时间:2023-06-05 09:57:20
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇金属基复合材料,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
Abstract: In this paper, through the introduction of the current situation of the development of water-based ink and metallic ink, including the introduction of resin, binders and additives. They are combined with the most useful ingredients so far. Therefore, a new kind of water-based gravure ink metal is put forward to replace the processing technology of paper and aluminum composite in the cigarette package. Now, the residual substances such as glue and adhesive used in the paper aluminum composite process are harmful to people's health. Smoking is harmful to health, but there is no harm in packaging. So, it is important to avoid the formation of harmful substances in the packaging to avoid the added mistake.
关键词: 水性油墨;金属油墨;树脂;连结料;助剂;水性金属凹印油墨
Key words: water-based ink;metal ink;resin;binders;additives;water-based metal gravure ink
中图分类号:TQ630.6+2 文献标识码:A 文章编号:1006-4311(2017)06-0131-03
0 引言
近年来,伴随着工业化的发展,国家对印刷行业低碳环保要求的不断深入,对低碳环保型的印刷油墨需求越来越迫切,油墨市场的低碳竞争日趋激烈、环保低碳的呼声愈来愈高,传统的溶剂型(苯或酯)类油墨已不能适应和满足现代印刷业的发展需求,具有环保性、低碳性、无毒无污染、适应国家环保发展需要的水性金属油墨亟待推出。
作为一种新型的环保油墨,水性金属油墨的探索响应了我国绿色印刷的号召,加速了绿色进程,其主要优势有:不含挥发性有机溶剂,不仅能减少印刷品表面残留的有害物质,易于印刷设备清洗,还能降低由于静电和易燃溶剂引起的火灾隐患。唯一不足的是现有的技术水平印刷出来的产品仅能达到现有挥发性溶剂油墨的金属光泽和印刷效果的70%。
1 水性凹版油墨的发展
1.1 凹版印刷原理
在印刷过程中,印版滚筒的一部分浸渍于墨槽中并在墨槽中滚动,使整个印版表面涂满油墨,然后用刮刀刮去印版空白部分的油墨,使图文部分着墨,非图文部分不着墨,再由压印机将凹下的图文部分油墨压印到承印物表面,完成油墨向承印物的转移[1]。
凹版油墨的黏度很低,并且有大量挥发性的有机溶剂,生产凹印油墨时一般用球磨机或砂磨机研磨,以减少溶剂挥发[2]。现在,工业材料、包装装潢印刷等都采用了凹版印刷,其中包括塑料(聚丙烯、聚乙烯、聚酯、尼龙等)、铝箔、卡、玻璃纸等。目前,对产品不断创新是促进油墨增长的一条不错的途径[3]。
1.2 国外水性油墨的发展
早在20世纪60年代,由于环保的要求和石油原材料的紧张,一些发达国家逐渐限制使用石油产品制造印刷油墨。由此人们开始研究非有机溶剂型油墨,使得水性油墨取得了较大的进展。
到了20世纪70年代,由于石油危机,导致油墨用原材料再度紧张,同时对于食品等包装的要求也进一步提升。水性油墨经过不断的升级,解决了光泽度和印刷适性等方面的不足,最终促进了水性油墨的发展。在美国,95%的柔版印刷品和80%的凹版印刷品采用了水性油墨;在日本,70%的柔性版印刷用于瓦楞纸箱行业,其中95%的业务使用的是水性油墨。
1.3 国内水性油墨的发展
我国近代水性油墨的发展首先是从网印用水性油墨开始的,是利用一些水溶性淀粉、骨胶之类的天然高分子物质作为连接料,与颜料研磨得到水性油墨,人们习惯称之为皮浆,用于丝网印刷。对于油墨环保性能的要求的越来越高,已有部分水基凹印油墨开始使用,最早使用的水性油墨是用一种溶于乙醇和碱性水溶液的天然树脂虫胶作为连接料,随着科学技术的发展,松香、马来酸改性树脂成为了油墨中主要的成分。
1.4 水性金属油墨的现状
同其他油墨一样,金、银墨主要也是由颜料和连结料两大部分组成的,简单的说金墨是用捣墨法制成的金粉和调金油调配而成的印刷油墨,银墨是由铝粉和调银油墨而成的。不同于溶剂型金属颜料,水性金、银墨使用的水性金属颜料需要进行特殊的表面处理,从而获得亲水性和耐水性,更好地分散于水环境,适应强极性高张力体系[4]。
但是水性金属颜料粉末是细颗粒物,长时间悬浮与空气中造成一定的空气污染。
2 油墨用树脂等助剂的研究现状
2.1 树脂的研究现状
油墨树脂常见的有水性氨基树脂、马来酸树脂、羟甲基纤维素、水溶性丙烯酸树脂、氨基甲酸乙酸树脂、松香改性酚醛树脂、醇酸树脂、聚酰胺树脂等。其中水性丙烯酸树脂由于它在光泽度、耐热性、耐水性、光泽、着色性等方面具有显著的优势,现在国外大多数采用它作榱结料。具体优势如表1所示。
应用于水性油墨的丙烯酸树脂可分为两类:一类是乳液型;一类是水溶型。水溶型丙烯酸树脂干燥速度慢,连续成膜型差,一般都配合其他乳液使用。
2.1.1 松香改性酚醛树脂
松香改性酚醛树脂是由酚与醛在催化剂作用下缩合,再与松香进行反应,之后经过多元醇酯化得到得。
松香改性酚醛树脂颜色为透明黄棕色,能容与大多数有机溶剂。主要使用的为以下4种:
①210松香改性酚醛树脂;
②2116松香改性酚醛树脂;
③2118松香改性酚醛树脂;
④2134松香改性酚醛树脂。
2.1.2 聚氨酯树脂
聚氨酯树脂能溶于醇、酯等溶剂或其他混合溶剂,并且不需要依靠毒性很大的苯溶剂,因此可以用来生产符合环保要求的油墨。
①PU-3401聚氨酯树脂;
②PU-3403聚氨酯树脂;
③PU-1818L聚氨酯树脂。
2.1.3 聚酮树脂
聚酮树脂是由环己酮-醛缩合的中性、淡黄透明并且不会皂化的树脂。它的分子链上的羰基和羟基官能团可以使其可溶于乙醇或异丙醇溶剂中。酮-醛缩聚过程中可以提高涂膜的光泽度和韧性。
2.2 连结料的研究现状
油墨连结料是油墨的关键组成部分,能够将颜料及助剂等组合在一起,形成具有流动性能的油墨混合物。主要是由树脂、有机溶剂及辅助剂制成,一般需要通过加热反应生产。
2.3 助剂的研究现状
助剂的种类很多,其中包括消泡剂,表面活性剂,增塑剂,催干剂,流平助剂,光引发剂等。
消泡剂主要用于黏度较低的油墨,这些油墨在传输过程中有可能混入大量的空气,产生气泡。在油墨印刷过程中,刮刀将油墨从制版上刮下或从印辊上流下来,油墨之间会产生撞击,也会产生大量的气泡。目前使用比较多的是聚醚改性聚硅氧烷类消泡剂。它无毒、无污染、挥发性低、消泡能力强等特点。
表面活性剂是指少量加入即能明显地改变表面各种性质的物质。油墨是由固体物质分散在液体物质中形成的分散体系,加入表面活性剂的目的是为了使油墨中各组分能够均匀分散。
增塑剂在油墨中被视为一种永久的溶剂,因为它的挥发性较差,具有保留性。油墨印刷在承印物上,会形成一个墨膜,我们希望它有弹性有强度,可以忍受折叠和揉搓,所以必须加入增塑剂才能形成较好的墨膜。目前使用最广泛、效果最好的增塑剂是邻苯二甲酸二辛酯。
使用催干剂是为了促进油墨在印品上的干燥速度。常见的有钴催干剂、锰催干剂和铅催干剂。
流平助剂可以使油墨表面平整光滑,使印品光泽度好并减少针孔现象。目前为止采用的是长链硅树脂,例如二苯基聚硅氧烷,它也是一个表面活性剂,可以提高油墨对承印物的润湿性,并且改善流平性。
光引发剂又称光敏剂或光固化剂,主要用于UV金属油墨,在紫外光的照射下发生固化反应,迅速干燥成膜。选用2,4,6-三甲基苯甲酰基-二苯基氧化磷、1-羟基苯基环己酮、2-羟基-2-甲基-1-苯基-1-丙酮中的一种或多种。
3 水性金属油墨凹印工艺的研究
3.1 工艺过程
接通电源,检查机器-预热-固定原料于放料口-脱开压臂,压轴动力-放置衬纸-收卷轴穿入收盘纸芯管-固定衬纸-安装刮刀-检查输气系统-放置涂料-打开色泵-放置铝箔-打开并调节吹风机、主电机-调节机器转速-调整放料轴-控制机器转速-注意机器补料及机器运转情况-防止烘烤过度-关闭风机,清洗施胶辊-断开成品,放置备用收卷轴-根据停机时间,清洗机器-生产结束后关闭电源-清理现场,规整工具。
3.2 配料及工艺参数
采用表2水性凹印金属油墨配方印刷出来的成品经检验可以达到纸铝复合或真空镀铝效果的70%。
4 未来研究方向与展望
未来水性金属凹印油墨必然会逐渐成为市场主导并且取代现有的溶剂型油墨,甚至达到并超过现有的纸铝复合以及真空镀铝纸的效果。但是,目前的主要问题就是用水和乙醇作为溶剂会影响印刷的干燥速度,印刷出来的效果不但没有超过现有的采用苯及甲苯作为溶剂的效果,而且或许远远达不到要求,同时通过与真空镀铝纸和纸铝复合方式的对比,效果只能达到其70%,这就需要研究人员在未来的探索中继续突破。另外采用的水性金属凹印油墨需要配有特殊的工艺以及对机器设备的特殊要求,例如凹印辊的改造等问题都有待解决。水性金属油墨未来的大方向或许向纳米级别进军,能否代替现有的色浆,这将是一个里程碑式的进步。
参考文献:
[1]辛秀兰,水性油墨[M].第二版,化学工业出版社,2012,5.
关键词 碳纳米管/铜基复合材料;制备工艺;显微组织
中图分类号:TB33 文献标识码:A 文章编号:1671-7597(2013)13-0050-02
将增强纤维、颗粒等与铜制备成铜基复合材料,可以提高其强度、耐磨性以及保持较优良的导电导热性能。SiC作为一种陶瓷颗粒,具有弹性模量高及抗氧化性能好等优良性能。由于金属具有优良的力学机械性能,使得金属基复合材料可以按机械零件的结构和性能要求,设计成合理组织和性能分布,从而工程技术人员对材料的性能进行最佳设计。由于能够根据不同的力学性能要求来选择相应的金属基体和不同的增强体,使得复合材料中的各组成材料之间既能保持各自的最佳性能特点,又可以进行性能上的相互补充,功能上的取长补短,甚至满足一定的特殊性能,所以纳米复合材料是一类具有结构和功能极佳的材料。另外,纳米复合材料由于具有特有的的纳米表面效应、特有的纳米量子尺寸效应,能够对其光学特性产生影响。按照复合材料基体的性能特点特,人们将纳米复合材料通常分三大类:纳米树脂基复合材料、纳米陶瓷基复合材料和纳米金属基复合材料。纳米金属基复合材料不仅具有强度高、韧性高的特点,纳米金属基复合材料还具有耐高温、高耐磨及高的热稳定性等性能。纳米金属基复合材料应用表明:在功能方面具有高比电阻性能、高透磁率性能,以及高磁性阻力等物理性能。本文采用球磨混料方法,通过真空热压法工艺,制备出碳纳米管增强铜基复合材料,研究铜基纳米复合材料的制备工艺,分析相应的材料性能。
1 试验材料及方法
1.1 试验材料
试验用原材料是上海九凌冶炼有限公司生产的电解铜粉,铜粉纯度是99.8%,铜粉粒度为-300目,铜粉松装密度是1.2~1.7。碳纳米管(CNTs)选用深圳纳米港有限公司产品。选用哈尔滨化工化学试剂厂的十二烷基硫酸钠(化学纯),以及该厂生产的酒精(分析纯)。
1.2 试验方法
试验采用行星式球磨机进行湿磨混合配料,选择的球磨机转速参数为300 r/min,球磨时间为2.5小时,试验球料比选择为1:1。试验的热压温度参数选择在800℃进行烧结,热压压力参数为3.9吨,烧结时间参数为3小时。使用光学显微镜分析复合材料的显微组织特点,用新鲜配制的三氯化铁盐酸酒精溶液腐蚀复合材料组织,腐蚀时间选为15 s。
2 试验结果与分析
2.1 碳纳米管/铜基复合材料显微组织
2.2 CNTs/Cu复合材料的硬度
2.3 CNTs添加量对复合材料相对密度的影响
试验结果表明,纯铜试样致密度最高,但是,随着碳纳米管含量的增加,纳米复合材料的相对密度下降。复合材料材料相对密度随着碳纳米管含量的增加而逐渐降低,原因主要是碳纳米管和铜的润湿性较差,致使强化相CNTs不能均匀分布,引起复合材料的缺陷,材料中产生孔隙,呈现出相对密度的下降的特点。
3 结论
1)采用球磨混料方法,真空热压法工艺,制备出碳纳米管增强铜基复合材料。
2)随着CNTs的增加,复合材料的硬度呈现降低的趋势,CNTs含量与硬度之间关系为曲线关系。
3)纯铜试样致相对密度最高,随着碳纳米管含量的增加,复合材料的相对密度下降。
参考文献
[1]解念锁,李春月,艾桃桃,等.SiCp尺寸对铜基复合材料抗氧化性及磨损性的影响[J].热加工工艺,2010,39(8):
74-77.
[2]王瑾,解念锁,冯小明,等.SiCp/Cu梯度复合材料的压缩性能研究[J].热加工工艺,2011,40(8):106-107.
[3]王艳,解念锁.原位自生Sip/ZA40复合材料的组织及性能研究[J].陕西理工学院学报(自然科学版),2011,27(1):1-4.
[4]董树荣,涂江平,张孝彬.碳纳米管增强铜基复合材料的力学性能和物理性能[J].材料研究学报,2000,14(Sl):132-136.
[5]王浪云,涂江平,杨友志.多壁碳纳米管/Cu基复合材料的摩擦磨损特性[J].中国有色金属学报,2001,11(3):367-371.
关键词 蒙脱石;纳米复合材料;非金属粘土矿物
中图分类号:TQ327.7 文献标识码:A 文章编号:1671-7597(2013)15-0017-01
纳米是长度单位(Nanometer,nm),原称“毫微米”,1 nm=10-9 m,即十亿分之一米,一只乒乓球放在地球上就相当于将一纳米直径的小球放在一只乒乓球上。纳米粒子通常是指尺寸在1 nm~100 nm之间的粒子。纳米效应为实际应用开拓了广泛的新领域。利用纳米粒子的熔点低,可采取粉末冶金的新工艺。调节颗粒的尺寸,可制造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽、隐形飞机等。纳米银与普通银的性质完全不同,普通银为导体,而粒径小于20 nm的纳米银却是绝缘体。金属铂是银白色金属,俗称白金;而纳米级金属铂是黑色的,俗称为铂黑。纳米粒子具有很高的活性,例如木屑、面粉、纤维等粒子若小到纳米级的范围时,一遇火种极易引起爆炸。纳米粒子是热力学不稳定系统,易于自发地凝聚以降低其表面能,因此对已制备好的纳米粒子,如果久置则需设法保护,例如保存在惰性空气中或其他稳定的介质中以防止凝聚。
纳米材料是物质以纳米结构按一定方式组装成的体系。它是纳米科技发展的重要基础,也是纳米科技最为重要的研究对象。纳米技术被公认为21世纪最具有发展前途的科学之一,纳米材料也被人们誉为21世纪最有前途的材料。由于纳米材料本身所具有的特殊性能,使其能够广泛应用于化工、纺织、军事、医学等各个领域。本文阐述了蒙脱石/高聚物纳米复合材料的研究进展,并对其发展前景加以展望,期望对其深层次的加工应用有所帮助。
1 纳米材料的分类
纳米材料有多种分类方式,按其维数可分为:零维的纳米颗粒和原子团簇,一维的纳米线、纳米棒和纳米管,二维的纳米膜、纳米涂层和超晶格等;按化学成分可分为:纳米金属,纳米晶体,纳米陶瓷,纳米玻璃以及纳米高分子等;按材料物性可分为:纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁磁体材料,纳米超导体材料,以及纳米热电材料等;按应用可分为:纳米电子材料,纳米光电子材料,纳米生物医用材料,纳米敏感材料,以及纳米储能材料等;按照材料的几何形状特征,可以把纳米材料分为:①纳米颗粒与粉体;②碳纳米管与一维纳米线;③纳米带材;④纳米薄膜;⑤中孔材料(如多孔碳、分子筛);⑥纳米结构材料;⑦有机分子材料。
2 纳米矿物资源的研究意义
纳米矿物材料具有优良的物理性能和化学性能,这是一般矿物材料所无法比拟的。如聚合物/粘土矿物纳米复合材料具有独特的分子结构特征和表观协同效应,既表现出粘土矿物优良的力学性能又体现了聚合物优异的阻隔性能。非金属纳米矿物材料的科学研究价值和应用前景主要体现在以下几方面。
1)非金属纳米矿物是替代人工合成纳米材料的绝佳资源。
2)非金属纳米矿物成因的研究成果可为人工合成纳米材料提供有益的借鉴。
3)非金属纳米矿物资源的研究有助于深化人们对纳米材料的认识。
4)非金属纳米矿物资源的研究具有重要的地质学和经济学意义。
3 蒙脱石/聚合物纳米复合材料发展现状
3.1 聚合物基纳米复合材料
把纳米材料用于添加改性塑料,可以开发出各种新型的功能复合材料。聚合物基纳米复合材料通常可分为3类:有机/有机型纳米复合材料、有机/无机混杂物型纳米复合材料、有机/无机粒子型纳米复合材料。
3.2 蒙脱石/聚合物纳米复合材料的制备
能够在纳米复合材料中得到应用的蒙脱石属于层状硅酸盐矿物,它是非金属粘土矿物膨润土的主要成分。用蒙脱石填充高聚物可以制得蒙脱石/聚合物纳米复合材料,其合成方法——插层复合法根据复合方式的不同可以分为插层聚合法和聚合物插层法两大类。按照聚合反应类型的不同,插层聚合又可以分为插层缩聚和插层加聚两种类型;聚合物插层法也可以分为溶液插层和熔融插层两种。
此外,聚合物基纳米复合材料的其它制备方法还有直接分散法、溶胶-凝胶法、原位生成法等等。这些方法的综合运用为新型纳米复合材料的开发及应用开辟了广阔的前景。
4 蒙脱石/聚苯乙烯纳米复合材料开发前景
陈燕丹等用含双键的酰胺-胺化合物作为插层剂制得改性的有机蒙脱石,与苯乙烯具有较好的相容性,使得二者界面相互作用大大提高。在此基础上聚苯乙烯于熔融状态下可以插层进入有机蒙脱石,形成蒙脱石/聚苯乙烯纳米复合材料,其力学性能和热性能与纯聚苯乙烯及常规填充聚苯乙烯相比都有提高。林蔚等以十六烷基三甲基溴化铵改性钠基蒙脱石与聚苯乙烯熔融插层,制备了无机-有机纳米复合材料,通过分析得到其力学性能、耐热性、阻燃性及抗溶性均匀所提高。黎华明等将间规聚苯乙烯和尼龙6/改性蒙脱石纳米复合物共混制得的复合材料经DSC、DMA、WAXD等测试可知蒙脱石对聚合物基体的增强效果明显。
说明蒙脱石的加入能引入氢键和强极性作用,使分子链的柔性降低,聚合物分子堆砌密度增大,玻璃化转变温度升高,材料断面形貌得到改善,提高了复合材料的综合性能,达到增强增韧的目的,从而显示出对聚合物基粘土纳米复合材料研究的重要科学意义。今后期望能够继续提高复合材料的抗冲击性和耐热性能,制得高性能的蒙脱石/聚苯乙烯纳米复合材料,进一步开拓其应用领域。
参考文献
[1]李青山.乙烯基共聚物/蒙脱石纳米复合材料研究[D].东华大学,2004:1-9.
[2]曹明礼,等.非金属纳米矿物材料[M].北京:化学工业出版社,2006:40-46.
[3]漆宗能,等.聚合物/层状硅酸盐纳米复合材料理论与实践[M].北京:化学工业出版社,2002:5-12.
[4]陈燕丹,等.新型嵌入改性膨润土/聚苯乙烯杂化纳米材料[J].福建师范大学学报,2000,16(3):60-64.
[5]李同年,等.聚苯乙烯-蒙脱土插层复合材料的制备与性能[J].塑料工业,2000,28(2):33-35.
关键词:铸造工艺;双金属复合材料;性能;影响
前言
文章中对不同的铸造结构和使用条件进行了分析,通过采取特殊的铸造工艺方法,能够使结晶界面和基体的温度、梯度以及厚度都是均等的,保证结合界面是均匀的,同时也能制备出无混料的双金属复合材料,对复合材料进行进一步的研究和分析,在经济效益和学术价值方面十分有利。
1 对双液双金属复合铸造的概述
双液双金属复合铸造是指在一定的浇注温度下,将两种液体的金属按照一定的顺序将其浇注到同一个铸型中,这样形成的复合材料具有很好的耐磨性,同时,也能克服两种金属存在的缺点,将两种金属的优点进行发挥,新形成的复合材料具有两种金属的特性。新型复合铸造零件能够适应各种恶劣的使用环境,在使用过程中寿命也将出现延长的情况。双液双金属在实际操作过程中比较难,在对耐用零件进行批量生产时难度系数更大。在应用过程中,可靠性条件非常差,对整个加工过程带来的影响将非常大。在铸造过程中,对界面的结合质量对复合材料的性能影响原因进行分析,能够对复合界面的关键因素进行保证。
2 对双金属复合材料的概述
采用复合技术将两种完全不同的金属接触面进行相互之间的固劳,并且结合在一起,通常情况下,两种金属的物理和化学性能都将是不同的,在这种情况下,出现的新型材料就是双金属复合材料。双金属复合材料具有非常好的性能,而且这些技能非常特殊,在工作环境比较恶劣的情况下,双金属复合材料的使用寿命也非常好。双金属复合材料成本非常低,在性能方面非常好,而且能够合理对资源进行开发利用。在很多的工业领域中,石油、汽车、航空对这种新型的材料应用比较广泛,因此,其市场前景非常好。
3 铸造工艺对双金属复合材料性能影响的实验
文章对铸造工艺对双金属复合材料的材质复合界面的组织以及耐磨性综合力学性能进行了试验和研究,在以后的经济发展和社会进步将有很大影响。
3.1 实验材料
在试验过程中,主要的试验材料有碳、硅、朦和铬,其中,碳是钢中的主要元素,是钢的基本组织成分。在试验中,将少量的碳固体溶合在铁素体中,这样能形成以渗碳体的形式存在。在实验过程中要对碳含量进行很好的控制,因为碳含量过高或者是过低都是会导致钢的质量受到很大影响。碳含量出现过低的情况,会导致钢的淬硬性以及耐磨性出现很差的情况,在碳含量过高的情况下,会导致钢的韧性出现降低的情况,因此,要对碳的含量进行很好的控制,能够更好的保证钢的刚度和硬度。硅在钢中的作用就是当贝氏体转变过程中,抑制碳化合物的析出,硅在钢中的形态主要是以固体的形式进行溶体,在铁素体中进行存在,这样利用硅的性能能够更好的增加钢的强度和硬度,降低钢的塑性。在铸造钢过程中,锰的作用是不可替代的,其主要的功能就是脱氧,对硫元素进行中和,避免出现有害作用,从而能对铸件出现的强烈缺陷进行防止。不仅如此,锰还能对钢中出现的温度以及分解速度进行降低。在使用过程中将锰和硅进行配合使用,能够对钢的强度进行提高,对硬度和韧度也有很好的促进作用。但是,在钢中,锰的含量一定要进行必要的控制,不能出现锰含量过高的情况,这样会导致钢晶粒出现粗化的情况,对钢的回火脆性以及敏感性都有很大的影响。
铬是一种活性比较大的耐磨材料元素,其能够固溶于铁素体中,同时也能和钢中的碳组合形成很多种碳化物,它的主要作用就是促使钢的淬透性得到提高,同时,对钢的抗氧化能力和抗腐蚀能力进行提高。铬在钢中的含量比较高也不用对其进行担心,这种元素不会对钢的性能产生很大的影响,但是,其会在钢中形成比较复杂的碳化物,这种物质能够从钢中进行析出,然后起到沉淀和强化的作用。
3.2 实验方法
3.2.1 具体方法
使用酸性坩埚熔炼实验钢,并采用65kg和150kg中频感应电炉,将浇注温度定为1550,湿砂型浇注后加工成10mm×10mm×55mm冲击韧性试样。主要对钢的材质复合界面组织、耐磨性、综合力学性能三方面进行分析和观察。其中,采用的器具主要有ZBC-300B全自动金属摆锤冲击实验机,负责冲击韧性测试;HRC-150A硬度计负责硬度测试;MLD-10动载荷磨料磨损试验机负责磨损试验。最后采用奥林巴斯GX71倒置式金相显微镜进行组织分析,从而得出结论。
3.2.2 铸造工艺
实验时采用两个浇注系统,分别浇入低碳钢和高碳钢,时间上要间隔15-80秒,而且需要注意的是浇入低碳钢后,当钢液已经趋近工艺要求的复合界面或已达到时,根据铸件的大小才可以浇入高碳钢。其中任选一组将激冷材料放置在两种材质的连接部位,从而保证结晶界面与基体间存在一定的温度梯度以及厚度,另一组则不需要添加激冷材料。
3.3 实验结果
3.3.1 对复合界面组织的影响
由于采用特殊的双液双金属复合铸造工艺,当低碳钢结晶后才进行高碳钢的浇筑,然后经过高温铁水的作用,致使低碳钢能够保存的很好,只是表面熔化很薄的一层,而且结合区复合界面的交界线处相互交错,产生了熔融和相互渗透的现象,这是从图片上清晰可见的,这就说明两种材质的中间结合面实现了有效的冶金结合,而且复合界面并没有发生冲混现象。
3.3.2 对耐磨性的影响
通过实验,我们可以总结出:将实验钢材料和高锰钢进行相同时间的磨损,发现前者的动载磨损失重量要明显小于后者。这是由于实验钢以挤出和浅层剥落为主,无论是组织上还是综合力学性能均高于高锰钢,具有较强的抵抗石英砂磨粒的切削的能力,这就减少了磨损过程中表面金属的剥落,呈现出较好的耐磨性能。
3.3.3 对力学性能的影响
此图片为等温淬火温度试样高碳钢冲击断口的SEM照片,从图片上我们可以看出断口的形状是扇形花样,而且还有大量的撕裂棱以及大大小小的圆形或椭圆形的深韧窝,这就说明该材质的韧性是十分好的。
4 结束语
铸造工艺对双金属材料的性能有很大影响,因此,在进行复合的时候要应用特殊的铸造工艺,这样不仅能够提高复合材料的组织界面结合状态,在耐磨性能和力学性能方面影响也非常好,这样能够提高生产工作的安全性。对双金属铸造的定义进行分析,增强对其的了解,应用现代的方法,通过试验对铸造工艺进行分析,这样对双金属复合材料以后的发展非常有利。
参考文献
[1]田德旺,应保胜.双金属复合材料冷轧变形行为及结合强度的研究[D].武汉:武汉科技大学,2007.3.
关键词:机械合金化;铝基复合材料;纳米尺度
中图分类号:TB383.1 文献标识码:A 文章编号:1006-8937(2015)26-0072-02
1 概 述
铝基复合材料具有高比强度和比模量、低热膨胀系数、良好的尺寸稳定性、较高的高温机械性能以及抗疲劳、耐磨损等优良性能。与钢相比,铝基复合材料的密度仅为钢的三分之一,耐磨性则与铸铁相当;与铝合金相比,导热率与其基本相当,抗拉和抗压强度及弹性模量大幅提高,热膨胀系数有较大幅度的降低。
因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一,在航空航天、汽车、电子和光学仪器、体育用品等领域得到了广泛了应用。
基于进一步提高铝基复合材料机械性能的需求,研究发现,减小增强体颗粒尺寸会增加铝基复合材料的塑性、韧性和强度,因而越来越多小尺寸(约1 μm或更小)的增强体被用来制备铝基复合材料。纳米复合材料被定义为在多相固体材料中,其中一个相(一般为增强体)至少有一个方向其尺寸小于100 nm。在纳米铝基复合材料的制备中,纳米颗粒的特性给使用液相法的制备工艺带了困难,因而固相法更多的被采用,其中最常见的为机械合金化法。
机械合金化(MA)是一种固态粉加工技术,涉及了粉末在高能球磨机中的冷焊、破碎和再冷焊的过程。
在此过程中,一定量的混合粉末装入容器中并放入研磨介质,然后在预定的时间长度内进行高速搅拌。当粉末中含有塑韧性良好的金属材料时,在球磨过程中需要加工过程控制剂(PCA)来避免其因过度冷焊而结块。在球磨结束后,可得到合金化且混合均匀的粉末。
本文以Al2O3、Al3Ti和CNTs为代表增强体,概述了机械合金化制备相应纳米铝基复合材料的研究进展。
2 AlCAl2O3 纳米复合材料
纳米复合材料具有两种不同的制备方法。在第一种方法中,氧化铝增强体通过原位化学反应生成,被称为原位复合材料。在第二种方法中,Al2O3颗粒直接加入铝中,再将混合物一起球磨,以产生纳米复合材料。
一般情况下,原位生成复合材料的界面结合更强,机械性能比非原位生成复合材料要好,但在纳米尺度下性能差异几乎不存在。
2.1 原位法
在原位制备Al-Al2O3 纳米复合材料过程中,最常用的原位反应方程式有:
2Al+3CuO 3Cu+Al2O3
2Al+3ZnO 3Zn+Al2O3
Xi等人研究了Al含量从20%~85%(wt.)范围内,Al和氧化铜的反应球磨。研究表明,当Al含量仅为20%(wt.),发生完全还原反应,反应产物为铜和均匀分散的氧化铝颗粒分散。但是,随着Al含量的增加,会形成铝-铜金属间化合物,如Cu9Al4,CuAl2和Al(铜)固溶体。
同时,细小而分散的氧化铝颗粒进入到了Al基体内。Wu等人研究结果表明球磨铝和10 Wt.%的氧化铜17 h后,Al4Cu9相衍射峰开始出现在X射线衍射图上,并且此析出物经过退火后转化为CuAl2相。
增强相的体积分数过大会造成混合粉末的压制困难。当氧化铜含量降低至5Wt.%,增强体包括析出的大小为100~500 nmCuAl2和10~50 nm的氧化物和碳化物颗粒,Al基体的尺寸大约74 nm。依照晶粒尺寸(Hall-Petch)和Orowan强化机制分析了复合材料的强度,表明Hall-Petch强化来源于细晶铝、Orowan强化源于纳米尺度的氧化物和碳化物颗粒。
Durai等人通过球磨铝,氧化铜和ZnO的混合物,球磨后的粉末经过冷压以及高温烧结,制备了Al-Al2O3纳米复合材料。
研究表明,该复合材料中细小的氧化铝颗粒弥散分布在Al(Zn)或Al(Zn)-4Cu的基体中。该材料在经过测试后发现耐磨损性得到改良,相比于未经过球磨直接进行冷压和烧结的复合材料具有更高的硬度和耐磨性。
2.2 非原位法
Prabhu等人球磨了铝-氧化铝混合粉末,选用不同尺寸(50 nm、150 nm和5 μm)和体积分数(5、10、20、30和50)的Al2O3。混合粉末在行星式球磨机中经过不同时间的球磨,结果表明,当球磨时间超过20 h以后氧化铝增强体能均匀分散到铝基体中。Al-20Vol.%50Al2O3在不同球磨时间后的SEM照片,如图1(a)(b)(c)(d)所示。
不同体积分数的Al-50Al2O3在球磨20 h后的X射线能谱元素分布图,如图2所示。通过照片可观察到球磨20 h后,氧化铝增强体实现了均匀分布。
3 AlCAl3Ti 纳米复合材料
相比于其他大多数富铝金属间化合物,Al3Ti因为它具有熔点高(约1623 K)、相对低的密度(3.4 g/cm3)和较高弹性模量(216 GPA)。另外,由于Ti在铝中的低扩散性和溶解度,Al3Ti在高温下会展现出低的粗化速率。因此,Al3Ti存在于Al基体中下可以非常有效地提高铝基复合材料的刚度,室温机械性能和改善的铝基复合材料热稳定性。
Lerf和莫里斯用机械合金化法以铝粉和钛粉为原材料合成了Al-Al3Ti复合材料。球磨后能观察到两金属元素均匀分布,再对混合粉末在873 K进行退火后,有Al3Ti金属间化合物产生。0.1~0.5 μmAl3Ti颗粒分布于Al基体上,同时因为在球磨过程中加入PCA,纳米尺度(50 nm)Al4C3和γ-Al2O3的球状颗粒也存在于铝基体中。Wang和Kao用机械合金化法和高温烧结合成了Al-Al3Ti复合材料,复合材料微观结构表现为平均尺寸约100 nm的等轴颗粒状Al3Ti弥散分布在铝基体中,同时在晶粒内和晶界上还存在着纳米尺度的Al2O3 和 Al4C3颗粒。而且还对Al3Ti含量不同的Al-Al3Ti复合材料的高温变形行为进行了研究。
4 AlCCNTs 纳米复合材料
碳纳米管因其优异的机械性能使其成为理想的复合材料增强体,在增强材料的刚度和强度同时并实现轻量化。然而碳纳米管固有的物理性质,使其有强烈的团聚倾向,最终造成材料性能不升反降的现象。机械合金化法能较好地解决碳纳米管团聚现象,从而最大程度的发挥其作用。
Morsi和Esawi通过机械合金化法制备了Al-MWCNTs(2~5 wt.%)纳米复合材料,并对碳纳米管的分布和铝晶粒尺寸进行了研究,结果表明,球磨能够避免碳纳米管在复合材料中的团聚;在球磨48 h的样品中能观察单个的碳纳米管到嵌入在铝基体中;球磨过程中冷焊和破碎的共同作用,细化了铝基体的晶粒。
George等人用球磨合成的Al-CNT(单壁和多壁)复合材料,为了保持CNT的完整性,球磨时间较短,复合粉末再经过冷压、烧结和热挤压。通过测试材料的屈服强度、拉伸强度和弹性模量,结果表明,复合材料具有比基体合金更好的机械性能。性能的提升归结于热失配、剪滞和Orawan机制共同作用的结果。
5 展 望
纳米相增强铝基复合材料是近年迅速发展起来的一种新型材料,表现出优异的理化和力学性能,机械合金化法在制备纳米铝基复合材料过程中表现出独特的优势,但距离工程化应用仍然存在成本高、制造效率低、可靠性与稳定性有待提高等新材料实用化过程中面临的共性问题,需要进一步攻关并逐一克服。
参考文献:
[1] 王宇鑫,张瑜.铝基复合材料的研究[J].上海有色金属,2010,(31).
[2] Tjong SC.Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties[J].Adv Eng Mater,2007,(9).
[3] Lerf R,Morris DG.Mechanical alloying of Al-Ti alloys[J].Mater Sci Eng A,1990,(A128).
[4] Wang SH,Kao PE.The strengthening effect of Al3Ti in high temperature deformation of Al-Al3Ti composites[J].Acta Mater,1998,(46).
关键词:石墨烯-铜复合材料;辐照损伤;位错
自2004年英国Manchester大学的Novoselov等[1]首次用机械剥离法获得单层石墨烯以来,石墨烯以其独特的结构,优异的电学、热学、化学和力学性能迅速引起了广泛地关注。石墨烯是一种由碳原子以sp2杂化连接密堆积构成的二维晶体,具有良好的导热性能5000W/(m・K)[2],室温下电荷迁移率高达15,000cm2/(V・s)[3],比表面积为2630m2/g[4],杨氏模量和力学性能分别为1.02TPa和130GPa[5]。石墨烯的这些优良性能使其成为材料科学领域研究的热点对象,通过与其他材料的复合可以利用石墨烯优良的特性赋予复合材料更加优异的性能。石墨烯与金属的复合是石墨烯纳米复合材料研究中很重要的一部分,特别是石墨烯-铜复合材料的研究是目前材料研究领域的热点之一。主要综述了国内外对石墨烯-铜复合材料理论研究的最新进展,给出研究中得到的重要成果,并指出目前石墨烯-金属复合材料研究过程中的困难。
石墨烯的加入使得石墨烯-铜复合材料不仅可以获得高导电导热的性能,还能很好地弥补传统铜及铜合金强度较低的缺点。这是由于石墨烯在复合材料中起到阻碍位错运动的作用,使位错运动需要更大的应力来越过障碍,从而提高了材料的强度,也提高了材料的耐磨性能。2010年,Xu等[6]利用第一性原理研究了单层石墨烯和铜界面的性质,结果发现,单层石墨烯与铜(111)面的界面内聚能、强度和电子结构与它们的原子几何形貌息息相关。Nam Do.V等[7]提出一个物理模型来研究石墨烯-金属界面电子的传输过程,该模型是基于有效地描述石墨烯π能带与金属sd和d能带之间的耦合。应用这个模型研究了各种金属-石墨烯界面的传输特征(金属有Cu、Au、Pt、Pd和Ti),计算出各种金属-石墨烯-金属复合结构的伏安特性,得出他们的固有电阻和电导。其中铜-石墨烯-铜复合结构的伏安特性是负电阻非线性电流,计算出铜-石墨烯界面的固有电阻为3.86×10-10Ω・cm2,电导为2.59×109S・cm-2。Mao等[8]利用第一性原理和格林函数的方法研究了石墨烯-金属异质结构的热传输问题,得到在300K时石墨烯-铜界面的热阻为1.18×10-8K・m2/W。在低温范围内(50-150K),界面热阻同温度成反比关系,而温度在150K到450K时,热阻几乎保持不变。
随后,Kim等[9]利用石墨烯具有极高强度、弹性模量和二维结构的特征,将石墨烯作为增强剂创建了金属-石墨烯的一种分层结构的纳米复合材料。利用化学气相沉积法在金属沉积衬底上设置一层石墨烯薄膜,然后在沉积另一层金属,并重复操作此过程,最终形成一种金属-石墨烯多层复合纳米材料。在透射电子显微镜下进行微耐压测试,以及分子动力学模拟均有效地显示出该材料在原子水平上的强度增强效应,晶面间距为70nm的铜-石墨烯多层纳米复合材料的强度可达到1.5GPa,是纯铜材料强度的500倍。通过分子动力学模拟得出,这种高强度是由于石墨烯纳米层的存在使得位错的传播在界面处被有效地阻止,并还发现晶面间距和多层纳米复合材料的强度之间有一种清晰的关联性。晶面间距越小,位错运动更加困难,而此多层纳米复合材料的强度却明显增加。
郭俊贤等[10]结合嵌入原子方法、反应经验键序作用势和Morse势函数,采用分子动力学方法研究了石墨烯-铜复合材料的弹性性能和变形机制。结果表明,石墨烯的加入可以增加复合材料的弹性模量和屈服强度;通过比较预制裂纹在单晶铜和石墨烯增强铜基复合材料中的动态扩展,发现石墨烯的加入能显著抑制裂纹的扩展;此外复合材料的塑性变形主要表现为沿石墨烯表面的滑移,表明石墨烯与金属铜的界面力学性能对于复合材料的整体性能有重要的影响。
Liu等[11]应用分子动力学模拟研究了在冲击加载下石墨烯-金属纳米层复合材料的增强效果。在模拟研究中将金属-石墨烯-金属的纳米层复合材料作为冲击靶,靶的边界固定。纯金属作为冲击弹,从复合材料的上面垂直冲击,冲击速度设为6km/s,这个速度是根据分子动力学模拟得到的,它足够穿透一个单层的石墨烯。结果表明,复合材料中位错的运动被石墨烯界面阻碍,而在相同厚度的纯铜中位错导致了材料被击穿。冲击后,复合材料中石墨烯上半部分的金属温度明显高与下半部分金属的温度。进一步的分子动力学模拟发现,冲击波在纯金属靶的传播过程中滑移带是稳定和连续的,而在金属-石墨烯纳米层复合材料中滑移带被石墨烯界面阻隔,石墨烯前后的金属层中滑移带的传播是不稳定的。研究结果表明,石墨烯界面在冲击加载下对于增强复合材料发挥着两方面的作用。一方面,由于石墨烯相对弱的抗弯刚度可以将石墨烯界面近似作为自由边界来考虑,这样将导致层间反射和冲击波减弱。另一方面,强的面内sp2带结构阻碍了位错的传播和金属层的融化。由于石墨烯界面的阻碍作用,弹性回复在加强效应中起着重要的作用,通过减小层间的距离可以提高冲击的强度。
Huang等[12]应用分子动力学模拟研究了铜-石墨烯纳米层复合材料的抗辐照损伤和界面的稳定性。研究发现,两层铜中间夹一层石墨烯的箱体(铜-石墨烯界面的宽度接近6 )在级联作用下,在100K时产生点缺陷的数目少于相同大小箱体的纯铜产生的点缺陷数目,同时,不同的温度下会发生上面相同的现象。这说明石墨烯界面在级联作用下能够加快重组减少点缺陷的产生,在一定程度上抗辐照损伤。除此之外,PKA原子能量越高,级联引起界面的石墨烯辐照损伤越严重。这个损伤使得顶部的铜原子和低部的石墨烯重组,贯穿打破的石墨烯形成柱状块,这样破坏了界面的稳定性,最后削弱了复合材料抗辐照损伤能力。
自从2004年发现石墨烯以来,关于它的研究不断取得突破性进展,充分展示了其在理论研究和实际应用领域的巨大潜力和发展前景。主要介绍了近年来国内外在石墨烯-铜复合材料研究方面的前沿进展。值得注意的是,石墨烯和金属复合材料的研究与应用中仍存在诸多挑战。比如:如何实现石墨烯纳米片在金属基体中均匀分散以及改善石墨烯与金属间的接触界面,如何更精确地控制金属纳米颗粒在石墨烯表面的分散程度和尺寸分布。
参考文献
[1]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
[2]Balandin A A,Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano. Lett.,2008, 8:902-907.
[3]Bolotin K I, Sikes K J,Jiang Z,et al. Ultrahigh electron mobility in suspended graphene [J].Solid State Commun.,2008,146:351-355.
[4]Steurer P,Wissert R,Thomann R, et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide [J]. Macromol Rapid Commun.,2009,30:316-327.
[5]Lee C,Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].Science,2008,321: 385-388.
[6]Xu Z P,Buehler M. Interface structure and mechanics between graphene and metal subsratesA first principles study[J].J. Phys. Cond. Matt., 2010,22(28):5301.
[7]Nam Do V, Anh Le H. Transport characteristics of graphene-metal interfaces[J].Appl. Phys. Lett.,2012,101:161-605.
[8]Mao R,Kong B D,Gong C, et al. First-principles calculation of thermal transport in metal/graphene systems[J].Phys. Rev. B,2013,87:165410.
[9]Kim Y,Lee J,Yeom M S,et al.Strengthening effect of single-atomic-layer grapheme in metal-graphene nanolayered composites[J].Nature Communications,2013,4:2114.
[10]郭俊贤,王波,杨振宇.石墨烯/Cu复合材料力学性能的分子动力学模拟 [J]. 复合材料学报,2014,31(1):152.
[11]Liu X Y,Wang F C,Wu H A, et al. Strengthening metal nanolaminates under shock compression through dual effect of strong and weak grapheme interface[J].Appl. Phys. Lett.,2014,104:231901.
关键词:复合材料 汽车工业 应用 趋势
中图分类号:U465.7 文献标识码:A 文章编号:1674-098X(2015)12(b)-0117-02
随着汽车行业的快速发展和可持续发展战略的逐步落实,人们在追求汽车安全性和舒适性的同时,逐渐认识到汽车节能减排的重要性,而缩减风阻、提升发动机效率、控制摩擦和汽车轻量化是实现汽车节能减排的主要途径。大量实践证明,适当地应用复合材料可实现汽车的轻量化,提升汽车性能,所以针对复合材料在汽车行业中的应用展开研究具有重要的现实意义。
1 各类复合材料在汽车工业中的应用分析
1.1 MMC在汽车工业中的应用分析
MMC又被称为金属基复合材料,其具有比强度、比刚度、耐磨性、导热性较理想而特膨胀系数较差的特点,所以在汽车工业中应用具有一定的可行性,其中由于铝基复合材料和镁基复合材料具有颗粒和短纤维增强的特点,在汽车工业中应用的范围相对广泛,铝基复合材料作为以铝硅合金为主,添加陶瓷纤维等填充增强剂的复合材料,相比铝合金在强度、弹性模量、耐热耐磨性能等方面都具有优越性,而且质量更轻,在汽车工业中应用对提升汽车性能具有重要的作用[1]。例如,将铝基复合材料应用于汽车刹车轮,可使刹车轮质量缩减30%~60%左右,导热性能大幅提升,在450 ℃的高温下仍可正常作业;将其应用于汽车制动盘中可使导热和冷却性能得到显著提升,除此之外,人们发现将碳纤维增强铝基应用于轮胎螺栓,可明显提升其强度、刚度和动力效果;将氧化铝纤维增强的铝基复合材料应用于汽车连杆,可延长其使用寿命,提升稳定性,可见金属复合材料在汽车工业中的应用较为普遍,且效果较理想[2]。
1.2 CMC在汽车工业中的应用分析
CMC又被称为陶瓷基复合材料,其通常以玻璃陶瓷、氧化铝、氮化硅等为基体,在强度、耐磨耐腐蚀性、隔热性方面性能突出,且具有膨胀系数和密度较低的特点,现阶段其主要应用于汽车的内燃机方面,将其应用于内燃机活塞,可在燃烧室内实现有效的隔热,进而为冷却系统的优化提供了可能。实践证明,将其应用于高强化柴油机的活塞部分甚至可以舍去对其转向冷却处理;将其作为塑料材料的增强剂,对其耐热耐磨性能的提升具有重要意义;将其应用于汽车的配气结构,如挺柱、弹簧座等结构,可使功率损耗得到有效的缩减,而且气门座等在应用中极易磨损的结构的使用寿命得到明显提升;将CMC制成的镶块应用于柴油机涡流室,可对燃烧噪声和碳氢化合物的排放进行改善,提升发动机的效率,陶瓷涡轮相比金属涡轮具有质量、转动惯性都较小,可提升动态响应性近40%;除此之外,在汽车气缸盖、排气管等位置应用CMC,也可使其使用的寿命得到提升,但实际应用中CMC仍受到价格、可靠性等方面的限制。
1.3 SMC在汽车工业中的应用分析
SMC复合材料属于玻璃钢,具有强度大、质量轻、成本低且可循环应用的特点,其中短切纤维和连续纤维混杂应用的SMC C/R在汽车工业中应用更为广泛,其使SMC的使用性能得到大幅度提升,但在具体应用中必须结合其应用结构实际受力情况进行短切纤维和连续纤维比例的针对性设计,将其应用于汽车的保险杠、加强梁、支撑架等受力结构,可以提升其强度、延长使用寿命,例如日本马自达轿车发动机架应用800 MPa弯曲强度、短切纤维R和连续纤维C均为30的SMC C/R,其质量相比钢制缩减近40%,同样受力弯曲度仅为钢制的70%。由于SMC复合材料具有循环利用的特性,其更符合可持续发展战略的要求,所以近年来受到汽车行业的广泛关注,研究力度不断加大。
1.4 GMT在汽车工业中的应用分析
GMT复合材料的基体是热塑性树脂,增强剂为玻璃纤维毡等,具有低材料密度、高强度、可循环利用的特点,而且其相比多部分复合材料具有力学性能均衡的特色,片材的GMT在弯曲、拉伸、抗冲击强度等方面都可以得到大幅度提升,将其应用于汽车工业中效果更加理想。实践证明通过对GMT进行结构优化设计,其可以成功地取代汽车工业中的部分金属材料,实现减重的目的,而且GMT模具费用通常仅为金属模具的10%~20%,有利于汽车零部件的模块化生产;GMT制件相比金属件质量缩减达30%~80%且相比同体积金属制件价格更低,能耗相比钢制品和铝制品明显缩减;现阶段GMT在奔驰轿车中的应用质量超过30 kg,福特、克莱斯勒等轿车上的备胎盘、行李架、保险杠等也应用了此种复合材料,性能得到较大幅度的改善。由于GMT力学性能均衡,所以为提升汽车的安全性和舒适性可将其应用于座椅、仪表等位置,例如别克、凯越的后靠背骨架基本由此材料制成;结合其各方面的性能,现阶段GMT在汽车工业中的应用已达到近50种,如护板、脚踏板、遮阳板等,而且应用范围仍有扩大的空间。
1.5 LFT在汽车工业中的应用分析
LFT复合材料的纤维长度通常在2 mm以上,且随着加工工艺的逐步深化纤维长度不断增加,纤维长度与其冲击性能呈现正相关性,其通常具有冲击强度较大,强度高、成型收缩性低、抗蠕变性能强、耐疲劳性好,可注射或模压成型,流动性能强,可循环应用等特点,现阶段在汽车的前端支架、门板模块、行李架、缓冲器、蓄电池壳等结构中都对此复合材料进行了广泛应用。例如迈腾系列和马自达3/6都将30%长波纤维复合材料直接注射成型,使其生产周期、生产成本、质量等都明显缩减,效果突出;福特和马自达公司将其应用于门板模块,使扬声器、防盗装置等结构集成于门板模块中,有效地对其高温或低温状态下的蠕变、翘曲等进行了控制;梅塞德斯-奔驰公司将行李架和缓冲器直接进行40%长波纤维复合材料注射成型,使其强度、韧性等方面得到了大幅度提升,而质量和成本却相对缩减,实际意义突出;另外,奔驰公司将蓄电池壳直接用40%长波纤维复合材料注射成型,使其强度和硬度得到改善的同时,蠕变、质量、体积等都得到较大的改善。
1.6 NMT在汽车工业中的应用分析
NMT由于在耗能、造价等方面存在一定的缺陷,现阶段主要应用于汽车内饰结构中,如汽车行李箱、衣帽架、仪表盘等,例如克莱斯勒公司将NMT应用于车门的内饰方面,使其质量、机械性能、安全性等方面都得到了极大改善;福特汽车公司将此种复合材料应用冷却器架和引擎挡板等结构中,使其体积得到较大幅度的缩减;菲亚特公司将此种复合材料应用于汽车坐椅、仪表板、车门把手等结构中,长春一汽四环将其应用于车内的杂物箱和其他车内装饰板中,都使汽车的质量和安全性得到提升,使传统纤维材料在污染、耗能等方面的缺陷得到较好的改善,现阶段通过对其增强纤维材料的不断深入研究,NMT的质量、力学性能、化学性能、隔音效果、环保性和防辐射性都得到了极大改善,为其适用范围的扩大提供了可能。
2 复合材料在各类汽车中的应用现状
2.1 复合材料在各类轿车中的应用现状
现阶段我国市场上的汽车大部分来源于进口,如美系的福特、日系的马自达、欧系的奔驰宝马等,完全自主品牌相对较少,如长城、猎豹等,现阶段进口车中应用的复合材料主要依靠进口,本土化生产占有的比例较低,而国产车中对复合材料的应用相对较少,仍处于初步探索阶段,例如一汽大众生产的奥迪A6车型,其尝试将SMC应用于后保险杠的被衬,将GMT应用于前端支架和发动机罩中,使汽车车身整体重量得到缩减,且相关结构的性能得到提升;海南马自达公司将马自达6的前端模板和车门模板进行LFT长波纤维直接注射成型,使其抗冲击性得到大幅度提升,提升了整体的安全性能;上海通用公司针对凯悦、君悦系列车型的天窗板应用SMC复合材料,使其强度大幅提升的同时,车身重量得到减轻等。
2.2 复合材料在各类载货车中的应用现状
随着经济的发展和各行业规模的不断扩大,近年来载货车的市场需求数量不断提升,为满足使用者对载货车性能、安全性、耗能等方面的需求,复合材料在载货车方面的应用不断扩大,出现中型和重型载货车,例如一汽集团生产的解放奥威和解放J6系列车型都在其前保险杠和前围面板中应用了SMC复合材料,使其强度和刚度得到大幅度提升,而货车自身的重量却相对缩减,耗能量明显减少;东风公司生产的153改型和天龙系列、新霸龙系列也在汽车的不同结构尝试应用了复合材料,例如天龙系列的前保险杠和前围面板都应用了SMC复合材料,153改型和天龙系列的导流罩都应用了FRP,使其机械性能和功能性都得到了提升;洛阳福赛特公司生产的福德重卡将RTM复合材料应用于其面罩和保险杠中,不仅使重卡的安全性得到提升,而且车身重量和性能也得到极大改善。
2.3 复合材料在各类客车中的应用现状
随着客车市场需求的不断提升,复合材料在客车中的应用已经非常普遍,现阶段几乎在所有种类的客车中都可以发现复合材料的身影,例如:西安西沃客车的前保险杠和行李箱门板;上海双龙客车的空调顶置壳体和前保险杠、翼子板、北方迪奥普毫客车的侧围板和后围等,另外,部分客车的座椅也采用了SMC复合材料,如申龙客车的连体座椅等。
3 未来复合材料在汽车行业中应用的趋势
综上所述,复合材料在汽车工业中的应用符合汽车发展对汽车车身轻量化的要求,而且可以使汽车在性能正常发挥的前提下,随着重量的不断减轻,油耗逐渐缩减,与可持续发展战略的基本要求相一致,所以在未来汽车行业不断发展过程中,复合材料的应用将逐步扩大。复合材料的应用,可以促使汽车结构的使用寿命增长,性能提升,功能性得到优化,这在一定程度上有利于环境的保护,特别是部分复合材料具有循环应用的特性,使其环保性得到保证,所以这在一定程度上与环保理念相一致;虽然部分复合材料属于易燃物质,而且在燃烧的过程中会产生一定的污染物,即使在成型后挥发作用下也会对空气等造成一定的污染,废弃处理的难度较大,但随着针对复合材料降解、再生等方面的研究不断加深,其对环境的污染也会不断缩减,例如可通过熔融再生、溶解再生等方法实现复合CMC材料的再生;对MMC复合材料可进行组分分离或回收再利用等。由此可见,复合材料对环境的污染程度相比其在汽车工业方面发挥的作用,前者在不断减小,而后者在不断加强,所以在未来一段时间内,复合材料仍将在汽车工业中得到应用,而且应用的范围有明显扩大的趋势。
4 结语
通过上述分析可以发现,现阶段人们已经认识到将复合材料科学地应用于汽车工业,对提升汽车性能、实现节能减排的重要性,并在实践中尝试将复合材料应用到各种类型的汽车中,实践证明其对经济、社会、环境等方面产生的效益突出,应结合实际推广应用。
参考文献
关键词:复合材料;教学改革;实训环节;教学方法
为了克服传统灌输式、填鸭式教学模式的弊端,积极响应教育部的高校本科生教学模式改革号召,专注于培养动手能力强、理论结合实践、高水平、综合素质的新世纪人才,许多高校的诸多专业课程都在进行教学模式改革。我校材料科学与工程专业为宽口径的大专业,主要培养无机非金属材料方向的毕业生。《复合材料》作为本专业的一门必修课,这门课程涵盖知识点很多,包括聚合物基复合材料、金属基复合材料和陶瓷基复合材料等各个领域的基础知识、制备工艺和实际应用[1]。该课程对于扩大学生的专业知识面、提升学生的专业知识和实践技能具有重要的理论指导作用。针对目前该课程教学中存在的一些问题,本文提出了《复合材料》教学改革的一些方案和措施。
1课程的主要内容和培养目标
《复合材料》是材料科学与工程专业本科生的基础课、必修课,也是本科毕业生从事材料、复合材料等相关工作、科研、工程应用的必备课程。本课程主要讲授常见复合材料的分类、加工制备技术及应用背景,如聚合物基复合材料、金属基复合材料、陶瓷基复合材料、水泥基复合材料和纳米复合材料等。在毕业设计、科研实践中掌握上述几种复合材料的制备及工艺技术,是材料类专业毕业生能够胜任本专业工作的基础和保障。这门课程的培养目标是理解复合材料的界面优化设计及界面作用机理,掌握复合材料的种类和制备工艺方法。了解复合材料界面及性能测试表征方法,学会分析材料研究和生产中的复合材料如金属基、聚合物基、陶瓷基、水泥基复合材料及纳米复合材料的成分、组织形貌和结构性能,并能够适当的调整配方或改进制备工艺最终实现目标所需的力学性能或特殊功能。
2教学中发现的问题
《复合材料》课程内容繁多,涉及三大类材料金属、无机非金属和聚合物的配方、加工、性能及应用,涉及到大量的增强材料、基体材料制备工艺参数和配方,使得学生难于寻找重点内容,学习起来很难抓住重点,接收效果差。另外,学生也不清晰自己将来所面对的就业方向。因此,很有必要让学生自己动手查阅感兴趣的复合材料及相关产品,增强对某一材料产品及其知名企业的了解。在加深对这门专业课的认识和理解的同时,知道自己感兴趣的行业和就业方向[2-3]。这门课程一般期末考试成绩权重大于80%,平时成绩占的比重很小。因此,学生缺乏主动的学习意识,学生对于琐碎繁杂的知识点理解起来也很吃力,上课时容易产生懈怠的情绪、玩手机、精神溜号等现象。多年的教学经验发现:学生期末时候考前突击,只会应付期末考试,只求分数不求甚解,学生对知识的掌握不扎实、不系统,影响后续课程的学习效果和专业技能的培养。学生虽然经过突击性理论学习,但是仍然缺乏专业的实践、应用能力,不能学以致用。学生往往考完试后再问就什么也答不上来,遇到一些实际应用问题也不能马上想起课本上的理论知识体系。这些现象的根本原因在于学生缺少对知识点所对应的实践、范例的了解。
3《复合材料》课程的教学改革措施
3.1以工业产品、科研信息为导向,加深学生对不同类型复合材料的深入理解
本课程涉及到金属基、聚合物基、陶瓷基、水泥基复合材料及纳米复合材料等理论方面的内容,理论较深奥、知识面广、内容概念复杂,学生在学习过程中会遇到许多问题。在教学中充分考虑到知识面的拓宽和不同复合材料应用之间的相互关系,注重产品应用开发为导向,对复合材料的理论配方、制备工艺、性能要求、开发新产品的思路等方面的进行强化,在保持课程系统性的前提下,对一些次要的偏理论的内容适当删减。着重对近期出现的新型复合材料在结构材料和功能材料领域的应用实例进行介绍。通过引入实际产品和工业化生产问题,促进学生深入理解每种复合材料的基础知识和应用前景[4]。将目前与课程有关的科研动态带入课堂,让课程有足够的吸引力。如讲述通过介绍阻燃电缆护套料配方及工艺让学生深入聚合物基复合材料的加工原理和应用场合;通过介绍现有的锂电池正极材料让学生了解碳基复合材料以及纳米复合材料的应用;还有近期Science、Nature等顶级期刊发表的最新纳米尺度金属的伪弹性、功能材料,碳纳米管、石墨烯的微观尺度研究及其在复合材料、功能材料中的最新应用。这些科研实例的讲解可以激发学生的科研热情,调动学生的学习积极性。
3.2以查找和阅读期刊文献为导向,培养学生的主动学习意识
每一章节都给学生布置一定数量的关键词、主题词,让学生去期刊网或外文电子资源网站查阅相关章节关键词的期刊论文或发明专利,填写文献资料统计表。每个学生都要在课堂讲解文献,学生需要提问互动。通过这种能力培养,加深学生对某一复合材料的了解同时,也锻炼学生的查阅文献能力、阅读能力和课堂表达能力,发挥互动、让更多同学参与到课题讨论中,从兴趣和讨论中掌握复杂的知识点。“学生讲,教师听”的这种新模式可以增加教学互动效果,课堂上适当增加学生汇报文献、专利的内容,可以增进师生的相互交流、相互影响。这种方法可以活跃课堂气氛,加深学生对所学知识的理解,激发学生的创新意识和独立思考能力,显著提高课程的教学效果。培养学生一丝不苟、精益求精的学习和科研精神。
3.3增加学生的课外实训环节,让学生到实验室动
手参与复合材料的设计和制作除了课堂教学以外,还可以以材料生产和应用中的实际问题出发,培养学生的动手实践能力和团队协作意识。增加学生的课外实训环节,培养学生从发现问题、提出问题到解决问题的能力,真正意义摆脱课本的死知识[5]。要求老师到实验室亲自指导,让学生到实验室亲自动手参与某些复合材料的设计制备,要求每组学生实践不少于7个工作日,自己动手完成一个小实验,在课堂上互相交流自己的所学、所做、所感,是如何将文献知识转化为直接的功能或结构材料并实现其应用价值。让学生亲手参与实验设计和制作可以提高学生的主动性,再次回到课堂后能够更深刻听讲,认识到课本上基础知识的重要性。逐渐培养学生从提出问题,到寻找解决问题思路,最终解决问题的能力。实训结束后最终以实验报告形式上交并考核。这种实训环节可以在培养学生的应用技能的同时,培养学生团队协作意识,激发学生的课外学习热情。加强学生对知识的理解,提高对课本知识的应用能力,避免“读死书、死读书”。
4《复合材料》课程的教改考核及预期效果
该课程在增加课堂文献讲解、答辩和课外实训环节后,期末考核时弱化期末考试成绩的比重,侧重上课过程中文献讲解、答辩和课外实训的考核,即增加平时成绩的权重。具体成绩比例可以调整如下:(1)期末考试分数:占考核总成绩的50%。(2)文献调研、讲解、讨论环节分数:每名学生不少于两次文献调研、讲解、讨论,共计占总成绩的30%,其中文献整理情况10%、课堂讲解10%和回答问题10%。加分条件:学生查阅参考文献可以查阅英文文献,考察学生对英文文献的理解,根据实际情况给予加分0.5~1分;课堂讲解文献后能够准确回答课堂老师或同学提出所有问题的学生得满分。(3)课外实训环节分数:两次实验占总成绩的20%,其中两次实训过程中的动手实验及实验报告各占10%。通过在《复合材料》课程教学中增加文献讲解和课外实训环节进行教改,改革后的保守目标是:100%学生能系统掌握查阅期刊文献和发明专利的方法,并且能够读懂科技论文的核心研究思想和理论内涵;90%的学生应能掌握课程重点知识,熟悉课本知识中的某种复合材料的制备方法和应用实例;20%学生能掌握英文期刊文献的查阅能力并且能够读懂英文文献含义,具备书写科研论文的基本素质和功底。上述比例都以学生总数为基数,各部分不互相独立,存在相互重叠。希望通过任课教师和学生的共同努力,最终实现由大学的应试教育到应用型人才培养的转变。
5结语
作为一门材料类专业本科生的必修课,《复合材料》对于增加学生的知识面和了解专业方向具有重要作用。因此,这门课程的学习效果影响毕业生的综合素质和专业技能。作者针对平时教学中的一些问题,如上课死气沉沉,学生玩手机,期末考试突击复习等现象提出了一系列教改方法,主要是增加课堂上的工业产品、科研信息吸引学生的兴趣,增加文献讲解、答辩环节和课后的实训环节来弱化期末考试成绩的权重,这样来督促学生主动学习并且能够活跃课堂互动,通过课外实训环节提高学生的实践技能和对基础知识的应用能力。通过教师和学生的共同努力实现由应试教育到应用型人才培养的转变,进一步提升毕业生的专业技能和综合素质。
参考文献
[1]周曦亚.复合材料[M].北京:化学工业出版社,2005:1-225.
[2]马庆宇.复合材料概论课程教学改革初探[J].石家庄职业技术学院学报,2011,23(4):53-55.
[3]杨继年,丁国新,王周锋,等.《复合材料概论》课程的教学设计与实践[J].广州化工,2015,43(3):167-168.
[4]张俊珩,李婷,程娟,等.《复合材料》课程教学改革探索与实践[J].广东化工,2015,42(22):197-199.
【关键词】 碳纤维 低温力学性能 材料性能试验
碳纤维主要是由碳元素组成的一种纤维,其含碳量一般在90%以上。碳纤维具有一般碳素材料的特质,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。
1 试验材料
环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机化合物。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物
碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构树脂基复合材料中最高。在强度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都具优势。
正因如此,本文采用的试验原材料是由碳纤维作为增强材料,以改性环氧树脂作为基体组成的t700/tde-85预浸料,其纤维体积含量为58±2%。该预浸料性能优异,由其制备复合材料力学性能优良,且有较好的韧性,适用于超低温下使用。
本项工作针对碳纤维增强环氧树脂基复合材料进行研究,增强纤维型号为12k的t700碳纤维。
2 试验材料
2.1 复合材料试样切割
试验采用syjh-200型手动快速切割机,本机适合各种复合材料、晶体、陶瓷、玻璃、岩石及金相试样等材料的粗加工,该设备可使用金刚石锯片、电镀金刚石锯片和树脂锯片,切割复合材料时采用的是电镀金刚石锯片。
2.2 复合材料超低温处理方法
由于可重复使用复合材料超低温液体燃料贮箱(包括液氧、液氮、液氢等燃料贮箱)在使用过程中,会长期贮存超低温液体燃料,还会经常充卸超低温液体燃料,即长期在超低温环境及多次超低温/室温环境循环使用,因此,研究用于超低温液体燃料贮箱的复合材料,就需要模拟超低温液体燃料贮箱的使用工况,研究复合材料在超低温环境中浸渍及超低温/室温循环的力学性能。
将制备好的碳纤维增强环氧树脂复合材料在经过超低温环境,即液氮中浸渍5天。其中,液氮使用真空罐盛装。将实验材料放入事先注入足量液氮的容器内,使其完全浸没在液氮中,盖紧容器盖,密封好,记录好开始实验的时间。在随后的5天内,每天均需要进行观测,以保证液氮足量,保证复合材料始终处于超低温环境中。
关于超低温/室温循环实验,我们所用到的实验装置是步进机,该仪器可以按照预先设置的时间间隔,将一端拉伸的实验样本循环放入盛装液氮的容器中,使得实验材料完成浸入—离开--浸入—离开这一循环,直至达到预设次数(时间)。在这个试验中,需要注意根据国家标准来确定样本置于常温中和置于液氮状态中的时间,这样的目的是为了使复合材料充分完成热量传导:在常温和超低温环境中,均能使得复合材料各个部分温度达到统一。
这个实验在实际应用中的工况体现在火箭中的液氧(液氢)贮箱。伴随我国航天事业的发展,对于降低运载火箭发射成本成为非常有实际价值的问题。超低温/室温循环实验的目的是为了检验复合材料在超低温/室温循环的状态下,材料的力学性能变化。
2.3 复合材料微观形貌研究方法
扫描电子显微镜(scanning electron microscope),简称扫描电镜(sem)。是一种利用电子束扫描样品表面从而获得样品信息的电子显微镜。扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。
在针对复合材料的微观形貌的研究中,我们将对式样在超低温环境下浸渍5天后及超低温/室温循环100次后微观形貌通过扫描电子显微镜观察。通过文献中的介绍,超低温浸渍将会对复合材料(碳纤维增强材料和树脂基材料界面间)产生微裂纹。该实验的目的是为了分析这样微观变化对材料整体强度的影响。
2.4 复合材料超低温拉伸强度测试方法
br>
测试使用的仪器为100kn电液伺服动静试验机。主机单元主要由负荷机架、伺服作动器、伺服阀、液压夹头、传感器、以及横梁等几部分组成。仪器主要适用于金属及非金属材料的测试,如橡胶、塑料等;有色金属金属线材的拉伸、压缩、弯曲、剪切等多种试验。
电液伺服试验机最大工作载荷为±100kn,作动器行程为±50mm,函数发生器频率为0.001~50hz,控制波形包括正弦波、三角波、方波、斜波、梯形波、组合波、外部输入波等。试验净空间600mm×1500mm。该机能够完成金属材料、非金属材料的拉伸、压缩、断裂试验,可实现负荷、位移、变形三种闭环控制。控制系统为模拟控制和微机控制的综合控制系统。
伺服拉力机主机的操作流程如下:
首先,操作计算机,使伺服作动器移动到中心“零”位。
再根据试验要求选择好位移量程。松开上、下夹头,此时上、下夹头按钮上的指示灯灭,上、下夹头均处于松开状态,然后按横梁上升(下降)按钮,使横梁到达两夹头之间距离为试件长度的1.5~2倍左右的位置,通过软件调节,使伺服作动器中心位置为试验所需位置。
调整完毕后,即可将试件一端送入上夹头钳口内,深约30mm~50mm(具体尺寸取决于试样),按住“下降”按钮,“下降”按钮指示灯亮,横梁向下移动,使试件另一端进入下夹头钳口内,深约30mm,此时应检查一下电箱的设置是否正确,如正确则按下“上夹头”、“下夹头”按钮,使上、下夹头夹紧试件,此时上、下夹头指示灯亮,即可进行试验。
试验结束后卸下试样时,首先将控制状态转到“位移”方式,将负荷值调到零附近,松开下夹头,然后将横梁升起至适当的位置,再将试样取下。关闭电源等。
3 结语
本文主要介绍了碳纤维增强环氧树脂t700/tde-85预浸料组成要素的性质;另外,着重介绍了在实验环节涉及的实验方法、器材、工艺,对一般碳纤维超低温力学性能试验规程及其相关科研工作具有一定参考价值。
参考文献:
[1]王戈,刘长军,李效东,李公义.聚合物基复合材料在液氧贮箱中的应用研究.宇航材料工艺,2004,1.
现行生产工艺有几大类:
1)将制备好的氧化物陶瓷颗粒与自熔性金属合金粉末混合后(按一定比例)用油压机或等静压压制成工艺所需的形状,用高于自熔性金属合金熔点的温度下,进行烧结;
2)将制备好的氧化物陶瓷颗粒与自熔性金属合金粉末混合烧结,是利用自熔性金属合金与氧元素结合能力的差异,将金属从其氧化物中置换出来,形成氧化物陶瓷/铁基耐磨复合材料;
3)将自熔性金属合金熔液熔渗到陶瓷预制体多孔之中。上述方法只能生产小型复合材料块,无法将复合材料复合到需要耐磨的部位,运用到矿山机械、粉碎设备上难度很大。此工艺经济性稍差。
2研究方向
氧化物陶瓷铁合金复合材料性能优良,但与大型结构件复合复合困难,制备过程比较复杂。虽然,现有工艺解决了一些问题,在制作单个氧化物陶瓷铁合金复合材料上等研究取得了一定的进展,在实际应用领域但仍未开发出适合实际的产品。因此,需要研究开发出适合的新型制备工艺。我们主要研究方向是如何将复合材料复合到需要耐磨的部位,运用到矿山机械、粉碎设备上,重点在能降低成本、实现大规模生产进行研究探讨。
3实施方法
1)合金耐磨预制件制成工艺:将氧化物陶瓷颗粒与自熔性合金粉末按比例用机械进行充分混合,依据用户产品结构不同设计不同的模具,在油压机下将合金耐磨预制件压制制成特定形状,如柱状、条状、块状、蜂窝状等;
2)冶金工艺:将耐磨预制件置于用泡沫、塑料等高分子有机材料制作的实体模具内用真空冶金铸造工艺进行复合铸造。利用金属母液的温度将合金耐磨预制件烧制成型并与合金耐磨预制件形成冶金结合面。该工艺设备投资小、工艺简单、金属母体与耐磨预制件冶金结合面良好。
4工艺过程
1)将粒径为8目的氧化物陶瓷颗粒10%、粒径为30目的氧化物陶瓷颗粒39%、粒径为60目的氧化锆陶瓷颗粒48%与自熔性铁基合金粉末7%,使用水溶性树脂4%机械混合均匀得混合物,放入油压机中用模具压制成型然后放入80°C的烘箱中烘干得到耐磨预制件;
2)将耐磨预制件在800℃的箱式炉中进行排胶;
3)将排胶后的耐磨预制件涂抹硬钎剂;
4)将涂抹硬钎剂的耐磨预制件置于用泡沫、塑料等高分子有机材料制作成为与要生产铸造的零件结构、尺寸完全一样的实体模具内;
5)实体模具经过浸涂强化涂料并烘干后,装入真空造型砂箱中排列好做好浇铸口,然后用干石英砂埋好,经三维振动台振动埋实;
关键词:复合材料与工程;人才培养;专业面;工程能力
中图分类号:G642.0?摇 文献标志码:A?摇 文章编号:1674-9324(2014)01-0098-02
复合材料是材料科学与工程发展最为活跃的前沿领域之一,是国防和国民经济建设的关键高技术新材料。我国高校开设的本科复合材料与工程专业一般以聚合物基复合材料为主线,目标是培养具备复合材料与工程领域的基础理论、专业知识和实验技能,适应现代复合材料高科技化发展趋势,掌握复合材料设计与制备技术,能从事先进复合材料与结构的设计、制备、评价的高级专业技术人才。我国聚合物基复合材料工业发展迅猛,产销量居世界首位。但是相对于发达国家的研究和应用水平,还存在很大差距。因此,面对日益增加的技术需求与教学内容的大量更新,为适应现代教育培养的新形势,必须对复合材料与工程专业的人才培养进行全面研究与改革。济南大学复合材料与工程专业自1995年招收本科生,1999年获得硕士学位授予权。我校的人才培养教学实践和对其他高校的调研结果表明,复合材料与工程专业的课程体系中普遍存在四个方面的问题:①化学与力学知识薄弱,创新能力差;②专业面太窄,毕业生工作适应性差;③理论与实践环节脱节,学生解决实际工程能力弱;④没有很好体现办学特色。针对上述问题,如何根据当今复合材料的发展,开展先进的、科学可行的专业人才培养工作,具有重要的现实意义和深远的历史意义。
一、加强有机化学、高分子知识的讲授
聚合物基复合材料的基体材料是有机物。有机化学是一门探讨有机分子结构性质、有机反应途径机理以及相关产物分离与结构鉴定的基础科学,是本专业一门重要的专业基础课。有机化学是聚合物合成的反应类型和反应机理的坚实基础。教学过程中应培养学生从有机化学的角度学习和设计聚合物合成的反应过程,提高学生学习高分子化学的效率,启发学生对聚合物设计的创新思维。高分子化学和高分子物理是本专业两门重要的专业技术基础课,既是理论学科,又是应用学科,涉及理论和实验教学两方面[1]。其专业理论性强,概念复杂,抽象难懂,聚合反应机理都是微观的,内容较难掌握,容易影响学生的学习兴趣。同时,教学内容与学时数减少的矛盾日益突出。为了提高学生学习的积极性和主观能动性,授课过程应结合复合材料常用聚合物基体材料,注重对各知识点进行重组和精练,不拘泥于教材内容的排序,兼顾聚合物基体最新的科技进展,做到重点突出,主次分明,紧密结合工程实践应用。
二、加强力学与结构设计知识的讲授
复合材料既是一种材料又是一种结构。复合材料的组分材料和纤维的铺设方向可以按照设计要求进行选择,即复合材料具有可设计性。复合材料的非均匀性和各向异性是复合材料力学的重要特点。与常规材料的力学理论相比,普通力学问题在复合材料力学中需要重新研究,以确定常规材料的力学理论、方法、公式的适用性与如何修正。对于复合材料的结构进行力学分析和设计计算必须以准确的复合材料力学性能数据为前提。随着复合材料的开发和应用,复合材料力学已形成独立的学科分支并蓬勃发展。
三、扩宽专业面,提高毕业生工作适应性
复合材料与工程专业涉及面广,内容多,如何根据社会的不同需要设置不同的专业教学知识体系十分重要,也非常困难。从毕业生就业和工作情况分析,应进一步扩宽学生知识面,提高其工作适应性。复合材料行业的发展,一方面分工越来越细,出现高度专业化趋势;另一方面技术复合程度越来越高,出现高度综合化趋势。因此,在专业课与选修课的设置上应充分考虑,使学生的专业知识、技能、工程素质与管理素质得到提高,工作的适应性增强。针对这种情况,我校对课程体系设置进行了改革,主干学科还是材料科学与工程,主要课程包括工程力学、物理化学、高分子化学及物理、材料科学基础、材料复合原理、复合材料学、复合材料聚合物基体、复合材料工艺与设备、复合材料结构设计基础、复合材料测试技术、现代材料测试技术。选修课的设置充分考虑扩宽知识面和就业,具体科目包括无机非金属材料工艺概论、新型建筑材料、工业仪表与工程测试、计算机辅助设计、试验设计与数据处理、金属材料概论、材料科学研究方法、建筑装饰材料、建筑装饰艺术设计等。
四、进一步加强实践实训环节,提高毕业生工程能力
复合材料与工程专业属工程技术型专业,应侧重对学生工程能力、推广应用能力的培养。复合材料工业一直持续快速发展,其发展速度远超过经济发展速度,并且没有任何减速的迹象。限制其发展的主要因素是不能提供足够的训练有素的工程师。针对这种情况,我们不断完善人才培养方案,重视实践教学环节,将教学实验、实习、科研实践相结合,将校内外实践教学相结合,增加开设了两周的综合性实验和一周的设计性实验。同时,与企业建立了多个复合材料教学实践基地,除了规定的认识实习、生产实习和毕业实习以外,再组织有兴趣的同学利用寒暑假在企业进行实地学习,并请企业参与专业建设和人才培养方案制定。定期邀请相关的专家报告他们的新产品开发研究,介绍行业新工艺与新设备。实践教学效果得到显著提高。
五、结合各校实际情况,体现学科的办学特色
各高校复合材料与工程专业的办学条件差异较大,应扬长避短,积累优势,形成自己的特色[2]。复合材料按照基体材料的分类可以分为聚合物基复合材料、无机非金属基复合材料、金属基复合材料。我校复合材料与工程专业在十多年的发展过程中,形成了自己的办学特色和科研方向,将专业教学与科研融为一体。结合我校传统无机非金属材料的基础优势,在课堂教学和实践教学中,将专业面从聚合物基复合材料拓宽到无机非金属基复合材料,并保持无机基复合材料的优势和特色。我校复合材料与工程专业于2009年被评为山东省品牌专业。实践表明,我们的特色办学促进了人才培养目标的实现,在提高人才培养质量方面发挥了独到的作用,也为学生就业扩宽了渠道,为山东省复合材料行业发展做出了贡献。总之,复合材料工程技术型专业人才的培养,应加强相关基础知识的讲授,扩宽学生知识面,努力提高学生工程能力和创新能力,着力解决学生工程能力弱的问题,使毕业生在复合材料生产、设计及研究开发等方面具有更快更高更强的工作适应性。
参考文献:
[1]郝智,伍玉娇,罗筑,黄彩娟.高分子化学课程教学改革与实践初探[J].高分子通报,2012,(5):116-118.
所谓熔覆,是一种基于焊接技术发展出来的一种连接技术,能够将不同的材料连接在一起,形成一种新型的复合材料,具备更为优良的性状和性能。利用不同金属材料之间的不同熔点,通过加热处理和一些其它工艺的处理,使熔覆材料熔化,然后迅速凝固,从而实现与基体材料之间的牢固结合。通过激光熔覆技术制备复合材料,能够极大的提升材料的整体性能,从而满足更高的应用需求。
一、激光熔覆制备复合材料的基本原理
激光熔覆技术是一种较为先进的加工技术,其指的是对不同金属材料之间进行冶金结合,从而强化基体材料的表面性能。在实际工作当中,对基体金属表面利用能量密度较高的激光束进行照射。通过这种方式使材料迅速的熔化、扩展、凝固,从而在基体材料表面形成冶金结合的材料,提升材料的力学性能、化学性能和物理性能,增强基体材料表面的耐腐蚀、抗氧化、耐磨、耐热等方面的能力。
在激光熔覆制备复合材料采用的工艺方法中,根据不同的激光熔覆填料方式,主要可以分为同步送粉法、预置法等。其中,同步送粉法主要是在基体表面上,同步放置激光束和熔覆材料,同时进行熔覆和供料的操作。在同步送粉法当中,主要的熔覆材料是粉末,同时也可采用薄板材、线材等进行同步送料。而在预置法当中,是先在基体材料表面中的熔覆部位上放置熔覆材料,然后利用激光束对其进行扫描照射,使其迅速熔化、凝固[1]。通过这种方式,在基体材料表面,就熔覆上了熔覆材料。在预置法当中,通常采用板材、丝材、粉末等形式来添加熔覆材料,而粉末形式则是最为主要的形式。
二、激光熔覆制备复合材料的主要优势
与其它的涂层技术相比,激光熔覆制备复合材料有着很多方面的优势。在激光的强烈作用下,在基体材料和熔覆材料当中,其表层能够在小范围内迅速的进行熔覆。该技术对基体材料只具有很小的热影响区域,不容易引发熔覆工件的形变,因而具有很高的熔覆成品率。通过激光熔覆制备的复合材料,在熔覆层当中具有细小弥散的晶粒,能够使熔覆层的硬度得到极大的提升。同时,还能够有效的提高材料的耐腐蚀性能和耐磨性能,对于基体材料的表面性能有着极大的优化和改善作用。由于该技术采用了高能激光束,具有很短的作用时间,并且熔覆层只产生较低的稀释率,因此基体材料只会发生很小量的熔化。
为了能够进一步提升材料表面的性能,可以将材料表面的熔覆率进行降低,以实现在耗材较低的情况下,取得更高的效益和效果。尤其是在熔点较低的金属表面,对熔点较高的合金进行熔覆时,激光熔覆技术是最适合不过的。由此可见,激光熔覆制备复合材料具有十分广泛的熔覆层材料选择范围。此外,激光熔覆制备复合材料还能够轻易的实现自动化控制,从而得到表面性能更加稳定的熔覆材料,对于熔覆的厚度、成分等参数,也更加容易进行控制。
三、激光熔覆制备复合材料的应用问题
激光熔覆制备复合材料经过数十年的不断发展和研究,目前已经在很多工业化生产领域当中得到了良好的应用,例如航空航天、石油钻采机械、生物医用、模具轧辊表面改性处理、汽车制造等领域。但是在实际应用当中,仍然存在着很多的问题。在评价激光熔覆制备复合材料质量的过程中,首先要检测材料的外观形貌、裂纹、稀释率、气孔、表面不平度等问题。然后需要对材料的性能、熔覆值等进行检测。而在实际生产当中,熔覆层质量的控制具有较大的难度,非常容易产生裂纹。对此,基材热膨胀系数、熔覆层热膨胀系数,以及二者之间的匹配问题十分重要。因此,应当对其进行适当的选择与分配。通常来说,在基体材料和熔覆层之间,应当满足热膨胀系数的同一性原则,也就是说在二者之间,热膨胀系数应当无限接近,这样才能够有效的避免激光熔覆层的剥落和裂纹现象。
四、激光熔覆植被复合材料的发展前景
对于当前工业领域当中的表面处理技术来说,激光熔覆技术是一种十分良好的技术,经过长时间的不断发展和应用,也取得了很大的成果。但是在实际应用中,仍然面临着很多位置的问题,例如熔覆层残余应力及裂纹、熔覆技术自动化与信息化、熔覆材料选取规则设计、数值分析理论模型建立、以及相关的基础理论研究等问题,都需要进行进一步的研究和探讨。