HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 集成电路设计与集成系统

集成电路设计与集成系统

时间:2023-06-02 10:00:22

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇集成电路设计与集成系统,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

集成电路设计与集成系统

第1篇

【关键词】集成电路 设计方法 IP技术

基于CMOS工艺发展背景下,CMOS集成电路得到了广泛应用,即到目前为止,仍有95%集成电路融入了CMOS工艺技术,但基于64kb动态存储器的发展,集成电路微小化设计逐渐引起了人们关注。因而在此基础上,为了迎合集成电路时代的发展,应注重在当前集成电路设计过程中从微电路、芯片等角度入手,对集成电路进行改善与优化,且突出小型化设计优势。以下就是对集成电路设计与IP设计技术的详细阐述,望其能为当前集成电路设计领域的发展提供参考。

1 当前集成电路设计方法

1.1 全定制设计方法

集成电路,即通过光刻、扩散、氧化等作业方法,将半导体、电阻、电容、电感等元器件集中于一块小硅片,置入管壳内,应用于网络通信、计算机、电子技术等领域中。而在集成电路设计过程中,为了营造良好的电路设计空间,应注重强调对全定制设计方法的应用,即在集成电路实践设计环节开展过程中通过版图编辑工具,对半导体元器件图形、尺寸、连线、位置等各个设计环节进行把控,最终通过版图布局、布线等,达到元器件组合、优化目的。同时,在元器件电路参数优化过程中,为了满足小型化集成电路应用需求,应遵从“自由格式”版图设计原则,且以紧凑的设计方法,对每个元器件所连导线进行布局,就此将芯片尺寸控制到最小状态下。例如,随机逻辑网络在设计过程中,为了提高网络运行速度,即采取全定制集成电路设计方法,满足了网络平台运行需求。但由于全定制设计方法在实施过程中,设计周期较长,为此,应注重对其的合理化应用。

1.2 半定制设计方法

半定制设计方法在应用过程中需借助原有的单元电路,同时注重在集成电路优化过程中,从单元库内选取适宜的电压或压焊块,以自动化方式对集成电路进行布局、布线,且获取掩膜版图。例如,专用集成电路ASIC在设计过程中为了减少成本投入量,即采用了半定制设计方法,同时注重在半定制设计方式应用过程中融入门阵列设计理念,即将若干个器件进行排序,且排列为门阵列形式,继而通过导线连接形式形成统一的电路单元,并保障各单元间的一致性。而在半定制集成电路设计过程中,亦可采取标准单元设计方式,即要求相关技术人员在集成电路设计过程中应运用版图编辑工具对集成电路进行操控,同时结合电路单元版图,连接、布局集成电路运作环境,达到布通率100%的集成电路设计状态。从以上的分析中即可看出,在小型化集成电路设计过程中,强调对半定制设计方法的应用,有助于缩短设计周期,为此,应提高对其的重视程度。

1.3 基于IP的设计方法

基于0.35μmCMOS工艺的推动下,传统的集成电路设计方式已经无法满足计算机、网络通讯等领域集成电路应用需求,因而在此基础上,为了推动各领域产业的进一步发展,应注重融入IP设计方法,即在集成电路设计过程中将“设计复用与软硬件协同”作为导向,开发单一模块,并集成、复用IP,就此将集成电路工作量控制到原有1/10,而工作效益提升10倍。但基于IP视角下,在集成电路设计过程中,要求相关工作人员应注重通过专业IP公司、Foundry积累、EDA厂商等路径获取IP核,且基于IP核支撑资源获取的基础上,完善检索系统、开发库管理系统、IP核库等,最终对1700多个IP核资源进行系统化整理,并通过VSIA标准评估方式,对IP核集成电路运行环境的安全性、动态性进行质量检测、评估,规避集成电路故障问题的凸显,且达到最佳的集成电路设计状态。另外,在IP集成电路设计过程中,亦应注重增设HDL代码等检测功能,从而满足集成电路设计要求,达到最佳的设计状态,且更好的应用于计算机、网络通讯等领域中。

2 集成电路设计中IP设计技术分析

基于IP的设计技术,主要分为软核、硬核、固核三种设计方式,同时在IP系统规划过程中,需完善32位处理器,同时融入微处理器、DSP等,继而应用于Internet、USB接口、微处理器核、UART等运作环境下。而IP设计技术在应用过程中对测试平台支撑条件提出了更高的要求,因而在IP设计环节开展过程中,应注重选用适宜的接口,寄存I/O,且以独立性IP模块设计方式,对芯片布局布线进行操控,简化集成电路整体设计过程。此外,在IP设计技术应用过程中,必须突出全面性特点,即从特性概述、框图、工作描述、版图信息、软模型/HDL模型等角度入手,推进IP文件化,最终实现对集成电路设计信息的全方位反馈。另外,就当前的现状来看,IP设计技术涵盖了ASIC测试、系统仿真、ASIC模拟、IP继承等设计环节,且制定了IP战略,因而有助于减少IP集成电路开发风险,为此,在当前集成电路设计工作开展过程中应融入IP设计技术,并建构AMBA总线等,打造良好的集成电路运行环境,强化整体电路集成度,达到最佳的电路布局、规划状态。

3 结论

综上可知,集成电路被广泛应用于计算机等产业发展领域,推进了社会的进步。为此,为了降低集成电路设计风险,减少开发经费,缩短开发时间,要求相关技术人员在集成电路设计工作开展过程中应注重强调对基于IP的设计方法、半定制设计方法、全定制设计方法等的应用,同时注重引入IP设计技术理念,完善ASIC模拟、系统测试等集成电路设计功能,最终就此规避电路开发中故障问题的凸显,达到最佳的集成电路开发、设计状态。

参考文献

[1]肖春花.集成电路设计方法及IP重用设计技术研究[J].电子技术与软件工程,2014,12(06):190-191.

[2]李群,樊丽春.基于IP技术的模拟集成电路设计研究[J].科技创新导报,2013,12(08):56-57.

[3]中国半导体行业协会关于举办“中国集成电路设计业2014年会暨中国内地与香港集成电路产业协作发展高峰论坛”的通知[J].中国集成电路,2014,20(10):90-92.

第2篇

关键词:课程体系改革;教学内容优化;集成电路设计

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)34-0076-02

以集成电路为龙头的信息技术产业是国家战略性新兴产业中的重要基础性和先导性支柱产业。国家高度重视集成电路产业的发展,2000年,国务院颁发了《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(18号文件),2011年1月28日,国务院了《国务院关于印发进一步鼓励软件产业和集成电路产业发展若干政策的通知》,2011年12月24日,工业和信息化部印发了《集成电路产业“十二五”发展规划》,我国集成电路产业有了突飞猛进的发展。然而,我国的集成电路设计水平还远远落后于产业发展水平。2013年,全国进口产品金额最大的类别是集成电路芯片,超过石油进口。2014年3月5日,国务院总理在两会上的政府工作报告中,首次提到集成电路(芯片)产业,明确指出,要设立新兴产业创业创新平台,在新一代移动通信、集成电路、大数据、先进制造、新能源、新材料等方面赶超先进,引领未来产业发展。2014年6月,国务院颁布《国家集成电路产业发展推进纲要》,加快推进我国集成电路产业发展,10月底1200亿元的国家集成电路投资基金成立。集成电路设计人才是集成电路产业发展的重要保障。2010年,我国芯片设计人员达不到需求的10%,集成电路设计人才的培养已成为当前国内高等院校的一个迫切任务[1]。为满足市场对集成电路设计人才的需求,2001年,教育部开始批准设置“集成电路设计与集成系统”本科专业[2]。

我校2002年开设电子科学与技术本科专业,期间,由于专业调整,暂停招生。2012年,电子科学与技术专业恢复本科招生,主要专业方向为集成电路设计。为提高人才培养质量,提出了集成电路设计专业创新型人才培养模式[3]。本文根据培养模式要求,从课程体系设置、课程内容优化两个方面对集成电路设计方向的专业课程体系进行改革和优化。

一、专业课程体系存在的主要问题

1.不太重视专业基础课的教学。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”是集成电路设计的专业基础课,为后续更好地学习专业方向课提供理论基础。如果基础不打扎实,将导致学生在学习专业课程时存在较大困难,更甚者将导致其学业荒废。例如,如果没有很好掌握MOS晶体管的结构、工作原理和工作特性,学生在后面学习CMOS模拟放大器和差分运放电路时将会是一头雾水,不可能学得懂。但国内某些高校将这些课程设置为选修课,开设较少课时量,学生不能全面、深入地学习;有些院校甚至不开设这些课程[4]。比如,我校电子科学与技术专业就没有开设“晶体管原理”这门课程,而是将其内容合并到“模拟集成电路原理与设计”这门课程中去。

2.课程开设顺序不合理。专业基础课、专业方向课和宽口径专业课之间存在环环相扣的关系,前者是后者的基础,后者是前者理论知识的具体应用。并且,在各类专业课的内部也存在这样的关系。如果在前面的知识没学好的基础上,开设后面的课程,将直接导致学生学不懂,严重影响其学习积极性。例如:在某些高校的培养计划中,没有开设“半导体物理”,直接开设“晶体管原理”,造成了学生在学习“晶体管原理”课程时没有“半导体物理”课程的基础,很难进入状态,学习兴趣受到严重影响[5]。具体比如在学习MOS晶体管的工作状态时,如果没有半导体物理中的能带理论,就根本没办法掌握阀值电压的概念,以及阀值电压与哪些因素有关。

3.课程内容理论性太强,严重打击学生积极性。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”这些专业基础课程本身理论性就很强,公式推导较多,并且要求学生具有较好的数学基础。而我们有些教师在授课时,过分强调公式推导以及电路各性能参数的推导,而不是侧重于对结构原理、工作机制和工作特性的掌握,使得学生(尤其是数学基础较差的学生)学习起来很吃力,学习的积极性受到极大打击[6]。

二、专业课程体系改革的主要措施

1.“4+3+2”专业课程体系。形成“4+3+2”专业课程体系模式:“4”是专业基础课“专业物理”、“半导体物理”、“固体物理”和“晶体管原理”;“3”是专业方向课“集成电路原理与设计”、“集成电路工艺”和“集成电路设计CAD”;“2”是宽口径专业课“集成电路应用”、“集成电路封装与测试”,实行主讲教师负责制。依照整体优化和循序渐进的原则,根据学习每门专业课所需掌握的基础知识,环环相扣,合理设置各专业课的开课先后顺序,形成先专业基础课,再专业方向课,然后宽口径专业课程的开设模式。

我校物理与电子科学学院本科生实行信息科学大类培养模式,也就是三个本科专业大学一年级、二年级统一开设课程,主要开设高等数学、线性代数、力学、热学、电磁学和光学等课程,重在增强学生的数学、物理等基础知识,为各专业后续专业基础课、专业方向课的学习打下很好的理论基础。从大学三年级开始,分专业开设专业课程。为了均衡电子科学与技术专业学生各学期的学习负担,大学三年级第一学期开设“理论物理导论”和“固体物理与半导体物理”两门专业基础课程。其中“固体物理与半导体物理”这门课程是将固体物理知识和半导体物理知识结合在一起,课时量为64学时,由2位教师承担教学任务,其目的是既能让学生掌握后续专业方向课学习所需要的基础知识,又不过分增加学生的负担。大学三年级第二学期开设“电子器件基础”、“集成电路原理与设计”、“集成电路设计CAD”和“微电子工艺学”等专业课程。由于“电子器件基础”是其他三门课程学习的基础,为了保证学习的延续性,拟将“电子器件基础”这门课程的开设时间定为学期的1~12周,而其他3门课程的开课时间从第6周开始,从而可以保证学生在学习专业方向课时具有高的学习效率和大的学习兴趣。另外,“集成电路原理与设计”课程设置96学时,由2位教师承担教学任务。并且,先讲授“CMOS模拟集成电路原理与设计”的内容,课时量为48学时,开设时间为6~17周;再讲授“CMOS数字集成电路原理与设计”的内容,课时量为48学时,开设时间为8~19周。大学四年级第一学期开设“集成电路应用”和“集成电路封装与测试技术”等宽口径专业课程,并设置其为选修课,这样设置的目的在于:对于有意向考研的同学,可以减少学习压力,专心考研;同时,对于要找工作的同学,可以更多了解专业方面知识,为找到好工作提供有力保障。

2.优化专业课程的教学内容。由于我校物理与电子科学学院本科生采用信息科学大类培养模式,专业课程要在大学三年级才能开始开设,时间紧凑。为实现我校集成电路设计人才培养目标,培养紧跟集成电路发展前沿、具有较强实用性和创新性的集成电路设计人才,需要对集成电路设计方向专业课程的教学内容进行优化。其学习重点应该是掌握基础的电路结构、电路工作特性和电路分析基本方法等,而不是纠结于电路各性能参数的推导。

在“固体物理与半导体物理”和“晶体管原理”等专业基础课程教学中,要尽量避免冗长的公式及烦琐的推导,侧重于对基本原理及特性的物理意义的学习,以免削弱学生的学习兴趣。MOS器件是目前集成电路设计的基础,因此,在“晶体管原理”中应当详细讲授MOS器件的结构、工作原理和特性,而双极型器件可以稍微弱化些。

对于专业方向课程,教师不但要讲授集成电路设计方面的知识,也要侧重于集成电路设计工具的使用,以及基本的集成电路版图知识、集成电路工艺流程,尤其是CMOS工艺等相关内容的教学。实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。因此,在专业方向课程中要增加实验教学的课时量。例如,在“CMOS模拟集成电路原理与设计”课程中,总课时量为48学时不变,理论课由原来的38学时减少至36学时,实验教学由原来的10学时增加至12个学时。36学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。12个学时的实验教学中2学时作为EDA工具学习,留给学生10个学时独自进行电路设计。从而保证学生更好地理解理论课所学知识,融会贯通,有效地促进教学效果,激发学生的学习兴趣。

三、结论

集成电路产业是我国国民经济发展与社会信息化的重要基础,而集成电路设计人才是集成电路产业发展的关键。本文根据调研结果,分析目前集成电路设计本科专业课程体系存在的主要问题,结合我校实际情况,对我校电子科学与技术专业集成电路设计方向的专业课程体系进行改革,提出“4+3+2”专业课程体系,并对专业课程讲授内容进行优化。从而满足我校集成电路设计专业创新型人才培养模式的要求,为培养实用创新型集成电路设计人才提供有力保障。

参考文献:

[1]段智勇,弓巧侠,罗荣辉,等.集成电路设计人才培养课程体系改革[J].电气电子教学学报,2010,(5).

[2]方卓红,曲英杰.关于集成电路设计与集成系统本科专业课程体系的研究[J].科技信息,2007,(27).

[3]谢海情,唐立军,文勇军.集成电路设计专业创新型人才培养模式探索[J].电力教育,2013,(28).

[4]刘胜辉,崔林海,黄海.集成电路设计与集成系统专业课程体系研究与实践[J].教育与教学研究,2008,(22).

第3篇

1、集成电路产业是信息产业的核心,是国家基础战略性产业。

集成电路(IC)是集多种高技术于一体的高科技产品,是所有整机设备的心脏。随着技术的发展,集成电路正在发展成为集成系统(SOC),而集成系统本身就是一部高技术的整机,它几乎存在于所有工业部门,是衡量一个国家装备水平和竞争实力的重要标志。

2、集成电路产业是技术资金密集、技术进步快和投资风险高的产业。

80年代建一条6英寸的生产线投资约2亿美元,90年代一条8英寸的生产线投资需10亿美元,现在建一条12英寸的生产线要20亿-30亿美元,有人估计到2010年建一条18英寸的生产线,需要上百亿美元的投资。

集成电路产业的技术进步日新月异,从70年代以来,它一直遵循着摩尔定律:芯片集成元件数每18个月增加一倍。即每18个月芯片集成度大体增长一倍。这种把技术指标及其到达时限准确地摆在竞争者面前的规律,为企业提出了一个“永难喘息”,否则就“永远停息”的竞争法则。

据世界半导体贸易统计组织(WSTS)**年春季公布的最新数据,**年世界半导体市场销售额为1664亿美元,比上年增长18.3%。其中,集成电路的销售额为1400亿美元,比上年增长16.1%。

3、集成电路产业专业化分工的形成。

90年代,随着因特网的兴起,IC产业跨入以竞争为导向的高级阶段,国际竞争由原来的资源竞争、价格竞争转向人才知识竞争、密集资本竞争。人们认识到,越来越庞大的集成电路产业体系并不有利于整个IC产业发展,分才能精,整合才成优势。

由于生产效率低,成本高,现在世界上的全能型的集成电路企业已经越来越少。“垂直分工”的方式产品开发能力强、客户服务效率高、生产设备利用率高,整体生产成本低,因此是集成电路产业发展的方向。

目前,全世界70%的集成电路是由数万家集成电路设计企业开发和设计的,由近十家芯片集团企业生产芯片,又由数十家的封装测试企业对电路进行封装和测试。即使是英特尔、超微半导体等全能型大企业,他们自己开发和设计的电路也有超过50%是由芯片企业和封装测试企业进行加工生产的。

IC产业结构向高度专业化转化已成为一种趋势,开始形成了设计业、制造业、封装业、测试业独立成行的局面。

二、苏州工业园区的集成电路产业发展现状

根据国家和江苏省的集成电路产业布局规划,苏州市明确将苏州工业园区作为发展集成电路产业的重点基地,通过积极引进、培育一批在国际上具有一定品牌和市场占有率的集成电路企业,使园区尽快成为全省、乃至全国的集成电路产业最重要基地之一。

工业园区管委会着眼于整个高端IC产业链的引进,形成了以“孵化服务设计研发晶圆制造封装测试”为核心,IC设备、原料及服务产业为支撑,由数十家世界知名企业组成的完整的IC产业“垂直分工”链。

目前整个苏州工业园区范围内已经积聚了大批集成电路企业。有集成电路设计企业21户;集成电路芯片制造企业1家,投资总额约10亿美元;封装测试企业11家,投资总额约30亿美元。制造与封装测试企业中,投资总额超过80亿元的企业3家。上述33家集成电路企业中,已开业或投产(包括部分开业或投产)21家。**年,经过中国半导体行业协会集成电路分会的审查,第一批有8户企业通过集成电路生产企业的认定,14项产品通过集成电路生产产品的认定。**年,第二批有1户企业通过集成电路生产企业的认定,102项产品通过集成电路生产产品的认定。21户设计企业中,有3户企业通过中国集成电路行业协会的集成电路设计企业认定(备案)。

1、集成电路设计服务企业。

如中科集成电路。作为政府设立的非营利性集成电路服务机构,为集成电路设计企业提供全方位的信息服务,包括融资沟通、人才培养、行业咨询、先进的设计制造技术、软件平台、流片测试等。力争扮演好园区的集成电路设计“孵化器”的角色。

2、集成电路设计企业。

如世宏科技、瑞晟微电子、忆晶科技、扬智电子、咏传科技、金科集成电路、凌晖科技、代维康科技、三星半导体(中国)研究开发中心等。

3、集成电路芯片制造企业。

和舰科技。已于**年5月正式投产8英寸晶圆,至**年3月第一条生产线月产能已达1.6万片。第二条8英寸生产线已与**年底开始动工,**年第三季度开始装机,预计将于2005年初开始投片。到今年年底,和舰科技总月产能预计提升到3.2万片。和舰目前已成功导入0.25-0.18微米工艺技术。近期和舰将进一步引进0.15-0.13微米及纳米技术,研发更先进高阶晶圆工艺制造技术。

4、集成电路封装测试企业。

如三星半导体、飞索半导体、瑞萨半导体,矽品科技(纯代工)、京隆科技(纯代工)、快捷半导体、美商国家半导体、英飞凌科技等等。

该类企业目前是园区集成电路产业的主体。通过多年的努力,园区以其优越的基础设施和逐步形成的良好的产业环境,吸引了10多家集成电路封装测试企业。以投资规模、技术水平和销售收入来说,园区的封装测测试业均在国内处于龙头地位,**年整体销售收入占国内相同产业销售收入的近16%,行业地位突出。

园区封装测试企业的主要特点:

①普遍采用国际主流的封装测试工艺,技术层次处于国内领先地位。

②投资额普遍较大:英飞凌科技、飞利浦半导体投资总额均在10亿美元以上。快捷半导体、飞索半导体、瑞萨半导体均在原先投资额的基础进行了大幅增资。

③均成为所属集团后道制程重要的生产基地。英飞凌科技计划产能要达到每年8亿块记忆体(DRAM等)以上,是英飞凌存储事业部最主要的封装测试基地;飞索半导体是AMD和富士通将闪存业务强强结合成立的全球最大的闪存公司在园区设立的全资子公司,园区工厂是其最主要的闪存生产基地之一。

5、配套支持企业

①集成电路生产设备方面。有东和半导体设备、爱得万测试、库力索法、爱发科真空设备等企业。

②材料/特殊气体方面。有英国氧气公司、比欧西联华、德国梅塞尔、南大光电等气体公司。有住友电木等封装材料生产企业。克莱恩等光刻胶生产企业。

③洁净房和净化设备生产和维护方面。有久大、亚翔、天华超净、MICROFORM、专业电镀(TECHNIC)、超净化工作服清洗(雅洁)等等。

**年上半年,园区集成电路企业(全部)的经营情况如下(由园区经发局提供略):

根据市场研究公司iSuppli今年初的**年全球前二十名半导体厂家资料,目前,其中已有七家在园区设厂。分别为三星电子、瑞萨科技、英飞凌科技、飞利浦半导体、松下电器、AMD、富士通。

三、集成电路产业涉及的主要税收政策

1、财税字[2002]70号《关于进一步鼓励软件产业的集成电路产业发展税收政策的通知》明确,自2002年1月1日起至2010年底,对增值税一般纳税人销售其自产的集成电路产品(含单晶硅片),按17%的税率征收增值税后,对其增值税实际税负超过3%的部分实行即征即退政策。

2、财税字[**]25号《关于鼓励软件产业的集成电路产业发展有关税收政策问题的通知》明确,“对我国境内新办软件生产企业经认定后,自开始获利年度起,第一年和第二年免征企业所得税,第三年至第五年减半征收企业所得税”;“集成电路设计企业视同软件企业,享受软件企业的有关税收政策”。

3、苏国税发[**]241号《关于明确软件和集成电路产品有关增值税问题的通知》明确,“凡申请享受集成电路产品税收优惠政策的,在国家没有出台相应认定管理办法之前,暂由省辖市国税局商同级信息产业主管部门认定,认定时可以委托相关专业机构进行技术评审和鉴定”。

4、信部联产[**]86号《集成电路设计企业及产品认定管理办法》明确,“集成电路设计企业和产品的认定,由企业向其所在地主管税务机关提出申请,主管税务机关审核后,逐级上报国家税务总局。由国家税务总局和信息产业部共同委托认定机构进行认定”。

5、苏国税发[**]241号《关于明确软件和集成电路产品有关增值税问题的通知》明确,“对纳税人受托加工、封装集成电路产品,应视为提供增值税应税劳务,不享受增值税即征即退政策”。

6、财税[1994]51号《关于外商投资企业和外国企业所得税法实施细则第七十二条有关项目解释的通知》规定,“细则第七十二条第九项规定的直接为生产服务的科枝开发、地质普查、产业信息咨询业务是指:开发的科技成果能够直接构成产品的制造技术或直接构成产品生产流程的管理技术,……,以及为这些技术或开发利用资源提供的信息咨询、计算机软件开发,不包括……属于上述限定的技术或开发利用资源以外的计算机软件开发。”

四、当前税收政策执行中存在的问题

1、集成电路设计产品的认定工作,还没有实质性地开展起来。

集成电路设计企业负责产品的开发和电路设计,直接面对集成电路用户;集成电路芯片制造企业为集成电路设计企业将其开发和设计出来的电路加工成芯片;集成电路封装企业对电路芯片进行封装加工;集成电路测试企业为集成电路进行功能测试和检验,将合格的产品交给集成电路设计企业,由设计企业向集成电路用户提供。在这个过程中,集成电路产品的知识产权和品牌的所有者是集成电路设计企业。

因为各种电路产品的功能不同,生产工艺和技术指标的控制也不同,因此无论在芯片生产或封装测试过程中,集成电路设计企业的工程技术人员要提出技术方案和主要工艺线路,并始终参与到各个生产环节中。因此,集成电路设计企业在集成电路生产的“垂直分工”体系中起到了主导的作用。处于整个生产环节的最上游,是龙头。

虽说IC设计企业远不如制造封装企业那么投资巨大,但用于软硬件、人才培养的投入也是动则上千万。如世宏科技目前已积聚了超过百位的来自高校的毕业生和工作经验在丰富的技术管理人才。同时还从美国硅谷网罗了将近20位累计有200年以上IC产品设计经验、拥有先进技术的海归派人士。在人力资源上的投入达450万元∕季度,软硬件上的投入达**多万元。中科集成电路的EDA设计平台一次性就投入2500万元。

园区目前共有三户企业被国家认定为集成电路设计企业。但至关重要的集成电路设计产品的认定一家也未获得。由于集成电路设计企业的主要成本是人力成本、技术成本(技术转让费),基本都无法抵扣。同时,研发投入大、成品风险高、产出后的计税增值部分也高,因此如果相关的增值税优惠政策不能享受,将不利于企业的发展。

所以目前,该类企业的研发主体大都还在国外或台湾,园区的子公司大多数还未进入独立产品的研发阶段。同时,一些真正想独立产品研发的企业都处于观望状态或转而从事提供设计服务,如承接国外总公司的设计分包业务等。并且由于享受优惠政策前景不明,这些境外IC设计公司往往把设在园区的公司设计成集团内部成本中心,即把一部分环节研发转移至园区,而最终产品包括晶圆代工、封装测试和销售仍在境外完成。一些设计公司目前纯粹属于国外总公司在国内的售后服务机构,设立公司主要是为了对国外总公司的产品进行分析,检测、安装等,以利于节省费用或为将来的进入作准备。与原想象的集成电路设计企业的龙头地位不符。因此,有关支持政策的不能落实将严重影响苏州工业园区成为我国集成电路设计产业的重要基地的目标。

2、集成电路设计企业能否作为生产性外商投资企业享受所得税优惠未予明确。

目前,园区共有集成电路设计企业23家,但均为外商投资企业,与境外母公司联系紧密。基本属于集团内部成本中心,离产品研发的本地化上还有一段距离。但个别公司已在本地化方面实现突破,愿承担高额的增值税税负并取得了一定的利润。能否据此确认为生产性外商投资企业享受“二免三减半”等所得税优惠政策,目前税务部门还未给出一个肯定的答复。

关键是所得税法第七十二条“生产性外商投资企业是指…直接为生产服务的科技开发、地质普查、产业信息咨询和生产设备、精密仪器维修服务业”的表述较为含糊。同时,财税[1994]51号对此的解释也使税务机关难以把握。

由于集成电路设计业是集成电路产业链中风险最大,同时也是利润最大的一块。如果该部分的所得税问题未解决,很难想象外国公司会支持国内设计子公司的独立产品研发,会支持国内子公司的本土化进程。因此,生产性企业的认定问题在一定程度上阻碍了集成电路设计企业的发展壮大。

3、目前的增值税政策不能适应集成电路的垂直分工的要求。

在垂直分工的模式下,集成电路从设计芯片制造封装测试是由不同的公司完成的,每个公司只承担其中的一个环节。按照国际通行的半导体产业链流程,设计公司是整条半导体生产线的龙头,受客户委托,设计有自主品牌的芯片产品,然后下单给制造封装厂,并帮助解决生产中遇到的问题。国际一般做法是:设计公司接受客户的货款,并向制造封装测试厂支付加工费。各个制造公司相互之间的生产关系是加工关系而非贸易关系。在财务上只负责本环节所需的材料采购和生产,并不包括上环节的价值。在税收上,省局明确该类收入目前不认可为自产集成电路产品的销售收入,因此企业无法享受国家税收的优惠政策。

而在我国现行的税收体制下,如果整个生产环节都在境内完成,则每一个加工环节都要征收17%的增值税,只有在最后一个环节完成后,发起方销售时才会退还其超过3%的部分,具体体现在增值税优惠方面,只有该环节能享受优惠。因此,产业链各环节因为享受税收政策的不同而被迫各自依具体情况采取不同的经营方式,因而导致相互合作困难,切断了形式上的完整产业链。

国家有关文件的增值税政策的实质是侧重于全能型集成电路企业,而没有充分考虑到目前集成电路产业的垂直分工的格局。或虽然考虑到该问题但出于担心税收征管的困难而采取了一刀切的方式。

4、出口退税率的调整对集成电路产业的影响巨大。

今年开始,集成电路芯片的出口退税税率由原来的17%降低到了13%,这对于国内的集成电路企业,尤其是出口企业造成了成本上升,严重影响了国内集成电路生产企业的出口竞争力。如和舰科技,**年1-7月,外销收入78322万元,由于出口退税率的调低而进项转出2870万元。三星电子为了降低成本,贸易方式从一般贸易、进料加工改为更低级别的来料加工。

集成电路产业作为国家支持和鼓励发展的基础性战略产业,在本次出口退税机制调整中承受了巨大的压力。而科技含量与集成电路相比是划时代差异的印刷线路板的退税率却保持17%不变,这不符合国家促进科技进步的产业导向。

五、关于促进集成电路产业进一步发展的税收建议

1、在流转税方面。

(1)集成电路产业链的各个生产环节都能享受增值税税收优惠。

社会在发展,专业化分工成为必然。从鼓励整个集成电路行业发展的前提出发,有必要对集成电路产业链内的以加工方式经营的企业也给予同样的税收优惠。

(2)集成电路行业试行消费型增值税。

由于我国的集成电路行业起步低,目前基本上全部的集成电路专用设备都需进口,同时,根据已有的海关优惠政策,基本属于免税进口。调查得知,园区集成电路企业**年度购入固定资产39亿,其中免税购入的固定资产为36亿。因此,对集成电路行业试行消费型增值税,财政压力不大。同时,既体现了国家对集成电路行业的鼓励,又可进一步促进集成电路行业在扩大再生产的过程中更多的采购国产设备,拉动集成电路设备生产业的发展。

2、在所得税方面。

(1)对集成电路设计企业认定为生产性企业。

根据总局文件的定义,“集成电路设计是将系统、逻辑与性能的设计要求转化为具体的物理版图的过程”。同时,集成电路设计的产品均为不同类型的芯片产品或控制电路。都属中间产品,最终的用途都是工业制成品。因此,建议对集成电路设计企业,包括未经认定但实际从事集成电路设计的企业,均可适用外资所得税法实施细则第七十二条之直接为生产服务的科技开发、地质普查、产业信息咨询和生产设备、精密仪器维修服务业属生产性外商投资企业的规定。

(2)加大间接优惠力度,允许提取风险准备金。

计提风险准备金是间接优惠的一种主要手段,它虽然在一定时期内减少了税收收入,但政府保留了今后对企业所得的征收权力。对企业来说它延迟了应纳税款的时间,保证了研发资金的投入,增强了企业抵御市场风险的能力。

集成电路行业是周期性波动非常明显的行业,充满市场风险。虽然目前的政策体现了加速折旧等部分间接优惠内容,但可能考虑到征管风险而未在最符合实际、支持力度最直接的提取风险准备金方面有所突破。

3、提高集成电路产品的出口退税率。

鉴于发展集成电路行业的重要性,建议争取集成电路芯片的出口退税率恢复到17%,以优化国内集成电路企业的投资和成长环境。

4、关于认定工作。

(1)尽快进行集成电路设计产品认定。

目前的集成电路优惠实际上侧重于对结果的优惠,而对设计创新等过程(实际上)并不给予优惠。科技进步在很大程度上取决于对创新研究的投入,而集成电路设计企业技术创新研究前期投入大、风险高,此过程最需要税收上的扶持。

鉴于集成电路设计企业将有越来越多产品推出,有权税务机关和相关部门应协调配合,尽快开展对具有自主知识产权的集成电路设计产品的认定工作。

(2)认定工作应由专业机构来完成,税务机关不予介入。

第4篇

产业化基地成立以来,坚持以发展本地集成电路产业,建立健全产业链,壮大产业集群,提供良好的产业技术支撑环境为己任,卓有成效地开展了一系列服务工作,取得了显著成绩,有力地推进了西安集成电路产业的发展,并已成为政府推动集成电路产业发展所需产业规划与研究、资源整合与配置、招商引资咨询、企业孵化与扶持、交流与合作、高层次人才引进与培养、专业技术支撑与咨询服务等的桥梁与载体,对西安集成电路产业发展起到了“组织、协调、引导、推进与聚集”的作用,取得了良好的国内外影响和社会效益,为区域新兴科技产业的发展注入了新的活力,为地方集成电路产业规模化奠定了基础。

1.西安集成电路产业发展现状

西安产业化基地坚持“政府引导、市场驱动、深化服务”的方针,以发展集成电路产业,建立健全产业链,壮大产业集群,提供良好的产业支撑环境为目标,建立了较为完善的产业公共服务与技术支撑服务体系。随着一系列扶持集成电路产业优惠政策的制定实施和产业公共服务的不断拓展深化,西安集成电路产业得到了快速发展,在产业规模、产业链完善、自主创新、人才吸引和培养、公共技术支撑与服务平台建设等方面取得了一定成就。

产业规模不断增大:经过近10年的发展,陕西省现有集成电路企业70多家,其中95%都集中在西安,设计企业近50家,制造封装企业8家,硅材料生产企业10家,设备制造企业8家,测试与分析中心3个,相关科研机构约18个,学历教育机构8个,专业培训机构2个,并形成了以西安高新区为核心的集成电路产业聚集区。从引导完善集成电路产业链出发,聚集了英特尔、西岳电子、美光、威世半导体、天胜、应用材料等重点Ic企业,形成了集成电路设计、加工制造、封装测试及半导体支撑等较为完整的产业链。陕西集成电路产业2001年实现销售收入约3.2亿元,2005年达到20.2亿元,2010年达到70.22亿元,“十一五”期间增长近3.5倍。2010年,我国集成电路产业销售收入为1440.15亿元,增幅为29.8%,陕西省2010年销售收入增幅为41.92%,约占全国销售总额的5%。

企业自主创新能力不断提升:目前,西安集成电路企业拥有自主知识产权的产品累计300多种,涵盖了物联网、通信、微处理器、信息家电、半导体照明、消费电子、设备制造、器件研发等多个领域。代表性产品有:华芯的存贮器、西电捷通的WAPI IP核、深亚的SDH芯片、英洛华的LED驱动芯片、龙腾微电子的32位嵌入式CPU、理工晶科的8/12寸硅芯炉、能讯基于氮化镓的开关功率晶体管元器件、炬光的大功率激光器等,充分体现了西安在集成电路领域的巨大潜力和科技研发与创新优势。

人才优势促进产业发展:西安有10多家集成电路研究机构及高校,与集成电路相关的科研、教学与设计的技术人员约占全国的六分之一,在西安交通大学、西安电子科技大学、西北工业大学、西安邮电学院等多所高等院校设有微电子学科或集成电路设计专业及重点实验室,年在校相关学科学生近10万人,年输送相关学科毕业生2万余人,占全国的14%,人才优势为西安承接产业转移提供了充足的人力资源保障。同时,随着本地集成电路产业的兴起,外流人才纷纷回归,2005年以来成立的留学生企业10多家,给西安集成电路产业带来了先进的技术、丰富的管理经验和大量的资金,人力资源和产业资本相互吸引、相互促进的局面正在形成。

公共服务平台辐射带动作用明显:西安基地在做好集成电路设计业的同时,注重发挥基地的辐射带动作用,将服务延伸到整个半导体产业链,提出了发展上游半导体材料与设备、中游集成电路制造、下游集成电路封装与测试产业集群,以及半导体照明、太阳能光伏、先进半导体器件、卫星导航应用等产业集群的建议。目前,以集成电路产业集群为核心、硅材料与太阳能光伏产业集群为支撑、半导体照明与卫星导航应用产业集群为补充的新兴半导体产业正在形成,并已成为西安信息产业新的增长点。

产业发展存在的问题:经过近10年的发展,西安集成电路产业水平得到了大幅的提升。但相比之下,仍然存在一些问题,比如设计业与整机的结合力度不足、产业链相对弱小、支撑业发展滞后、适用性人才不足、产业环境亟需改善等这些因素制约了本地集成电路产业的快速发展。

2.产业发展思路

“十二五”期间,西安将统筹优势资源,优先发展集成电路设计业,大力发展分立器件制造业,积极引进新一代芯片生产线,提升封装测试水平和能力,增强关键设备和基础材料的开发能力;在承接产业转移的过程中,积极促进企业的整合重组,以龙头企业带动产业的发展,促进产业集群的建立,完善产业相关配套环境建设。

政策引领,聚合力量,促进产业大发展。以培育具有国际竞争力的战略性产业为目标,以政府支持和市场需求为导向,以改善产业发展环境和创新机制为手段,引导资本、技术、人才、市场等要素交叉整合,优化配置,统筹协调产、学、研、用各环节有效衔接,形成合力,促进产业结构调整,整合资源,优化结构,重点突破,实现集成电路产业跨越式发展。

着眼全局,推动创新,提升产业竞争力。推行从芯片设计到系统应用的全产业链思维,积极推进技术创新、模式创新、制度创新,推动银企积极合作,大力培育集成电路在新兴产业中的应用,通过改造提升,实现传统产业的升级换代,在产业链各环节形成有核心竞争力的企业,构建战略性集成电路产业研发和产业化体系。

3.产业发展目标

通过新兴产业培育和产业结构调整,到“十二五”末企业数量达到100家以上,全行业销售收入达到400亿元,从业人员达到6万人,其中高端技术、管理人员达到10%,工程技术人员达到40%,高级技术工人达到30%;着重提升产业发展层次和水平,通过转变发展方式和机制创新,建立起以企业为主体、以市场为导向、产学研用相结合的机制,增强企业自主创新能力,全行业加大研发投入力度,企业科研投入强度占销售额的比例平均达到6%,重点骨干企业研发投入强度力争达到8%。

4.产业布局规划

以关天经济区建设为契机,以西安为中心,统筹整合咸阳、宝鸡、渭南、汉中、天水等西部地区现有的微电子产业资源,发展上、下游配套的产业链,建立由“一区四园一基地”组成的西部微电子产业基地。

西安集成电路产业出口加工区:依托西安出口加工区B区,完善其基础及配套设施建设,引进出口加工型企业落户,使区内企业达到10家以上,成为西安集成电路产业国际化的支撑平台。利用出口加工区的政策优势,培育龙头企业,发挥龙头企业的

辐射带动作用,促进相关配套企业跟进,带动集成电路产业的快速发展。

西安集成电路设计产业园:以西安高新技术产业开发区为依托,建设西安集成电路设计产业园,形成集成电路设计企业聚集区,吸纳40-50家集成电路设计企业人驻;建设集中的产业公共技术支撑服务区,营造良好的人力资源供给环境,大力吸引境外跨国公司的研发机构、国内知名企业的设计中心和本地规模设计企业入驻,加大创业企业的扶持力度,使园区成为智力引进和实现企业自主创新的有效载体,成为推动集成电路产业可持续发展的源动力。

西安集成电路制造产业园:以西安高新技术产业开发区为依托,建设西安集成电路制造产业园。以新型分立器件、LED芯片及集成电路制造为核心,加大招商引资力度,吸引5-10家规模制造企业入园,使其成为国内有一定影响力的集成电路制造产业园区。

西安集成电路封装测试产业园:以西安经济技术产业开发区为依托,建设西安集成电路封装测试产业园,大力扶持本地企业,积极引进国内外知名企业及相关配套企业,吸引5-10家企业入驻,将该园区打造成国内有一定影响力的封装测试产业园。

西安集成电路设备与材料产业园:以西咸新区和西安民用航天基地为依托,建设西安集成电路设备与材料产业园,聚集一批设备与材料及相关配套企业聚集的产业园区,吸引15家以上相关企业入驻,发挥我西安装备制造业优势,建成国内一流、西部第一的集成电路设备与材料企业聚集区。

5.进一步完善产业服务体系

自2000年国家科技部在西安设立国家集成电路设计西安产业化基地以来,产业化基地一直采取“政府主导”的建设模式,探索出了一条产业推进、技术支撑与产业服务协调发展的有效模式,建立了较为完善的产业公共服务和技术支撑服务体系,形成了具有鲜明特色的“专业孵化器+产业公共服务+技术支撑服务+专业人才培养”的综合服务体系,能够为企业提供从产业研究、产业咨询、企业孵化、产业推进等产业公共服务和EDA设计服务、MPW&IP服务、封测服务及人才培养等技术支撑服务。“十一五”期间,孵化集成电路企业20多家,通过服务平台为产业发展争取各类资金超过1亿元,举办和参加行业展会近30次,为政府决策提业研究报告和专项报告10多项;利用EDA设计平台开发产品30多个,通过MPW&IP平台流片的产品近200种,流片费用近1亿元,封装测试平台服务项目近100个,培训平台培养各类技术人员4000多人,为企业累计节约成本超过1亿元,极大的促进了西安集成电路产业的发展。

“十二五”期间,产业化基地将以“一区四园一基地”为依托,进一步完善产业服务体系,提升产业化基地的服务能力,促进西安集成电路产业的突破发展。

产业服务方面:建立产品展示交易平台,构建电子商务系统,定期举办和参加有影响力的行业会议,形成全方位的产品展示交易服务体系;搭建投融资服务平台,设立“陕西集成电路专项种子基金”,将政府引导和市场优化资源配置相结合,多渠道引导国内外风险投资基金、金融债券等资金进入集成电路产业,为产业发展提供所需的金融资本支持。

第5篇

集成电路(IC)产业是战略性、基础性和产业之间关联度很高的产业。它是电子信息产业和现代工业的基础,也是改造提升传统产业的核心技术,已成为衡量一个国家经济和信息产业发展水平的重要标志之一,是各国抢占经济科技制高点、提升综合国力的重点领域。

集成电路产业是典型的知识密集型、技术密集型、资本密集和人才密集型的高科技产业,它不仅要求有很强的经济实力,还要求具有很深的文化底蕴。集成电路产业由集成电路设计、掩模、集成电路制造、封装、测试、支撑等环节组成。随着集成电路技术的提升、市场规模的扩大以及资金投入的大幅提高,专业化分工的优点日益体现出来,集成电路产业从最初的一体化IDM,逐渐发展成既有IDM,又有无集成电路制造线的集成电路设计(Fabless)、集成电路代工制造(Foundry)、封装测试、设备与材料支撑等专业公司。

国家始终把集成电路作为信息产业发展的核心。2000年国家18号文件(《鼓励软件产业和集成电路产业发展的若干政策》)出台后,为我国集成电路产业的发展创造了良好的政策环境。2005年国家制定的《国家中长期科学和技术发展规划纲要 (2006-2020年)》安排了16个国家重大专项,其中两个涉及到集成电路行业,一个是“核心电子器件、高端通用集成电路及基础软件产品”,另外一个则是“集成电路成套工艺、重大设备与配套材料”,分列第一、二位。2008年国家出台的《电子信息产业调整与振兴规划》明确提出:加大鼓励集成电路产业发展政策实施力度,立足自主创新,突破关键技术,要加大投入,集中力量实施集成电路升级,着重建立自主可控的集成电路产业体系。

无锡是中国集成电路产业重镇,曾作为国家南方微电子工业基地,先后承担国家“六五”、“七五”和“九0八”工程。经过近20年的不断发展,无锡不仅积累了雄厚的集成电路产业基础,而且培育和引进了一批骨干企业,有力地推动了我国集成电路产业的发展。2000年,无锡成为国家科技部批准的7个国家集成电路设计产业化基地之一。2008年,无锡成为继上海之后第二个由国家发改委认定的国家微电子高新技术产业基地,进一步确立了无锡在中国集成电路产业中的优势地位,2009年8月7日,温总理访问无锡并确立无锡为中国物联网产业发展的核心城市,微电子工业作为物联网产业发展的基础电子支撑,又引来了新一轮的发展机遇。

发展集成电路产业是实现无锡新区产业结构调整、支撑经济可持续发展、引领经济腾飞、提升创新型城市地位、提高城市综合实力和竞争力的关键。无锡新区应当抓住从世界金融危机中回暖和建设“感知中国中心”的发展机遇,以优先发展集成电路设计业、重视和引进晶圆制造业、优化发展封测配套业、积极扶持支撑业为方向,加大对产业发展的引导和扶持,加快新区超大规模集成电路产业园的建设,加强高端人才的集聚和培育,实现无锡市委市政府提出的“把无锡打造成为中国真正的集成电路集聚区、世界集成电路的高地、打造‘中国IC设计第一区’和‘东方硅谷’品牌的愿景”,实现新区集成电路产业的跨越式发展。

2新区超大规模集成电路园

(2010年-2012年)行动计划

2.1 指导思想

全面贯彻落实科学发展观,坚持走新型工业化道路,紧跟信息产业发展的世界潮流,以积极扶持、引导现有存量企业为基础,以引进和孵化为手段,以重点项目为抓手,大力集聚高科技人才,加大政府推进力度,提高市场化运行程度,强攻设计业,壮大制造业,构建集成电路设计、制造、封装测试、系统应用、产业支撑于一体的完整IC产业链,建成“东方硅谷”。

2.2 发展目标

从2010年到2012年,无锡新区集成电路产业年均引进企业数15家以上,期内累计新增规范IC企业40家,期末产业链企业总数120家以上,产业规模年均增长25%以上,2012年目标400亿元,到2015年,全区集成电路产业规模达到800亿元,占全国比重达20%以上。年均引进和培养中、高级IC人才600名,期内累计新增2000名,期末专业技术高端人才存量达3000名。

2.3 主要任务

2.3.1 重点发展领域

按照“优先发展集成电路设计业,重点引进晶圆制造业,优化提升封装测试业,积极扶植支撑业”的基本思路,继续完善和落实产业政策,加强公共服务,提升自主创新能力,推进相关资源整合重组,促进产业链各环节的协调发展,形成无锡市集成电路产业最集中区域。

2.3.2 产业发展空间布局

集成电路产业是无锡新区区域优势产业,产业规模占据全市70%以上,按照“区域集中、产业集聚、发展集约”的原则,高标准规划和建设新区超大规模集成电路产业园,引导有实力的企业进入产业园区,由园区的骨干企业作龙头,带动和盘活区域产业,增强园区产业链上下游企业间的互动配合,不断补充、丰富、完善和加强产业链建设,形成具有竞争实力的产业集群,成为无锡新区集成电路产业发展的主体工程。

无锡新区超大规模集成电路产业园位于无锡新区,距离无锡硕放机场15公里,距无锡新区管委会约3公里。

超大规模集成电路产业园区总规划面积3平方公里,规划区域北起泰山路、西至锡仕路,东临312国道和沪宁高速公路,南至新二路。园区规划主体功能区包括制造业区设计孵化区、设计产业化总部经济区、设计产业化配套服务区等,占地共700亩,规划基础配套区包括建设园内干道网和开放式对外交通网络,同步配套与发展IC设计产业相关联的宽带网络中心、国际卫星中心、国际培训中心等,按照园内企业人群特点,规划高端生活商务区。

园区目前已有国内最大工艺最先进的集成电路制造企业海力士恒亿半导体,南侧有KEC等集成电路和元器件制造、封测企业。园区的目标是建成集科研教育区、企业技术产品贸易区、企业孵化区、规模企业独立研发区和生活服务区于一体的高标准、国际化的集成电路专业科技园区,作为承接以IC设计业为主体、封测、制造、系统方案及支撑业为配套的企业创新创业的主要载体。支持跨国企业全球研发中心、技术支持中心、产品系统方案及应用、上下游企业交流互动、规模企业独立研发配套设施、物流、仓储、产品营销网点、国际企业代表处等的建设,组建“类IDM”的一站式解决方案平台。

2.3.3 主要发展方向与任务

(1)集成电路设计业

集成电路设计是集成电路产业发展的龙头,是整个产业链中最具引领和带动作用的环节,处于集成电路价值链的顶端。国家对IC产业、特别是IC设计业发展的政策扶持为集成电路发展IC设计产业提供了良好的宏观政策环境。“核心电子器件、高端通用芯片及基础软件产品”与“极大规模集成电路制造装备及成套工艺”列在16个重大专项的第一、二位,说明政府对集成电路产业的高度重视。这两个重大专项实施方案的通过,为IC设计企业提升研发创新能力、突破核心技术提供了发展机遇。新区集成电路产业的发展需要密切结合已有产业优势,顺应产业发展潮流,进一步促进集成电路产业的技术水平和整体规模,实现集成电路设计产业新一轮超常规的发展。

1)、结合现有优势,做大做强以消费类为主的模拟芯片产业。

无锡集成电路产业发展起步早,基础好,实力强。目前,无锡新区积聚了60余家集成电路设计企业,包括国有企业、研究机构、民营企业以及近几年引进的海归人士创业企业。代表性企业包括有:华润矽科、友达、力芯、芯朋、美新、海威、无锡中星微、硅动力、紫芯、圆芯、爱芯科、博创、华芯美等公司。产品以消费类电子为主,包括:DC/DC、ADC/DAC、LED驱动、射频芯片、智能电网芯片等,形成了以模拟电路为主的产品门类集聚,模拟IC产品的研发和生产,成为无锡地区IC设计领域的特色和优势,推动以模拟电路产品开发为基础的现有企业实现规模化发展,是新区集成电路产业做大做强的坚实基础。

2)结合高端调整战略,持续引进、培育系统设计企业。

无锡“530”计划吸引众多海外高端集成电路人才到无锡创业,已经成为无锡城市的一张“名片”,并在全球范围内造就了关注高科技、发展高科技的影响力。以海归人员为代表的创业企业相继研发成功通信、MEMS、多媒体SOC等一批高端产品,为无锡高端集成电路设计的战略调整,提供了坚实的人才基础和技术基础。随着海峡两岸关系的平缓与改善,中国台湾正在考虑放宽集成电路设计企业到大陆投资政策,新区要紧紧抓住这一机遇,加大对中国台湾集成电路设计企业的引进力度。新区拥有相对完善的基础配套设施、宜居的人文环境、浓厚的产业氛围、完备的公共技术平台和服务体系,将成高端集成电路人才创业的首选。

3)结合电子器件国产化战略,发展大功率、高电压半导体功率器件。

高效节能已经成为未来电子产品发展的一个重要方向,电源能耗标准已经在全球逐步实施,将来,很多国家将分别实施绿色电源标准,世界各国已对家电与消费电子产品的待机功耗与效率开始实施越来越严格的省电要求,高效节能保护环境已成为当今共识。提高效率与减小待机功耗已成为消费电子与家电产品电源的两个非常关键的指标。中国目前已经开始针对某些产品提出能效要求,此外,欧美发达国家对某些电子产品有直接的能效要求,如果中国想要出口,就必须满足其能效要求,这些提高能效的要求将会为功率器件市场提供更大的市场动力。功率器件包括功率IC 和功率分立器件,功率分立器件则主要包括功率MOSFET、大功率晶体管和IGBT 等半导体器件,功率器件几乎用于所有的电子制造业,除了保证设备的正常运行以外,功率器件还能起到有效的节能作用。由于制造工艺等因素的限制,形成相对较高的技术门槛,同时,新区企业拥有的深厚的模拟电路技术功底以及工艺开发制造能力,作为一种产业化周期相对较短的项目,现在越来越清晰的看到,模拟和功率器件是新区集成电路设计业的重点发展方向。

4)结合传感网示范基地建设,发展射频电子、无线通信、卫星电子、汽车电子、娱乐电子及未来数字家居电子产业。

“物联网”被称为继计算机、互联网之后,世界信息产业的第三次浪潮。专家预测10年内物联网就可能大规模普及,应用物联网技术的高科技市场将达到上万亿元的规模,遍及智能交通、环境保护、公共安全、工业监测、物流、医疗等各个领域。目前,物联网对于全世界而言都刚起步,各个国家都基本处于同一起跑线。温总理访问无锡并确立无锡为未来中国传感网产业发展的核心城市,将成为难得的战略机遇,新区集成电路产业应该紧紧围绕物联网产业发展的历史机遇,大力发展射频电子、MEMS传感技术、数字家居等,为传感网示范基地建设和物联网产业的发展,提供有效的基础电子支撑。

(2)集成电路制造业

重大项目,特别是高端芯片生产线项目建设是扩大产业规模、形成产业集群、带动就业、带动产业发展的重要手段。是新区集成电路产业壮大规模的主要支撑,新区要确保集成电路制造业在全国的领先地位,必须扶持和推进现有重点项目,积极引进高端技术和特色配套工艺生产线。

1)积极推进现有大型晶园制造业项目

制造业投资规模大,技术门槛高,整体带动性强,处于产业链的中游位置,是完善产业链的关键。新区集成电路制造业以我国的最大的晶圆制造企业无锡海力士-恒亿半导体为核心,推动12英寸生产线产能扩张,鼓励企业不断通过技术改造,提升技术水平,支持企业周边专业配套,完善其产业链。鼓励KEC等向集成器件制造(IDM)模式的企业发展,促进设计业、制造业的协调互动发展。积极推进落实中国电子科技集团公司第58所的8英寸工艺线建设,进一步重点引进晶圆制造业,确保集成电路制造业在国内的领先地位。

2)重视引进高端技术与特色工艺生产线

国际IC大厂纷纷剥离芯片制造线,甩掉运转晶圆制造线所带来的巨大成本压力,向更专注于IC设计的方向发展。特别是受国际金融危机引发的经济危机影响以来,这一趋势更为明显,纷纷向海外转移晶圆制造线,产业园将紧紧抓住机遇,加大招商引资力度。在重点发展12英寸、90纳米及以下技术生产线,兼顾8英寸芯片生产线的建设的同时,重视引进基于MEMS工艺、射频电路加工的特色工艺生产线,协助开发模拟、数模混合、SOI、GeSi等特色工艺产品,实现多层次、全方位的晶圆制造能力。

(3)集成电路辅助产业

1)优化提升封装测试业

无锡新区IC封装测试业以对外开放服务的经营模式为主,海力士封装项目、华润安盛、英飞凌、东芝半导体、强茂科技等封测企业增强了无锡新区封测环节的整体实力。近年来封测企业通过强化技术创新,在芯片级封装、层叠封装和微型化封装等方面取得突破,缩短了与国际先进水平的差距,成为国内集成电路封装测试的重要板块。

随着3G手机、数字电视、信息家电和通讯领域、交通领域、医疗保健领域的迅速发展,集成电路市场对高端集成电路产品的需求量不断增加,对QFP(LQFP、TQFP)和QFN等高脚数产品及FBP、MCM(MCP)、BGA、CSP、3D、SIP等中高档封装产品需求已呈较大的增长态势。无锡新区将根据IC产品产业化对高端封测的需求趋势,积极调整产品、产业结构,重点发展系统级封装(SIP)、芯片倒装焊(Flipchip)、球栅阵列封装(BGA)、芯片级封装(CSP)、多芯片组件(MCM)等先进封装测试技术水平和能力,提升产品技术档次,促进封测产业结构的调整和优化。

2)积极扶持支撑业

支撑与配套产业主要集中在小尺寸单晶硅棒、引线框架、塑封材料、工夹具、特种气体、超纯试剂等。我国在集成电路支撑业方面基础还相当薄弱。新区将根据企业需求,积极引进相关配套支撑企业,实现12英寸硅抛光片和8~12英寸硅外延片、锗硅外延片、SOI材料、宽禁带化合物半导体材料、光刻胶、化学试剂、特种气体、引线框架等关键材料的配套。以部分关键设备、材料为突破口,重视基础技术研究,加快产业化进程,提高支撑配套能力,形成上下游配套完善的集成电路产业链。

3保障措施

国家持续执行宏观调控政策、集成电路产业升温回暖以及国内IC需求市场持续扩大、国际IC产业持续转移和周期性发展是无锡新区集成电路产业发展未来面临的主要外部环境,要全面实现“规划”目标,就必须在落实保障措施上很下功夫。2010-2012年,新区集成电路产业将重点围绕载体保障、人才保障、政策保障,兴起新一轮环境建设和招商引智,实现产业的转型升级和产业总量新的扩张,为实现中国“IC设计第一区”打下坚实的基础。

3.1 快速启动超大规模集成电路产业园载体建设

按照相关部门的部署和要求,各部门协调分工负责,前后联动,高起点规划,高标准建设。尽快确定园区规划、建设规划、资金筹措计划等。2010年首先启动10万平方米集成电路研发区载体建设,2011年,进一步加大开发力度,基本形成园区形象。

3.2 强力推进核“芯”战略专业招商引智工程

以国家集成电路设计园现有专业招商队伍为基础,进一步补充和完善具备语言、专业技术、国际商务、投融资顾问、科技管理等全方位能力的专门化招商队伍;区域重点突破硅谷、中国台湾、北京、上海、深圳等地专业产业招商,聚焦集成电路设计业、集成电路先进制造业、集成电路支撑(配套)业三个板块,引导以消费类为主导的芯片向高端系统级芯片转变,以创建中国“集成电路产业第一园区”的气魄,调动各方资源,强力推进产业招商工作。

3.3 与时俱进,不断更新和升级公共技术服务平台

进一步仔细研究现有企业对公共服务需求情况,在无锡IC基地原有EDA设计服务平台、FPGA创新验证平台、测试及可靠性检测服务平台、IP信息服务平台以及相关科技信息中介服务平台的基础上,拓展系统芯片设计支撑服务能力,搭建适用于系统应用解决方案开发的系统设计、PCB制作、IP模块验证、系统验证服务平台。为重点培育和发展的六大新兴产业之一的“物联网”产业的发展提供必要的有效的服务延伸。支持以专用芯片设计为主向系统级芯片和系统方案开发方向延伸,完善、调整和优化整体产业结构。支持集成电路芯片设计与MEMS传感器的集成技术,使传感器更加坚固耐用、寿命长、成本更加合理,最终使传感器件实现智能化。

3.4 内培外引,建设专业人才第一高地

加大人才引进力度。针对无锡新区集成电路产业发展实际需求,丰富中高级人才信息积累,每年高级人才信息积累达到500名以上。大力推进高校集成电路人才引导网络建设,与东南大学、西安电子科技大学、成都电子科技大学等国内相关院校开展合作,每年引进相关专业应届毕业生500人以上,其中研究生100人以上。及时研究了解国内集成电路产业发达地区IC人才结构、人才流动情况,实现信息共享,每年引进IC中高级人才200人以上。积极开展各类国际人才招聘活动,拓宽留学归国人员引进渠道,力争引进国际IC专家、留学归国人员100人以上。到2012年,无锡新区IC设计高级专业技术人才总数达到3000人。

建立健全教育培训体系。以东南大学的集成电路学院在无锡新区建立的高层次人才培养基地为重点,到2012年硕士及以上学历培养能力每年达到500人。支持江南大学、东南大学无锡分校扩大本科教育规模,加强无锡科技职业学院集成电路相关学科的办学实力,建立区内实践、实习基地,保障行业对各类专业技术人才的需求。与国际著名教育机构联合建立高层次的商学院和公共管理学院,面向企业中高层管理人员,加强商务人才和公共管理人才的培养。

3.5 加强制度创新,突出政策导向

近几年,新区管委会多次调整完善对IC设计创新创业的扶持力度(从科技18条到55条),对IC设计产业的发展起了很大的作用,根据世界IC产业发展新态势、新动向,结合新区IC产业现状及未来发展计划,在2009年新区科技55条及其它成功践行政策策略基础上,建议增加如下举措:

1、在投融资方面,成立新区以IC设计为主的专业投资公司,参考硅谷等地成熟理念和方法,通过引进和培养打造一支专业团队,管理新区已投资的IC设计公司,成立每年不少于5000万元的重组基金,在国家IC设计基地等配合下,通过资本手段,移接硅谷、新竹、筑波等世界最前沿IC设计产业化项目,推进新区IC设计公司改造升级,进军中国乃至世界前列。

2、政策扶持范围方面,从IC设计扩大到IC全产业链(掩模、制造、封装、测试等),包括设备或材料、配件供应商的办事处或技术服务中心等。

3、在提升产业链相关度方面,对IC设计企业在新区内配套企业加工(掩模、制造、封装、测试)的,其缴纳的增值税新区留成部分进行补贴。

4、在高级人才引进方面,将2009年55条科技政策中关于补贴企业高级技术和管理人才猎头费用条款扩大到IC企业。

第6篇

2013年3月15日上午,中关村集成电路产业联盟在北京成立。该联盟由中关村集成电路材料、设备、制造、设计、封装、测试、公共服务平台、软件和系统集成等产业链上下游30多家企业共同发起,是北京市首个覆盖集成电路全产业链的产业联盟。该联盟的成立标志着中关村将打造产业链各环节良性互动的集成电路创新生态圈。

中关村形成集成电路产业链

从2008年至今短短几年时间,一些国产材料和大型装备正在逐渐进入集成电路生产线。从集成电路设备制造、工艺,到芯片设计、制造,中关村示范区已经构建起了一条产业链。

“在这里,既有北方微电子、七星华创等提供集成电路生产设备的企业,也有北京君正、兆易创新等芯片设计企业,还有中芯国际这样大型集成电路制造企业。一条集成电路产业链就这样初步形成了。”中关村有关负责人说。

目前,中关村已有集成电路设计企业近百家,是全国芯片设计力量最强的地区之一,超过1亿元收入规模的企业超过20家,上市企业2家。中关村集成电路设计环节在新一代移动通信终端与网络、数字电视及智能电视、行业用智能卡及信息安全、高性能通用核心芯片、北斗导航芯片以及物联网等新兴领域具有雄厚的技术和产业基础。CPU、嵌入式CPU、存储器芯片、TD-LTE终端基带芯片、可编程逻辑器件、模拟及数模混合电路芯片等均处于国内领先,并填补了我国在这些领域的空白。

一批高等院校和科研单位长期从事微电子技术和半导体工艺研究,并一直处于全国领先地位。2011年中关村集成电路制造业的销售额占国内比例和年增长率均远超全国平均水平。中关村拥有集成电路生产线近10条,月产能超过10万片,且中芯国际(北京)是目前国内最具优势的芯片代工企业,已实现65nm主流工艺的大规模量产,且二期工程的顺利开工建设将为中关村集成电路设计、封测、装备、材料等相关企业提供更为便利的开发验证平台,带动和支撑全产业链规模化发展。

中关村集成电路装备、材料在国内处于领先地位,刻蚀机、氧化炉、离子注入机、光刻胶、靶材等多项科研成果打破了我国在该领域的空白,并进入产线验证。此外,中关村部分集成电路装备和材料也已率先在全国投入规模应用。

目前联盟已汇聚了中关村集成电路产业链各环节有影响力的企业:北京集成电路设计园是全国规模最大、功能齐全、服务配套的集成电路设计产业化基地和集成电路设计企业孵化基地之一;北京君正研发生产了国内首款应用于移动领域的非ARM架构双核移动CPU芯片,这也是国产CPU在移动领域的首款双核CPU芯片;兆易创新在2011年全球SPI出货市场占有率达到10.24%,全球排名第三,正逐步建立世界级存储器设计公司的市场地位;京微雅格作为国内首家自主研发生产FPGA的集成电路设计企业,去年又再次推出全新架构FPGA器件,实现了同类器件所不具备的集成度、高性能和低成本;北方微电子、七星华创、中科信等企业的集成电路高端装备均打破国内在该领域内的空白,引领了国内半导体装备的研发进程;有研半导体是国内12英寸硅单晶抛光片及外延片的重点厂商,并承担多个国家重大科技专项的研发。

集成电路生态圈初具雏形

中关村集成电路产业联盟旨在搭建开放式合作平台,促进中关村集成电路产业集群跨越式发展。联盟的成立,标志着中关村集成电路产业已建立了产业链各环节的良性互动体系,一个活跃、具有持续竞争实力的创新生态圈初具雏形。

联盟的总体目标是充分发挥中芯国际等龙头企业的平台作用,开展广泛合作,带动上下游企业、高校院所协同创新,全力打造具有国际影响力的集成电路产业集群。

第7篇

[STHZ]1[STBZ]专用集成电路设计重点实验室的实验教学改革实践 江苏省专用集成电路设计重点实验室(后简称“实验室”)有专职教师20人,承担南通大学杏林学院集成电路与集成系统专业实验课程12门,实验室近三年承担各级各类科研项目75项,79篇,其中SCI、EI论文43篇,有着良好的科研基础和科研成果。实验室老师在实验教学过程中,注重结合自身的科研方向向学生介绍集成电路相关新技术和新方法,并将计算机建模和仿真的新技术贯穿于专业实验教学中。比如,在“模拟电路”实验教学中引入Spice仿真软件,在“数字电路”实验教学中引入Quartus软件等。在设置的探索性实验课程中,只给学生引出若干思路,学生利用相关软件可在课堂内外自主练习,在互联网上查找相关技术资料,设计实验方案和实验步骤。通过这种引导,该专业学生对新技术掌握较快,在探索过程中遇到不懂的环节能相互进行探讨,主动向教师请教,逐步培养了自主式、合作式的学习习惯。

集成电路设计与集成系统专业培养掌握集成电路基本理论、集成电路设计基本技能,掌握集成电路设计的EDA工具,熟悉电路、计算机、信号处理、通信等相关系统知识,从事集成电路研究、设计、开发及应用,具有一定创新能力的应用型高级集成电路和电子系统集成技术人才。围绕该培养目标,实验教学内容上进行了与时俱进的改革。比如将LQFP64封装建模与仿真分析这一科研案例应用于实验教学中。实际科研案例的使用使得理论知识变得生动形象,加深了学生对基本理论知识的理解,学生学习兴趣和学习动力有了显著提高,能独立完成封装建模、仿真到最后优化的整个流程,为后续专业学习和就业打下牢固的基础,适应了我校独立学院“厚基础,强应用”的人才培养目标[2]。此外,教师紧密结合教学和科研实例编写教材,根据电路设计相关工作编写的《电路PSpice仿真实训教程》被列为教育部高等学校电子电气基础教学指导分委员会推荐教材。

从2009年承担集成电路与集成系统专业课程起,实验室鼓励高级职称人员承担实验课程,指导学生开展创新性实验项目。实验室教师指导本科生积极参加省级、校级大学生实践创新训练计划、校大学生课外学术科技作品等科技活动,获批“江苏省高校大学生实践创新训练计划”2项、南通大学“大学生实践创新训练计划”3项。所指导的集成电路设计与集成系统专业学生的参赛作品入围第三届 “华大九天杯”大学生集成电路设计大赛,荣获三等奖。“华大九天杯”大学生集成电路设计大赛是针对微电子及相关专业在校生的一次专业实践性赛事,是对我国集成电路设计领域人才培养的一次交流和检阅。

实验室成立于2002年,拥有集成电路工艺和器件仿真、集成电路电路仿真与版图设计、集成电路封装设计等先进的EDA软件工具,以及高性能工作站、网络分析仪、矢量信号发生器、微电材料与器件的光电测试系统、数模混合集成电路测试仪等硬件设备,仪器设备总值达1 000多万。这些仪器设备均属于科研仪器设备,由于场地紧、管理人员少,这些科研仪器设备目前还未对本科学生全面开放,主要为教师及研究生使用,仅有少量学生在参与教师的科研项目过程中能接触使用到部分科研仪器设备,重点实验室的仪器设备资源优势在本科实验教学改革中的作用发挥远远不够。

实验室围绕科研发展方向,三年多来先后邀请了中国科学院、北京大学、复旦大学、南京邮电大学、澳大利亚国立格里夫斯大学、美国密西根大学、新加坡南洋理工大学、日本富山县立大学等国内外知名科研学府的20多位专家学者来校进行讲学和交流,实验室教师也积极准备为学生举办专题讲座,此外还邀请了企业技术专家来校与师生进行面对面的交流。

2进一步加强科研与实验教学融合的探索

“授之以鱼不如授之以渔”,这要求教师与时俱进的将科研与实验教学紧密结合,使实验教学内容更贴近现代科研水平,让学生掌握有应用价值的知识和方法,培养符合社会实际应用需求的人才。

2.1加强科研新方法新技术在实验教学中的引入

以培养学生实践能力、科研能力和自主创新能力为目的进行的实验教学改革,必须与科研紧密结合,减少验证性实验项目,增加综合性实验项目,增设创新实验课程。将科研用到的新方法、新技术逐步引入到实验教学中,更新实验教学方法与手段,设置探索性实验项目来模拟科研全过程。引导学生自己去思考并寻找合理解释,鼓励学生查阅相关的参考资料,探索问题产生的真正原因,训练他们主动分析和独立解决问题的能力,实现实验教学与科研新技术、新方法训练的有机结合。

2.2加强科研内容与实验教学内容的结合

在实验教学内容中,除了加强科研新方法、新技术的引入,还需要精选科研中的实际案例,让学生能真正地体验科研。依托科研项目来设置综合性实验,将成熟的科研成果及时转化为创新实验项目,使得实验内容兼具新颖性和探索性,有利于学生开阔视野,扩展知识面,激发专业热情。增加科研实例在实验教学内容中的灵活运用,提高综合性、设计性、创新实验的比重,让学生现在所学所练真正成为日后实际工作中的基础,学有所得,学有所用。

2.3加强对学生科研创新活动的引导

科技活动作为一种探索性的实践过程,具有科技性、实践性和探索性的特点,是培养学生创新素质的最佳切入点。吸收对科研感兴趣的学生参与到教师的科研活动中,承担一部分力所能及的科研课题,通过科研实践氛围的熏陶,激发学生的科学研究兴趣,引导学生积极探索[3]。鼓励学生积极申报大学生创新性实验计划项目,并为学生进行创新性实验研究提供条件,如设立“大学生创新基金”。组织学生参加竞赛,将本科学生科研创新实验与竞赛结合起来,培养学生的科学精神和创新能力。

2.4加强科研仪器设备在实验教学中的应用

为了挖 掘科研仪器设备利用的潜力,实现科研与教学资源共享,科研实验室需要在时间、空间、设备和实验课题等多方面进行开放。制定相关的规章制度,对本科学生的准入条件、经费支持和科研管理等多个方面加以规范,使得科研仪器设备在教学中也能发挥其优势,充分拓展现有科研仪器设备的使用范围,提高仪器设备利用率,同时为学生提供开展科研创新实验的环境,高质量、高效率地为科研与教学服务。通过优化资源配置,建立资源共享机制,为创新人才的培养提供良好的教学平台[4]。

2.5加强科研学术讲座在本科学生中的普及推广

学术讲座是进行学术交流,提高教学和科研水平的有效手段;是一场师生共赢的集会,有利于营造良好的的学术氛围。学术讲座向师生展示新观点、新知识和学科最新研究成果,有利于互通有无,开阔学术视野,提升学术层次,传达团队协作、学科间联合创新的重要性,对师生未来的学习工作都有一定的激励作用,也为学生的职业规划指引方向。本科学生即使暂时无法理解讲座中的高深内涵,但专家学者们思想的潜移默化以及通过后期的学习和钻研,对个人综合能力的发展影响深远。

3结束语

教学和科研是互促的,只有多角度加强双方的融合,构建教学与科研良性互动的实验教学模式,才能从根本上实现双方的可持续性发展,顺应高素质创新性人才培养的要求。

参考文献:

第8篇

奇梦达居德国内存龙头时,奇梦达中国研发中心是其全球五大研发中心之一。今天,西安华芯将同浪潮高效能服务器与海量存储国家重点实验室、浪潮集成电路设计中心共同构成浪潮集团集成电路设计研发中心,提升浪潮服务器、存储等主要硬件产品的竞争力,同时为山东省政府规划发展集成电路产业及未来进入集成电路制造业提供支持。

向上游进军

整机生产,即使是技术含量相对较高的服务器整机生产,其生存空间能有多大?“光靠组装、卖别人的芯片,不可能做出具有核心竞争力的产品。”孙丕恕如是说。

浪潮将IT硬件产品能力分为六层。居于最顶层的是由处理器、存储器等构成的核心模块层,其下则是芯片组等各种芯片组成的系统芯片层、板卡层,直到技术含量最低的集成层。2008年初,浪潮提出“向上游走”战略,通过浪潮高效能服务器与存储国家重点实验室建设,浪潮在硬件领域的创新能力达到了具有主板、RAID等第三层级板卡层的自主设计研发能力。与此同时,浪潮在软件领域也取得了不俗的成绩。在2009年6月,在由国家统计局与工业和信息化部推出的自主品牌软件排名中,浪潮位居第一。浪潮正在转型为软硬一体化的IT服务供应商。

但是,进一步向上提升,进入IT硬件核心的芯片领域,实现硬件能力的进一步突破的道路并不平坦。而并购是实现这一提升的捷径。

孙丕恕向记者介绍,奇梦达中国研发中心具备产品的立项、产品指标参数定义、电路设计、版图设计、完整的客户支持能力,并拥有完整的测试设备以及大批量产品研发的经验,能够完全完成半导体集成电路从设计到测试的整个流程。其设计能力覆盖110纳米到46纳米,与国际技术同步,在国内具有明显的超前优势。据浪潮估算,其研发设备和各种无形资产总价值超过亿元,而浪潮此次的收购投资为3000万元,可以说是拣了个便宜。

孙丕恕表示,今后西安华芯将成为整个浪潮集成电路设计中心的重要组成部分,组织形式上相对独立,但是业务规划、产品研发、技术中心和浪潮是统一的。今后,西安华芯将不仅仅从事DRAM或是存储器的开发,还将承担浪潮交给的芯片控制组、相关控制电路等产品的开发,以更好地和浪潮服务器、海量存储、税控机等整机产品的需求结合。

浪潮集团表示,今后将进一步投资1亿元,加强浪潮集成电路设计研发中心建设,提升集成电路研发设计能力。同时浪潮将继续在国内外通过并购、合资等手段拓展这一产业。

从设计入手

“目前是我国实现半导体存储器产业跨越式发展的难得机遇。”这是孙丕恕在2009年递交“两会”的提案中的一句话。他在提案中提出,半导体存储器的需求几乎占我国整体集成电路市场需求的24%,但却呈现完全依赖进口的不利局面。近两年我国仅存储器产品的进口额每年已近300亿美元。半导体存储器“已成为受外部制约最严重的基础产品之一”。

收购奇梦达中国研发中心,并首先拥有设计研发能力,是浪潮向半导体制造领域迈进的第一步。

事实上,记者了解到,完成此次收购的收购主体,主要是浪潮旗下的山东华芯半导体有限公司(以下简称山东华芯)。而山东华芯有可能在未来寻找合适的时机进军半导体制造领域。

“谈判之初,我们是想完成对奇梦达的整体收购的。”孙丕恕说。不过,这场始于2008年初的接洽却遭遇意外。始料未及的市场形势拖跨了奇梦达,在这种市场形势下,贸然进军处于严冬的半导体制造领域看似并不是一个好的时机。

第9篇

【关键词】集成电路版图;教学方法;改革

集成电路版图设计是集成电路设计的最终结果,版图质量的优劣直接关系到整个芯片的性能和经济性,因此,如何培养学生学好集成电路版图设计技术,具备成为合格的版图设计工程师的基本潜质,是摆在微电子专业老师面前的一个普遍难题。如何破解这个难题,我们做了以下探索。

一、突出实践,理论配合

传统的《集成电路版图设计》课程采取理论教育优先,学生对于版图的基本理论和设计规则非常熟悉,但动手实践能力缺乏培养,往往在学生毕业后进入集成电路设计企业还需二次培训版图设计能力,造成了严重的人力资源浪费。这是由于没有清晰的认识《集成电路版图设计》课程的性质,造成对它的讲授还是采取传统教学方式:老师讲,学生听,偏重理论,缺乏实践,影响到学生在工作中面临实际设计电路能力的发挥。《集成电路版图设计》是一门承接系统、电路、工艺、EDA技术的综合性课程,如果按照传统方式授课,课程的综合性和实践性无法得到体现,违背了课程应有的自身规律,教学效果和实用意义不能满足工业界的要求。我们在重新思考课程的本质特点后,采取了实践先行,理论配合的教学方法,具体如下:集成电路版图是根据逻辑与电路功能和性能要求,以及工艺水平要求来设计光刻用的掩膜图形,实现芯片设计的最终输出。版图是一组相互套合的图形,各层版图相应于不同的工艺步骤,每一层版图使用不同的图案来表示。我们首先讲授版图设计工具EDA软件的使用,让学生掌握EDA软件的每一个主要功能,从图形的选择、材料的配置,让学生从感性角度认识实际的版图设计是如何开展的,每一个步骤是如何使用软件完成的,整体芯片版图设计的流程有哪些规定,学生此时设计的版图可能不是很精确和完美,但学生对于什么是版图和如何设计版图有了初步的感性认识,建立起版图设计的基本概念,对于后续的学习奠定了牢实的实践基础,此时再去讲授版图设计理论知识,学生更能理解深层的工艺知识和半导体理论,真正做到了知行合一,实践先行的教育理念,对学生能力的培养大有裨益。

二、注重细节,加强引导

传统方式讲授《集成电路版图设计》理论占大部分时间,学生知道二极管、晶体管、场效应管、电阻、电容等基本元器件的工作原理和构成要素,但是在版图设计中,这些元器件为什么要这样设计,其实内心中充满着疑惑和不解。针对学生的疑惑,我们从工艺细节入手来解决这个问题。作为集成电路版图设计者,首先要熟悉工艺条件和期间物理,才能确定晶体管的具体尺寸、连线的宽度、间距、各次掩膜套刻精度等。版图设计的规则也是由工艺来确定的,掌握了工艺也就掌握了版图设计的钥匙。我们将通用工艺文件的每一条规则向学生讲解,通用元器件的规则整理出它们的共性,最小宽度、长度、间距的尺寸提醒学生要记忆,不同芯片生产厂的工艺对比学习和研究,学生在这一系列规则的学习过程中,慢慢理解熟悉了工艺规则文件的组织构成及学习要点,能够举一反三的在不同工艺规则下,设计同一种元器件的版图,即使电路元器件的数量巨大,电路拓扑关系复杂,在老师耐心的讲解下,学生也能够依据工艺规则设计出符合要求的版图,这都是在理解了工艺规则细节的基础上完成的。所以,关注细节,加强引导,是提高学生学习效果的一个重要方法。

三、完善考核机制,争取比赛练兵

学生成绩的提高,合理完善的考核机制不可或缺。以往《集成电路版图设计》课程的考核主要是理论知识作业和课程报告,学生的学习效果和实际动手能力没有得到考核,造成不能全面评价学生的学习成绩。我们采取项目形式,全方位考核学生的学习效果。根据知识点,将通用模拟电路分成五大类,每个大类提取出经典的电路10种,使用主流芯片加工厂的生产工艺,由经验丰富的老师把它们的版图全部设计出来,作为库单元放在服务器中供学生参考。在学生充分理解库单元实例的基础上,将以往设计的一些实用电路布置给学生,要求在规定的时间内,设计出合格的版图,以此作为最终的考核结果。学生在学习课程期间,可以接触到不同工艺、不同结构的多种类电路,而且必须在规定的时间内设计出版图,这极大的促进了他们学习的积极性和时间观念。学生在设计版图的过程中,会遇到多种问题,他们会采取问老师答疑,和同学讨论的多种方式解决,不仅能督促他们平时上课认真听讲,而且对遇到的问题也能多角度思考,最重要的是他们亲自动手设计版图,将工艺、电路、器件综合考虑,在约定的时间内能力得到极大提高。老师根据学生上传至服务器中设计的不同项目版图打分,而且将每个项目的得分出具详细的报告,对学生的成绩进行点评。学生通过查阅报告,能够知道课程学习的缺点和得分项,为下一次提高设计成绩是一个很好的参考。除了日常学习设计版图项目,学生可以争取参加微电子专业的一些比赛,通过比赛体会一些具有挑战性的版图设计项目,来提高学生在实际场景下如何发挥设计能力和项目组织能力,为他们未来进入职场从事版图设计工作奠定坚实的专业能力和实际解决问题能力。

四、总结

《集成电路版图设计》课程是一门兼具理论基础和实践锻炼想结合的课程,对它的讲授不仅需要扎实的理论基础,还需合理的实践环节配合,才能取得良好的教学效果。

参考文献

[1]Christopher Saint/Judy Saint.集成电路版图基础-实用指南[M].北京:清华大学出版社,2006(10).

[2]蔡懿慈.超大规模集成电路设计导论[M].北京:清华大学出版社,2005(10.

[3]编委会.最新高等院校实验室建设与管理及教学指导手册[M].北京:中国教育出版社,2006(11).

基金项目:北方工业大学教育教学改革和课程建设基金。

第10篇

关键词: 硬件描述语言 verilog HDL VHDL

1.引言

数字电子技术是电气信息类专业一门重要的技术基础课程,既具有一定的理论性,同时作为一门技术课程又有相当强的实践性。因此,我们必须为理论的讲述配置一定的实验项目。目前实验项目的组织有两种途径:一是采用原来传统的小规模(SSI)或中规模集成电路(MSI)为单元构建实验项目;二是以大规模(LSI)可编程CPLD/FPGA芯片为平台,利用专门的硬件描述语言来实现。

2.现状与需求

目前,在许多本科院校的数字电子技术课程实验教学和数字电路的设计中,仍采用传统的小规模(SSI)或中规模集成电路(MSI)为单元来构建和设计。这种思路已经不能适应教学和行业发展趋势的需要。它主要有如下几个方面的原因:一是实验室必须为每一个实验项目独立地准备实验器材,而且要保证实验元件的正确性和可靠性,这是一件很费时费力的工作,同时一旦有学生操作失误,芯片就有可能烧坏,从而浪费资源;二是目前的大学生电子设计大赛所设计的数字系统设计和一些接口电路已经涉及和要求掌握在大规模和超大规模可编程芯片基础上设计复杂的数字电路;三是目前随着微电子技术和计算机技术的飞速发展,工程中已经广泛采用以CPLD/FPGA为基础设计数字集成电路,用软件的方法设计硬件电路已经是行业的需要。

为此,有必要在课堂教学中引入硬件描述语言用以设计数字集成电路,并设置相应的实验项目以掌握硬件描述语言和熟悉相关开发工具。

3.硬件描述语言在数字电路设计中的应用

3.1硬件描述语言简介[1]

一般的硬件描述语言可以在三个层面上描述电路,其层次由低到高依次为门电路级、RTL级和行为级。任何一种硬件描述语言都要转换成门电路级才能被布线器所接受。综合的方向是由高到底:行为级RTL级门电路级。

3.2硬件描述语言分类及主要差异

目前主流的描述语言有Verilog HDL和VHDL两种,各有特点和优势。Verilog HDL更适合RTL和门电路的描述,是一种较为低级的语言。其综合过程只要经过RTL级门电路级,故较为容易控制电路资源,常用在专业的集成电路设计上。而VHDL语言则更适合行为级和RTL级的描述,因此其综合过程通常要经过行为级RTL级门电路级的转换。[2]

同时,Verilog HDL语言具有C语言的描述风格,是一种较为容易掌握的语言。VHDL语言入门较难,但熟悉后设计效率比Verilog HDL要高。

3.3硬件描述语言在数字电路设计中的应用举例

译码器是数字电路中应用最为广泛的中规模集成电路,常用于设计接口电路和扩展I/O口。下面是用VHDL语言来描述一个3―8译码器的例子。[3]

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;―IEEE库说明

ENTITY decoder IS

PORT(A:IN STD_LOGIC_VECTOR(2 DOWNTO 0);―实体说明,输入三位地址,高电平有效

S:IN STD_LOGIC;―使能信号,高电平有效

Y:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));―输出八个译码信号,高电平有效

END decoder;

ARCHITECTURE arch OF decoder IS―结构体描述

SIGNAL SEL:STD_LOGIC_VECTOR(3 DOWNTO 0);―敏感列表

BEGIN

SEL(0)<=S;

SEL(1)<=A(0);

SEL(2)<=A(1);

SEL(3)<=A(2);

WITH SEL SELECT

Y<="00000001"WHEN"0001",―功能描述

"00000010"WHEN"0011",

"00000100"WHEN"0101",

"00001000"WHEN"0111",

"00010000"WHEN"1001",

"00100000"WHEN"1011",

"01000000"WHEN"1101",

"10000000"WHEN"1111",

"11111111"WHEN ORTHERS,

END arch;

译码器种类繁多,输入输出电平有效值要求高低不同,在此我们只需稍改功能描述中的取值即可,非常方便。因此修改教学内容是非常方便的。不难看出内部结构比较复杂的译码器用VHDL语言描述就显得非常简洁易懂。其实一般较为复杂的器件比较适合用VHDL来描述,在RTL级和行为级上进行描述。

D触发器是时序电路的基础,是数字系统的基本单元。下面是利用Verilog HDL描述一个异步复位的D触发器。

module DFF(q,qb,d,clk,clr);模块名和端口列表

output q,qb;//端口输入输出说明,输出端q和反相qb

input d,clk,clr;//数据输入端d,时钟端clk和复位端clr

reg q;端口类型说明

wire qb,d,clk,clr;

assign qb=!q;//互非输出

always @(posedge clk or negedge clr)//异步复位时的敏感表

if(!clr)

q<=0;//低电平复位信号有效是清零

else

q<=d;

endmodule

将敏感列表稍加改动即可变为同步复位的D触发器。像触发器这样的时序器件用Verilog HDL描述是比较方便的。Verilog HDL语言对一些电气特性、时延特性的描述有非常强大的描述能力。

4.结论

以可编程器件为基础,利用硬件描述语言进行数字集成电路设计已经是业界不可避免的发展趋势。这不仅优化了教学资源和设计环境,而且提高了设计效率,对切实提高学生动手能力和适应市场以及技术发展的要求起着重要作用。

参考文献:

[1]潘松,王国栋.VHDL实用教程[M].成都:电子科技大学出版社,2000.

[2]夏宇闻.复杂数字电路与系统的Verilog HDL设计技术[M].北京航空航天大学出版社,2002.

第11篇

>> PNG硬件解码的加速设计 PNG的硬件解码加速设计 H.264解码器中CABAC硬件加速器的实现 MPEG-4的解码系统硬件电路设计 AVS视频编解码标准中预测编解码技术的硬件设计与实现 基于OR1200的AVS视频解码帧内亮度预测的硬件模块设计 H.264熵解码器CAVLC的硬件设计 AVS视频解码器中VLD模块的硬件设计 一种SoC架构的AVS硬件解码器设计方案 AVS视频解码器中运动矢量预测的硬件设计与实现 基于PT2262和PT2272编解码芯片的无线寻物系统发送部分硬件设计 基于FPGA的硬件加速器设计的研究与应用 播放器硬件解码的相关设置 让PNG格式图片变透明的简单方法 基于FPGA的软硬件协同仿真加速技术 软件路由器的硬件加速研究 都是浏览器硬件加速惹的祸 硬件创业加速器HAX的深圳速度 旋变位置解码系统的设计 绕开微软实现硬件“软”解码 常见问题解答 当前所在位置:l.

[3]李章晶,郑国勤.针对无线通信领域的图像压缩的研究\.计算机工程与设计,2006,27(23):4 471-4 474.

[4]Scott N puter Number Systems and Arithmetic\.New Jersey:Prentice Hall,Englewood Cliffs,1985.

[5]陶钧,王晖,张军,等.三维小波视频编码的可伸缩性研究\.小型微型计算机系统,2005,26(2):285-288.

[6]Kakadiaris C.A Convex Penalty Method for Optical Human Motion Tracking\.International Multimedia Conference\.New York:ACM,2003:1-10.

[7]Zhang Z M.Independent Motion Detection Directly from Compressed Surveillance Video\.International Multimedia Conference\.New York:ACM,2003.

[8]Peleg A,Weiser U.MMX Technology Extension to the Intel Architecture\.IEEE Micro.,1996,16(4):42-50.

[9]Deutch P,Gailly J -L,Adler M.GZip\.,2008.

作者简介

郑天翼 男,1983年出生,福建福州人,硕士研究生。主要从事数字信号处理与集成电路设计的研究。

第12篇

关键词:集成电路 设计验证 发展策略

1 引言

近些年来,微电子技术的集成度每过一年半就会翻一番,前后30年的时间里其尺寸缩小了近1000倍,而性能增强了1万倍。目前,欧美发达国家的IC 产业已经非常专业,使设计、制造、封装以及测试形成了共同发展的情形。因为测试集成电路可以作为设计、制造以及封装的补充,使其得到了迅速发展[1]。

我国经济处于稳定增长中。目前,全球半导体产业都在重点关注我国的集成电路产业,因为我国存在着庞大市场、廉价劳动力以及非常优越的政策支持等,因此,我国的集成电路产业在近几年有了迅速的发展。而计算机、通信以及电子类技术也被集成电路产业带动发展,而广泛地使用互联网也产生了很多新兴产业。与此同时,对集成电路进行测试的服务业也得到了很大发展。现如今,集成电路在我国有世界第二大市场,但是国内的自给率低于25%,特别是在计算机CPU上,国内技术与欧美发达国家还存在较大的差距。

微电子技术的发展已经迈进纳米与SoC(系统级芯片)时期,而CPU时钟也已进入GHz,在发展高端的集成电路产业上,我国还需要继续努力,与发达国家缩小差距。尤其与集成电路测试相关的技术一直是国内发展集成电路产业的薄弱点,因此,必须逐步提升集成电路的测试能力。

2我国集成电路测试技术能力现状

上世纪七十年代,我国开始系统地研发集成电路的测试技术。经过40年的实际,我国的集成电路已经从开发硬件和软件发展到系统集成,从仿制他国变成了独立研发。伴随着集成电路产业在我国飞速发展,与之相关的检测技术与服务也发挥着越来越大的作用,公共测试的也有了更大的需求,国内出现了一大批专业芯片测试公司进行封装测试板块。而集成电路的测试产业在一定程度上补充了设计、制造以及封装,使这些产业得到飞速发展。

但是,因为IC芯片的应用技术需要越来越高的要求与性能,所以必须提高测试芯片的要求。对于国内刚步入正轨的半导体行业来说,其测试能力与IC设计、制造和封装相比较是很薄弱的一个环节。尤其是产品已经迈进性能较高的CPU和DSP 时代,而高性能的CPU和DSP产品的发展速度远高于其他各类IC产品。相比较于设计行业的飞速发展,国内的测试业的非常落后,不但远远跟不上发达国家的步伐,也不能完全满足国内集成电路发展的需求,从根本上制约着我国集成电路产业的发展,缺少可以独立完成专业测试的公司,不能完全满足国内IC设计公司的分析验证与测试需要,已经是我国发展集成电路产业的瓶颈。尽管有很多外企在我国设置了测试机构,但是他们中的大部分都不会提供对外测试的服务,即便提供服务,也极少对小批量的高端产品进行测试开发、生产测试和验证。目前国内对于一些高端技术的集成电路产品的测试通常是到国外进行。而对于IC发展,不仅仅对其测试设备有着新要求,测试技术人员也必须有较高的素质。将硬件和软件进行有机结合,完善管理制度,才可以保证测试IC的质量,从而使整机系统的可靠性得到保障[2]。因此,必须加快建设国内独立的专业化集成电路测试公司,逐步在社会中展开测试芯片的工作,能够大量减少测试时间,增强测试效果,最终使企业减少测试花销,从根本上解决我国测试能力现存的问题,才能够加强集成电路设计和制造能力,从而使国内的集成电路产业得到发展。

3我国集成电路测试的发展策略

伴随着不断壮大的IC 设计公司,关于集成电路产业的分工愈发精细,建立一个有着强大公信力的中立测试机构进行专业化的服务测试,是国内市场发展的最终趋势与要求。因此,系统地规划和研究集成电路测试业的策略,对设计、制造与封装进行强有力的技术支撑,必将使集成电路产业得到飞速发展。以下是使我国集成电路测试产业得到进一步发展的建议:

3.1发展低成本测试技术

目前,我国的高端IC 产品还没有占据很高的比例,市场主要还是被低档与民用的消费类产品占据,例如MP3 IC、音视频处理IC、电源管理IC以及功率IC等,其使用的芯片售价本来就比较低,所以没有能力承受非常昂贵的测试费,因此企业需要比较低成本的测试。这就从根本上决定国内使用的IC 测试设备还不具有很高的档次,所以,选择测试系统时主要应该注重经济实惠以及有合适技术指标的机型。

3.2研发高端测试技术

伴随着半导体工艺的迅速发展,IC产品中的SoC占据了很大的比重,产值也越来越多。但是SoC在产业化以前需要通过测试。所以,快速发展的SoC 市场给其相关测试带来了非常大的市场需要。在进入SoC时代之后,测试行业同时面临着挑战和机遇。SoC的测试需要耗费大量的时间,必须生产很多测试图形与矢量,还必须具有足够大的故障覆盖率。以后,SoC会逐渐变成设计集成电路主要趋势。为了良好地适应IC 设计的发展,对于测试高端芯片技术也必须进行储备,测试集成电路的高端技术的研究应该快于IC设计技术的发展[3]。

4结束语

我国作为世界第二大生产集成电路的国家,目前测试集成电路的技术还比较落后,比较缺乏设计高水平测试集成电路装备的能力。对集成电路进行测试是使一个国家良好发展集成电路产业不可或缺的条件。集成电路企业需要不断地增强测试技术的消化、吸收以及创新,政府也需要发挥自身的导向性,为集成电路企业设计和建立服务性的测试平台。

参考文献:

[1]程家瑜,王革,龚钟明,等.未来10年我国可能实现产业跨越式发展的重大核心技术[J].中国科技论坛,2004(2):9-12.