转化率高,电池占地面积小和耗材少的优点。高倍聚光电池具有代表性的是砷化镓(GaAs)太阳能电池。GaAs属于III-V族化合物半导体材料,其能隙与太阳光谱的匹配较适合,且能耐高温。与硅太阳能电池相比,GaAs太阳能电池具有较好的性能。
铜铟硒太阳能电池是以铜、铟、硒三元化合物半导体为基本材料制成的太阳能电池。它是一种多晶薄膜结构,一般采用真空镀膜、电沉积、电泳法或化学气相沉积法等工艺来制备,材料消耗少,成本低,性能稳定,光电转换效率在10%以上。因此这是一种可与非晶硅薄膜太阳能电池相竞争的新型太阳能电池。铜铟硒CIC材料适于太阳光的光电转换,另外,CIS薄膜太阳能电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的关注。CIS电池薄膜的制备主要有真空蒸镀法和硒化法。真空蒸镀法是采用各自的蒸发源蒸镀铜、铟和硒,硒化法是使用H2Se叠层膜硒化,但该法难以得到组成均匀的CIS。CIS薄膜电池从80年代最初8%的转换效率发展到目前的15%左右。日本松下电气工业公司开发的掺镓CIS电池,其光电转换效率为15.3%。1995年美国可再生能源研究室研制出转换效率为17.l%的CIS太阳能电池,这是迄今为止世界上该电池的最高转换效率。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。近来还发展用铜铟硒薄膜加在非晶硅薄膜之上,组成叠层太阳能电池,借此提高太阳能电池的效率,并克服非晶硅光电效率的衰降。
目前市场上量产的单晶与多晶硅的太阳能电池平均效率约在15%上下,为了提炼晶硅原料,需要花费极高的能源,所以严格地说,现今的晶硅太阳能电池,也是某种形式的浪费能源。而砷化镓太阳能电池,由于原料取得不需使用太多能源,而且光电转换效率高达38%以上,比传统晶硅原料高出许多,符合修改后的京都议定书规范,估计未来将成市场主流。
采用砷化镓薄膜电池聚光跟踪发电系统即所谓HCPV系统,却能实现光热与光伏的综合利用,并充分降低生产成本、提高转换效率,为光伏产业更大发展开辟新的市场空间。此外,还可以通过叠层技术做成多结砷化镓基电池,以进一步提高转换效率。但是,由于砷化镓基材料价格昂贵,砷化镓薄膜电池目前只在航天等特殊领域应用,离地面应用的商业化运行还有很大距离。为了降低光伏电池的发电成本,可采取的有效途径之一就是研发和应用砷化镓薄膜电池聚光发电系统。在获得同样输出功率情况下,可以大大减少所需的砷化镓薄膜电池面积。这种途径相当于用比较便宜的普通金属、玻璃材料做成聚光器和支撑系统,来代替部分昂贵的砷化镓薄膜电池。在光伏发电产业中,单晶硅和多晶硅等硅基光伏电池几乎占到全部产量的94%以上。由于近年太阳能级硅材料供不应求,且持续大幅度涨价,在一定程度上制约了硅基光伏电池的发展。因此,如何提高光伏电池的转换效率和降低光伏电池的生产成本,成为目前光伏产业必须研究和解决的核心问题。
1产品简介
带腔体的光电封装件及其生产方法是华天科技股份有限公司已申请受理的专利产品。
带腔体的光电封装件,外引脚不,共面性好,封装成品和整机安装合格率高;改变了架的外引脚,提高了料利用率,缩短了产周期,结构简单合理,体积小,敏度高,干扰能力强,产效率高,应用于各种电子设备、仪器的带腔体的光电集成电路封装。
带腔体的光电封装件,包括引线框架载体、引线框架内引脚、引线框架外引脚、塑封体、粘片胶、光电IC芯片。
该技术的生产流程如图1所示。
带腔体的光电封装件剖面结构示意图如图2所示。
2创新性和先进性
本项目是原始创新,具有自主知识产权。
1)塑封外腔体制作
将引线框架传送到塑封模具中,通过塑封在引线框架的外引脚上方形成一个带有内台阶的塑封外腔体,塑封外腔体覆盖了引线框架的外引脚;
2)带腔体的光电封装件
一种带腔体的光电封装件,包括引线框架载体、引线框架内引脚、引线框架外引脚、塑封体、粘片胶、光电IC芯片,引线框架载体上通过粘接材料粘接光电IC芯片,光电IC芯片焊盘(PAD)通过键合线与引线框架内引脚相连,构成电路的信号和电流通道,引线框架外引脚上塑封带有内台阶的环形外腔体,外腔体覆盖引线框架外引脚、以及内引脚和引线框架载体之间的空隙,形成电路的整体,外腔体的内台阶上端面涂覆有密封胶, 密封胶上粘接玻璃盖板;引线框架载体和引线框架内引脚之间由塑封体连接,为了防止电磁感应,也可以使用金属或陶瓷盖板。
另一种带腔体的光电封装件生产方法:
腔体制作,上芯、压焊、同第一种方法,压焊后,通过上芯机在腔体内的芯片和键合线表面全部点上
透明胶,透明胶的高度同外腔体,基本上与外腔体持平。点胶后全部进行烘烤,烘烤温度为150℃~175℃,烘烤时间为2~3小时,具体时间根据腔体高度和透明胶型号确定。
3)创新性
产品结构简单合理,无的外引脚,无共面性缺陷,芯片封装成品率和成品器件装机合格率高;采用的生产方法不需要切中筋和成形工序,提高了材料利用率和生产效率,成品率高于普通塑封光电器件;具有成本低、体积小、灵敏度高、功耗低、抗干扰能力强、可靠性高等显著特点,广泛应用于便携式产品,如数据通讯、数码相机、自动化等领域。
主要创新点为:
1)塑封外腔体制作;
2)塑封外腔体上芯技术;
3)塑封外腔体金丝键合技术;
4)塑封外腔体粘接玻璃盖板(或其它材料)技术;
5)切割入盘技术。
本产品的开发总结出了一套适合于带腔体的光电封装的工艺文件;开发了具有自主知识产权的带腔体的光电封装和集成压力传感器产品。本产品是我公司的专利产品,目前国内只有我公司生产该产品。
国家知识产权局已受理本产品技术的专利申请。
【关键词】物料跟踪;自动采集;无线传输
引言
企业生产需要做好信息流的管理。原材料信息的是生产信息流中的重要组成部分。做好了原材料物料信息的跟踪处理,对稳定现场生产,控制制造成本,确保产品质量均具有重要意义。
无线传输技术日趋成熟,在各行业均有应用。使用无线传输技术可解决生产现场因空间限制不能铺设电缆,导致有线信号不能传输的问题。
1.转炉废钢槽装槽工艺
某炼钢厂150吨转炉生产,每炉需高炉铁水约135吨,各类废钢及其他原材料约25吨。转炉废钢装槽使用废钢车车载式称量系统称量。空槽在转炉渣跨、废钢跨使用磁盘吊或抓斗分批次将相关物料加入废钢槽中。当称量到达预计重量后,废钢车将废钢槽从渣跨、废钢跨向东行驶,开往加料跨。废钢车在加料跨停车后,由加料跨的50+50吊车将废钢槽吊起,将槽内物料加入转炉冶炼。
该炼钢厂废钢及相关原材料主要依靠汽车运输、火车车皮倒运等方式进入现场,分区域堆放在该厂的转炉渣跨和废钢跨。相关物料种类繁多,有生铁块、统废、重废、渣钢、豆钢和板废等十余种。相关存放如下图图1物料存放区域示意图所示:
图1 物料存放区域示意图
其他炼钢厂废钢装槽工艺与该厂有所不同。有的炼钢厂有专门的废钢分类处理工序,可将零散废钢压紧打包;有的炼钢厂废钢槽装槽使用天车磁盘称量,可对每一吊的吊物料进行称量。以上两种装入方式在废钢种类控制、重量统计方面都较为规范。该厂废钢槽装槽方式相比其他钢厂,无论在废钢等不同物料的区分统计上,还是在废钢等物料的重量记录上都有诸多不便。而废钢及相关物料相关信息的统计管理直接影响该炼钢厂钢铁料成本的控制,需进一步完善。
2.物料跟踪系统
2.1物料信息采集
为规范每炉废钢实际装槽情况,该厂设计并安装了一套废钢物料跟踪系统,用于自动统计废钢装槽实际情况。
在炉渣跨与废钢跨共用的吊车走台安装1套S7-300 PLC控制柜作为下位机,通过以太网与废钢操作室内作为上位机的工控机进行通讯。以废钢1、2号车为中心线,分别在其每跨的吊车走台上分别向南、北两侧安装光电感应开关。一个光电开关代表一个物料区域。相关代表物料区域的光电开关信号被接入S7-300PLC。
因吊车吊运物料是由废钢车位置为起点,分别往南、北方向去各物料堆放地进行物料吊运。故废钢车轨道往南安装的光电开关应靠物料区域北侧安装;废钢车轨道往北安装的光电开关应靠物料区域南侧安装。
参见下图图2光电开关安装示意图所示(表示光电开关):
图2 光电开关安装示意图
以上图图2为例,吊车从废钢车轨道向南行走,经过①物料区时,其①物料区北侧的光电开关感应到信号传给PLC,该信号激活并在程序中置位,自动认定为①物料;当吊车继续行走到②物料区时,其②物料区北侧的光电开关感应到信号传给PLC,该信号激活并在程序中置位,自动认定为②物料,同时将①物料置位信号清零。即依次类推。
以废钢车轨道上方为起点,向南行驶,其越靠南边的光电开关优先级越高。当越靠南边的光电开关感应信号后,其临近的靠北侧光电开关信号被清零。同理,以废钢车轨道上方为起点,向北行驶,其越靠北边的物料优先级越高,当越靠北边的光电开关来了后,其临近的靠南侧光电开关信号被清零。
该功能只有以废钢车轨道上方为起点,分别向南、向北开时才起作用。当最终的光电开关信号到来后30秒,未被更高级别光电开关清零,则该物料信息被记录。
为方便物料调整,物料信息统一按代码设定。如101代表生铁,102代表统废,依次类推。各光电开关对应的物料代码可通过工程师站/或HMI管理员权限在PLC程序中设定。
2.2重量信息采集
当废钢车在渣跨或废钢跨开始装槽时,其初始(或上一次)重量能被PLC记录,并存储到PLC的DB块中。
在1号废钢车、2号废钢车对应中心线的吊车走台各装一个光电开关,代表装槽位。相关代表槽位的光电开关信号被接入PLC300下位机。当物料被磁盘吸吊后,磁盘吊将其吊运至对应废钢车的废钢槽上方。此时装槽位信号感应到信号,当该信号持续保持5秒,则装槽位信号被激活。
当装槽位信号被激活,且对应废钢车称量信号发生变化时(≥200KG),延迟3秒后,PLC记录新物料加入后的总重量。将新采集的重量数据减去之前存储的初始(或上次)重量数据得出新加入的物料单重。单次装槽的单重信息被保存下来
当有一槽已装好的废钢槽被吊走,废钢车车载称重数据将减少15吨以上。当废钢称重突然递减15吨,则认为废钢槽已调走,相关物料信息、各单重信息、总重数据等信息被上传至二级数据库,同时将总重量清零。
2.3无线传输技术运用
此物料跟踪系统有个关键技术环节需解决:如从废钢车上方开始出发,先往北开,激活了一个物料信号,但尚未吊物料。此后再往回向南开回来一个物料区进行吊物料作业,则物料跟踪系统不能正确判别,系统依旧会认定为吊车此次吊运的是刚才经过的最北头的物料代码。同一跨的吊车因物料装入的比例不同,经常会出现让车作业,故导致物料信息判别错误。
为此,如何区分吊车是进行让车作业,还是物料倒运作业至关重要,将直接影响物料系统跟踪的准确性。而吊车本身是一套独立、完整的机电一体品。吊车与地面的联系只有供电吊车电源的低压滑触线。为解决信号传输问题,该厂增设一套无线传输设备来解决同一跨两台吊车位置和作业的判断问题。
选用某品牌无线开关量信号传输模块。在PLC柜内安装一个8点数字量DO输出点的无线接收站,在炉渣跨与废钢跨4台(每跨2台)吊车上各安装一个4点数字量DI输入点无线发射站。无线信号传输系统设备配置如下图图3所示
图3 无线信号传输系统配置图
通过各子站的无线信号传输DI模块分别采集磁盘吊主接触器吸合信号和磁盘主卷扬上升信号。各子站信号通过无线传输方式,发送给无线信号传输到DO模块主站。无线信号传输DO模块接收到信号后,再将接收到的各吊车信号通过硬接线方式发送给S7-300PLC。当以上两个信号激活时,可以认定吊车在此物料区间进行物料吊运作业;反之,可判断为天车在进行让车作业或其他作业,不需对其物料信息进行记录。另外,还可采集天车大车走行正反转信号作为向南、向北方向行走的判别信号,可协助物料吊运区域的正确判别。
将以上信号的组合使用,分别作为吊车吊运物料的连锁信号,可准确区分同一跨的两台吊车是在进行让车作业,还是在进行吊运物料作业,有效解决了因吊车让车导致的物料信息紊乱的问题。
3.实施效果
项目通过无线传输信号的使用,成功解决了吊车作业情况的判别问题,经实际使用测试,使用情况良好。经过一系列改进完善措施的实施,该厂建立了废钢槽装槽物料跟踪系统。该系统自动化程度高,一方面可对转炉渣跨、废钢跨天车每一吊吊物的物料种类、物料重量进行自动记录,准确掌握每槽废钢槽的装槽信息,为转炉冶炼提供依据;另一方面,可将转炉渣跨、废钢跨的各类物料的消耗情况按每日、每周、每月为周期进行统计,便于及时掌握各类物料的消耗情况,完善了该炼钢厂钢铁料消耗信息流的管理。
关键词:光电子 产业动态 现状
中图分类号:TN16 文献标识码:A 文章编号:1672-3791(2012)06(c)-0007-02
光电子技术不仅全面继承兼容电子技术,而且具有微电子无法比拟的优越性能和更广阔的应用范围。科学家预言,2010年至2015年,光电子产业可能会取代传统电子产业,成为21世纪最大的产业,成为衡量一个国家经济发展和综合国力的重要标志[1]。为此,各国都采取措施,加快发展光电子产业。美、日、德、韩、法等国竞相将光电子技术引入国家发展计划,形成了全方位的竞争格局。我国也出台了相应的政策,支持光电子产业发展。
光电子产业按功能可分为光通信、激光及红外光电、光电显示、半导体照明及光伏、光学及光学元器件等领域。本文分别对光电子五大领域的技术和市场现状进行分析,比较了国内外的产业发展情况。
1 光通信
光通信主要包括光纤传输系统与设备、光通信元器件、光通信测试仪器。自其诞生以来,就一直受到国际产业界和政府部门的广泛关注。2009年10月6日,素有“光纤之父”之称的华裔科学家高锟以其在“有关光在纤维中的传输以用于光学通信方面”取得的突破性成就荣获2009年诺贝尔物理学奖。
光通信的研发主要集中在亚太地区(中国、日本、韩国)、美国和欧盟[2]。随着美国、欧盟等国家和地区高速互联网络和无线宽带网络建设计划的实施,全球光通讯行业发展更加迅猛。据报告预计,到2015年,光网络市场规模将到达200亿美元,同期复合年增长率为5%。
中国已形成较完整的光纤通信产业体系,涵盖光纤、光传输设备、光源与探测器件、光电器件等领域,国内市场所需的光通信产品80%以上实现了本地化生产。来自我国通信电缆光缆专业委员会的统计数据显示,2011年,我国光纤需求量为1.2亿芯公里,预计2012年将达到1.4亿芯公里。光缆产量达到8000万芯公里(保守估计),光纤产量达到近1亿芯公里,我国的光纤光缆及材料产业将保持高速发展的势头。
近来,国家发改委联手工信部启动了“宽带中国战略”研究工作,提出到2012年,新增光纤到户(FTTH)覆盖家庭超过3500万户,使用4M及以上宽带接入产品的用户超过50%,新增固定宽带接入互联网家庭超过2000万户。光通信市场因此呈现出井喷态势。中国联通计划年内投资1000亿元人民币用于3G网络、光纤宽带等建设,预计其中约20%将用于宽带投资。有报告预计,今年三大运营商FTTH端口数将达到8000万个,国内ODN设备市场在未来3~5年内将达到100亿元市场规模。
2 激光及红外光电
激光及红外光电主要包括激光加工设备、激光器及激光应用、红外光电传感测试和成像设备及仪器、医用激光技术设备等。
美国、德国、日本等发达国家在激光研究及应用领域发展迅猛。在技术方面,日本的光电子技术占首位;德国的激光材料加工设备占首位;美国的激光医疗及激光检测技术占首位。目前,国外激光行业正向多元化、专业化、有限多元化、系统集成的方向发展。
由于受到全球金融危机的影响,2009年,全球激光应用系统销售收入约为97.5亿美元,同比下降了24.8%。其中,激光器销售收入55.5亿美元。而中国激光市场仍然保持15.1%的增长,突破了100亿元规模,成为全球激光市场中的一股新兴力量。我国激光产业主要集中在武汉、深圳、上海、北京等地。
红外及微光成像系统几乎从一诞生就以其强大的技术优势逐步占领了世界军用和商用市场,其在生产加工、天文、医学、法律及消防等方面都得到了广泛的应用。军事和科学应用是红外传感器的第一市场,其高速发展对红外产品的图像清晰度、拍摄距离、聚焦效果不断提出新的要求。而商业市场则要求红外探测能够实现监视能力强、跟踪与报道快速有效和存储等功能,为红外技术和热成像开辟了强有力的第二市场。在商业领域,红外成像技术可应用于建筑物热损失检测、电气元件故障预测、电子系统测试、生产过程监控及生产中的临界温度控制等。目前,全球的红外市场已经达到了50亿美元,在中国市场,每个月销售的“近红外”或“主动红外”摄像机数量超过了一万套,成为世界上最大的安防市场。
3 光电显示
光电显示主要包括平板及液晶显示(FDP、TFT、PDP、LCD、OLED)、大屏幕投影显示设备(投影管、HTPS-TFT-LCD、DLP-DMD、LCOS)、显示技术及检测设备等。它集成了微电子技术、光电子技术、材料技术、制造装备技术、半导体工程技术等多项技术,广泛用于信息、医疗、航空航天等各种电子终端产品。