HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 半导体材料设计

半导体材料设计

时间:2023-06-02 09:59:40

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇半导体材料设计,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

半导体材料设计

第1篇

关键词:半导体材料;教学内容;教学方法;实践教学

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)10-0085-02

材料是人类文明的里程碑,其中半导体材料更是现代高科技的基础材料。近年来,半导体材料在国民经济和前沿科学研究中扮演越来越重要的角色,引起了社会的广泛关注。半导体材料作为材料科学与工程专业的核心专业课,主要是通过研究学习Si、Ge、砷化镓等为代表的半导体材料的性质、功能,内容涉及晶体生长、化学提纯、区熔提纯等半导体材料的生长制备方法及半导体材料的结构、缺陷和性能的分析和控制原理。随着现代科技的飞速发展,该学科也更新换代加快,形成了一些新的理论和概念。为了进一步提高对半导体材料课程的教学质量,我们借鉴国内外大学先进的教学理念,对该课程存在的问题进行了总结,并提出了新的教学改革。

一、课程存在的问题

在半导体材料课程的教学实践过程中,存在诸多的问题,例如该课程教材包含的内容非常宽泛,理论强且概念多而抽象;部分内容与其他课程的重复性相对较高,使得学生缺乏学习兴趣;更主要的是教材内容大多注重理论,而忽视了实践的重要性,缺少对前沿科学知识的相关介绍。此外,目前传统的课堂教学方法主要是简单的教师讲述或者板书课件的展示形式,学生被动地接受知识,部分学生只能通过死记硬背的方式来记住教师所传授的基础理论知识,长此以往,只会加重学生对该课程的厌学情绪。此等只会与因材施教背道而驰,扼杀学生的个性和学习的自主性,不利于培养创造新型科学性专业型人才。

二、课程改革的必要性

《半导体材料》课程以介绍半导体材料领域的基础理论为目的,从常见半导体的性质,揭示不同半导体材料性能和制备工艺之间的关系,全面阐述各半导体材料的共性基础知识与其各自适应用于的领域。在当今信息时代科技的飞速发展中,只有结合理论和实践才能发挥半导体的最大效用,才能更有效地掌握其深度和广度,这些对后续课程的实施也有着一定的影响。作为材料科学与工程专业的重要专业课程之一,除了让学生学习理论知识,更重要的是培养学生的科学实践能力和职业技能,以适应当今社会的发展。针对以上存在的问题,半导体材料的教学改革迫在眉睫。由此才可以改变学生的学习现状,调动和提高学生的学习兴趣,提高教学质量,使得我们所学知识真正为我们所用。

三、教学内容的改革

1.内容的改革。对传统的半导体材料教学内容的改革,从根本上来看最重要的是引入前沿知识,实现内容的创新,并且使得理论联系实际。下图是目前我校的半导体材料的基本内容,如下:

目前我校的半导体材料课程内容主要由以上几个部分组成,其中A、B两部分的内容为重要部分,整个学期都在学习;而C部分相对来说比较次要,在学习过程中大概讲述一至两种半导体材料,剩下的部分属于自学部分,也不在考试范围内;至于专业课的实验,也相对较少且没有代表性。该课程是在大三上学期开设的,对于处于这个阶段的学生来说,面临这考研或就业的选择与准备过程中。所以作为一门专业课,除了注重半导体材料的特性、制备和应用方面的知识外,更重要的是半导体材料的应用领域和研究现状相结合,增加其实用性,不管对考研,还是就业的同学来说,都有一定的帮助。对于改革后的教学内容,除了增加对图1中C部分的重视度,其次,应增加各模块:目前半导体材料的热点应用领域及研究现状。还有图1中的A、B部分可适当地减少,因为在其他的专业课程都有学习过,对于重复的知识巩固即可,没必要再重点重复学习。对于实验课,相对于实验室来说,能够操作的实验往往没有多大的挑战性,有条件的话能够进入相关企业观摩,身临其境的感受有意义得多。

在实际的课程教学过程中,除了学习常见半导体材料的发展历史和研究方法外,介绍一些新型的半导体材料及其应用领域,例如半导体纳米材料、光电材料、热电材料、石墨烯、太阳能电池材料等,使学生能够区分不同半导体各自的优缺点;除了介绍晶体生长、晶体缺陷类型的判定及控制的理论知识外,介绍几种生产和科研中常见的材料检测方法,如X射线衍射、扫描电子显微镜、红外光谱仪、荧光光谱等。此外,还可以介绍当前国内外的半导体行业的现状和科技前沿知识,让学生清楚半导体行业存在的一些问题需要他们去完成,以激发学生的使命感和责任感。在讲授各种外延生长的设备和原理时,应介绍一些相关的科学研究工作,如真空镀膜、磁控溅射等。另外,可以以专题的形式,介绍一些前沿内容,如半导体纳米材料、石墨烯方面的研究进展和应用前景等,拓宽学生的知识面,以激发学生的研究兴趣和培养创新意识。

2.教材参考书的选择。《半导体材料》课程内容较多,不同的教材的侧重点不一样,所以仅仅学习教材上的内容往往不够,所以根据课程的改革要求和《半导体材料》课程自身的特点,需要与本课程密切相关的、配套齐全的参考教程,例如半导体器件物理(第二版)、微电子器件与IC设计基础(第二版)、半导体器件原理等。

四、教学方法的改革

由于传统的教学观念的影响,半导体材料课程的仍是以板书课件为主的传统的教学方法。这种单一枯燥的教学方式忽视了学生的学习兴趣和学习的主观能动性,极大地阻碍了对学生创新能力的培养。此外,该课程的考核方式单一,以期末考试为主,一定程度使学生养成了为考试而学的心态,对所学知识死记硬背,没有做到真正的融会贯通、学以致用的目的。大部分学生以修学分为目的,期末考试后对所学知识所知无几,学一门丢一门的心态,严重影响了教学效果,更重要的对学生今后的研究和工作没有任何的帮助。可见,对这种灌输知识的教学方式和考核机制的改革迫在眉睫。在教学过程中采用小组式讨论,网络教学平台,专题式讲解,实验教学等多种教学方式,将有益于改善教学效果。

1.小组讨论式教学。为了充分发扬学生的个性特点和体现教学的人性化,使得学生真正成为主体,必须提供新颖、易于讨论的课程环境,从而培养学生自主创新的意识和能力。小组讨论式教学模式就很好地体现了这一点,在小组讨论中,可以使学生发表自己所思所想,相互学习,集思广益,取长补短。教师在教学过程中应鼓励学生质疑的精神,使其敢于突破传统,思维独到,鼓励学生在错误中积累宝贵经验;给予学生正能量,引起学生的学习热情和兴趣,营造轻松、积极的课堂环境。

2.网络教学平台。在多媒体盛行的时代,开放式、多媒体式教学方式备受关注,即建设一个融入教师教和学生学为一体的、便于师生互动的网络教学平台。在网络教学平台上可以提供各种学习辅助资料和学习支持服务。例如一对一的视频辅导、课堂直播、网上答疑、学习论坛、名师讲解等形式。学生可根据自身的学习爱好和学习习惯自主选择学习时间。通过这种便利的人机交互学习,为学习者提供了一个针对性强、辅助有利、沟通及时、互动充分、独立自主的学习环境,同时提供了丰富的学习资源。

3.专题式讲解。半导体材料课程包含的内容很广泛,有许多的分支;由于教学内容的增多,往往会给学生造成错乱,理不清思绪。专题式讲解是更系统的学习,使学习过程有条不紊。专题式讲解既可以由教师主讲,也可以由学生自己学习整理,再以PPT的形式将所学所思讲给同学听。既锻炼了学生的自学能力,又锻炼了学生的口语和实践能力。

4.实验教学。实验是一种提高学生感性认识的有效手段,实验教学将有助于学生深入理解所学理论知识,并在实验中应用相关理论,为学生获得新的理论知识打下良好的基础。例如,可以通过实践教学方法来传授半导体材料的生长制备、结构表征、性能测试以及应用等方面的知识。合理安排实验,通过在实验设计过程中制定实验方案、实验操作、实验报告或论文撰写等环节,不仅提高了学生的动手能力,对学生创新能力的培养也起到极大的促进作用。对实验过程中出现的实验偏差、操作失误、环境改变等对实验结果的影响分析,为将来的科研工作打下坚实的基础。此外,建立校企合作新机制,依托企业、行业、地方政府在当地建立多个学生教学实习基地,为加强实践教学提供有力支撑,让学生有实地模拟学习的机会,提高教学效果,增强学习兴趣。

五、结论

《半导体材料》课程是材料科学与工程专业的重要专业课程。半导体材料课程的教学改革,对提高材料专业的人才培养质量具有一定的意义。依据科学技术的发展,及时更新教学内容改革教学方法,因材施教。同时在教学实践中,我们将半导体材料的新理论、新应用和一些科学研究成果引入到教学内容当中,处理好基础性和创新性、先进性、经典和现代的关系,加强理论联系实际的教学环节建设,有利于提高教学质量,加强学生的学习效果,培养出具有扎实理论基础、较强的实践能力的应用技术型人才和一定科研能力的研究型人才。

参考文献:

第2篇

一、开设半导体材料及光伏技术方向的必要性

由于我校已经有材料与化学工程学院,开设了高分子、化工类材料、金属材料等专业,应用物理、物理学专业的方向就只有往半导体材料及光伏技术方向靠,而半导体材料及光伏技术与物理联系十分紧密。因此,我们物理系开设半导体材料及光伏技术有得天独厚的优势。首先,半导体材料的形成原理、制备、检测手段都与物理有关;其次,光伏技术中的光伏现象本身就是一种物理现象,所以只有懂物理的人,才能将物理知识与这些材料的产生、运行机制完美地联系起来,进而有利于新材料以及新的太阳能电池的研发。从半导体材料与光伏产业的产业链条来看,硅原料的生产、硅棒和硅片生产、太阳能电池制造、组件封装、光伏发电系统的运行等,这些过程都包含物理现象和知识。如果从事这个职业的人懂得这些现象,就能够清晰地把握这些知识,将对行业的发展起到很大的推动作用。综上所述,不仅可以在我校的应用物理学专业开设半导体材料及光伏技术方向,而且应该把它发展为我校应用物理专业的特色方向。

二、专业培养方案的改革与实施

(一)应用物理学专业培养方案改革过程

我校从2004年开始招收应用物理学专业学生,当时只是粗略地分为光电子方向和传感器方向,而课程的设置大都和一般高校应用物理学专业的设置一样,只是增设了一些光电子、传感器以及控制方面的课程,完全没有自己的特色。随着对学科的深入研究,周边高校的互访调研以及自贡和乐山相继成为国家级新材料基地,我们逐步意识到半导体材料及光伏技术应该是一个应用物理学专业的可持续发展的方向。结合我校的实际情况,我们从2008年开始修订专业培养方案,用半导体材料及光伏技术方向取代传感器方向,成为应用物理学专业方向之一。在此基础上不断修改,逐步形成了我校现有的应用物理专业的培养方案。我们的培养目标:学生具有较扎实的物理学基础和相关应用领域的专业知识;并得到相关领域应用研究和技术开发的初步训练;具备较强的知识更新能力和较广泛的科学技术适应能力,使其成为具有能在应用物理学科、交叉学科以及相关科学技术领域从事应用研究、教学、新技术开发及管理工作的能力,具有时代精神及实践能力、创新意识和适应能力的高素质复合型应用人才。为了实现这一培养目标,我们在通识教育平台、学科基础教育平台、专业教育平台都分别设有这方面的课程,另外还在实践教育平台也逐步安排这方面的课程。

(二)专业培养方案的实施

为了实施新的培养方案,我们从几个方面来入手。首先,在师资队伍建设上。一方面,我们引入学过材料或凝聚态物理的博士,他们在半导体材料及光伏技术方面都有自己独到的见解;另一方面,从已有的教师队伍中选出部分教师去高校或相关的工厂、公司进行短期的进修培训,使大家对半导体材料及光伏技术有较深的认识,为这方面的教学打下基础。其次,在教学改革方面。一方面,在课程设置上,我们准备把物理类的课程进行重新整合,将关系紧密的课程合成一门。另一方面,我们将应用物理学专业的两个方向有机地结合起来,在光电子技术方向的专业课程设置中,我们有意识地开设了一些课程,让半导体材料及光伏技术方向的学生能够去选修这些课程,让他们能够对光伏产业的生产、检测、装备有更全面的认识。最后,在实践方面。依据学校资源共享的原则,在材料与化学工程学院开设材料科学实验和材料专业实验课程,使学生对材料的生产、检测手段有比较全面的认识,并开设材料科学课程设计,让学生能够把理论知识与实践联系起来,为以后在工作岗位上更好地工作打下坚实的基础。

三、总结

半导体材料及光伏行业是我国大力发展的新兴行业,受到国家和各省市的大力扶持,符合国家节能环保的主旋律,发展前景十分看好。由于我们国家缺乏这方面的高端人才和行业指挥人,在这个行业还没有话语权。我们的产品大都是初级产品或者是行业的上游产品,没有进行深加工。目前行业正处在发展的困难时期,但也正好为行业的后续发展提供调整。只要我们能够提高技术水平和产品质量,并积极拓展国内市场,这个行业一定会有美好的前景。要提高技术水平和产品质量,就需要有这方面的技术人才,而高校作为人才培养的主要基地,有责任肩负起这个重任。由于相关人才培养还没有形成系统模式,这就更需要高校和企业紧密联系,共同努力,为半导体材料及光伏产业的人才培养探索出一条可持续发展的光明大道,也为我国的新能源产业发展做出自己的贡献。

作者:王永华 单位:四川理工学院

第3篇

关键词:微电子半导体制造封装技术

中图分类号:TN405文献标识码:A文章编号:1674-098X(2019)09(c)-0070-02

微电子技术作为当今工业信息社会发展最快、最重要的技术之一,是电子信息产业的“心脏”。而微电子技术的重要标志,正是半导体集成电路技术的飞速进步和发展。多年来,随着我国对微电子技术的重视和积极布局投入,结合社会良好的创新发展氛围,我国的微电子技术得到了迅速的发展和进步。目前我国自主制造的集成芯片在射频通信、雷达电子、数字多媒体处理器中已经得到了广泛应用。但总体来看,我国的核心集成电路基础元器件的研发水平、制造能力等还和发展较早的发达国家存在一定差距,唯有继续积极布局,完善创新体系,才能逐渐与世界先进水平接轨。集成电路技术,主要包括电路设计、制造工艺、封装检测几大技术体系,随着集成电路产业的深入发展,制造和封装技术已经成为微电子产业的重要支柱。本文将对微电子技术的制造和封装技术的发展和应用进行简要说明与研究。

1微电子制造技术

集成电路制造工艺主要可以分为材料工艺和半导体工艺。材料工艺包括各种圆片的制备,包括从单晶拉制到外延的多个工艺,传统Si晶圆制造的主要工艺包括单晶拉制、切片、研磨抛光、外延生长等工序,而GaAs的全离子注入工艺所需要的是抛光好的单晶片(衬底片),不需要外延。半导体工艺总体可以概括为图形制备、图形转移和扩散形成特征区等三大步。图形制备是以光刻工艺为主,目前最具代表性的光刻工艺制程是28nm。图形转移是将光刻形成的图形转移到电路载体,如介质、半导体和金属中,以实现集成电路的电气功能。注入或扩散是通过引入外来杂质,在半导体某些区域实现有效掺杂,形成不同载流子类型或不同浓度分布的结构和功能。

从历史进程来看,硅和锗是最早被应用于集成电路制造的半导体材料。随着半导体材料和微电子制造技术的发展,以GaAs为代表的第二代半导体材料逐渐被广泛应用。直到现在第三代半导体材料GaN和SiC已经凭借其大功率、宽禁带等特性在迅速占据市场。在这三代半导体材料的迭展中,其特征尺寸逐渐由毫米缩小到当前的14纳米、7纳米水平,而在当前微电子制造技术的持续发展中,材料和设备正在成为制造能力提升的决定性因素,包括光刻设备、掩模制造技术设备和光刻胶材料技术等。材料的研发能力、设备制造和应用能力的提升直接决定着当下和未来微电子制造水平的提升。

总之,推动微电子制造技术发展的动力来自于应用设计需求和其自身的发展需要。从长远看,新材料的出现带来的优越特性,是帶动微电子器件及其制造技术的提升的重要表现形式。较为典型的例子是GaN半导体材料及其器件的技术突破直接推动了蓝光和白光LED的诞生,以及高频大功率器件的迅速发展。作为微电子器件服务媒介,信息技术的发展需求依然是微电子制造技术发展的重要动力。信号的生成、存储、传输和处理等在超高速、高频、大容量等技术要求下飞速发展,也会持续推动微电子制造技术在加工技术、制造能力等方面相应提升。微电子制造技术发展的第二个主要表现形式是自身能力的提升,其主要来自于制造设备技术、应用能力的迅速发展和相应配套服务材料技术的同步提升。

2微电子封装技术

微电子封装的技术种类很多,按照封装引脚结构不同可以分为通孔插装式和表面安装式。通常来说集成电路封装技术的发展可以分为三个阶段:第一阶段,20世纪70年代,当时微电子封装技术主要是以引脚插装型封装技术为主。第二阶段,20世纪80年代,SMT技术逐渐走向成熟,表面安装技术由于其可适应更短引脚节距和高密度电路的特点逐渐取代引脚直插技术。第三阶段,20世纪90年代,随着电子技术的不断发展以及集成电路技术的不断进步,对于微电子封装技术的要求越来越高,促使出现了BGA、CSP、MCM等多种封装技术。使引脚间距从过去的1.27mm、0.635mm到目前的0.5mm、0.4mm、0.3mm发展,封装密度也越来越大,CSP的芯片尺寸与封装尺寸之比已经小于1.2。

目前,元器件尺寸已日益逼近极限。由于受制于设备能力、PCB设计和加工能力等限制,元器件尺寸已经很难继续缩小。但是在當今信息时代,依然在持续对电子设备提出更轻薄、高性能的需求。在此动力下,依然推动着微电子封装继续向MCM、SIP、SOC封装继续发展,实现IC封装和板级电路组装这两个封装层次的技术深度融合将是目前发展的重点方向。

芯片级互联技术是电子封装技术的核心和关键。无论是芯片装连还是电子封装技术都是在基板上进行操作,因此这些都能够运用到互联的微技术,微互联技术是封装技术的核心,现在的微互联技术主要包含以下几个:引线键合技术,是把半导体芯片与电子封装的外部框架运用一定的手段连接起来的技术,工艺成熟,易于返工,依然是目前应用最广泛的芯片互连技术;载体自动焊技术,载体自动焊技术可通过带盘连续作业,用聚合物做成相应的引脚,将相应的晶片放入对应的键合区,最后通过热电极把全部的引线有序地键合到位置,载体自动焊技术的主要优点是组装密度高,可互连器件的引脚多,间距小,但设备投资大、生产线长、不易返工等特性限制了该技术的应用。倒装芯片技术是把芯片直接倒置放在相应的基片上,焊区能够放在芯片的任意地方,可大幅提高I/O数量,提高封装密度。但凸点制作技术要求高、不能返工等问题也依然有待继续研究,芯片倒装技术是目前和未来最值得研究和应用的芯片互连技术。

总之,微电子封装技术经历了从通孔插装式封装、表面安装式封装、窄间距表面安装焊球阵列封装、芯片级封装等发展阶段。目前最广泛使用的微电子封装技术是表面安装封装和芯片尺寸封装及其互连技术,随着电子器件体积继续缩小,I/O数量越来越多,引脚间距越来越密,安装难度越来越大,同时,在此基础上,以及高频高密度电路广泛应用于航天及其他军用电子,需要适应的环境越来越苛刻,封装技术的可靠性问题也被摆上了新的高度。

第4篇

关键词 LED芯片;光学模拟;Tacacepro

中图分类号TU7 文献标识码A 文章编号 1674-6708(2014)113-0126-02

0引言

目前科学技术日益进步,人民的生活水平不断的提高。人们对家具生活得舒适程度也要求越来越高。现在国内外一些发展快速的城市的住宅用的灯具、景观灯已经大马路上面用的照明路灯已经大部分都开始采用新型的LED节能灯了。但是由于LED灯的制作成本较高,导致LED在市场占领方面略显迟缓。目前国内外著名学者和一些研究机构以及一些大型的企业正在夜以继日的不断探索,希望可以研究出一些新型的LED材料,减小LED制作的成本,使得LED灯的普及率更加高些。

1 LED灯的发光原理和LED的光学参数

1.1 LED灯的发光原理

Light emitting diode的英文缩写就是LED。LED的基础结构是在一小片的发光半导体材料上面,放置一个电极的引线架子,接着在架子的周围用环氧树脂固定并密封。这样子可以起到保护电机芯线和半导体的作用,这样子制作出来的LED抗震性非常好,且具有一定的防水作用。

LED发光二极管的主要部分是有由两片N型的半导体和P型半导体背对背制作而成的芯片。因为P型半导体材料和P型半导体材料上面都带了载流子,这两种不同的半导体的交界面之间会形成一个空间电荷存储区间。也就是我们常说的PN结。在给半导体材料的正负极之间加上电压的情况下,PN结之间就会形成电场,PN结中的空子和电子就会在电子的作用下发生运动,并结合在一起。在空子和电子的结合过程中,会产生多余的能量,则这些能量会以发光的方式释放出来。最终实现电能向光能的转换。LED的发光原理图图1所示。给LED加上正向电压,也就在半导体的P极接上正极,在半导体的N极接上负极。在LED的两极之间就会形成电流,电流从正极流向负极,这样子在空穴跟电子的结合过程之间就会发出不同颜色的光。LED间通的电流大小决定了Led的发光亮度。而LED的发光颜色主要是由半导体材料里面参杂的荧光粉的材料来控制的。

1.2 LED的光学参数

为了鉴别一个LED的好坏,经常会有一些参数来描述LED。常用的LED的光学参数有光通量、发光强度、亮度、色温、显色性以及光效等参数。

光通量是指在正常情况下人眼可以感觉到的光的辐射功率。它等于在单位时间里面一束光的辐射的能量与该束光所对应的相对视率的成绩。由于人眼对不同的光的灵敏度不一样,所以当光的辐射功率相等的时候,并不能代表光通量也是相同的。发光强度又叫光强,它是指发光体在一个固定的立体单元里面传输的光通量与该立体单元的面积的商,这个商就代表了单位体积的光通量。亮度是指光源在给定的一个方向里面单位体积上面的光束的发光强度。而光效而是指光源的发光效率。也就是光源的总光通量与该发光体所消耗的能量的商。发光体的发光效率越高,代表了该照明设备将电能转化成光能的能力越强。也代表了在同能的能量的情况下,该设备的照明性能越强,也就是该设备所能达到的亮度越大。显色性是指光源对物体颜色的分辨程度。也就是对颜色的逼真效果。发光设备的显色性能越高,则该设备对颜色的在线能力越强,而我们看到的颜色也就越接近于其本来的颜色。而显色性能较差的设备,则对颜色的能力在线能力越差,我们所看到颜色也与越来的颜色相差越大。

尽管LED灯功率小,占用空间小,易于调色,颜色可操作性强。但是LED光源也存在一些缺陷。主要缺陷表现在以下几个方面:LED发光功率小、LED的成本价格太高、制作工艺要求高。

2 LED芯片的测试

由于LED技术发展迅速,LED市场也发展快速。目前不少企业正逐渐把大量的资金都投入到LED行业当中,并成立的相应的企业。然而当中却存在一些唯利是图的商人,他们利用人们对LED技术的缺乏的弱点,都宣称自己企业的生产的LED灯的寿命可以达到60000小时以上,有的商家甚至说明自己的产品可以达到110000小时以上。为此如何才能正确的区分出那些产品是合格产品,那些产品的质量真的就像商人所描述的那样子,现在已经逐渐成为一个困扰使用者的巨大问题。为此,本文提供一个简单的测试办法:测试方案的电路图如下图2.首先,我们采用积分球来记录相应LED二极管在正向导通的情况下的导通压降。接着根据这个导通压降和电路的电流,确定和相对应二极管电路回路电阻值的大小。以确保二极管不被烧坏。接着在测试之前,对二极管进行校准,确保二极管寿命测试的准确性。然后测量每个二极管在不同的工作电流下的发光量是多大以及正向导通压降是多大,并通过光谱分析仪器来确定每个二极管的最初光谱是什么。为了保证测量的精度,对每个二极管都测试5次以上,并取平均值。最后记录该数据。最后在每个月的固定时间段对每一颗的LED都进行测试,测试其的光通量,并给LED同上三种不同的电流,并记录此时的LED的光通量,根据不同电流下的LED的光通量值绘制出相应二极管的光通量变化曲线。根据绘制的二极管的光通量变化曲线就可以大致的计算出二极管的实际工作时间。通过二极管的频谱分析仪可以知道二极管的色度漂移情况。

3 LED芯片及LED灯具的光学模拟

传统的LED灯的照明设计都是通过大量实验得到的,尽管所测得的结果比较准确,但是这个测试结果只有在灯具的外观已经制作完成以后才可以进行大量实验。要是测试的结果不能和原先设计的一样,就需要重新设计LED的外观,浪费大量的人力和财力。本文以Tacacepro光学模拟软件为核心,对LED灯具的外观不断修改,对LED灯的数量和阵列方式不断的改进,通过模拟的方式,并进行了大量的仿真,终于得出了LED灯排列方式对LED灯总体发光效率以及空间照明的影响规律。并最终设计出了一种发光效率高,节约能源的LED灯具。LED的模拟过程如下;首先运用Tacacepro对LED灯具进行建模,所建的模型如图3。并通过软件设置LED芯片的光源属性等参数。接着定义LED灯具的各种材料特性。并定义光源的波长以及光源的阀值等不同的参数。最后运用软件对LED的光学设计模型模拟。

参考文献

[1]严萍,李剑清.照明用LED光学系统的计算机辅助设计.半导体光电,2004,25(3):181-183.

[2]安连生,王自强.照明光学系统计算机辅助设计中光源的数学模型.灯与照明,1999,23(6):29-31.

第5篇

中文摘要----------------------------------------------------------2

英文摘要----------------------------------------------------------2

第1章 前言----------------------------------------------------3 第3章 单元电路设计--------------------------------------------7 第4章 制作与调试---------------------------------------------14 4.1 制作----------------------------------------------14 4.2 调试----------------------------------------------15

第5章 结论与前景---------------------------------------------16第6章 结束语-------------------------------------------------17

汽车冷热两用恒温箱

半导体制冷/制热电路主要用到半导体温差制冷组件。半导体温差制冷制热组件一般由若干个温差电偶器件组成,它们在电气上是串联的,电流依次通过各个温差电偶器件。这些温差电偶在热交换上是并联的,通过改变流经温差电偶的电流来实现加热和降温,正是半导体温差制冷/制热组件具有逆运用功能,可以方便地实现制冷与制热的转换。

[关键词] 恒温箱;测温电路;温控电路;珀尔帖效应;热敏电阻

The Cold Hot Dual Thermostat The semiconductorrefrigeration or system hot electric circuit mainly uses thesemiconductor temperature difference to refrigerate the module. The semiconductor temperature difference refrigeration system hotmodule generally is composed by certain thermo couple component, theyon the electricity are series connected, the electric current passeseach thermo couple component in turn. These thermos couple in the heatchange are parallel, through changes the variable current to realizeafter the thermo couple electric current heats up with the temperaturedecrease, is precisely the semiconductor temperature differencerefrigeration/system hot module has counter uses the function, mayconveniently realize the refrigeration and the system hottransformation.

[KeyWords] The thermostat;measured the warm electric circuit;warm controls heelectric;circuit,pearl's card effect;the thermistor

第 1 章 前 言

在当今高速发展的社会,汽车已经成为人们的必备的交通工具,而又在这竞争激烈的社会,想在汽车这个市场上独占鳌头,就必需在汽车的整体质量和服务方面下功夫。汽车的内部性能指标这需要进行长期的研究,但服务方面我们可以比较容易着手,现在很多家庭都自己开车去旅游,想在旅途中享受冷饮(夏天)或是保温食物(冬天),大多数人很容易想到在车里装个小型冰箱和微波炉。但大家想想这样占了很大的空间而又不经济实惠。现在就让我们来解决这问题吧。这个课题正是冷热两用恒温箱的设计,一举两得,当然还经济实惠。 恒温箱的应用越来越广, 生产、科研对它的要求也越来越高。要求它的性能价格比更高, 使用寿命更长, 使用费用更少(省电) , 响应速度更快。汽车冷热两用恒温箱采用半导体制冷技术,既可制冷,又可以制热,箱内温度可以在0~50℃范围内调节,并具有自动恒温控制功能,无污染,无噪声,绿色环保。半导体制冷技术用途非常广泛,并且发展空间很大,在这领域今后必将飞速发展,对社会的发展起重要的作用。

第2章 系统设计

2.2系统设计方案

2.2.1设计思路

汽车冷热两用恒温箱的电路一般由测温电路,温控电路,制冷制热电路三大部分组成。各部分分别独立设计完成,然后再系统连接起来就达到了恒温的作用。其中温控电路部分采用了集成块电路,温控电路和制冷制热组件之间也用了反馈电路。

2.2.2系统组成框图及原理图

温度反馈

图2.1 系统原理框图

图2.2 系统原理图

2.2.3系统工作原理

系统工作原理:汽车冷热两用恒温箱电路由测温电路,控制电路,半导体制冷/制热组件等部分构成,来实现箱内的自动恒温的作用。半导体制冷/制热组件是利用半导体的珀尔帖效应实现电制冷的一种器件, 由半导体温差电偶器件,导流片,导热板等组成。一对P,N型半导体材料即构成一个温差电偶器件,当电流从P型半导体流向N型半导体时,P-N接头处会吸收热量;当电流从N型半导体流向P型半导体时,N-P接头处会释放热量, 半导体温差电制冷制热组件一般由若干个温差电偶器件组成,它们在电气上是串联的,电流依次通过各个温差电偶器件。而这些温差电偶器件在热交换上是并联的,正是通过改变流经温差电偶器件的电流流向,从而使半导体温差电制冷组件具有逆运用功能,可以方便地实现制冷与制热的转换。

先由测温电路把温度的变化转变为相应的阻值的变化,也就是把温度的比较转化为了三极管NPN前面的a和b号脚的电位高低的比较,当a号脚处为高电平时,即此时箱内温度高于所需要要的温度,由温控电路而使A1组件处于制冷工作状态,而制冷到一定时候,使得a号脚为低电平时,A1组件就停止制冷,不工作。当b号脚处为高电平时,即此时箱内温度低于所需要要的温度,由控温电路而使A1组件处于制热工作状态,而制热到一定时候,使得b号脚为低电平时,A1组件就停止制热,不工作。这样使得设计能达到自动恒温的作用,可以实现制冷与制热的转换,即达到了本设计的目的。

第3章 单元电路设计

3.1测温电路(circuit of temperature survey)设计

测温电路有很多,包括二阶式电桥电路,集成式半导体传感器电路,基于单片机的温度控制器等等方案。

二阶式电桥电路法这种温度推测器精度可达0.1℃以上, 传统的不平衡电桥作为电阻温度变送器的测量电路,在温度测量和控制中起着极其重要的作用。这种电路也经常作为单片机的一种前向通道接口使用,进而构成智能化测量控制仪表,但是,不平衡电桥中存在的非线性特性一直是人们需要彻底解决的问题。除此之外,在设计中,还要考虑自热温升、引线电阻、零点迁移等因素。所以此设计不采用。

综合上述设计中存在的优缺点,本设计采用铂电阻测温电路方案。 热电阻和热电偶是工业生产过程自动化最常用的两种温度传感器。热电阻由于在测量的灵敏度、线性度等诸多方面均优于热电偶,因此,在中低温区得到了更广泛的应用。

图3.1测温电路

铂电阻测温电路原理:通过三个集成运算放大器LM2902和一个三极管等组成控制电路,PT1000铂电阻测温范围0~50℃,RT为正温度系数热敏电阻,TW1为可调电阻,为设定温度调节电位器,通过来调节电阻从而达到调节所需要的温度。电路的a和b输出需要高低电平来表示此时对应箱内温度与所调节所需温度的比较。当a为高电平时表示箱内温度高于调节所需要的温度;当b为高电平时表示箱内温度低于调节所需要的温度。

当S置于"制冷"挡时,电路为制冷工作状态。当RT的温度高于设定的温度,即RT的电阻大于TW1+R3,也就是3号脚电位高于4号脚, 6号输出高电平。这样直接使三极管NPN导通,组件A1通电制冷。当箱内温度下降到设定温度以下时,RT的电阻小于TW1+R3,即3号脚电位低于4号脚,6号输出低电平。三极管NPN截止。组件A1停止制冷。调节TW1可以改变制冷设定温度。 3.2 温控电路(control circuit of temperature)设计

温控电路也有很多实现的方案,分析之后,采用了如下方案,电路原理图为

图3.2 温控电路

本温度控制电路这里采用电平的高低来控制三极管的导通与截止,最后来调节电流的流向,从而使半导体电偶组件处于不同的工作状态。 当S置于“制冷”档时,电路为制冷工作状态,电压比较器的输出端不经D3的反相就直接控制三极管的导通与截止。当箱内温度高于设定的温度时,RT阻值变小,电压比D3较器输出为高电平,三极管导通,电偶组件A1处于制冷状态,双色发光二极管发绿光;当箱内温度低于设定的温度时,RT阻值变大,电压比较器输出为低电平,三极管截止,组件A1停止制冷,绿灯熄灭。调节TW1可以改变制冷的设定温度。

3.3 制冷/制热电路( circuit of refrigeration and heating )设计

热电制冷又称半导体制冷或温差电制冷。具有热电能量转换特性的材料,在通过直流电时有制冷功能,因此而得名热电制冷。由于半导体材料具有最佳的热电能量转换特性,它的应用才真正使热电制冷实用化,为此人们又把热电制冷称为半导体制冷。至于温差电制冷名称的由来,是由于人们发现了材料的温差电动势之后再发现其反效应,即具有制冷功能的珀尔帖效应,与温差发电对应,把后者称为温差电制冷。

本世纪50年代以后,半导体材料在各个技术领域得到了广泛应用,发展非常迅速。热电性能较好的半导体材料使热电效应的效率大大提高,从而使热电发电和热电制冷进入工程实践领域。早期出现的半导体热电制冷器大多是各种小型低温器件和恒温器,应用在电子医疗器械,真空冷阱,显微镜物台,电子器件冷却,热电制冷仪器和小型冰箱等方面。以后又在核潜艇上研制了热电空调系统和热电冷库。目前,热电制冷器已在国防,工业,农业,医疗,商业,日常生活等领域中获得了广泛应用。

珀尔帖效应就是把载流子从一种材料到另一种材料的迁移当作电流来看,则每种材料载流子的势能不同,因此,为满足能量守恒的要求,载流子通过结点时,必然与其周围环境进行能量交换。能级的改变是现象的本质,这使构成制冷系统成为可能。举个例子,来更清楚的认识珀尔帖效应。看图3.3:

图3.3 两种不同的热电材料片之间的冷热结点

N型材料有多余的电子,有负温差电势。P型材料电子不足,有正温差电势。当电子从P型穿过结点到N型时,其能量必然增加,而且增加的能量相当于结点所消耗的能量。这一点可用温度降低来证明。相反,当电子从N型流到P型材料时,结点的温度就升高。

金属热电偶的珀尔帖效应,可以用接触电位差现象定性的说明。由于接触电位差的存在,使通过接头的电子经历电位突变,当接触电位差与外电场同向时,电场力做功使电子能量增加。同时,电子与晶体点阵碰撞将此能量变为晶体内能的增量。结果使接头的温度升高,并释放出热量。当接触电位差与外电场反向时,电子反抗电场力做功,其能量来自接头处的晶体点阵。结果使接头的温度下降,并从周围环境吸收热量。

本设计热电制冷采用半导体制冷/制热组件。它是利用半导体的珀尔帖效应实现电制冷的一种器件,其原理结构如图3.4所示,

图3.4 半导体制冷制热组件

由半导体温差电偶器件,导流片,导热板等组成。一对P,N型半导体材料即构成一个温差电偶器件,当电流从P型半导体流向N型半导体时,P-N接头处会吸收热量;当电流从N型半导体流向P型半导体时,N-P接头处会释放热量,如图所示。

图3.5 吸热放热图

半导体温差电制冷制热组件一般由若干个温差电偶器件(图 3.4中所示为4个)组成,它们在电气上是串联的,电流依次通过各个温差电偶器件。 3.4 元器件的选择

热电制冷器是一种不用制冷剂、没有运动件的电器。它的热电堆起着普通制冷压缩机的作用,冷端及其热交换器相当于普通制冷装置的蒸发器,而热端及其热交换器则相当于冷凝器。通电时,自由电子和空穴在外电场的作用下,离开热电堆的冷端运动,相当于制冷剂在制冷压缩机中的压缩过程。在热电堆的冷端,通过交换器吸热,同时产生电子-空穴对,这相当于制冷剂在蒸发器中的吸热和蒸发。在热电堆的热端,发生电子-空穴对的复合,同时通过热交换器散热,相当于制冷剂在冷凝器的放热和凝结。

在本设计中A1半导体制冷/制热组件是能否达到恒温的关键部分。先来比较下两种不同的制冷系统。机械压缩式制冷与热电制冷系统间存在着一些类似的地方,各对应部位见图3.6。

机械压缩式制冷系统 1——冷剂流

2——密闭管路

3——压缩机

4——冷凝器

5——蒸发器

6——节流阀

热电制冷系统 1——电子流

2——电路

3——电流

4——热端

5——冷端

6——能级

图3.6 两种制冷系统的比较

每个系统中,最重要的是热边和冷边内能改变的方法。对于蒸发压缩循环,节流阀是使能量变化的设备。当制冷剂离开冷凝器时,它是处在高压和中等温度下的饱和液体,当制冷剂通过节流阀时,它绝热等焓膨胀。因此,制冷剂是作为低压、低温、低质量的蒸气而离开节流阀,而且处于最低的能级状态。这使制冷剂在蒸发过程中能吸收大量的热。没有节流阀,压力就不变,制冷剂的焓就不变,也就不会出现“抽热”。在热电制冷系统中的类似部分是P型和N型半导体材料中电子能量的差,假若整个系统电子能级相同,也就不会出现“抽热”。通过对比,热电制冷系统优于机械压缩式制冷系统。所以本方案采用热电制冷系统。 第4章 制作与调试

4.1 制作整个箱内结构如图4.1所示,所有元器件都安装在恒温箱的箱盖中。

图4.1 恒温箱

图 4.2 恒温箱外形

4.2调试

半导体制冷的热面温度不应超过60℃,否则就有损坏的可能。若在额定的工作电压(12V)下,一般的散热风扇根本无法为制冷片提供足够的散热能力,容易造成制冷片过热损坏。同时千万不要在无散热器的情况下为致冷器长时间通电,否则会造成致冷器内部过热而烧毁。

为了使温度调节的误差减小,我们需要多测试几次。测试比较简单,所有元器件安装在保温瓶盖中,正式测试时,将插头插入汽车点烟器插座(12V),把一个气温计(-10~60℃)放入恒温箱中测量箱内温度,多调节几次旋钮,即多测几次温度,记录下来。再关掉电源,让恒温箱完全达到室温(大约二十分钟),再接上电源,继续测温。这样反复测三四次,求出平均值。然后在调温旋钮旁相应地标上温度数值。这样就实现了汽车冷热恒温箱设计的目的。

第5章 结论和前景

到这里汽车冷热两用恒温箱的设计就基本完成了,此恒温箱的优点就是既可制冷,又可以制热,箱内温度可以在0~50℃范围内调节,并具有自动恒温控制功能,无污染,无噪声,绿色环保。操作起来更方便,只要调节所需要温度就行。但恒温箱的制冷系数不高,由于散热的问题,使得恒温箱工作时间不能过长,还有虽放在汽车内占空间不大,但有些小汽车空间有限,放了之后有点拥挤。建议把恒温箱放在前排座位中间后点的位置,也就是汽车档位控制后点的位置。当然恒温箱在家庭房屋中一样适用的。

在当今高速发展的社会,人们的精神生活要求也越来越高,普通的冰箱和微波炉达不到人们的要求,恒温箱刚好解决了问题,即可制冷,又可制热,还经济实惠,不占很多空间,必定是将来发展的趋势,在这个领域将有很广的发展空间。很可能就像电视一样,以后就是每家每户都捅用。当然现在设计存在的一些问题要大家去研究解决,这样才能真正的发挥恒温箱的优势。

这里制冷运用的是半导体珀尔帖效应制冷技术, 在各个技术领域得到了广泛应用,发展非常迅速。热电性能较好的半导体材料使热电效应的效率大大提高,从而使热电发电和热电制冷进入工程实践领域。早期出现的半导体热电制冷器大多是各种小型低温器件和恒温器,应用在电子医疗器械,真空冷阱,显微镜物台,电子器件冷却,热电制冷仪器和小型冰箱等方面。以后又在核潜艇上研制了热电空调系统和热电冷库。目前,热电制冷器已在国防,工业,农业,医疗,商业,日常生活等领域中获得了广泛应用。

第6章 结束语

在这里,我要感谢我的老师和同学们,顺利的完成此毕业设计和他们的指导和帮助是离不开的。通过完成毕业设计,使自己以前学到的理论知识运用于实践,更加巩固了课本上的知识,锻炼了自己动手能力,掌握了一些以前没有接触到的知识领域。汽车冷热两用恒温箱在今后应用会更广泛,在家庭房屋中也是实用的,因为它能自动恒温,无污染、无噪声、绿色环保,还经济实惠。这里设计的恒温箱是利用半导体制冷技术来完成的,目前,半导体制冷技术已在国防,工业,农业,医疗,商业,日常生活等领域中获得了广泛应用。

[ [2]杨荫彪,穆云书主编《特种半导体器件及基本应用》,北京,电子工业出版社,1991。

[3]华中工学院电子学教研室编,康华光主编, 《电子技术基础》,模拟部分, 修订3版, 高等教育出版社,1988。

[4]西南交通大学电子教研室编,袁光明主编《新型电子器件应用手册》,西南交通大学出版社,1993。

[5]杨帮文主编《新型集成器件实用电路》,北京,电子工业出版社,2002。

[6]华中科技大学谢自美主编,<<电子线路设计>>,(第二版)华中科技大学出版社,2000年5月。

第6篇

【关键词】微电子化计量仪;半导体探测器;特性研究;试验方法

半导体技术近年来被运用于多种领域,尤其是在核辐射探测器方面的运用,将半导体技术的优势发挥得淋漓尽致,为社会经济发展做出了巨大贡献。近年来,细数将半导体技术引入核辐射探测器领域的过程,我国的相关科研单位耗费了大量的人力、财力和物力。随着时代的发展,深化半导体材料和技术在核辐射探测器的运用研究将继续为我国的科技发展提供重要支持。结合本文研究方向,拟从半导体探测器特性的实验研究层面展开,利用实验数据进行相关讨论。

1半导体探测器的内涵

半导体探测器以其高效、实用、成本低、性能稳定等特性,目前在各个领域的应用十分广泛。明确半导体探测器的内涵概念,能够深化我们对半导体探测器的了解,为接下来的更深入的探究工作打下坚实基础。接下来笔者就从半导体探测器的概念及发展历程两个方面来粗浅剖析半导体探测器的内涵:1.1半导体探测器的概念。顾名思义,半导体探测器就是利用半导体材料和特点研发的探测设备。结合原理分析,半导体探测器是一种通过锗、硅等半导体材料物理属性、并利用其作为探测介质的辐射探测器。由于半导体探测器的工作原理和气体电离室有诸多相似之处,因此半导体探测器也被称之为固体电离室。从技术原理的层面来讲,半导体探测器的工作原理是在半导体探测器的灵敏体积内带电粒子产生“电子——空穴对”,之后“电子——空穴对”在外电场环境下做出漂移继而产生并输出信号。经过大量科学家的研究,半导体探测器诞生至今,经过不断的技术概念和材料改良,目前性能和效用已经十分优良。1.2半导体探测器的发展历程。半导体技术在核辐射探测器方面的应用分为几个阶段:第一个阶段是八十年代之前。当时的探测器受到技术技术条件和认知的影响,最为常见的探测器是GM计数管探测器。这种GM计数管探测器的产品性能和效果并不理想。随着技术的不断更新和科学家探索的深入。第二个阶段是九十年代之后,在法国、德国出现了用半导体材料作探测器的小型剂量仪器。至此,半导体技术正式被应用于探测器领域。这种半导体探测器具有体积小、工作电压低、耗能少等优势,这些特点为半导体探测器的应用空间和范围奠定了良好基础。

2用于微电子化计量仪的半导体探测器特性的实验方法

为了进一步地探究半导体探测器的特性,更明确地了解并认知其优势,笔者通过一组实验来进行说明。在这一实验中笔者所用的半导体测试器是目前业界内比较新型的设备,它是笔者单位和某原子能科学研究院合理研发的。实验中与半导体探测器相连接的电力属于微电子学混合电路。下面笔者对实验方法(如图2.1所示)作详细的论述与分析:图2.1实验示意图考虑到夜晚的干扰信号比白天小很多,因此我们在做此实验时选择在了晚上的时间段。为了处理好半导体探测器特性实验中噪音大的问题,本次实验所选择的单道阈值是0.21V。在实验中,主放大倍数为50积分、微分常数为0.5μs。定标器的工作方式为积分,脉冲为正脉冲方式。基于上述这些情况,我们的“用于微电子化计量仪的半导体探测器特性”实验研究正式开始。

3用于微电子化计量仪的半导体探测器特性的实验数据及处理

关于特性研究实验过程中的实验数据及处理方式,笔者对其进行了详细的记录。笔者将半导体的探测器面积分为10平方豪米、25平方毫米和50平方毫米三种数据类型来进行测验。第一,半导体探测器的面积为10平方毫米,98型的半导体探测器辐射响应特性的数据结果如图3.1、3.2所示,图中所反映出来的数据指标是偏压为1V和3V的情况下,98型号的半导体探测器中净计数和剂量率之间的关系;99型的半导体探测器所反馈的实验曲线如图3.3、3.4所示,98型半导体探测器的辐射响应特性数据如图3.5、3.6所示。图中所反映出来的数据指标是偏压为1V和3V的情况下,98型号的半导体探测器中净计数和剂量率之间的关系。第二,当半导体探测器的面积增加到25平方毫米之后,99型的半导体探测器辐射响应特性的数据结果如图3.5、3.6所示,图中所反映出来的数据指标是偏压为1V和3V的情况下,99型号的半导体探测器中净计数和剂量率之间的关系。基于系列实验分析,当半导体探测器的面积从10平方豪米增加到25平方毫米,在递增到50平方毫米的过程中,在不同的偏压下,98型和99型的半导体探测器的净计数率在0.869cGy/h点上,半导体探测器的型号和探测器偏压的关系如表1所示。在表中,在照射量率为均为1的情况下,当半导体探测器的偏压设定为1V时,探测面积为10平方毫米的98型探测器的净计数率是68.2,探测面积为25平方毫米的98型探测器的净计数率是104.0;探测面积为50平方毫米的98型探测器的净计数率是181.7,探测面积为10平方毫米的99型探测器的净计数率是125.3。当半导体探测器的偏压设定为3V时,探测面积为10平方毫米的98型探测器的净计数率是90.4,探测面积为25平方毫米的98型探测器的净计数率是167.6;探测面积为50平方毫米的98型探测器的净计数率是316.4,探测面积为10平方毫米的99型探测器的净计数率是178.6。

4用于微电子化计量仪的半导体探测器特性的结果与讨论

通过上述关于不同型号半导体探测器在不同辐射面积中辐射响应特性等相关数据的分析我们可以得出如下三个方面的结论:第一,该半导体探测器的工作电压相对较低,对γ响应十分敏感。当“用于微电子化计量仪的半导体探测器特性研究”的实验电压在1V—3V单偏压电源数据之间变动时,半导体探测器的灵敏度能够在68-316S/(R/h)区间进行变化。结合实验数据的分析与反馈,总体来讲,辐射面积为10平方毫米的99型探测器性能比辐射面积为10平方毫米的98型探测器性能优良。在同样的实验条件中,用来测定DM91的辐射面积为10平方毫米的半导体探测器灵敏度情况如下:当实验偏压为1V时,10平方毫米的半导体探测器灵敏度为87.2;当实验偏压为3V时,10平方毫米的半导体探测器灵敏度是1.8。对比关于试验偏压和不同辐射面积的半导体探测器灵敏度的这几组实验数据,我们可以得出如下结论:辐射面积为10平方毫米的99型半导体探测器敏感度性能相比较国外辐射面积为10平方毫米的半导体探测器,在对γ辐射方面的灵敏度方面性能要高出很多。也就是说我们目前的辐射面积为10平方毫米的半导体探测器性能已经达到并超出国外同类探测器的水平。第二,从噪音阈值的层面来讲,本次实验中所采用的半导体探测器噪音极小,这种小分贝的噪音数值可以显著提升信噪比,这种情况可以促进微电子学设计工作的更好开展。这一点在微电子化计量仪的半导体探测器特性实验中虽然是一个细节,但也应当充分引起我们的注意和重视。第三,本次“用于微电子化计量仪的半导体探测器特性”实验中,当探测器的屏蔽材质发生变化时,其抗干扰能力也会有明显改变。这一现象表明在实验室中,空间的电磁干扰因素需要引起实验者的重视。

5结束语

综上所述,半导体探测器在当前多种行业中所发挥的作用不容忽视,为了探究“用于微电子化计量仪的半导体探测器特性”,笔者通过开展一项专题实验来进行阐述与说明,在上述文段中,笔者不仅对实验的方法进行罗列和描述,还对实验的数据及处理进行对比分析,并有针对性地提出自己的见解。通过上述实验的分析,笔者希望能够唤起更多业界同行对于半导体探测器特性的关注,通过群策群力,为促进半导体探测器的运用水平贡献力量。

作者:马骏 单位:东华理工大学

参考文献

[1]崔晓辉,谷铁男,张燕,袁宝吉,刘明健,闫学昆.离子注入型与金硅面垒型半导体探测器温度特性比较[J].辐射防护通讯,2011,31(02):26-28.

[2]蔡志猛,周志文,李成,赖虹凯,陈松岩.硅基外延锗金属-半导体-金属光电探测器及其特性分析[J].光电子.激光,2008(05):587-590.

第7篇

关键词:热敏电阻、非平衡直流电桥、电阻温度特性

1、引言

热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为:

Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件

常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。

Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件

常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。

2、实验装置及原理

【实验装置】

FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。

【实验原理】

根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为

(1—1)

式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为

(1—2)

式中 为两电极间距离, 为热敏电阻的横截面, 。

对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有

(1—3)

上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值,

以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。

热敏电阻的电阻温度系数 下式给出

(1—4)

从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。

热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻 ,只要测出 ,就可以得到 值。

·物理实验报告 ·化学实验报告 ·生物实验报告 ·实验报告格式 ·实验报告模板

当负载电阻 ,即电桥输出处于开

路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。

若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4R4+R时,因电桥不平衡而产生的电压输出为:

(1—5)

在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , ,且 ,则

(1—6)

式中R和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得R,从而求的 =R4+R。

3、热敏电阻的电阻温度特性研究

根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和 的值,以确保电压输出不会溢出(本实验 =1000.0Ω, =4323.0Ω)。

根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。

表一 MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性

温度℃ 25 30 35 40 45 50 55 60 65

电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748

表二 非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据

i 1 2 3 4 5 6 7 8 9 10

温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4

热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4

0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4

0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9

4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1

根据表二所得的数据作出 ~ 图,如右图所示。运用最小二乘法计算所得的线性方程为 ,即MF51型半导体热敏电阻(2.7kΩ)的电阻~温度特性的数学表达式为 。

4、实验结果误差

通过实验所得的MF51型半导体热敏电阻的电阻—温度特性的数学表达式为 。根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示:

表三 实验结果比较

温度℃ 25 30 35 40 45 50 55 60 65

参考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748

测量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823

相对误差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00

从上述结果来看,基本在实验误差范围之内。但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。

5、内热效应的影响

在实验过程中,由于利用非平衡电桥测量热敏电阻时总有一定的工作电流通过,热敏电阻的电阻值大,体积小,热容量小,因此焦耳热将迅速使热敏电阻产生稳定的高于外界温度的附加内热温升,这就是所谓的内热效应。在准确测量热敏电阻的温度特性时,必须考虑内热效应的影响。本实验不作进一步的研究和探讨。

6、实验小结

通过实验,我们很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的,而且随着温度上升,其电阻值呈指数关系下降。因而可以利用电阻—温度特性制成各类传感器,可使微小的温度变化转变为电阻的变化形成大的信号输出,特别适于高精度测量。又由于元件的体积小,形状和封装材料选择性广,特别适于高温、高湿、振动及热冲击等环境下作温湿度传感器,可应用与各种生产作业,开发潜力非常大。

参考文献:

[1] 竺江峰,芦立娟,鲁晓东。 大学物理实验[M]

[2] 杨述武,杨介信,陈国英。普通物理实验(二、电磁学部分)[M] 北京:高等教育出版社

第8篇

【关键词】太阳能,发电,绿色,照明一体化

太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。

1太阳能发电原理

太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。

1.1太阳能电源系统。太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。

(1)电池单元:由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,就有"光生电流"流过,太阳能电池组件就实现了对负载的功率P输出。

理论研究表明,太阳能电池组件的峰值功率Pk,由当地的太阳平均辐射强度与末端的用电负荷(需电量)决定。

(2)电能储存单元:太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。

1.2控制器。控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接反时切断开关。目前日立公司研制出了既能跟踪调控点Pm,又能跟踪太阳移动参数的"向日葵"式控制器,将固定电池组件的效率提高了50%左右。

1.3DC-AC逆变器。逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流电逆变成交流电。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。

2、太阳能发电系统的效率

在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围绕着加大吸能面,如双面电池,减小反射;运用吸杂技术减小半导体材料的复合;电池超薄型化;改进理论,建立新模型;聚光电池等。

2.1发电--建筑照明一体化。目前成功地把太阳能组件和建筑构件加以整合,如太阳能屋面(顶)、墙壁及门窗等,实现了"光伏--建筑照明一体化(BIPV)"。1997年6月,美国宣布了以总统命名的"太阳能百万屋顶计划",在2010年以前为100万座住宅实施太阳能发电系统。日本"新阳光计划"已在2000年以前将光伏建筑组件装机成本降到170~210日元/W,太阳能电池年产量达10MW,电池成本降到25~30日元/W。1999年5月14日,德国仅用一年两个月建成了全球首座零排放太阳能电池组件厂,完全用可再生能源提供电力,生产中不排放CO2。工厂的南墙面为约10m高的PV阵列玻璃幕墙,包括屋顶PV组件,整个工厂建筑装有575m2的太阳能电池组件,仅此可为该建筑提供三分之一以上的电能,其墙面和屋顶PV组件造型、色彩、建筑风格与建筑物的结合,与周围的自然环境的整合达到了十分完美的协调。该建筑另有约45kW容量,由以自然状态的菜子油作燃料的热电厂提供,经设计燃烧菜子油时产生的CO2与油菜生长所需的CO2基本平衡,是一座真正意义上的零排放工厂。BIPV还注重建筑装饰艺术方面的研究,在捷克由德国WIP公司和捷克合作,建成了世界第一面彩色PV幕墙。印度西孟加拉邦为一无电岛117家村民安装了12.5kW的BIPV。国内常州天合铝板幕墙制造有限公司研制成功一种"太阳房",把发电、节能、环保、增值融于一房,成功地把光电技术与建筑技术结合起来,称为太阳能建筑系统(SPBS),SPBS已于2000年9月20日通过专家论证。近日在上海浦东建成了国内首座太阳能--照明一体化的公厕,所有用电由屋顶太阳能电池提供。这将有力地推动太阳能建筑节能产业化与市场化的进程。

第9篇

首先,这些器件会引起较小的功率因数。其次,它们会使线电流失真,引起电噪声或者产生与线电压之间的相位偏移。

功率因数是指实际使用的功率与交流线上产生的视在功率二者的比值。电气设备中如果存在大电容或者电感就会导致视在功率大于实际使用的功率,出现较小的功率因数。

功率因数越小,在为设备供电的交流导线上损耗的电能就越多。如果设备中的功率半导体开关操作非常频繁,那么这种开关操作就会引起交流线电流的失真和噪声。在开关电源中尤其如此。

某些国际标准(例如IEC 61000-3-2)针对各种类型的电气设备规定了可容许的线电流失真与功率因数的大小。实现功率因数补偿最简单、最划算的一种方法就是使用增强一转换电路,这种电路能够产生比输入电压更高的输出电压。

增强二极管的性能

对于功率达到300W以上的设备,通常使用工作在连续导通模式(即CCM)下的增强转换器。对于增强转换器所需的两种功率半导体器件一一MOSFET和二极管,其中二极管具有相对较高的性能要求,因为它的反向恢复特性会影响MOSFET的性能。

在连续导通模式下,每当控制IC打开MOSFET时,二极管就会产生一个较高的正向电流。由于增强二极管在完全正向偏置的情况下会发生快速反偏,并且硅二极管的关闭需要一定的时间,因此在二极管关闭时流回二极管的反向恢复电流(IRR)就会非常大。

流过MOSFET的反向电流升高了它的工作温度。为此人们设计出了具有极低反向恢复时间(tRR的专用硅二极管,但是它们能够降低的IRR通常都很有限,经常会出现突然关闭的现象。

低QRR和高软化系数

肖特基二极管比PN结器件的行为特性更像一个理想的开关。肖特基二极管最重要的两个性能指标就是它的低反向恢复电荷(QRR)和它的恢复软化系数。

这两个指标对于增强转换器都非常重要。低QRR在二极管关闭时会产生较低的IRR。高软化系数会减少二极管关闭所产生的EMI噪声、在器件阳极上产生的电压脉冲峰值,降低换向操作干扰PFC控制IC的可能性。

肖特基二极管的局限性

肖特基二极管能够大大提高PFC增强转换器的性能,但是硅肖特基二极管具有250V左右的反向电压限制。由于增强二极管必须能够耐受500~600V,因此人们开始使用碳化硅(SiC)器件,这种化合物能够耐受较高的电压。但是,由于SiC器件的成本较高(是同类硅器件的3~5倍),因此很少有应用能够用得起这种器件。

过去几年中也出现了性能更好的硅二极管,但是它们的性能都比不上SiC肖特基器件。最近,人们研制出了一系列新型的硅整流器,它们的反向恢复性能可与SiC肖特基二极管媲美。

在PN结硅二极管发生反偏之前必须消除的QRR决定了在其关闭时能够从中产生的IRR大小。QRR主要取决于PN结附近少数载流子的持续时间或寿命。

由于肖特基二极管仅仅是由金属材料接触N型半导体材料构成的,因此它们没有少数载流子。当肖特基二极管发生反偏时,产生的低IRR来源于金属与二极管体接触电容的放电效应。

在硅二极管的设计过程中可以采用多种技术控制器件中少数载流子的寿命,但是迄今为止还无法匹配SiC二极管的低QRR。如图2中的绿色曲线所示,最新的硅器件――Qspeed半导体公司的Q系列――能够实现与SiC肖特基器件同样低的IRR。

肖特基二极管没有少数载流子,因为它们只是由金属材料接触N型半导体材料构成的。

软化系数是衡量二极管达到最大负值时其IRR下降归零速度的一个指标。具有快速恢复功能的硅二极管在设计过程中通常采用少数载流子寿命控制技术,使得IRR能够陡峭下降(如图2中的黑色曲线所示)。这种快速的关闭过程会在二极管的阳极产生大量EMI噪声和较大的电压尖脉冲。

第10篇

【关键词】LED;OLED;发光原理;工艺

LED与OLED是当今发光与显示领域最热门的技术与材料,就本质来说,两者都是半导体发光器件,LED采用了无机材料,而OLED采用的是有机材料。这就造成了他们在制造工艺和发光技术上的差别,因此也造成其面向的显示领域的巨大不同。但相同的的是,他们在能效、功耗、数字化、模块化等方面较传统显示(CRT LCD PDP)的巨大优势以及在制造工艺与成本等方面面临的问题。

1.LED与OLED发光原理

LED,即发光二极管(Light Emitting Diode),是一种有镓、砷与磷的化合物制成的二极管,其核心是由P型半导体和N型半导体晶片,在P型、N型半导体之间有一个过渡层,称为PN结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合形成激子时,就会把多余的能量以光的形式释放出来,从而把电能直接转化为光能。这种龙注入式电致发光原理制成的二极管,就叫做发光二极管,也就是俗称的LED,当他处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就会发出紫外到红外不同颜色的光线,光的强弱与电流有关,光的颜色与构成材料有关。通常,磷砷化二镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。

OLED,即有机发光二极管(Organic Light Emitting Diode),又称有机电激光显示。OLED的基本结构是有一薄而透明的具有半导体特性的铟锡氧化物,与正极相连,再加上另一个金属阴极。整个结构层中包含:空穴传输层、发光层、电子传输层。在电厂的作用下,阳极产生的空穴和阴极产生的电子就会发生移动,分别向空穴传输层和电子传输层注入,迁移到发光层。当而正在发光层相遇时,产生能量激子,从而激发发光分子产生可见光。当电力供应至适当电压时,正极空穴与阴极电荷就会在发光层中结合,产生光亮,依其配方不同产生红绿蓝光,按照三基色原理形成基本色彩。

2.LED与OLED的差异

S虽然厚实发光半导体,但是LED与OLED的构成上存在区别,主要区别在于:

1)OLED中的激子与LED的不同,LED通过注入的电子与空穴形成激子而发光,发光色取决于组成半导体的能带间隙;OLED通过注入的电子与空穴形成激子,激子衰减而发光,发光色取决于有机分子的荧光光谱。

2)构成LED的有机膜不论分子大小还是聚合物,一般都是无定形薄膜,(有机物采用热蒸发,蒸发的分子在室温基板上以过冷状态形成薄膜),而且是带隙很大的绝缘膜,而无机LED则是有序的参杂半导体单晶体。

3)在OLED中的载流子传输过程也与LED不同,在有机分子间的电荷移动靠的是分子离化,例如空穴在分子中的传输过程实际上是中性分子和带正电荷的分子间的反复氧化和还原的过程。而无机半导体中电荷传输靠的是带传导。

3.LED与OLED显示技术比较

LED结构稳定,发光器件为单像素封装,通常是在基板上生长一层层的半导体薄层,切割成数千管芯,再将管芯镶嵌在反射碗上形成单个像素单元。与目前制作工艺制作出来的管芯尺寸皆超过200μm,对于许多现实起来说确实太大了,而RGB真彩色显示需要3颗限速点组合在一起,所以难以制作成高分辨率的屏幕,目前使用的LED显示屏幕实点距躲在10mm以上,部分产品可以做到1-2mm。但是因其结构稳固,模块化,能效高,因此很容易扩展,是的大型屏幕甚至是超大型屏幕(100m2以上)的实现变得容易,因为,超大屏幕的观看距离都在几十米,甚至上千米。此外,由于LED所有发光器件都进行完全的封装,和环境无接触,故而使用寿命都比较长,并且在相当长的时间里性能几乎没有变化。但是OLED采用的是夹心结构,由多层金属盒分子化合物层叠而成,类似于印刷电路板,因此很容易做成高分辨率甚至是超高分辨率的屏幕,如果使用柔性材料,开可以制成各种形状甚至是可折叠屏幕。但由于无法像LED一样在每个发光器件上制作反射杯,因此OLED的光损耗较LED大,亮度和色彩也叫LED差。此外OLED发光过程中不断的化合反应,使其发光强度随着时间而降低,使用寿命也要短得多。

另外一个影响的重要因素就是成本因素,从材料上来看,LED对于光色的控制需要改变的能带间隙,对于半导体材料工艺的要求比较高,而OLED只需要改变有机分子荧光光谱,可以通过化学方法修正。从制作工艺复杂成都看,LED的单晶生长工艺要比OLED复杂得多,特别是影响LED全彩显示的蓝色LED,有机比无机更易于实现,而蓝色OLED由于他的寿命问题,脱了OLED显示技术的后腿。还有就是OLED成品率极低,12年的时候只能做到32,造成了成本的急剧上升,而LED成品率很高,从而造成了OLED的成本比LED高得多,最终限制了产业化的进行。

4.LED与OLED显示技术的前景

综上所述,由于LED能效(可换算成单位面积发光强度和耗电比值),寿命方面的有点,以及像素单元机构方面的特点,使其在超大显示面积屏幕上有着先天的优势,其模块化(市面上常见的是16×16和32×32等LED单元板)设计使大屏显示结构变得非常简单,目前世界上大型单色、双色、全彩色显示屏,基本上都是LED,超大显示屏甚至可以做到几十千米的可视距离。但是LED的成本随着像素间距下降而成平方级增长。间距下降30%,像素数量增加100%,而通常是在基板上生长一层层的半导体薄膜,切割成数千管芯,再将管芯镶嵌在各应用产品中。以目前的制作工艺制作出来的管芯尺寸皆超过200μm,对于许多室内用的显示屏幕来说太大了,因此目前的LED技术并不合适。

OLED在能效和光色方面不如LED,而且寿命也短,但是成本较低,最主要的是像素很高,适合做高清显示屏,其主要对手是TFT-LCD。TFT-LCD需要背光源,OLED本身就是发光材料,因此在能耗和亮度方面OLED有压倒性优势,但是依然需要解决的是成本问题,OLED成本比TFT-LCD高出不止一倍,使得其主要的应用只能在智能手机和高端笔记本的显示屏上,但是随着技术的成熟,成品率提高,蓝光OLED得等到解决,OLED必然如LCD取代CRT和一样取代LCD。

5.总结

无论是LED还是OLED,目前都还存在适用局限性的问题。OLED技术已经渐趋成熟,随着生产工艺改进,有望在近几年逐步取代LCD。总体性能上无机LED还是更加有优势,但是在成本和工艺上存在问题,无法小型化。2009年,美国成功制成50μm的无机LED芯片方块,虽然目前技术还不成熟,同时,还是只能做出红光显示器,但是,随着他们进一步的研究,实用化的微型无机LED芯片早晚会成为下一代显示技术的发展方向。

参考文献

[1]沈培宏.OLED发光及显示技术.光电技术,2005年第1期

第11篇

为了分析半导体制冷器工艺设计方法与制冷效率的关系,探讨其工作寿命的影响因素,文章通过改进半导体制冷器基板材料,采用新型胶黏剂,并通过实验来对比分析半导体电偶间不同的铜片排布方式对制冷器制冷性能、寿命的影响。实验结果表明,连接铜片排布回路形式对制冷性能影响不大,但对产品的使用寿命有一定的影响。铜线排列走向简单,电阻变化率低,使用寿命相对较长。

关键词:

半导体制冷器;制冷性能;基板;铜片回路

半导体制冷技术因其具有的独特优点而在各行各业得到了广泛的应用[1-3]。为提高其性能、增强机械强度和稳定性,国内外有关科技人员进行了很多研究工作。宣向春等[4]提出可在普通半导体电臂对的P型和N型电偶臂之间淀积一层厚度适当的银膜,提高电偶对的制冷性能。李茂德[5]和任欣[6]等认为,提高制冷系统热端的散热强度可以改善半导体制冷器的制冷性能,但制冷性能并不能随散热强度的提高无限提高。

YANLANASHIM[7]优化了制冷系统设计方法。此外,GAOMin[8]等指出电偶臂的长度在很大程度上影响半导体的热电性能。YUJianlin[9]等详细研究了制冷单元的个数和电偶臂的长度对制冷性能的影响程度。本文主要对半导体制冷器的制造工艺进行了分析,讨论了不同的半导体铜片连接回路以及半导体电偶对与基板的黏结性能对半导体制冷器制冷效果及其寿命的影响,并通过实验进行了性能测试,实验结果可以为提高半导体制冷器的制冷性能及产品寿命提供较好的依据,具有一定的实际指导意义。

1半导体制冷器设计工艺

半导体制冷器的性能主要包括制冷效率和使用寿命,取决于组成半导体制冷器主体的制冷电偶对的设计制造工艺,半导体材料的热电优值系数及半导体制冷器系统的结构等[10]。本文仅讨论半导体制冷器基板材料以及不同的半导体铜片连接回路对半导体制冷器制冷效果及其寿命的影响。

1.1基板设计工艺半导体制冷器的导热绝缘层由陶瓷基板构成,由1个放热面和1个吸热面组成一组,2个面之间由铜片连接不同型的、相互错开的半导体颗粒,形成回路,如图1所示。陶瓷基板材料及基板厚度对半导体制冷器制冷效率有显著的影响。设计采用了质量分数为96%氧化铝(Al2O3)的陶瓷基板。同时,为提高半导体制冷效率,通过减薄陶瓷基板厚度(由目前的1.00mm,减薄到0.50~0.13mm),降低热阻,提高了传热性能,制冷效率COP值得到提高,但成本相应增加;另外,也可以将基板换成氮化铝(AlN),氮化铝热导率为180W•m-1•K-1左右(20℃环境温度下测试),而氧化铝为22W•m-1•K-1左右(20℃环境温度下测试),热导率提高了约7倍,同样也可以提高COP值,但是基板成本会更高,约为原来的10倍。

1.2铜片回路连接工艺将半导体电偶对、基板和接线端子用铜片焊接起来,形成通电回路。实验设计了2种不同回路走线方式A型和B型(CP/127/060/A和CP/127/060/B),如图2~3所示,图中粗线为回路走线路径。由于基板与半导体颗粒间焊接了铜片,半导体颗粒与基板形成刚性连接,在温度变化的时候材料的内应力很大。因此生产工艺中将半导体颗粒与瓷片用胶黏剂粘接,用于卸去大部分应力,提高产品的寿命。但由于胶黏剂的导热性较差,制冷性能会受到一定影响。本文采用了自主研发的一种胶黏剂,粘接层很薄,热导率相对比较高,使得产品具有一定的市场竞争优势。

2半导体制冷器性能实验分析

2.1铜片排布方式对性能的影响实验现场如图4所示,实验原理如图5所示。实验材料:A型产品和B型产品各5个。实验时,将整个装置放置于真空中,测试仪器中设置好控制温度Th=50℃,先测试最大温度差ΔTmax值。在每个产品的基板上分别选择4个测试点,依次递增施加不同的测试电压(16~20V),得到测试数据ΔT值,拟合曲线,找出极值点。极值点对应的ΔT值就是ΔTmax,其对应的电流就是Imax。然后给产品施加Imax的电流,通过加热片控制冷热面的温度差ΔT=0℃,测定此时的制冷量Qc值即为Qcmax,即加热片的功率。实验数据如表1~2所示。由表1~2可知,2种不同铜片排布形式,其温度差ΔT,制冷量Qc的数据差异均在实验仪器误差范围内,针对ΔT,Qc这两项来说,铜片回路形式对半导体制冷器制冷效率影响不大。

2.2铜片排布方式对产品寿命的影响对2种回路的制冷器分别进行制冷—制热循环实验。实验条件:1个循环为1min(40s制冷,制冷温度降到0.0℃,电流4.0A;20s制热,制热温度升到100.0℃,电流4.5A);压力280±20N,2.4万次循环实验结束。每0.15万次循环测1次电阻,若2.4万次循环之内,电阻变化率超过10%表示产品失效,实验结束。实验样品选择CP/127/060/A和CP/127/060/B各2组,实验结果如图6所示。由图6可知,在2.4万次循环结束时,A型产品2组实验样品的电阻变化率分别为1.35%和1.45%,而B型产品2组实验样品的电阻变化率均在2.04%左右。实验数据表明,A型基板的电阻变化率相对较低,寿命趋势相对较长。

3结论

通过理论分析和实验研究,得到以下结论:1)陶瓷基板材料及基板厚度对半导体制冷器制冷效率有显著的影响:氮化铝(AlN)基板因热导率高于氧化铝(Al2O3),可以提高COP值,但其成本会提高;通过减薄陶瓷基板厚度降低热阻,可提高传热性能,提高制冷效率COP值。2)半导体颗粒与瓷片用胶黏剂粘接,可卸去大部分应力,提高产品的寿命。但由于胶黏剂的导热性较差,制冷性能会受到一定影响。可采用自主研发的胶黏剂,粘接层很薄,热导率相对比较高,保证产品在市场竞争上具有一定的优势。3)通过实验数据对比分析,温差ΔT和制冷量Qc的数据差异均在实验仪器误差范围内,针对ΔT和Qc来说,回路形式对半导体制冷器制冷效率影响不大。4)在寿命方面,在2.4万次循环结束时,A型成品电阻变化率分变为1.35%和1.45%,而B型均在2.04%左右。直观的数据对比显示A型基板的电阻变化率相对较低,寿命趋势相对更长。

参考文献:

[1]卢菡涵,刘志奇,徐昌贵,等.半导体制冷技术及应用[J].机械工程与自动化,2013(4):219-221.

[2]王千贵,杨永跃.半导体车载冰箱的智能温控系统设计[J].电子设计工程,2012,20(17):132-134.

[3]梁斯麒.半导体制冷技术在小型恒温箱的应用研究[D].广州:华南理工大学,2011:1-7.

[4]宣向春,王维杨.半导体制冷器“无限级联”温差电偶对工作参数的理论分析[J].半导体学报,1999,20(7):606-611.

[5]李茂德,卢希红.热电制冷过程中散热强度对制冷参数的影响分析[J].同济大学学报(自然科学版),2002,30(7):811-813.

[6]任欣,张麟.有限散热强度下半导体制冷器性能的实验研究[J].低温工程,2003(4):57-62.

[7]YAMANASHIM.Anewapproachtooptimumdesigninthermoelectriccoolingsystem[J].AppliedPhysicsA:MaterialsScience&Processing,1980(9):5494-5502.

[8]GAOMin,ROWEDM,KONTOSTAVLAKISK.Thermoelectricfigure-of-meritunderlargetemperaturedifferences[J].JournalofPhysicsDAppliedPhysics,2004,37(8):1301-1304.

[9]YUJianlin,ZHAOHua,XIEKangshan.Analysisofoptimumconfigurationoftwo-stagethermoelectricmodules[J].InstituteofRefrigerationandCryogenicsEngnieering,2007,47(2):89-93.

第12篇

“问题组教学法”则是青岛市推广多年的一种教学法。该教学法的核心就是以问题引领学生,启发学生思考,便于学生开展小组合作。该法的思维容量是比较大的,需要全组学生紧张思考,自行组织答案,选出最优答案向全班同学展示。这种教学法的前提是老师要设计好高质量的问题组,所以对老师的要求也是比较高的,需要备课组全体老师通力合作,共同设计出富有启发性的问题组。其基本原则是:不用思考的不问,没有启发性的不问,不是阶梯式的不问,无法理解的不问。这就是说,设问必须符合学生的实际,能够真正激发学生的思维,要有阶梯性,不能过难过深,要让学生产生思维的共鸣。

这两种教学方式都是以学生的参与为主,重视学生的思考过程。在实践“361”教学模式的过程中,我们化学备课组教师采用“问题组教学法”,使学生在课堂上自主思考的时间很明显地比以前长了十分或八分钟,学生思维的强度变大,活跃程度更是令人惊奇。在学期末模块统一检测中,我们化学组的成绩提升总是名列前茅,连续几年被评为区优秀备课组。这一切跟我们实施“361”这一教学模式有很大的关系。

“问题组教学法”主要应用在“361”教学模式中的“预习案”“课堂学案”中。在环节上,“问题组教学法”主要应用在“自主学习”“合作探究”两个步骤中,引导学生积极探究,从而更好地引导学生发现知识规律,感悟知识的理解过程,提高思维分析能力。

在集体备课环节上,我们化学备课组重点在三案的编写上,确保编写出得心应手的“引玉之砖”。对于每一个问题组都要求每个老师谈看法,力争使每一个问题都能产生“正能量”,避免一些无效问题的干扰。在学习鲁科版必修一教材第四章《材料家族中的元素》第一节《硅・无机非金属材料》时,我们就充分运用我们的成果去实践,效果非常好。在区级公开课上的展示也得到了好评。

本节知识是元素化合物知识的学习,但又是和现实联系非常密切的知识的应用。对于学生认识化学在生活生产中的作用有独特的地位。特别是硅在新材料中的应用,电子产品的快速发展等都会对学生的认知产生非常大的冲击。本节知识在必修和选修中同时出现,在必修中的地位必须很好定位,要结合大纲真正把握知识学习的深广度。因此我们确定了本节的三维目标:

知识与技能:了解硅及二氧化硅的主要性质(重点和难点)及这些性质在材料中的应用。

了解硅在半导体工业,二氧化硅在现代通讯业的重要应用。

过程与方法:运用观察、实验、比较、分类等方法研究物质的性质

情感态度与价值观:体会组成材料的物质的性质与材料性能的密切关系,认识新材料的开发对人类生产、生活的重要影响,关注与化学有关的社会热点问题。

因此,在设计“三案”时,我们将预习案简化成了“问题组”的“预习检测案”,同时加上自主预习检测,检查学生对课本的阅读情况。

【预习检测案】

【问题组一】1.硅是“应用广泛的半导体材料”,这是由什么因素决定的?总结出你的结论。

2.“常温下,硅、二氧化硅的化学性质不活泼”,但“自然界中没有游离态的硅”,矛盾吗?

3.单质硅、晶体二氧化硅能用来制做哪些物质?

【预习检测】

一、单质硅与半导体材料

1.半导体材料

最早使用的半导体材料是________,现被广泛使用的半导体材料是________,它在地壳中的含量仅次于________。

2.单质硅

(1)单质硅有________和________两种同素异形体,晶体硅是________、________光泽、________而________的固体。

(2)自然界中没有________态的硅,常见的________态的硅有________和硅酸盐。工业上,用焦炭在电炉中还原SiO2得到粗硅。

(3)硅的用途:

①在计算机等电子工业,可用作________,大规模________等。

②还可用于制造________和________。

③硅的合金用途也很广泛,如含硅4%的钢具有良好的导磁性,可用来制造________;含硅15%左右的钢具有良好的耐酸性,可用来制造________。

二、二氧化硅与光导纤维

1.二氧化硅

(1)SiO2物理性质:状态:________硬度:________水溶性________

(2)SiO2化学性质:

与强碱反应:________离子方程式:________(保存碱性溶液不能用橡胶塞)。与碱性氧化物反应:_______。与HF反应:_______(唯一与其反应的酸)。

2.光导纤维

(1)主要成分是:________(2)用途是:________(3)优点:________

此检测内容是看完书就能填上的。关键还是培养学生阅读记忆的能力。知识记不住,就谈不上理解。记忆是掌握知识的前提,而这点恰恰是很多人不屑一顾的。他们往往会说要先理解后记忆。这么说有一定的道理,理解了记忆会更好,但有些知识在开始是不好理解的,怎么办?先记住再说。

在本节课的教学过程中,我们紧密结合“六环节”,以问题为导引,充分调动了学生的学习积极性,使学生成为了本节课的主人。

一、自主学习

自主学习主要包括学生课前自学和课堂展示两部分。

课前自学根据教材内容确定是用“预习案”还是“检测案”。课堂展示环节的自主学习是一合作探究前进行。我们要求先用2分钟时间进行独立思考,不得讨论。这是一个重要的环节。没有自己独立的思考就进行合作探究是一种表演,一种只有组长或个别同学的表演,不会是全组同学的结晶。每个人的思考是有区别的,不能急于统一全组思想。经过每个人的思考,然后进行全组讨论,这样,才有可能发生思维碰撞,达到学生自己积极思维的效果。否则学生只能被动地思考,有效课堂是无法打造的。

该环节中,要明确要求学生提出问题,记录困惑。

【问题组2】阅读课本107-108页并讨论以下问题

1.写出硅的原子结构示意图,与所学的哪种元素的原子结构有相似之处?

2.硅在现代生活当中有重要的应用,这跟它的哪些特性有关系?

3.用氧化还原反应理论来分析一下工业上用焦炭来制备粗硅的反应。这样得到的粗硅如何提纯会得到高纯硅?

该问题组意在让学生总结出硅单质的物理化学性质,明确硅的用途。让学生在分析中学会知识类比迁移,锻炼概括整合能力。

【问题组3】阅读课本109页并讨论以下问题.

1.二氧化硅熔点高,硬度大,而二氧化碳则是气体。这是为何?

2.从物质的分类角度来看,二氧化硅属于哪类物质?该类物质具有哪些通性?二氧化硅有哪些特性?

3.二氧化硅有哪些用途?

该问题组主要是让学生明白二氧化硅的性质与其独特的结构有很大的关系,其化学性质与其酸性氧化物类别的联系,而其广泛的用途也与其性质有紧密的关联。通过讨论,让学生明白物质的分类思想对化学学习的重要性,学习化学,要与现实生活紧密联系。

二、合作探究

这是一节课的核心部分,是六环节中最能出彩的地方。从中能看出老师导引的功力和学生探究的激情,是思维碰撞的关键一环。而关键中的关键则是老师问题的设计能否激发学生探究的热情。所以我们引入“问题组教学法”,通过恰当的问题组,引导学生思考。以上三个问题组都有很值得思考的地方,需要真正去动脑筋才能完整回答。同时,通过问题组引导学生学会阅读,学会反思。

在看书、两分钟独立思考后,全班按小组展开讨论。每个组员都要将自己的想法在组内进行展示,与其他成员共同完善每一个问题,再将个人思想统一到小组的共同意志,由一位同学在全班进行展示或补充。在展示过程中,【问题组1】中的第二个问题引起很大的争议,有的同学也感觉很矛盾。后来一个小组长起来说,引起大家的大笑。他说:我觉着是长时间里,硅可能受到高温啊,火山喷发啊,闪电啊,可能就与氧气反应了。对此,笔者也及时地引导学生去查阅地球形成的相关资料,了解这些条件对物质反应的影响。

三、精讲点拨

学生讲得精彩,老师也显得轻松。由于本节课学生理解起来比较简单,每一个问题的回答都还不错,基本上两个小组就能解决问题。老师只是适当进行了评价,通过评价对小组的讨论进行了肯定。应该说,学生的能力是很强大的。老师要放手让学生去思考去展示,不要担心出错。出错也是学生学习的机会,也是展示老师教育智慧的好时机。这样操作,学生得到的收获远比老师讲授来得多。

四、变式演练

根据本节课的知识特点与重点,变式主要还是围绕着硅、二氧化硅的性质与用途展开,与问题组的思考相吻合。

【问题组4】

1.玻璃的成分中有二氧化硅,那么HF溶液用什么瓶子盛好?

2.实验室保存碱性药品的玻璃瓶不能用玻璃塞,为什么?

3.SiO2属于酸性氧化物的理由是什么?

该问题组是前面学习知识的简单应用,回答并不难,但这是为了解决具体问题而设,还是很有思考价值的。

五、达标检测

该环节是立足于课程标准和本节学习目标要求进行基础性、综合性的达标测试,当堂完成,当堂矫正,检查学习目标的落实情况。

【课堂检测】

1.下列关于硅的说法不正确的是( )

A.硅是非金属元素,但它的单质是灰黑色有金属光泽的固体

D.硅的导电性能介于金属和绝缘体之间,是良好的半导体材料

C硅的化学性质不活泼,常温下不与任何物质起反应

D.当加热到一定温度时,硅能与氧气、氢气等非金属反应

2.下列说法正确的是( )

A.硅材料广泛应用于光纤通讯

B.工艺师利用盐酸刻蚀石英制作艺术品

C.水晶项链和餐桌上的瓷盘都是硅酸盐制品

D.粗硅制单晶硅不涉及氧化还原反应

3.下列叙述正确的是( )

A.自然界存在大量单质硅

B.石英水晶硅石的主要成分是二氧化硅

C.SiO2性质活泼,能跟酸碱反应

D.自然界SiO2都存在于石英矿

4.下列说法正确的是( )

A.晶体硅和无定形硅是两种不同的物质

B.SiO2可用作半导体材料

C.硅与氧气反应,不能在空气中稳定存在

D.在SiO2+2C=Si+2CO的反应中,氧化剂与还原剂的物质的量比为2∶1

达标反馈应注意的问题:1.检测题目难易适中,题目不能过大、过多。2.达标检测的时间不易太长。3.在完成达标检测后,最好当堂反馈。

六、总结反思

该环节建议在离下课前5分钟内完成。可以是学生自己整理反思,也可以是师生共同反思。

本节课连预习共四个问题组,非常便于讨论。本节课中学生主动参与的时间非常多,由于内容相对简单,老师有充足的时间让学生探究。