时间:2023-06-05 09:57:32
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇化学反应原理,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
【中图分类号】G 【文献标识码】A
【文章编号】0450-9889(2013)12B-0058-01
化学反应原理是高中化学选修模块之一,该内容与必修模块相衔接。它揭示了化学变化所遵循的基本原理,是化学在科学研究、工业生产、日常生活中进行应用的基础。虽然教材中讲述的关于化学反应原理的内容较为基础,却包含着学科中反应原理的基本特征。只有把握了这些特征,教师才能透彻理解教材,准确把握教材的深广度,从而合理安排教学方式。准确把握这些特征,需要我们注意以下几点。
一、化学反应原理的严谨性需要教师对概念有正确的理解
在化学反应原理中包含着许多概念,全面理解这些概念并辨清它与相近概念的异同,才能深入理解化学反应原理,在课堂运用时才能避免因为混淆而产生科学性错误。如我们只有理解和区分了“物质的稳定性”和“物质的反应活性”的概念,才不会认为物质的不稳定性与反应活性是一致的;只有认识了化学反应的“热力学顺序”和“动力性顺序”,理解化学反应的先后只是一种为了研究的方便而进行的人为处理方法,才不会出现根据反应物的性质推断混合物中反应的先后顺序的错误做法;只有分辨了“电极”和“电极反应物”的概念,才不会得出“有两种活动性不同的金属(或一种金属与一种能导电的非金属)作电极”是构成原电池的条件之一的错误结论。可见,教师必须准确理解和把握相关概念,才能保证教学的严密性。
二、反应原理研究对象的复杂性需要教师有复杂的思维
化学反应原理研究的对象主要是化学反应过程及化学变化,而在变化中会包含很多种物质。除了研究物质的变化,教师还要探讨反应过程中能量的变化,反应速率、方向、限度等问题,这些因素之间既联系又制约。这种研究对象的复杂性,需要教师在研究和应用化学反应原理时,充分考虑各种因素的影响。如碘在淀粉中显示的颜色,不仅受到I-浓度大小的影响,还与反应时的温度、溶液的酸碱度、淀粉链的长度等有关。再如,一块看似均匀的金属,在化学反应中,我们可能会观察到局部反应较为剧烈的情况,这是因为从热力学的角度看,同种金属单质的热力学活动性是相同的,但其动力学活动性则不一定相同,因为金属的动力学活动性不仅与其组成有关,还与晶体构型、晶体内部的局部结构有关。因此,在化学反应原理的教学中,教师如果一味地为了浅显易懂,将复杂问题简单化,势必会产生科学性错误。教师应该用联系的、发展的、运动的思想来研究化学反应原理。
三、反应原理研究内容的适用性需要教师基于真实的情景来解决问题
化学反应原理虽然属于学科中的理论知识,但是它的研究对象和内容却与生产、生活密切相关,其研究的动力来自于人类生产、生活的需求,一旦其研究成果转化为实用技术,必将对社会生产力和人类的生活带来极大的影响。化学反应原理的这种应用性特点,决定了运用这类知识解决生产生活问题时,一定要基于真实的情景。但是真实的情景是很复杂的,这就需要教师在教学时将理论与实际相结合,综合考虑多种因素的作用,还原事物的本来面目。比如在分析温度对反应速率及化学平衡的影响时,我们必须学会具体问题具体分析,要从多方面去思考,不能单一地从某一角度去考虑。比如一些有气体参与的在溶液中进行的反应,虽然升温能加快反应速率,但升温会使气态反应物的溶解度降低,因此反应的转化率不一定能提高;还有一些热稳定性差的物质,如过氧化氢、碳酸氢盐、硝酸等,有这些物质参与的溶液中的反应,一般不能在高温下进行。同样,具体的反应还要注意反应发生的条件。比如在溶液中,Na跟KCl是不可能发生置换反应的,但在熔融状态下这一反应却可以进行;再如酸制酸的反应,我们经常讲强酸制弱酸,但这一规律对氧化还原反应是不适用的。因此,教师教学时切勿将一般规律绝对化。
四、反应原理研究层次的多元性需要教师从多角度、用多种方法加以研究
物质的变化具有复杂性和关联性,教师要揭示化学反应原理就必须从多个角度、用多种方法进行研究。通过实验等手段获取现象,通过现象提出假设,通过理论分析解释假设,通过综合研究得出结论。不仅要用理论来引导实验,还要通过实验来验证理论。不仅如此,教师还要从不同层次、不同角度去研究物质发生化学变化的原因,既要从宏观上把握其变化,还要从微观上探究发生变化的根本原因。比如对于质量守恒定律,我们不仅可以通过化学实验进行粗略地探究,还能从化学史的分析来进行说明,还可以从物质发生化学变化的本质特征等多角度入手加以研究。再如,对于Cl-可以加快金属单质与酸的反应的解释,我们可以从活化金属说、破坏氧化膜说、与金属离子配位说、桥连转移电子说等多个角度研究并得出结论。通过多角度地对反应原理进行研究,可以使问题和结论愈加清晰。
在选修模块《化学反应原理》教科书中,笔者认为有10个“探究·活动”对于指导学生的化学学习和形成正确的科学概念有着举足轻重的重要意义。它们是第一章“化学反应与能量变化”中的测定中和反应的反应热、电解饱和食盐水、电镀、锌与CuSO4溶液反应中能量变化与能量转换四个“探究·活动”。第二章“化学反应的方向、限度与速率”中温度对化学平衡的影响、浓度对化学平衡的影响、化学反应速率的表示方法三个“探究·活动”。第三章“物质在水溶液中的行为”中盐类的水解、影响盐类水解平衡的因素、中和滴定法测定强酸、强碱溶液的浓度三个“探究·活动”。这10个“探究·活动”,无论是从实验探究的形式、实验探究的内容,还是从实验探究的本质上看都对学生的化学反应原理的学习有着重要的指导作用。在复结时教师可以从以下三个方面来指导学生学习。
一、在实验探究活动中不断提高学生的观察能力
提到观察能力,不要把它认为只是要求大家能靠视觉、嗅觉、听觉、触觉去感知物质及其变化,也不是通过教师的讲解、提醒就能培养,而是要随着学习的深入,在多种多样的学习活动中,通过自己的实践逐步丰富起来。
实验现象、实物、模型、图形、图表以及自然界里、生产生活中的化学现象的观察、客观地描述和记录观察到的现象;获得关于物质及其变化的感性知识和印象;对所获得的感性现象或表象进行分析、综合、比较、判断、推理、做初步的加工整理,这些都是观察能力的要素。比如,锌与CuSO4溶液反应中能量变化与能量转换这个实验探究活动,反应的现象很多,有颜色的、有质量的、有温度的、还有能量的,在这里最关键的现象应该是温度的变化与电流计指针的偏转,颜色的变化是表象,而质量的变化是要通过合理的推断,这样才能够完整地体现出锌与CuSO4溶液反应能量变化与能量转换的来龙去脉,忽略了其中的任何一点对其认识都是不完整的。再比如,化学的观察不能只依靠人的感官,还要学习借助各种仪器、设备和试剂进行化学观察,在用中和滴定法测定强酸、强碱溶液的浓度的实验探究活动中,酸碱能发生中和反应是众所周知的,但如何说明它发生了反应以及何时反应恰好完全,从表面上是无法观察的,一定要借助于酸碱指示剂进行观察,这也是我们通过实验所得到的一个新的收获。另外,还要注意运用各种观察手段和技巧,如探究温度对化学平衡的影响、浓度对化学平衡的影响时,我们就是借助对比的方法,对其反应的现象进行放大,更清晰地显示变化的的过程。
在化学实验探究活动中既要操作,也要仔细观察,还要积极思考,把操作过程、思维活动统一起来,才能达到实验的最佳效果。所以说,化学实验探究活动是一项动脑、动手、动五官的综合性学习活动。
二、在实验探究活动中不断提高学生的实验能力
有些学生总觉得怕做化学实验,嫌做实验麻烦,宁可采取死记硬背的方法来应对化学学习。这样一来,表面上看似挤出了时间,实则放弃了实验教学对自己化学思维能力的培养,使自己学会的书本知识始终处于“死”的状态。化学不是“听”出来的、“讲”出来的,化学是“做”出来的、“探究”出来的。例如,中和滴定法测定强酸、强碱溶液的浓度的实验探究活动中,一旦将盐酸换成硫酸,一些学生的计算就会出现问题,他们把根据方程式得到的比例关系式当成公式来记忆,忽略了实验原理中最重要的部分:H+OH-=H2O。
随着课程改革的不断深化,高中化学教学中对实验探究的要求也不断提高,化学定量实验内容也占据一定比重,其功能不仅仅在于能够培养学生的观察能力,还能够深化学生对事物变化中的量的关系的认识,理解化学变化的本质。本书通过定量实验的“探究·活动”,目的是希望通过设计简单定量实验方案,给学生搭建运用化学知识和技能进行分析、综合、归纳、比较等科学思维方法的平台,帮助学生在整合实验原理、操作原理、仪器原理的相互关系过程中,形成设计简单定量实验方案的一般思维框架。
三、在实验探究活动中不断提高学生的科学素养
认真品味这10个“探究·活动”实验,可以发现它给学生提供一个非常好的探究平台。让学生自己不自觉地进入以兴趣获取知识,再用知识来解决问题,在解决问题中激发出新的学习热情的良性循环过程。“探究·活动”实验,也从简到繁、从模仿到独立、从定性到定量。
关键词:建模法;化学反应原理;原电池原理
文章编号:1008-0546(2012)10-0060-02
中图分类号:G632.41
文献标识码:B
doi:10.3969/j.issn.1008-0546.2012.10.025
化学反应原理是化学课程中的难点,很抽象,学生难于理解和掌握,虽然在教学中有实验演示、动画模拟等多种教学手段帮助学生学习和感知,但是在具体的问题和练习中,仅靠想象和理解,难免不出差错。如果我们在教学过程中巧妙地运用建模法帮助学生去建立典型模型,深化理解原理,复杂的问题就会简单化。本文通过原电池原理的课堂教学举例,来阐述建模法在化学反应原理中的具体应用方法。
一、建模法内涵及其意义
建模法就是利用化学模型解决实际问题的一种实践。即通过抽象、简化、假设等处理过程后,将某类实际问题用具体方式表达,建立起化学模型,然后运用类比的方法对具体问题进行处理,找出解题的方法和思路。其认识的过程如下:
1.建模法由具体事例出发,通过抽象、概括建立典型模型,从而深化理解化学原理,并用来解决实际问题,符合认知规律,即由学生的感性认识上升到理性认识,再由理性认识来指导实践,并且在实践中检验、纠正对原理的理解。
2.青少年学生的形象思维活跃,但抽象思维尚未成熟,所以对抽象的原理理解具有一定的难度。而建模教学法正是通过对抽象的原理建立具体的模型来帮助学生理解原理,达到化繁为简、化难为易的效果。
3.在建模法应用过程中必须遵循由个体到一般、由典型到普遍,由易到难、由简单到综合的螺旋式上升的原则,使教学模型通过学生的讨论、思考在脑海不断清晰并逐渐内化,忌不顾客观规律、盲目提高难度,结果适得其反。
二、建模法在原电池原理教学中的应用
1.呈现事例,引导学生理解原电池原理
在教材铜锌原电池装置中,由于锌是活泼金属,容易失去电子,发生氧化反应,作为原电池的负极。锌棒失去的电子沿导线流到铜棒表面,然后溶液中的Cu2+在铜棒的表面上得到电子,发生还原反应,不活泼金属铜作为原电池的正极。在溶液中,由于铜棒上聚集了电子,所以,溶液中阳离子移向铜棒(正极);锌棒附近产生了大量的Zn2+离子,吸引溶液中的阴离子,所以阴离子移向锌极(负极)。阴阳离子的定向移动从而在溶液中形成了由锌棒指向铜棒的电流。原电池中外电路的电流是由电子的定向移动传导,内电路的电流是由自由离子的定向移动传导,内电路的电流与外电路的电流方向相反,并因此形成一个闭合的回路。在应用中我们可以将实际问题与铜锌原电池这个模型相对照,问题就会迎刃而解。
2.认识提升,引导学生建立原电池模型
(1)确定原电池电极
方法一:根据电极材料的性质确定,一般情况下:
①对于金属——金属电极,活泼金属是负极,不活泼金属是正极;
②对于金属——非金属电极,金属是负极,非金属是正极,如干电池等;
③对于金属——化合物电极,一般金属是负极,化合物是正极。
方法二:根据电极反应的本身确定
失电子的反应氧化反应负极;得电子的反应还原反应正极。
(2)确定电极反应及其产物
负极:还原性物质发生氧化反应,同时需要考虑溶液中的微粒参与电极反应,如:
①活泼金属做负极反应物:M-ne-=Mn+[若在碱性条件下则为:M-ne-+nOH-=M(OH)n]
②氢气做为负极反应物,若溶液为酸性或中性,则为H2-2e-=2H+,若溶液为碱性,则为H2-2e-+2OH-=2H2O
③甲烷燃料电池(用熔融KOH做电解质):CH4+10OH--8e-=CO32-+7H2O
……
正极:氧化性物质发生还原反应,同时要考虑电解质溶液的性质,如:
①非氧化性酸:2H++2e-=H2
②不活泼金属盐溶液:Mn++ne-=M
③中性、弱酸性条件下氧气为正极反应物:2H2O+O2+4e-=4OH-
④酸性条件下氧气为正极反应物:4H++O2+4e-=2H2O
……
经过对课本中具体事例的理解、概括和深化,我们可以建立原电池的典型模型如下:
3.举例应用,引导学生运用类比的方法解决实际问题
例如:新型的质子交换膜二甲醚燃料电池有较高的安全性。电池总反应为:CH3OCH3+3O2=2CO2+3H2O,电池示意图如下,下列说法不正确的是(
)
A.a极为电池的负极
B.电池工作时电流由b极沿导线经灯泡再到a极
C.电池正极的电极反应为:4H++O2+4e-=2H2O
D.电池工作时,1mol二甲醚被氧化时就有6mol电子转移
doi:10.3969/j.issn.1008-0546.2014.11.027
化学反应原理是人类在大量研究化学反应本质的基础上,总结得到的关于化学反应的一般规律,是深刻理解化学反应和规律的基础。我国新课程改革将有关中学阶段的化学反应原理内容,集中编排在《化学反应原理》选修模块中。该模块是为对化学反应原理感兴趣的学生开设的,通过学习,学生可以了解化学反应原理在生产、生活和科学研究中的应用。但由于化学反应原理知识有着复杂性、关联性、多样性和交错性的特点,学生在学习时存在很大的障碍。而许多教学一线的教师,面对《化学反应原理》部分的教学时,也常常出现“教师自认为已经讲的很清楚而学生反复出错”的情况。为此,笔者采用问卷调查、观察等方法,在四月下旬对无锡市青山中学,姜堰中学以及南京市六合中学进行探查,并分析高二和高三两个不同年级学生对化学反应原理模块教学行为的认识,多角度研究了高中化学反应原理的教学方式,为今后根据学生的差异选择恰当的教学方式以促进学生在原理部分的学习提供依据。
一、探查的设计与实施
本研究的问卷调查从教学中常见的教学方式和学生期望的教学方式两个角度切入,分为五个部分:一、调查了学生的基本信息;二、通过表格式的选择,探查了学生对教材中内容的分散、整合的观点,同时也了解了学生对学习内容的增加和删减的建议,总共17题;三、通过选择的形式对学生最推崇的教学行为进行了探查,总共4小题;四、通过表格形式的选择,对学习活动进行了探查,总共12小题;五、通过表格形式的选择,对化学反应原理模块中的各种教学活动进行了探查,总共14小题。本研究所有探查数据均采用SPSS 17.0进行统计处理。
本调查采取随机整群抽样的方法,研究的对象为无锡市、姜堰市以及南京市三所四星级中学的453名学生。之所以选择四星级学校,是因为这类学校选修化学的学生相对较多。本调查针对不同年级学生的认知能力的差别,对上述学校的高二和高三年级学生进行探查。考虑到调查对象应具有一定的化学反应原理模块基础,而高二年级正进行着高中化学反应原理模块的教学,因此在四月下旬进行探查的实施。
二、探查的结果分析
1. 灵活地将学习内容进行分散和整合能促进学生认知发展
教学内容分散和整合的意图,即根据学生的学习需求和认知规律,突破现有教材中的呈现顺序,进行重新组合的过程。问卷中涉及到原电池、电解质、影响化学平衡的因素、平衡常数、金属腐蚀这四个知识点,原有教材中是分散编排的,问其是否可以整合编排。另外涉及到化学平衡移动、pH的计算、勒夏特列原理这三个知识点,原有教材是整合编排的,问其是否可以分散编排。对学生关于学习内容的分散和整合意见的频数进行了统计,统计结果见表2
从数据中可以看出,在高一时已经学习了“原电池”的相关概念,在“化学反应原理”这本书里,又专门讲解“原电池”,88.7%的学生认为这样分散讲解有必要,并认为前面出现的知识是基础,后面出现的知识是前面的深化。11.3%的学生认为整合讲解比较能够促进自己的理解。此外,对于“化学平衡移动”、“pH的计算”和“勒夏特列原理”的讲授顺序,大部分学生赞同对这些内容进行分散讲解。而对于“电解质”、“影响化学平衡因素”、“平衡常数”和“金属腐蚀”的讲授顺序,大部分学生赞同对这些内容进行整合讲解。笔者认为,教学内容需进行灵活地整合和分散,并没有统一的标准,因为教育对象是有差异的。
笔者通过对江苏省特级教师的教学观摩,发现特级教师能够灵活地对化学教学内容进行分散与整合。例如徐宾老师在进行“难溶电解质的溶解平衡”教学时,不但通过实验的方法帮助学生建立了沉淀溶解平衡的概念,而且灵活地将MgCO3Mg(OH)2、Ca(OH)2CaCO3、AgCl溶于氨水、Mg(OH)2溶于NH4Cl溶液、AgClAgIAg2S、锅炉水垢用Na2CO3溶液预处理等内容加以整合,最后引导学生用平衡移动的观念解决沉淀的生成、溶解和转化问题。
2. 适当拓展增加学习内容能促进学生认知发展
布鲁姆曾说过,“学什么是比怎样学更为重要的问题”。笔者通过下列问卷调查题探查了学生关于学习内容拓展的看法。
化学反应原理部分的学习,你认为最需要增加的是( )
A. 实验 B. 应用实例 C.典型例题
D. 教师精彩讲解 E.拓展延伸
统计结果见表3。
从数据可以看出,对于“化学反应原理”的学习,38.6%的学生认为需要增加实验,28.5%的学生认为需要增加应用实例,18.1%的学生认为需要增加典型例题,8.4%的学生认为需要增加拓展延伸,6.4%的学生认为需要增加教师精彩的讲解。在此基础上,笔者进一步对学生关于“沉淀溶解平衡”拓展看法的频数进行了统计,统计结果见表4。
1.盖斯定律
例1(2011年新课程理综)科学家利用太阳能分解水生成的氢气在催化剂作用下与二氧化碳反应生成甲醇,并开发出直接以甲醇为燃料的燃料电池。已知H2(g)、CO(g)和CH3OH(l)的燃烧热 ΔH分别为-285.8 kJ・mol-1、-283 kJ・mol-1和-726.5 kJ・mol-1。请回答下列问题:
(1)用太阳能分解10 mol水消耗的能量是kJ;(2)甲醇不完全燃烧生成一氧化碳和液态水的热化学方程式为。
解答(1)分解水的化学方程式为:
H2O(l)H2(g)+12O2(g)
其逆反应可看作氢气的燃烧反应。由题中已知条件,氢气的燃烧热为ΔH=-285.8 kJ・mol-1,则水分解为氢气和氧气的反应为吸热反应,其热效应ΔH=+285.8 kJ・mol-1。如果有10 mol 水分解,则需要的能量应为2858 kJ。
(2)本小题实际上是要求写出甲醇的不完全燃烧反应的化学方程式并计算出相应的反应热。根据题中已知条件:CO(g)+12O2(g)CO2(g)
ΔH1=-283.0kJ・mol-1()
CH3OH(l)+32O2(g)CO2(g)+2H2O(l)
ΔH2=-726.5kJ・mol-1()
运用盖斯定律,由()-()得:
CH3OH(l)+O2(g)CO(g)+2H2O(l)
ΔH=-443.5 kJ・mol-1
即1 mol甲醇经不完全燃烧生成一氧化碳和液态水可放出443.5 kJ的热量。
分析问题(1)考后统计数据不是非常理想,通过调查分析得知,学生没有领悟该问的考查意图和目标,没有意识到水的分解反应焓变可以用氢气燃烧的逆反应进行计算;问题(2)考查意图比较明显,学生能领悟出应用盖斯定律进行解题的方法,所以难度比较适宜。
例2(2013年新课程理综)二甲醚(CH3OCH3)是无色气体,可作为一种新型能源。由合成气(组成为H2、CO和少量的CO2)直接制备二甲醚,其中的主要过程包括以下四个反应:
甲醇合成反应:
(i) CO(g)+2H2(g)CH3OH(g)
ΔH1=-90.1kJ・mol-1
(ii) CO2(g)+3H2(g)CH3OH(g)+H2O(g)
ΔH2=-49.0kJ・mol-1
水煤气变换反应:
(iii) CO(g)+H2O(g)CO2(g)+H2(g)
ΔH3=-41.1kJ・mol-1
二甲醚合成反应:(iv)2CH3OH(g)CH3OCH3(g)+H2O(g)
ΔH4=-24.5kJ・mol-1
由H2和CO直接制备二甲醚(另一产物为水蒸气)的热化学方程式为。
解答根据本题条件可知,将化学方程式(i)、(ii)、(iii)、(iv)相加,得到由H2和CO直接制备二甲醚反应式,反应的热效应:
ΔH=ΔH1+ΔH2+ΔH3+ΔH4
=(-90.1 kJ・mol-1)+(-49.0kJ・mol-1)+(-41.1 kJ・mol-1)+(-24.5 kJ・mol-1)
=-204.7 kJ・mol-1。
即热化学方程式为:
2CO(g)+4H2(g)CH3OCH3(g)+H2O(g),ΔH=-204.7 kJ・mol-1
或者将化学方程式(i)×2与(iv)相加也可得到相同的热化学方程式。
分析考后该题统计难度0.39,区分度为0.51。本题仍是考查盖斯定律内容,由于其指向明确且数据计算不是特别复杂,试题难度不大且区分度优秀。
2.能量转化效率
例3(2013年新课程理综)二甲醚直接燃料电池具有启动快、效率高等优点,其能量密度高于甲醇直接燃料电池(5.93 kW・h・kg-1)。若电解质为酸性,二甲醚直接燃料电池的负极反应为,一个二甲醚分子经过电化学氧化,可以产生个电子的电量;该电池的理论输出电压为1.20 V,能量密度E= (列式计算。能量密度=电池输出电能/燃料质量,1 kW・h=3.6×106J)。
解答从电池反应可见,一个二甲醚分子经过电化学氧化,可以产生12个电子的电量。1 mol二甲醚完全氧化,可产生的电能为1.20 V×12×96500 C,则根据本题“能量密度=电池输出电能/燃料质量”的定义,二甲醚直接燃料电池的能量密度为:
E=1.20 V×1000 g46 g・mol-1×12×96500 C・mol-11 kg÷(3.6×106J・kW-1・h-1)
=8.39 kW・h・kg-1
分析本题实测难度系数为0.03,难度很大,但是区分度很好0.54。此题有如下两个难点:一是能量的计算,要用到物理学上的电功(或电能)的涵义:电动(或电能)=电压×电量,其中还用到法拉第常数或者电子的电量,这些都是学生不熟悉的内容。二是单位的换算且数值较大,计算较为复杂,会占用学生较多的考试时间,导致大量学生直接放弃。
3.平衡常数及转化率
(1)沉淀溶解平衡常数
例4(2010年海南卷第5题)已知:Ksp(AgCl)=1.8×10-10,Ksp(AgI)=1.5×10-16,Ksp(Ag2CrO4)=2.0×10-12,则下列难溶盐的饱和溶液中,Ag+浓度大小顺序正确的是()。
A.AgCl>AgI>Ag2CrO4
B.AgCl>Ag2CrO4>AgI
C.Ag2CrO4>AgCl>AgI
D. Ag2CrO4>AgI>AgCl
解答AgCl和AgI化学式类似,它们溶解度(与阳离子或阴离子的饱和浓度一致)的大小可直接比较溶度积大小。因为阳离子数和阴离子数之比为1∶1,在饱和溶液中,Ksp=c(Ag+)c(X-)(X代表Cl,I),c(Ag+)=Ksp。 而在Ag2CrO4中,Ksp=c(Ag+)2c(CrO2-4),c(Ag+)=32Ksp。Ag2CrO4、AgCl、AgI中c(Ag+)的浓度约为10-4、10-5、10-8,选项C正确。
分析本题是对沉淀溶解平衡常数的考查,要求学生利用沉淀溶解平衡常数定量估算溶液中的离子浓度。此题对总分超过50分的学生区分较好。总分低于50分的学生基本上都直接按照Ksp的大小比较Ag+的大小,错误地选择了B。
(2)弱酸弱碱电离平衡常数
例5(2013年新课程理综)室温时,M(OH)2(s)M2+(aq)+2OH-(aq),Ksp=a,c(M2+)=b mol・L-1时,溶液的pH等于()。
A.12lg(ba)B. 12lg(ab)
C.14+12lg(ab)D. 14+12lg(ba)
解答M(OH)2(s)M2+(aq)+2OH-(aq)Ksp=a,此时溶液中的c(M2+)=b mol・L-1时,溶液中的OH-的浓度表示为:
c(OH-)=Ksp[M(OH2)]c(M2+)=ab
pOH=-lgc(OH-)=-12lg(ab)
pH=14-pOH=14+12lg(ab)
分析此题难度统计为0.533,区分度为0.431。对于低分数段的考生,选项B和D都具有很强的干扰性。对于高分段的考生,选项D具有很强的干扰性。考生回答错误的主要原因可能是没有厘清pH计算的涵义,在计算过程中将对数的计算转换成pH时正负关系颠倒。
(3)气相反应平衡常数
例6(2012年新课程理综)COCl2的分解反应为:COCl2(g)Cl2(g)+CO(g),ΔH=+108 kJ・mol-1。反应体系达到平衡后,各物质的浓度在不同条件下的变化状况如图1所示(第10 min到14 min的COCl2浓度变化曲线未示出):
图1①计算反应在第8 min时的平衡常数K=;
②比较第2 min反应温度T(2)与第8 min反应温度T(8)的高低:T(2) T(8)(填“<”、“>”或“=”);
③若12 min时反应于温度T(8)下重新达到平衡,则此时c(COCl2)=mol・L-1 。
解答①第8 min时反应为重新达到平衡,此时平衡常数:
K=c(Cl2)c(CO)c(COCl2)
=0.11 mol・L-1×0.09 mol・L-10.04 mol・L-1
=0.234 mol・L-1
②由图可知,在t为0~4 min中,反应达到平衡。从第4 min开始,反应物COCl2浓度逐渐降低而产物CO和Cl2浓度逐渐升高,表明平衡向正反应方向移动。因为光气分解是吸热反应,表明从第4min开始,反应温度提高,即T(2)<T(8)。
③由题图可知,在第10 min时,反应产物之一的CO被部分移去,导致平衡再次向正反应方向的移动,产物Cl2浓度增高而反应物COCl2浓度降低。根据本题所给条件,第12 min时反应于温度T(8)下重新达到平衡此时平衡常数仍为0.234 mol・L-1。
由图可见,此时c(CO)=0.06 mol・L-1,c(Cl2)=0.12 mol・L-1,
故有:c(COCl2)=c(CO)・c(Cl2)K
=0.06 mol・L-1×0.12 mol・L-10.234 mol・L-1
=0.031 mol・L-1。
分析③问考后统计难度0.46,区分度0.53。此题考查目的明确,学生能领悟考查意图。解答的关键是分析从热化学方程式和图中找出关键的信息:反应为分子数增大、吸热反应、平衡时的浓度等。利用这些信息去分析判断每个过程发生浓度变化的外因(压力、温度、催化剂等)。
二、思考与启示
反应原理中的定量内容是新课程教学中的新增知识点,也是高考化学必考部分中考查的重点和难点。从上面的分析看,影响难度的主要因素有以下三个方面:①考查意图间接;②数据比较复杂;③除了数据比较复杂之外,引入新的信息,需要进行量纲的转换。
不管试题难度是大还是小,考查定量方法的这些试题的区分效果都非常良好。
(1)在教学过程中要重视计算规范性和计算能力的训练。
关键词:化学反应的方向;教学设计;中学化学教学
文章编号:1005-6629(2012)2-0030-02 中图分类号:G633.8 文献标识码:B
1、设计思想
以“从具体的知识传授到核心观念建构,从知识解析为本到基於学生认识发展”为指导思想,依据《课程标准》中“能用焓变和熵变说明化学反应的方向”要求,从本节涉及的“化学反应的方向、焓变与反应方向有关的概念、熵变与反应方向有关的概念”等具体知识的教学,上升到帮助学生形成“化学反应的方向问题;化学反应的方向可以用反应体系的某些物理量的变化作判据;和自然现象一样,化学反应一般由‘高能’趋向‘低能’、由‘有序’趋向‘无序’等”;从对“焓判据”和“熵判据”的知识解析,上升到通过举证的方法进行证实或证伪,从而促进学生认识的发展。
2、教材分析与比较
本课题内容属原理性知识,在现行3种版本的高中教材《化学反应原理(选修)》中“化学反应速率和化学平衡”一章中都有体现,但有关内容的编排顺序有所不同(见表1),人教版是按“速率化学平衡(限度)方向”的顺序,意在化学反应进行的方向要用到焓变和熵变知识,需要对化学反应的实质有更多的领悟,所以把它放最后,以知识的方式呈现出来,即从内容的难度考虑;鲁科版是按“方向限度速率”的顺序,旨在反映化学反应研究的一般思路,即对一个任意设计的化学反应,首先需要判断的是,它在指定条件下有无可能发生,以及在什么条件下有可能发生;对於有可能发生的反应它的限度如何?最后是反应实际进行的情况还涉及反应的速率问题,即从化学反应的一般研究过程考虑。苏教版是按“速率方向限度”的顺序,考虑在此之前学生通过在必修教材《化学2》的学习,已经能定性地认识化学反应有陕有慢,知道许多化学反应中反应物不能完全转化为生成物等相关知识,引导学生回顾已有知识的基础上进行新知识的学习,实现新知识与原有知识的融合,即从学生的学习经验出发。
3种版本的教材,虽然在编排和呈现方式表现不同特点,但在内容上都紧紧围绕课程标准,在知识的深度上没有过高要求。从化学反应的自发性、焓变和熵变与化学反应方向的关系等具体内容出发,突出学生已有的生活经验和认知基础,以帮助学生形成基本的化学观念、促进学生对化学反应原理更全面的认识为根本目的。同时,教材为教师的教学和学有余力的学生进一步学习留下空间,教师在教学中不必拘泥於某一版本的教材,可结合学生的认知基础和学习需求,选择适当的教学方法。
3、教学目标
[基础性目标]
(1)通过经验和直观体验,认识自然界中的自发过程及特征,并迁移到化学反应的自发过程,形成“化学反应存在方向”的认识。
(3)通过归纳的方法,知道H<0有利於化学反应的自发进行,并通过“证实和证伪”的方法,认识焓变不是判断反应自发的惟一因素。
(3)通过简单的实验活动和体验,知道“熵”可用来描述体系的混乱程度,认识S>O有利於化学反应的自发进行,但不是判断反应自发的惟一因素。
[提高性目标]
(4)学会从现象分析到理论探究的科学方法,形成“―定条件下化学反应自发进行的趋势,并不意味该条件下反应能实际发生”的观念。
(5)通过分析和概括焓变与熵变对反应方向的共同影响,初步认识这两个因素不是孤立而不相互关联的,形成对事物发展或变化整体认识的观念和全面分析的方法。
(6)通过基於“熵增原理”上的类比体验,强化环境保护与低碳生活的重要性和迫切性。
4、教学重、难点
焓变、熵变对化学反应自发过程的影响
[关键词] 化学反应工程;教学改革;教学方法
化学反应工程是精细化工专业一门必修的,建立在数学、化学等基础学科及物理化学、化工热力学、化工传递过程等知识领域,内容新颖而难点较多的专业技术基础课。通过该课程的学习,学生应能掌握化学反应工程最基本的原理和计算方法,能够理论联系实际,提高对工业反应器进行设计与分析能力。
面对这样一门课程,必须让学生能系统掌握本课程的内容,使教学内容较为合理,并在教学方法和手段方面进行改革,力求把化学反应工程基本观点与实际紧密联系起来,现介绍该课程教学中的几点体会。
1 阐明化学反应工程课程地位,激发学生学习兴趣
化学工程与工艺专业的核心知识可概括为“三传一反”,“反”是核心。对各种不同类型反应器的设计与分析正是化学反应工程课程的主要内容。因此要让学生懂得该课程的重要地位,激发他们的学习兴趣。一旦他们能认识到该课程的重要性,就会自觉地下功夫学习,主动克服学习中遇到的困难。目前硕士研究生入学考试只考化工原理,并不是意味着它没有化工原理课程重要,主要由于化学反应工程课程难度较大,一些重点高校在硕士研究生复试时要加试化学反应工程,这也可激发学习的积极性。
2 教学内容和目标的改革
在准确把握化学反应工程学科总体框架和教学中心的基础上,课程强调重点、基本理论和基本方法和专业知识的系统性,因为基础理论不扎实,会限制学生解决问题能力的发挥与创新;同时强调工程应用能力的训练,强调与其他课程,如数值计算、化学动力学、化工原理、传递现象、催化原理和计算机技术等的衔接、贯通。因此,这门课的学习,要求学生综合利用所学的知识来解决工业反应器设计问题。为此,在组织教学过程中,要求学生在课下认真复习所需的基础知识。
在教材选择上,精心挑选精细化工专业适合的教材,以许志美的《化学反应工程原理》为主,以李绍芬的《反应工程》、陈甘裳的《化学反应工程》、朱炳辰的《化学反应工程》等为辅来讲授,将当今世界上最流行的英文教材如Levenspiel主编的《Chemical Reaction Engineering》为参考来组织教学,同时将最新的科学研究成果融入课堂教学,如膜反应器等。
3 教学方法和手段的改革
鉴于本课程涉及的工程数学知识较多,且要求有一定的逻辑思维能力,课堂讲授的内容和方法必须适当。在讲授每一章时都应该利用几分钟的时间将本章加以概括。同时,注意将课程体系进行系统化处理,教学内容包括:反应动力学基础、釜式反应器、管式反应器、停留时间分布与反应器的流动模型、多相系统中的化学反应与传递现象、多相催化反应器的设计与分析等。建立物料衡算式、能量衡算式和动量衡算式这三类方程的依据分别是质量守恒定律、能量守恒定律和动量守恒定律是各类反应器章节的基本内容。学生若能抓住各类反应器设计与分析的最基本的内容,就能从总体上掌握化学反应工程学科的知识体系。
对于那些学生用现有知识无法解决的问题,如数值积分中的Simpson法,教会学生使用多种手段进行解决,如程序设计、Excel计算、Origin绘图及MatLab计算等实用方法。平时的作业也直接在计算机完成,然后直接发至主讲教师的电子邮箱,实现了无纸化作业。同时上课过程中注意制造悬念,促进学生思考,复习旧知识,提出新问题,让学生处于索取状态,刺激学生的大脑兴奋,主动想去获取问题答案。
化学反应工程中有很多的图表说明、例题演算等,一般情况一节课需7~8个黑板版面,这就需要利用计算机进行演示。而且利用生动的动画来模拟事物的变化过程,说明科学原理,将一些抽象、复杂的内的合成与应用容具体化,便于学生理解和掌握。但是,对于一些难度较大的内容,由于学生的数学基础参差不齐,其过程推导还需要用板书的形式进行,由浅入深,可引导学生学会推导的方法、思路,也便于学生记录笔记。
4 考核方式的改革
关键词: 自主知识构建 化学反应速率 有效课堂
“有效课堂”是当前中小学教学研究中非常注重的研究内容,其概念包含极其丰富的内涵。笔者认为,教学的“有效”其根本在于“课堂”教学,由此,联想到了一直以来都在思考的一些问题:为什么学生总是“课堂上一听都懂,课后一做(题)就不会”?为什么我们(老师和学生)都感觉现在的高考化学试题越来越难做?为什么“老师教的累,学生学得苦”?老师和学生能不能都少做些无用功?……这些问题的解决还是要在课堂上下足工夫,做好教学设计,把课堂教学做扎实,也许“活力”或“有效”可能在不经意间就有了。很多老师在日常教学中,教学流程一般都是这样设计的:备课前先做课后作业题集(或历届高考题)中的习题,然后,根据习题集(或历届高考题)中反映的知识内容和难度确定教学目标,从而再行选择教学流程……而对于许多有经验的老教师,甚至这个环节也基本省略了,几乎完全是依赖教学经验在设计教学。这种依据教学经验和考试题进行教学设计的现象,恐怕也是许多老师备课时比较普遍的现象。
以下是苏教版高中化学选修4《化学反应原理》“化学反应速率的表示方法”学习内容的课堂教学与反思,本节课例是基于对“有效课堂”的认识而实施的教学实践案例,其设计理念核心思想在于:引导学生主动参与到学习过程中,积极主动构建知识体系,而不是被动地接受知识,让学生真正成为学习者。
1.教学设计思想
化学反应速率概念的建立及相关计算方法是本节课的教学重点,但对于学生来讲,这两个知识点的学习掌握并不难。基于“自主知识构建”的教学理念,本节课的教学重点侧重于充分利用好教材资源,围绕科学探究要素,重视过程与方法,促使学生掌握科学方法,提高化学科学素养。
2.教学目标
2.1了解化学反应速率的概念;
2.2能定量表示化学反应速率,能利用速率计算公式正确分析实验数据;
2.3了解化学反应速率的测定方法,通过实验测定某些化学反应的速率。
3.教学设计片断
[教师活动]讲解:刚才大家计算的是在10min内的平均反应速率。当时间间隔Δt非常小时,可求得化学反应在某一时刻的瞬时速率。瞬时速率也可以由物质的浓度随时间的变化曲线通过数学方法得到。
[教师活动]转引:对于同一反应来讲,反应速率既可以用单位时间内反应物浓度的减少表示,又可以用单位时间内生成物浓度的增加表示。那么,用不同物质浓度的变化表示反应速率之间存在什么关系呢?请大家在完成课本第33页“交流与讨论”的基础上加以总结。
[教师活动]请完成学案上的课堂巩固练习(练习题略)。
[教师活动]讲解:要测定化学反应速率,必须测定某一时刻物质的浓度,但物质的浓度并不易测定,一般要通过间接手段才能测定。请大家阅读课本第34页相关内容并完成“活动与探究”,学习测定反应速率的实验方法。
[学生活动]通过探究活动,学习通过测定气体体积的变化测定化学反应速率的方法。
[教师活动]总结:除了通过测定气体的变化测定化学反应速率之外,通过比色法测定化学反应的速率也是一种常用的方法,比色分析一般在分光光度计中进行。
还有一些测定化学反应速率的方法,请大家课后查阅相关资料,列举两种其他的测定化学反应速率的方法。
4.教学反思
本节课传统的教学流程主要是强化化学反应速率概念及注意事项的教学,在此基础上通过相当数量的典型习题重点训练学生对于化学反应速率的计算。实践证明,就考试要求本身及知识点的完成和“落实”而言,这种教学设计更加简洁、更直接,操作上也更便捷,学生课后对于化学反应速率这一类习题的掌握还是比较理想的。然而这个教学设计及教学过程缺少了学生的学习过程与积极参与知识体系构建的过程,忽视了教给学生科学的学习方法、提高学生的化学科学素养,课堂气氛沉闷,学生感觉“没意思”,对概念的理解及对知识的掌握基本都是通过反复的习题强化训练实现的。
基于对新教材及课改精神的理解,依据本节课教学设计思想及教学目标,本节课的重点在于重视引导学生主动参与到学习过程中,自主构建知识,而不是被动地“记录”知识。例如对于“化学反应速率是该化学反应在某个时间段内的平均速率,在不同的时间内,化学反应的速率可能不同”及“用不同物质浓度的变化来表示的化学速率之比,等于化学方程式中化学计量数之比”的理解,并不是知识的直接呈现,而是学生在教师的引导下经过实验及数据的数学分析获得的。学生在这个学习过程中,不仅有效地掌握了这些重要知识,而且体验了对于一个化学反应快慢的定量分析过程,并学习了对实验数据的数学分析方法。因此,应当引导学生主动地参与到学习过程中,积极自主构建知识体系,而不是被动接受知识,“自主知识构建”才是“有效课堂”的核心精神。
参考文献:
关键词:高中化学教材;化学动力学;内容选取的比较;内容编排的比较
文章编号:1008-0546(2014)12-0055-04 中图分类号:G632.41 文献标识码:B
doi:10.3969/j.issn.1008-0546.2014.12.022
化学动力学是研究化学反应速率和反应机理的物理化学分支学科[1],主要通过研究化学反应发生的具体过程和路径,认识化学反应从开始到完成的各个步骤(反应历程),从而探究出化学反应速率的大小及其影响因素,找到控制反应速率的方法,并将其应用到工业生产中,以满足工业生产的需要。化学动力学的研究对化工领域、化学、医学和食品等学科的发展具有重要意义。
高中阶段化学动力学的内容主要包括化学动力学基本理论和催化反应动力学的一些基础知识,是学生认识化学反应机理的基础,也是学生认识化学工业的起点。这部分内容看似简单,但是其蕴含的学科思维的教学价值不容忽视。通过这部分内容的学习,学生可以在明确化学变化的基础上,认识化学变化所遵循的基本原理和规律以及化学变化与时间的定量关系,建立对化学反应规律的微观认识,形成化学学科思维,了解到化学反应原理对科学技术和社会发展所起的重要作用,能对生产、生活和自然界中有关化学变化的现象进行合理的解释,增强探索化学反应原理的兴趣。
高中学生学习化学动力学部分内容的主要媒介是高中化学教材,教材中这部分内容的选取和编排直接影响学生的学习效果。世界发达国家高中化学教材在化学动力学的内容设计上特点各异。本文对中美德三国高中化学教材中化学动力学内容的选取、编排和呈现特点进行了比较研究,并根据我国的教育现状和学情批判性地借鉴国外高中化学教材中这部分内容设计的可取之处,希望可以为我国高中化学动力学部分的教学及教材编写提供反思和参考。
一、内容选取的比较[2]
本文选取的研究对象依次是:人民教育出版社2007年出版的《化学2(必修)》[3],《化学反应原理(选修4)》[4](中国);Glencoe/ McGraw-Hill出版公司2009年出版的Chemistry:Concepts and Application[5](化学:概念与应用)(美国);巴伐利亚教育出版社2009年出版的GALVANI Chemie 11・Ausgabe B[6](德国)。
高中化学教材中化学动力学的内容主要包括化学动力学基本理论和催化反应动力学两部分。中美德三国高中化学教材中化学动力学的内容选取见表1。
1. 化学动力学基本理论内容选取的比较
高中化学教材中的化学动力学基本理论主要包括化学反应速率和反应速率理论两部分,从表1中可以看出:在化学反应速率内容的选取上,三个国家的高中化学教材中都选取了化学反应速率的定义、影响反应速率的因素及其规律。中国和德国的高中化学教材中选取的内容还包括:化学反应速率的表达式、计算、单位和实验测量。此外,德国高中化学教材中选取的内容还包括:平均反应速率,瞬时反应速率,离散程度的概念模型和RGT规则。
在反应速率理论内容的选取上,三个国家各不相同,德国高中化学教材选取的内容包括:碰撞理论和过渡态理论,其中碰撞理论介绍了化学反应发生的三个条件,分别是粒子必须发生碰撞、粒子必须具备一定的能量和粒子的碰撞必须在一定方向上;过渡态理论介绍了过渡态、放热反应的过渡态能量曲线图和活化能。中国高中化学教材选取的内容包括:简化后的有效碰撞模型,化学反应发生的两个条件,即分子必须发生碰撞(充分条件)和有效碰撞(必要条件);过渡态理论中只选取了活化分子和活化能两个概念,并没有介绍过渡态理论的内容。美国高中化学教材选取的内容只有活化能,在此基础上介绍了化学反应发生的条件,即分子碰撞时必须具备一定的能量,理论要求较低。
2. 催化反应动力学内容选取的比较
高中化学教材中的催化反应动力学主要包括催化剂、酶和抑制剂三方面的内容,从表1中可以看出:在催化剂内容的选取上,三个国家的高中化学教材都选取了催化剂的概念、性质和催化作用原理。不同的是德国高中化学教材中还详细介绍了催化作用的两种方式,即均相催化和多相催化;在生物催化剂――酶的内容选取上,中国和美国的高中化学教材比较相似,选取的内容主要有:酶的概念、性质和实际应用;德国高中化学教材选取的内容主要有:酶的概念、性质,酶-底物复合物,酶的作用方式(模型),作用特异性,底物特异性,酶活性的影响因素以及酶的实际应用;在抑制剂内容的选取上,只有美国和德国高中化学教材中选取了抑制剂的概念和实际应用,此外德国高中化学教材中还介绍了三种类型的抑制作用及其特点。由此可以看出德国高中化学教材比较重视催化反应动力学这一部分,选取的内容比较全面。
二、内容编排和呈现的比较[7]
如何编排和呈现教材内容是编制教材中非常重要的一个方面。中美德三国高中化学教材中化学动力学内容的章节分布如表2所示。
从表2中可以看到:中美德三国高中化学教材中化学动力学内容的编排顺序大体相同,都是在介绍化学反应速率概念的基础上,介绍外界因素对反应速率的影响及其应用,最后介绍催化反应动力学的内容;但是反应速率理论的内容在三国高中化学教材中的编排各不相同。各国高中化学教材中化学动力学部分的编排和内容呈现的具体情况如下:
中国高中化学教材中化学动力学的内容编排在两本教材中,必修2中首先介绍化学反应速率的定义,然后通过实验定性地介绍温度和催化剂对反应速率的影响,最后在科学视野中简单介绍催化剂和酶及其应用;选修4在此基础上,首先在绪言部分简单地介绍碰撞理论、活化分子和活化能,然后在第二章中定量地介绍反应速率的表达式,并呈现了测量反应速率的实验,最后进一步通过实验探究影响反应速率的因素及其规律,并从微观角度结合活化分子百分数和有效碰撞频率给予解释。因此中国高中化学教材中化学动力学部分采取螺旋式上升的编排方式。
美国高中化学教材中化学动力学的内容编排在第六章第3节的反应速率这一小标题中,首先在介绍活化能的基础上,从能量角度引出了化学反应发生的条件,即分子碰撞必须具备一定的能量;然后通过生活实例定性地介绍化学反应速率的概念和外界因素对反应速率的影响及其规律;最后介绍催化剂和抑制剂,其中重点介绍酶及其在生命体内的重要作用,简单介绍抑制剂的作用和实际应用。
德国高中化学教材中化学动力学的内容编排在第七章“反应速率和酶的催化作用”,共有十小节内容,第1节定量地介绍化学反应速率,通过测定盐酸和镁反应生成的气体体积这一实验,绘制出气体体积――时间曲线,然后读取相应时间上的气体体积,利用图解法计算平均反应速率,理解瞬时反应速率,呈现了定量计算化学反应速率的科学方法和具体过程。第2节从微观角度全面地呈现碰撞理论和过渡态理论的内容,并解释化学反应发生的条件和过程。之后从第3节到第5节通过设计探究实验依次介绍了固体表面积、浓度和温度对反应速率的影响及其规律,并运用模型和反应速率理论来解释各因素的影响规律,其中温度对反应速率的影响规律用RGT规则表示,即温度每升高10℃,反应速率提高一倍,此外还介绍了各因素的影响规律在生活和生产实例中的应用。第6节在介绍活化能的基础上,解释催化剂提高反应速率的原因,然后介绍催化剂、催化作用的两种方式及其过程和实例。最后从第7节到第9节详细介绍酶,依次介绍了酶的概念和性质、酶的作用方式和酶活性的影响因素,并呈现了酶在食品工业和生物分析中的应用实例。第10节介绍抑制剂的概念、作用和三种类型的抑制作用及其特点,在章末以概念图的形式展示本章知识点之间的联系。由此可以看出德国高中化学教材中化学动力学部分的内容体系完整,并以直线型编排。
三、结论
通过分析和比较中美德三国高中化学教材中化学动力学的内容选取、编排和呈现,得到以下结论:
(1)在化学动力学内容的选取上,德国高中化学教材既重视化学动力学基本理论部分,也重视催化反应动力学部分,整体内容选取的较系统;中国高中化学教材比较重视化学动力学基本理论的内容,淡化催化反应动力学的内容;美国高中化学教材中化学动力学部分的内容不仅少而且简单。
(2)在化学动力学内容的编排和呈现上,德国高中化学教材以直线型编排,通过展示学习知识的科学方法和过程,深入透彻地讲解概念和原理,而且通过一些生产生活实例和插图来体现知识的实用性,并在章末以概念图的形式展示本章知识点之间的联系,整体结构比较完整,有利于学生初步建立起化学动力学的知识体系;中国高中化学教材则采取螺旋式上升的编排方式,但是应用方面的内容不足,与现实生活有些脱节;美国高中化学教材是通过生活实例或者创设情境来编排和呈现教材内容,并重视知识的应用价值。
四、启示
普通高中化学课程标准中规定,化学教学要体现课程改革的基本理念,引导学生积极主动地学习,掌握最基本的化学知识和技能,了解化学科学研究的过程和方法;在实际教学过程中要尽量联系生产、生活实际,帮助学生拓宽视野,开阔思路,也要发挥实验的教育功能,重视探究学习活动,发展学生的科学探究能力。高中化学教材要为课程改革和教学服务,在分析和了解了中美德三国高中化学教材中化学动力学内容设计的特点之后,结合我国的教育现状及课程标准中化学动力学部分的内容标准,批判性地借鉴国外高中化学教材中化学动力学部分内容设计的可取之处,对我国高中化学教材中化学动力学内容的编写和实际教学提出如下启示:
(1)在化学动力学内容的选取上,我国应将与生活密切相关的催化剂和酶的知识以及应用实例更加丰富地编入高中化学教材;在化学动力学内容的编排和呈现上,我国高中化学教材应重视化学知识产生过程的呈现和科学方法的运用,为培养学生的科学思维能力提供真实的情境。
(2)在实际教学过程中,教师对于催化剂的应用案例应更加贴近时代和生活,让学生体验和认识到化学科学对人类生活的真实影响以及化学知识的实用性;还应注重从学生认知规律的角度出发,创设更多真实情境或生活实例来呈现化学动力学基础理论和催化剂的内容,使学生对知识的认识从感性认识逐渐上升到理性认识。
参考文献
[1] 天津大学物理化学教研室. 物理化学(下册)[M]. 北京:高等教育出版社,2009:507
[2] 田红,周青,杨辉祥. 英国“Advanced Chemistry”教材有机化学内容编排的评析[J].化学教育,2008,(3):10-12
[3] 课程教材研究所.普通高中课程标准实验教科书化学2(必修)[M].北京:人民教育出版社,2007:47-50
[4] 课程教材研究所.普通高中课程标准实验教科书化学反应原理(选修4)[M].北京:人民教育出版社,2007:2-4,16-24
[5] John S. Phillips,Victor S. Strozak,Cheryl Wistrom,et al. Chemistry:Concepts and Applications[M]. New York:Glencoe /McGraw-Hill companies,2009:216-221
化学选修4知识点总结
第1章、化学反应与能量转化
化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收.
一、化学反应的热效应
1、化学反应的反应热
(1)反应热的概念:
当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热.用符号Q表示.
(2)反应热与吸热反应、放热反应的关系.
Q>0时,反应为吸热反应;Q<0时,反应为放热反应.
(3)反应热的测定
测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下:
Q=-C(T2-T1)
式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度.实验室经常测定中和反应的反应热.
2、化学反应的焓变
(1)反应焓变
物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1.
反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示.
(2)反应焓变ΔH与反应热Q的关系.
对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物).
(3)反应焓变与吸热反应,放热反应的关系:
ΔH>0,反应吸收能量,为吸热反应.
ΔH<0,反应释放能量,为放热反应.
(4)反应焓变与热化学方程式:
把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1
书写热化学方程式应注意以下几点:
①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq).
②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1或 kJ·mol-1,且ΔH后注明反应温度.
③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍.
3、反应焓变的计算
(1)盖斯定律
对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律.
(2)利用盖斯定律进行反应焓变的计算.
常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和.
(3)根据标准摩尔生成焓,ΔfHmθ计算反应焓变ΔH.
对任意反应:aA+bB=cC+dD
ΔH=[cΔfHmθ(C)+dΔfHmθ(D)]-[aΔfHmθ(A)+bΔfHmθ(B)]
二、电能转化为化学能——电解
1、电解的原理
(1)电解的概念:
在直流电作用下,电解质在两上电极上分别发生氧化反应和还原反应的过程叫做电解.电能转化为化学能的装置叫做电解池.
(2)电极反应:以电解熔融的NaCl为例:
阳极:与电源正极相连的电极称为阳极,阳极发生氧化反应:2Cl-Cl2+2e-.
阴极:与电源负极相连的电极称为阴极,阴极发生还原反应:Na++e-Na.
总方程式:2NaCl(熔)2Na+Cl2
2、电解原理的应用
(1)电解食盐水制备烧碱、氯气和氢气.
阳极:2Cl-Cl2+2e-
阴极:2H++e-H2
总反应:2NaCl+2H2O2NaOH+H2+Cl2
(2)铜的电解精炼.
粗铜(含Zn、Ni、Fe、Ag、Au、Pt)为阳极,精铜为阴极,CuSO4溶液为电解质溶液.
阳极反应:CuCu2++2e-,还发生几个副反应
ZnZn2++2e-;NiNi2++2e-
FeFe2++2e-
Au、Ag、Pt等不反应,沉积在电解池底部形成阳极泥.
阴极反应:Cu2++2e-Cu
(3)电镀:以铁表面镀铜为例
待镀金属Fe为阴极,镀层金属Cu为阳极,CuSO4溶液为电解质溶液.
阳极反应:CuCu2++2e-
阴极反应: Cu2++2e-Cu
三、化学能转化为电能——电池
1、原电池的工作原理
(1)原电池的概念:
把化学能转变为电能的装置称为原电池.
(2)Cu-Zn原电池的工作原理:
如图为Cu-Zn原电池,其中Zn为负极,Cu为正极,构成闭合回路后的现象是:Zn片逐渐溶解,Cu片上有气泡产生,电流计指针发生偏转.该原电池反应原理为:Zn失电子,负极反应为:ZnZn2++2e-;Cu得电子,正极反应为:2H++2e-H2.电子定向移动形成电流.总反应为:Zn+CuSO4=ZnSO4+Cu.
(3)原电池的电能
若两种金属做电极,活泼金属为负极,不活泼金属为正极;若一种金属和一种非金属做电极,金属为负极,非金属为正极.
2、化学电源
(1)锌锰干电池
负极反应:ZnZn2++2e-;
正极反应:2NH4++2e-2NH3+H2;
(2)铅蓄电池
负极反应:Pb+SO42-PbSO4+2e-
正极反应:PbO2+4H++SO42-+2e-PbSO4+2H2O
放电时总反应:Pb+PbO2+2H2SO4=2PbSO4+2H2O.
充电时总反应:2PbSO4+2H2O=Pb+PbO2+2H2SO4.
(3)氢氧燃料电池
负极反应:2H2+4OH-4H2O+4e-
正极反应:O2+2H2O+4e-4OH-
电池总反应:2H2+O2=2H2O
3、金属的腐蚀与防护
(1)金属腐蚀
金属表面与周围物质发生化学反应或因电化学作用而遭到破坏的过程称为金属腐蚀.
(2)金属腐蚀的电化学原理.
生铁中含有碳,遇有雨水可形成原电池,铁为负极,电极反应为:FeFe2++2e-.水膜中溶解的氧气被还原,正极反应为:O2+2H2O+4e-4OH-,该腐蚀为“吸氧腐蚀”,总反应为:2Fe+O2+2H2O=2Fe(OH)2,Fe(OH)2又立即被氧化:4Fe(OH)2+2H2O+O2=4Fe(OH)3,Fe(OH)3分解转化为铁锈.若水膜在酸度较高的环境下,正极反应为:2H++2e-H2,该腐蚀称为“析氢腐蚀”.
(3)金属的防护
金属处于干燥的环境下,或在金属表面刷油漆、陶瓷、沥青、塑料及电镀一层耐腐蚀性强的金属防护层,破坏原电池形成的条件.从而达到对金属的防护;也可以利用原电池原理,采用牺牲阳极保护法.也可以利用电解原理,采用外加电流阴极保护法.
第2章、化学反应的方向、限度与速率(1、2节)
原电池的反应都是自发进行的反应,电解池的反应很多不是自发进行的,如何判定反应是否自发进行呢?
一、化学反应的方向
1、反应焓变与反应方向
放热反应多数能自发进行,即ΔH<0的反应大多能自发进行.有些吸热反应也能自发进行.如NH4HCO3与CH3COOH的反应.有些吸热反应室温下不能进行,但在较高温度下能自发进行,如CaCO3高温下分解生成CaO、CO2.
2、反应熵变与反应方向
熵是描述体系混乱度的概念,熵值越大,体系混乱度越大.反应的熵变ΔS为反应产物总熵与反应物总熵之差.产生气体的反应为熵增加反应,熵增加有利于反应的自发进行.
3、焓变与熵变对反应方向的共同影响
ΔH-TΔS<0反应能自发进行.
ΔH-TΔS=0反应达到平衡状态.
ΔH-TΔS>0反应不能自发进行.
在温度、压强一定的条件下,自发反应总是向ΔH-TΔS<0的方向进行,直至平衡状态.
二、化学反应的限度
1、化学平衡常数
(1)对达到平衡的可逆反应,生成物浓度的系数次方的乘积与反应物浓度的系数次方的乘积之比为一常数,该常数称为化学平衡常数,用符号K表示 .
(2)平衡常数K的大小反映了化学反应可能进行的程度(即反应限度),平衡常数越大,说明反应可以进行得越完全.
(3)平衡常数表达式与化学方程式的书写方式有关.对于给定的可逆反应,正逆反应的平衡常数互为倒数.
(4)借助平衡常数,可以判断反应是否到平衡状态:当反应的浓度商Qc与平衡常数Kc相等时,说明反应达到平衡状态.
2、反应的平衡转化率
(1)平衡转化率是用转化的反应物的浓度与该反应物初始浓度的比值来表示.如反应物A的平衡转化率的表达式为:
α(A)=
(2)平衡正向移动不一定使反应物的平衡转化率提高.提高一种反应物的浓度,可使另一反应物的平衡转化率提高.
(3)平衡常数与反应物的平衡转化率之间可以相互计算.
3、反应条件对化学平衡的影响
(1)温度的影响
升高温度使化学平衡向吸热方向移动;降低温度使化学平衡向放热方向移动.温度对化学平衡的影响是通过改变平衡常数实现的.
(2)浓度的影响
增大生成物浓度或减小反应物浓度,平衡向逆反应方向移动;增大反应物浓度或减小生成物浓度,平衡向正反应方向移动.
温度一定时,改变浓度能引起平衡移动,但平衡常数不变.化工生产中,常通过增加某一价廉易得的反应物浓度,来提高另一昂贵的反应物的转化率.
(3)压强的影响
ΔVg=0的反应,改变压强,化学平衡状态不变.
ΔVg≠0的反应,增大压强,化学平衡向气态物质体积减小的方向移动.
(4)勒夏特列原理
由温度、浓度、压强对平衡移动的影响可得出勒夏特列原理:如果改变影响平衡的一个条件(浓度、压强、温度等)平衡向能够减弱这种改变的方向移动.
【例题分析】
例1、已知下列热化学方程式:
(1)Fe2O3(s)+3CO(g)=2Fe(s)+3CO2(g) ΔH=-25kJ/mol
(2)3Fe2O3(s)+CO(g)=2Fe3O4(s)+CO2(g) ΔH=-47kJ/mol
(3)Fe3O4(s)+CO(g)=3FeO(s)+CO2(g) ΔH=+19kJ/mol
写出FeO(s)被CO还原成Fe和CO2的热化学方程式 .
解析:依据盖斯定律:化学反应不管是一步完成还是分几步完成,其反应热是相同的.我们可从题目中所给的有关方程式进行分析:从方程式(3)与方程式(1)可以看出有我们需要的有关物质,但方程式(3)必须通过方程式(2)有关物质才能和方程式(1)结合在一起.
将方程式(3)×2+方程式(2);可表示为(3)×2+(2)
得:2Fe3O4(s)+2CO(g)+3Fe2O3(s)+CO(g)=6FeO(s)+2CO2(g)+2Fe3O4(s)+CO2(g);ΔH=+19kJ/mol×2+(-47kJ/mol)
整理得方程式(4):Fe2O3(s)+CO(g)=2FeO(s)+CO2(g);ΔH=-3kJ/mol
将(1)-(4)得2CO(g)=2Fe(s)+3CO2(g)-2FeO(s)-CO2(g);ΔH=-25kJ/mol-(-3kJ/mol)
整理得:FeO(s)+CO(s)=Fe(s)+CO2(g);ΔH=-11kJ/mol
答案:FeO(s)+CO(s)=Fe(s)+CO2(g);ΔH=-11kJ/mol
例2、熔融盐燃料电池具有高的发电效率,因而得到重视,可用Li2CO3和Na2CO3的熔融盐混合物作用电解质,CO为阳极燃气,空气与CO2的混合气体为阴极助燃气,制得在650℃下工作的燃料电池,完成有关的电池反应式:
阳极反应式:2CO+2CO32-4CO2+4e-
阴极反应式: ;
总电池反应式: .
解析: 作为燃料电池,总的效果就是把燃料进行燃烧.本题中CO为还原剂,空气中O2为氧化剂,电池总反应式为:2CO+O2=2CO2.用总反应式减去电池负极(即题目指的阳极)反应式,就可得到电池正极(即题目指的阴极)反应式:O2+2CO2+4e-=2CO32- .
答案:O2+2CO2+4e-=2CO32-;2CO+O2=2CO2
例3、下列有关反应的方向说法中正确的是( )
A、放热的自发过程都是熵值减小的过程.
B、吸热的自发过程常常是熵值增加的过程.
C、水自发地从高处流向低处,是趋向能量最低状态的倾向.
D、只根据焓变来判断化学反应的方向是可以的.
解析:放热的自发过程可能使熵值减小、增加或无明显变化,故A错误.只根据焓变来判断反应进行的方向是片面的,要用能量判据、熵判据组成的复合判据来判断,D错误.水自发地从高处流向低处,是趋向能量最低状态的倾向是正确的.有些吸热反应也可以自发进行.如在25℃和1.01×105Pa时,2N2O5(g)=4NO2(g)+O2(g);ΔH=56.7kJ/mol,(NH4)2CO3(s)=NH4HCO3(s)+NH3(g);ΔH=74.9kJ/mol,上述两个反应都是吸热反应,又都是熵增的反应,所以B也正确.
答案:BC.
化学反应原理复习(二)
【知识讲解】
第2章、第3、4节
一、化学反应的速率
1、化学反应是怎样进行的
(1)基元反应:能够一步完成的反应称为基元反应,大多数化学反应都是分几步完成的.
(2)反应历程:平时写的化学方程式是由几个基元反应组成的总反应.总反应中用基元反应构成的反应序列称为反应历程,又称反应机理.
(3)不同反应的反应历程不同.同一反应在不同条件下的反应历程也可能不同,反应历程的差别又造成了反应速率的不同.
2、化学反应速率
(1)概念:
单位时间内反应物的减小量或生成物的增加量可以表示反应的快慢,即反应的速率,用符号v表示.
(2)表达式:
(3)特点
对某一具体反应,用不同物质表示化学反应速率时所得的数值可能不同,但各物质表示的化学反应速率之比等于化学方程式中各物质的系数之比.
3、浓度对反应速率的影响
(1)反应速率常数(K)
反应速率常数(K)表示单位浓度下的化学反应速率,通常,反应速率常数越大,反应进行得越快.反应速率常数与浓度无关,受温度、催化剂、固体表面性质等因素的影响.
(2)浓度对反应速率的影响
增大反应物浓度,正反应速率增大,减小反应物浓度,正反应速率减小.
增大生成物浓度,逆反应速率增大,减小生成物浓度,逆反应速率减小.
(3)压强对反应速率的影响
压强只影响气体,对只涉及固体、液体的反应,压强的改变对反应速率几乎无影响.
压强对反应速率的影响,实际上是浓度对反应速率的影响,因为压强的改变是通过改变容器容积引起的.压缩容器容积,气体压强增大,气体物质的浓度都增大,正、逆反应速率都增加;增大容器容积,气体压强减小;气体物质的浓度都减小,正、逆反应速率都减小.
4、温度对化学反应速率的影响
(1)经验公式
阿伦尼乌斯总结出了反应速率常数与温度之间关系的经验公式:
式中A为比例系数,e为自然对数的底,R为摩尔气体常数量,Ea为活化能.
由公式知,当Ea>0时,升高温度,反应速率常数增大,化学反应速率也随之增大.可知,温度对化学反应速率的影响与活化能有关.
(2)活化能Ea.
活化能Ea是活化分子的平均能量与反应物分子平均能量之差.不同反应的活化能不同,有的相差很大.活化能 Ea值越大,改变温度对反应速率的影响越大.
5、催化剂对化学反应速率的影响
(1)催化剂对化学反应速率影响的规律:
催化剂大多能加快反应速率,原因是催化剂能通过参加反应,改变反应历程,降低反应的活化能来有效提高反应速率.
(2)催化剂的特点:
催化剂能加快反应速率而在反应前后本身的质量和化学性质不变.
催化剂具有选择性.
催化剂不能改变化学反应的平衡常数,不引起化学平衡的移动,不能改变平衡转化率.
二、化学反应条件的优化——工业合成氨
1、合成氨反应的限度
合成氨反应是一个放热反应,同时也是气体物质的量减小的熵减反应,故降低温度、增大压强将有利于化学平衡向生成氨的方向移动.
2、合成氨反应的速率
(1)高压既有利于平衡向生成氨的方向移动,又使反应速率加快,但高压对设备的要求也高,故压强不能特别大.
(2)反应过程中将氨从混合气中分离出去,能保持较高的反应速率.
(3)温度越高,反应速率进行得越快,但温度过高,平衡向氨分解的方向移动,不利于氨的合成.
(4)加入催化剂能大幅度加快反应速率.
3、合成氨的适宜条件
在合成氨生产中,达到高转化率与高反应速率所需要的条件有时是矛盾的,故应该寻找以较高反应速率并获得适当平衡转化率的反应条件:一般用铁做催化剂 ,制反应温度在700K左右,压强范围大致在1×107Pa~1×108Pa 之间,并采用N2与H2分压为1∶2.8的投料比.
第3章、物质在水溶液中的行为
一、水溶液
1、水的电离
H2OH++OH-
水的离子积常数KW=[H+][OH-],25℃时,KW=1.0×10-14mol2·L-2.温度升高,有利于水的电离, KW增大.
2、溶液的酸碱度
室温下,中性溶液:[H+]=[OH-]=1.0×10-7mol·L-1,pH=7
酸性溶液:[H+]>[OH-],[ H+]>1.0×10-7mol·L-1,pH<7
碱性溶液:[H+]<[OH-],[OH-]>1.0×10-7mol·L-1,pH>7
3、电解质在水溶液中的存在形态
(1)强电解质
强电解质是在稀的水溶液中完全电离的电解质,强电解质在溶液中以离子形式存在,主要包括强酸、强碱和绝大多数盐,书写电离方程式时用“=”表示.
(2)弱电解质
在水溶液中部分电离的电解质,在水溶液中主要以分子形态存在,少部分以离子形态存在,存在电离平衡,主要包括弱酸、弱碱、水及极少数盐,书写电离方程式时用“ ”表示.
二、弱电解质的电离及盐类水解
1、弱电解质的电离平衡.
(1)电离平衡常数
在一定条件下达到电离平衡时,弱电解质电离形成的各种离子浓度的乘积与溶液中未电离的分子浓度之比为一常数,叫电离平衡常数.
弱酸的电离平衡常数越大,达到电离平衡时,电离出的H+越多.多元弱酸分步电离,且每步电离都有各自的电离平衡常数,以第一步电离为主.
(2)影响电离平衡的因素,以CH3COOHCH3COO-+H+为例.
加水、加冰醋酸,加碱、升温,使CH3COOH的电离平衡正向移动,加入CH3COONa固体,加入浓盐酸,降温使CH3COOH电离平衡逆向移动.
2、盐类水解
(1)水解实质
盐溶于水后电离出的离子与水电离的H+或OH-结合生成弱酸或弱碱,从而打破水的电离平衡,使水继续电离,称为盐类水解.
(2)水解类型及规律
①强酸弱碱盐水解显酸性.
NH4Cl+H2ONH3·H2O+HCl
②强碱弱酸盐水解显碱性.
CH3COONa+H2OCH3COOH+NaOH
③强酸强碱盐不水解.
④弱酸弱碱盐双水解.
Al2S3+6H2O=2Al(OH)3+3H2S
(3)水解平衡的移动
加热、加水可以促进盐的水解,加入酸或碱能抑止盐的水解,另外,弱酸根阴离子与弱碱阳离子相混合时相互促进水解.
三、沉淀溶解平衡
1、沉淀溶解平衡与溶度积
(1)概念
当固体溶于水时,固体溶于水的速率和离子结合为固体的速率相等时,固体的溶解与沉淀的生成达到平衡状态,称为沉淀溶解平衡.其平衡常数叫做溶度积常数,简称溶度积,用Ksp表示.
PbI2(s)Pb2+(aq)+2I-(aq)
Ksp=[Pb2+][I-]2=7.1×10-9mol3·L-3
(2)溶度积Ksp的特点
Ksp只与难溶电解质的性质和温度有关,与沉淀的量无关,且溶液中离子浓度的变化能引起平衡移动,但并不改变溶度积.
Ksp反映了难溶电解质在水中的溶解能力.
2、沉淀溶解平衡的应用
(1)沉淀的溶解与生成
根据浓度商Qc与溶度积Ksp的大小比较,规则如下:
Qc=Ksp时,处于沉淀溶解平衡状态.
Qc>Ksp时,溶液中的离子结合为沉淀至平衡.
Qc<Ksp时,体系中若有足量固体,固体溶解至平衡.
(2)沉淀的转化
根据溶度积的大小,可以将溶度积大的沉淀可转化为溶度积更小的沉淀,这叫做沉淀的转化.沉淀转化实质为沉淀溶解平衡的移动.
四、离子反应
1、离子反应发生的条件
(1)生成沉淀
既有溶液中的离子直接结合为沉淀,又有沉淀的转化.
(2)生成弱电解质
主要是H+与弱酸根生成弱酸,或OH-与弱碱阳离子生成弱碱,或H+与OH-生成H2O.
(3)生成气体
生成弱酸时,很多弱酸能分解生成气体.
(4)发生氧化还原反应
强氧化性的离子与强还原性离子易发生氧化还原反应,且大多在酸性条件下发生.
2、离子反应能否进行的理论判据
(1)根据焓变与熵变判据
对ΔH-TΔS<0的离子反应,室温下都能自发进行.
(2)根据平衡常数判据
离子反应的平衡常数很大时,表明反应的趋势很大.
3、离子反应的应用
(1)判断溶液中离子能否大量共存
相互间能发生反应的离子不能大量共存,注意题目中的隐含条件.
(2)用于物质的定性检验
根据离子的特性反应,主要是沉淀的颜色或气体的生成,定性检验特征性离子.
(3)用于离子的定量计算
常见的有酸碱中和滴定法、氧化还原滴定法.
(4)生活中常见的离子反应.
硬水的形成及软化涉及到的离子反应较多,主要有:
Ca2+、Mg2+的形成.
CaCO3+CO2+H2O=Ca2++2HCO3-
MgCO3+CO2+H2O=Mg2++2HCO3-
加热煮沸法降低水的硬度:
Ca2++2HCO3-CaCO3+CO2+H2O
Mg2++2HCO3-MgCO3+CO2+H2O
关键词:化学反应工程;教学改革;教材;实施方案
《化学反应工程》课程是化工类及相关专业的核心课程之一,属于本专业重要的专业基础课和必修课,在化工类学生的培养过程中起着举足轻重的作用。化学反应工程是一门研究与化学反应工程相关问题的一门科学技术,是从上世纪30年代初萌生到50年代末形成的一门由过程控制、传递工程、物理化学、化工热力学、化工工艺学、催化剂等相关学科互相交叉互相渗透而演变成的一门边缘学科[1]。通过近几年的教学经验和调查研究发现,学生普遍认为化学反应工程是大学课程中最难学的基础课程之一,学习过程中发现理论计算公式复杂,反应器种类繁多,课程学习结束后感到一头雾水,抓不住重点。因此,面对这样一门课程,如何进行教学,让学生理解起来更加形象生动,从更本上改变化学反应工程的教学现状是我们目前的重要任务。本文结合不同种类高等学校选用教材的特点和差异,并根据我校化工专业的特色,提出了《化学反应工程》课程教学的侧重点,从多方面对本课程的教学提出了改革实施方案。
1《化学反应工程》教学在化工专业中的作用
化学反应工程的主要任务是研究化工生产过程中反应器内的反应规律和传递现象,使化学反应实现工业化生产的一门技术科学,是提高化工生产技术所必需的科学技术理论。化学反应工程在化学化工领域中起着举足轻重的作用,目前各种化学品的生产和应用无不借助于化学反应工程相关的理论知识。在20世纪40年代,一个化学反应过程的技术开发到真正的工业生产大概需要十年以上的时间,而现在只需要三到五年。此外,随着计算机技术的快速发展,中试试验的规模不断缩小,试验的次数也不断减少,大大加快了化工厂建设的步伐,降低了投资建设的成本[2]。因此,作为一门理论教学课程,将化学反应工程这门课程作为化工专业方向的重点课程进行建设,对于高等学校教学改革的促进、本科教学质量的提高、优秀化工专业人才的培养具有十分重要的意义。济南大学作为一所省部共建的大学,化学工程与工艺专业一直是本学校的特色学科,学校对化工类学生的培养目标一直是培养应用型高技术的人才,每年为我国的精细化工和石油化工行业输送大约240名高水平人才,对精细化工和石油化工行业的发展起到重要的作用。为此在化学反应工程教学过程中,我们紧密结合我校的特点和化工实际生产的需要,着重提升学生的反应工程知识储备,培养学生分析解决实际工程问题的能力,并在教学过程中不断地进行教学改革和实践,把课程、教材的理论研究和教学方法相结合,不断提升《化学反应工程》的教学效果。
2不同类型高校选用教材的特点和差异
直到20世纪70年代,化学反应工程的相关研究成果才开始被大量地介绍到国内,其中华东理工大学的陈敏恒教授,天津大学的李绍芬教授,浙江大学的陈甘棠教授,四川大学的王建华教授等是国内最早从事反应工程教学的学者。到了80年代以后,国内从事化学反应工程学科教学研究的队伍迅速壮大,并且化学反应工程的研究逐渐渗透到各种化工领域,与世界研究水平之间的差距也不断缩小,不同版本的教科书和各种各样的专著也相继出版。反应工程已经成为我国化工类专业学生的一门非常重要的专业课程。目前国内已有120所大学和科研单位培养化工类相关专业的人才,例如清华大学、天津大学、华东理工大学、北京化工大学、中国石油大学、南京工业大学、浙江大学、大连理工大学、四川大学、华南理工大学和济南大学等。目前化学反应工程学科正在蓬勃发展,由于国内高校地区和专业特色的不同,不同高校在化学反应工程教材选择上也存在差异,各有各的特点。作者就不同高校所使用的《化学反应工程》教材进行了汇总和分析。首先介绍一下陈甘棠教授主编的《化学反应工程》(第三版),这本教材是国内许多化工类高校选用的主要教材之一,随着我国在化学反应工程这一重要学科的教育方面日渐普及,该部教材自1981年第一版问世以来,已经出版到了第三版,受到广大化工类专业师生的好评[3]。该部教材的特点是着重基础,本书共分为十章,分别介绍了均相反应过程,包括均相反应动力学基础、均相反应器、非理想流动:非均相反应过程,包括气—固相催化反应过程、非催化两流体相反应过程、固定床反应器、流化床反应器;聚合反应过程,包括聚合过程的化学与动力学基础;生化反应过程,包括生化动力学基础、生化反应器。该部教材注重反应工程研究方法的介绍,在不同的章节内容中论述了反应工程学的发展方向,有助于读者进一步深入研究。朱炳辰老师主编的《化学反应工程》也受到国内很多工科类高校化工专业老师和学生的青睐。本部教材的第一版是由化学工业出版社于1993年出版,截至目前本部教材已经出版到第四版,其中第三版累计发行量高达32000册。《化学反应工程》第四版主要吸收了一些关于现代化学反应工程发展方向方面的知识,本部教材的主线是围绕化学反应与动量、质量、热量传递交互作用的共性归纳综合的宏观反应过程,以及如何解决反应装置的工程分析和设计。该书对近年来出现的化学反应新概念、新理论和新方法做了大量阐述。另外,对于国内一些偏工科的化工类高等院校,选用的教材大多数以郭锴老师主编的《化学反应工程》为主,本部教材的主要内容包括:均相单一反应动力学和理想反应器、复合反应和反应器选型、非理想流动反应器、气固相催化反应本征动力学、气固相催化反应宏观动力学、气固相催化反应固定床反应器、气固相催化反应流化床反应器、气液相反应过程与反应器、反应器的热稳定性和参数灵敏性。本部教材的特点是主要突出了该门课程的重点和难点,删除了一些与教学大纲联系不是十分密切相关的内容,并着重讲解解决化学工程问题的基本方法。除此之外,罗康碧老师主编的《化学反应工程》教材结合了理科和工科的综合优势,吸收了国内外相关教材的许多内容和好的经验,增添了一些反应工程研究方面的最新成果。另外,本部教材在贯彻“少而精”的原则上更注意删繁就简,将重点放在化工专业领域内共性的基本问题上,并且同时体现了其教学性。本部教材先重点阐述基本概念和基本原理,然后结合实际生产,详细论述各种常用反应器的设计方法,并列出详细的例题和课后习题,用于帮助学生利用所学到的反应工程原理去分析和解决实际应用问题。近年来,梁斌等老师主编的《化学反应工程》第二版也受到国内许多化工类高校老师和学生的欢迎。在本部教材中,主要内容是以《化学反应工程》、《反应器理论分析》及国内外相关优秀教材为基础,致力于培养学生的分析问题能力和提高学生的工程实际知识储备,减少了教材内容在模型分析上的过程描述,加强学生在建立模型方面的训练。另外,本部教材还增加了工业应用背景的实例分析和课后习题,在分析解答这些习题的过程中让学生充分掌握反应工程的基本原理和相关知识,使教学内容尽量与科学研究和工程实践同步。
3我校化工专业的特点和教学侧重点
济南大学的化学工程与工艺专业属于理论性和应用性兼顾的一门特色化工学科,本专业始建于1992年,前身为山东建材学院精细化工专业,1993年招生,是济南大学重点学科的重要组成部分,2007年被学校授予校级特色专业,2012年成为山东省品牌(特色)专业,现为山东省氟化学化工材料重点实验室依托专业之一。其中化学反应工程这门课是本专业重要的专业基础课和必修课,另外,化学反应工程课程的理论教学是本专业本科教学的重要组成部分,起着理论指导和基础知识培养的作用。另外,从学校每年安排的工程实习学时就可以看出,学校对学生的动手能力和实践能力提出了更高的要求。例如学校每年组织化学工程与工艺专业大三学生去山东金城医药化工有限公司进行生产实习,主要参观和学习2-甲氧羰基甲氧亚胺基-4-氯-3-氧代丁酸生产车间的反应器设计和工艺装置流程图。通过调研每年的学生生产实习效果发现:学生在学习完实际工业生产装置后,对课本上的基本概念和原理理解的更加透彻。根据我校化工专业的特点,在《化学反应工程》的课程教学上,我们选择的教材是郭锴老师主编的《化学反应工程》第二版。在课堂教学过程中我们的教学目标为:通过对反应工程理论的学习,能够运用化学反应工程的理论方法建立数学模型,优化设计反应器、或者改善化学反应场所、改进现有的化工生产工艺;进一步提高学生的理论联系实际的能力,培养学生判断和解决问题的能力,使学生学会研究的方法,为进入研究生学习打下良好的基础;掌握由化学动力学特性建立动力学方程、建立数学模型、优化和设计反应器及改进化工工艺的理论;运用化学反应工程的知识,能够进行基本化工反应装置反应器的设计。
4拟采用或已经实施的教学方法
化学反应工程具有跨接多种学科的特点,结合本校化学工程与工艺专业的特色和优势,笔者从以下方面进行了教学方法的改进。(1)结合我校特点济南大学在医药中间体工业化生产、氟化学材料合成、精细化学品制备和环境催化方向具有鲜明的特色和优势,已经发展成为以新产品开发、新工艺设计、新技术应用为特色的精细化工和化工领域高级人才培养、科学研究和新技术开发的重要基地之一,并多次获得国家科技进步奖和发明奖。因此,在本科教学过程中,要结合我校化工专业的特色,着重讲解气固相催化反应和气液相反应过程,并要求学生能够运用化学反应工程的知识进行基本化工反应装置或反应器的设计,进一步提高学生的理论联系实际的能力,培养学生判断和解决问题的能力,为社会培养优秀的化学化工(医药中间体、氟化学材料和精细化学品)相关人才。(2)阐述方法和教学方式的改进目前全国高等学校的教学方式还是以灌输式教学为主,老师主动讲,学生盲目听,导致课堂利用率低,学生学习效率不高。随着计算机技术的不断发展,多媒体技术在高校已经普遍使用,虽然这样可以改善课堂教学方式,丰富课堂教学内容,提高学生的学习兴趣,但是多媒体技术的使用导致每节课的授课内容大大增加,学生并不能高效率的吸收每节课中所有的知识点,导致在学期末时学生对这门课的了解程度并不高[4]。例如,我在第一次讲授《化学反应工程》这门课程时,由于讲课经验和技巧都很欠缺,所以在整个课堂教学过程中完全按照多媒体上的内容进行阅读,这样生硬的填鸭式的教学模式,导致整个课堂教学效果很差。因此这样的灌输式教学模式会导致学生盲目听从,其自主性和能动性大大缺失,所以在以后的教学过程中,我们要“授之以渔”,而非“授之以鱼”,这需要我们在教学方式上加以引导[5]。笔者认为改变这种填鸭式的教学模式,主要的突破口就是让学生参与到课堂教学过程中,充分调动学生的积极性并培养学生对本门课的学习兴趣。针对这一措施,笔者在教学过程中进行了一些探索和改进,取得了很好的效果。具体探索过程如下:在阐述一些基本概念和原理的时候,可以在课前让学生充分的查阅资料,然后在课堂上让学生进行讲解,在这过程中并进行充分讨论,最后老师做总结,并纠正学生的错误观点。这种“查阅资料-主题讨论-问题反馈”的教学模式,能够让学生参与到课堂教学过程中,让学生做课堂真正的主人,提高学生的主观能动性,改变填鸭式教学的不足。(3)注重理论和实际的结合在高校的课堂教学过程中,教科书是一种不可或缺的教学工具,但也不能作为唯一的使用工具,教科书在本科教学过程中只能作为一种辅助的工具。这样就要求老师在教学过程中要灵活应用教材,既不能完全拘泥于教材,也不能完全脱离教材,在讲清楚基本原理和基本概念的基础上,注重理论和实际相结合。在每一章的讲述过程中,把每一个知识点都与实际工业应用相互关联,并阐明其主要的热量传递、动量传递、质量传递及化学反应在实际过程中是如何应用的,以加深学生对每一个知识点的理解。另外,还要注意结合科研成果,对学科前沿知识进行讲解,让学生了解目前化学反应工程的研究动向,例如在讲解气固相催化反应本征动力学时,可以引入最新发表的经典文献,通过对文献的讲解,加深学生对气固相反应本征动力学的理解,知道如何来研究一个催化剂的本征反应活性。通过这种理论与实际相结合的方法,可以大大提高学生在课堂上的学习效率。在对《化学反应工程》课程教学方法不断改进后,获得了良好的课堂效果,这不仅对教师的教学能力是一种转变和提高,对化工类学生思维和能力的培养也具有重要的意义。
参考文献
[1]金涌,程易,颜彬行.化学反应工程的前世、今生和未来[J].化工学报,2013,64(1):34-43.
[2]王安杰,周裕之,赵蓓.化学反应工程[M].北京:化学工业出版社,2005:1.
[3]陈甘棠.化学反应工程[M].北京:化学工业出版社,2011:1-3.
[4]吴元欣,朱圣东,吴迎.以多尺度理念构建新的化学反应工程体系[J].武汉工程大学学报,2011,33(1):2-3.
知识目标
使学生建立化学平衡的观点;理解化学平衡的特征;理解浓度、压强和温度等条件对化学平衡的影响;理解平衡移动的原理。
能力目标
培养学生对知识的理解能力,通过对变化规律本质的认识,培养学生分析、推理、归纳、/Article/Index.asp''''>总结的能力。
情感目标
培养学生实事求是的科学态度及从微观到宏观,从现象到本质的科学的研究方法。
教学建议
“影响化学平衡的条件”教材分析
本节教材在本章中起承上启下的作用。在影响化学反应速率的条件和化学平衡等知识的基础上进行本节的教学,系统性较好,有利于启发学生思考,便于学生接受。
本节重点:浓度、压强和温度对化学平衡的影响。难点:平衡移动原理的应用。
因浓度、温度等外界条件对化学反应速率的影响等内容,不仅在知识上为本节的教学奠定了基础,而且其探讨问题的思路和方法,也可迁移用来指导学生进行本书的学习。所以本节教材在前言中就明确指出,当浓度、温度等外界条件改变时,化学平衡就会发生移动。同时指出,研究化学平衡的目的,并不是为了保持平衡状态不变,而是为了利用外界条件的改变,使化学平衡向有利的方向移动,如向提高反应物转化率的方向移动,由此说明学习本节的实际意义。
教材重视由实验引入教学,通过对实验现象的观察和分析,引导学生得出增大反应物的浓度或减小生成物的浓度都可以使化学平衡向正反应方向移动的结论。反之,则化学平衡向逆反应方向移动。并在温度对化学平衡影响后通过对实验现象的分析,归纳出平衡移动原理。
压强对化学平衡的影响,教材中采用对合成氨反应实验数据的分析,引导学生得出压强对化学平衡移动的影响。
教材在充分肯定平衡移动原理的同时,也指出该原理的局限性,以教育学生在应用原理时,应注意原理的适用范围,对学生进行科学态度的熏陶和科学方法的训练。
“影响化学平衡的条件”教学建议
本节教学可从演示实验入手,采用边演示实验边讲解的方法,引导学生认真观察实验现象,启发学生充分讨论,由师生共同归纳出平衡移动原理。
新课的引入:
①复习上一节讲过的“化学平衡状态”的概念,强调化学平衡状态是建立在一定条件基础上的,当浓度、压强、温度等反应条件改变时,原平衡的反应混合物里各组分的浓度也会随着改变,从而达到新的平衡状态。
②给出“化学平衡的移动”概念,强调化学平衡的移动是可逆反应中旧平衡的破坏、新平衡的建立的过程,在这个过程中,反应混合物中各组分的浓度一直在变化着。
③指出学习和研究化学平衡的实际意义正是利用外界条件的改变,使旧的化学平衡破坏并建立新的较理想的化学平衡。
具体的教学建议如下:
1.重点讲解浓度对化学平衡的影响
(1)观察上一节教材中的表3-l,对比第1和第4组数据,让学生思考:可从中得出什么结论?
(2)从演示实验或学生实验入手,通过对实验现象的观察和分析,引导学生得出结论。这里应明确,溶液颜色的深浅变化,实质是浓度的增大与减小而造成的。
(3)引导学生运用浓度对化学反应速率的影响展开讨论,说明浓度的改变为什么会使化学平衡发生移动。讨论时,应研究一个具体的可逆反应。讨论后,应明确浓度的改变使正、逆反应速率不再相等,使化学平衡发生移动;增加某一反应物的浓度,会使反应混合物中各组分的浓度进行调整;新平衡建立时,生成物的浓度要较原平衡时增加,该反应物的浓度较刚增加时减小,但较原平衡时增加。
2.压强和温度对化学平衡的影响:应引导学生分析实验数据,并从中得出正确的结论。温度对化学平衡影响也是从实验入手。要引导学生通过观察实验现象,归纳出压强和温度的改变对化学平衡的影响。
3.勒夏特列原理的教学:在明确了浓度、压强、温度的改变对化学平衡的影响以后,可采用归纳法,突破对勒夏特列原理表述中“减弱这种改变”含义理解上的困难:
其他几个问题:
1.关于催化剂问题,应明确:①由于催化剂能同等程度增加正、逆反应速率,因此它对化学平衡的移动没有影响;②使用催化剂,能改变达到平衡所需要的时间。
2.关于化学平衡移动原理的应用范围和局限性,应明确:①平衡移动原理对所有的动态平衡都适用,为后面将要学习的电离平衡、水解平衡作铺垫;②平衡移动原理能用来判断平衡移动的方向,但不能用来判断建立新平衡所需要的时间。教育学生在应用原理时应注意原理的适用范围,对学生进行科学态度的熏陶和科学方法的训练。
3.对本节设置的讨论题,可在学生思考的基础上,提问学生回答,这是对本节教学内容较全面的复习和巩固。
4.对于本节编入的资料,可结合勒夏特列原理的教学,让学生当堂阅读,以了解勒夏特列的研究成果和对人类的贡献;可回顾第二节“工程师的设想”的讨论,明确:欲减少炼铁高炉气中CO的含量,这属于化学平衡的移动问题,而利用增加高炉高度以增加CO和铁矿石的接触时间的做法并未改变可逆反应的条件,因而是徒劳的。
化学平衡教材分析
本节教材分为两部分。第一部分为化学平衡的建立,这是本章教学的重点。第二部分为化学平衡常数,在最新的高中化学教学大纲(2002年版)中,该部分没有要求。
化学平衡观点的建立是很重要的,也具有一定的难度。教材注意精心设置知识台阶,采用图画和联想等方法,帮助学生建立化学平衡的观点。
教材以合成氨工业为例,指出在化学研究和化工生产中,只考虑化学反应速率是不够的,还需要考虑化学反应进行的程度,即化学平衡。建立化学平衡观点的关键,是帮助学生理解在一定条件下的可逆反应中,正、逆反应速率会趋于相等。教材以蔗糖溶解为例指出在饱和溶液中,当蔗糖溶解的速率与结晶速率相等时,处于溶解平衡状态,并进而以()的可逆反应为例,说明在上述可逆反应中,当正反应速率与逆反应速率相等时,就处于化学平衡状态。这样层层引导,通过图画等帮助学生联想,借以在一定程度上突破化学平衡状态建立的教学难点。
教材接着通过对19世纪后期,在英国曾出现的用建造高大高炉的方法来减少高炉气中含量的错误做法展开讨论。通过对该史实的讨论,使学生对化学平衡的建立和特征有更深刻的理解,培养学生分析实际问题的能力,并训练学生的科学方法。
化学平衡教学建议
教学中应注意精心设置知识台阶,充分利用教材的章图、本节内的图画等启发学生联想,借以建立化学平衡的观点。
教学可采取以下步骤:
1.以合成氨工业为例,引入新课,明确化学平衡研究的课题。
(1)复习提问,工业上合成氨的化学方程式
(2)明确合成氨的反应是一个可逆反应,并提问可逆反应的定义,强调“二同”——即正反应、逆反应在同一条件下,同时进行;强调可逆反应不能进行到底,所以对任一可逆反应来讲,都有一个化学反应进行的程度问题。
(3)由以上得出合成氨工业中要考虑的两个问题,一是化学反应速率问题,即如何在单位时间里提高合成氨的产量;一是如何使和尽可能多地转变为,即可逆反应进行的程度以及各种条件对反应进行程度的影响——化学平衡研究的问题。
2.从具体的化学反应入手,层层引导,建立化学平衡的观点。
如蔗糖饱和溶液中,蔗糖溶解的速率与结晶的速率相等时,处于溶解平衡状态。
又如,说明一定温度下,正、逆反应速率相等时,可逆反应就处于化学平衡状态,反应无论进行多长时间,反应混合物中各气体的浓度都不再发生变化。
通过向学生提出问题:达到化学平衡状态时有何特征?让学生讨论。最后得出:化学平衡状态是指在一定条件下的可逆反应里,正反应和逆反应的速率相等,反应混合物中各组分的浓度保持不变的状态(此时化学反应进行到最大限度)。并指出某一化学平衡状态是在一定条件下建立的。
3.为进一步深刻理解化学平衡的建立和特征,可以书中的史实为例引导学生讨论分析。得出在一定条件下当达到化学平衡状态时,增加高炉高度只是增加了CO和铁矿石的接触时间,并没有改变化学平衡建立时的条件,所以平衡状态不变,即CO的浓度是相同的。关于CO浓度的变化是一个化学平衡移动的问题,将在下一节教学中主要讨论。从而使学生明白本节的讨论题的涵义。
教学设计示例
第一课时化学平衡的概念与计算
知识目标:掌握化学平衡的概念极其特点;掌握化学平衡的有关计算。
能力目标:培养学生分析、归纳,语言表达与综合计算能力。
情感目标:结合化学平衡是相对的、有条件的、动态的等特点对学生进行辩证唯物主义教育;培养学生严谨的学习态度和思维习惯。
教学过程设计
【复习提问】什么是可逆反应?在一定条件下2molSO2与1molO2反应能否得到2molSO3?
【引入】得不到2molSO3,能得到多少摩SO3?也就是说反应到底进行到什么程度?这就是化学平衡所研究的问题。
思考并作答:在相同条件下既能向正反应方向进行又能向逆反应方向进行的反应叫做可逆反应。SO2与O2的反应为可逆反应不能进行完全,因此得不到2molSO3。
提出反应程度的问题,引入化学平衡的概念。
结合所学过的速率、浓度知识有助于理解抽象的化学平衡的概念的实质。
【分析】在一定条件下,2molSO2与1molO2反应体系中各组分速率与浓度的变化并画图。
回忆,思考并作答。
【板书】一、化学平衡状态
1.定义:见课本P38页
【分析】引导学生从化学平衡研究的范围,达到平衡的原因与结果进行分析、归纳。
研究对象:可逆反应
平衡前提:温度、压强、浓度一定
原因:v正=v逆(同一种物质)
结果:各组成成分的质量分数保持不变。
准确掌握化学平衡的概念,弄清概念的内涵和外延。
【提问】化学平衡有什么特点?
【引导】引导学生讨论并和学生一起小结。
讨论并小结。
平衡特点:
等(正逆反应速率相等)
定(浓度与质量分数恒定)
动(动态平衡)
变(条件改变,平衡发生变化)
培养学生分析问题与解决问题的能力,并进行辩证唯物主义观点的教育。加深对平衡概念的理解。
讨论题:在一定温度下,反应达平衡的标志是()。
(A)混合气颜色不随时间的变化
(B)数值上v(NO2生成)=2v(N2O4消耗)
(C)单位时间内反应物减少的分子数等于生成物增加的分子数
(D)压强不随时间的变化而变化
(E)混合气的平均分子量不变
讨论结果:因为该反应如果达平衡,混合物体系中各组分的浓度与总物质的量均保持不变,即颜色不变,压强、平均分子量也不变。因此可作为达平衡的标志(A)、(D)、(E)。
加深对平衡概念的理解,培养学生分析问题和解决问题的能力。
【过渡】化学平衡状态代表了化学反应进行达到了最大程度,如何定量的表示化学反应进行的程度呢?
2.转化率:在一定条件下,可逆反应达化学平衡状态时,某一反应物消耗量占该反应物起始量的质量分数,叫该反应物的转化率。
公式:a=c/c始×100%
通过讨论明确由于反应可逆,达平衡时反应物的转化率小于100%。
通过掌握转化率的概念,公式进一步理解化学平衡的意义。
3.平衡的有关计算
(1)起始浓度,变化浓度,平衡浓度。
例1445℃时,将0.1molI2与0.02molH2通入2L密闭容器中,达平衡后有0.03molHI生成。求:①各物质的起始浓度与平衡浓度。
②平衡混合气中氢气的体积分数。
引导学生分析:
c始/mol/L0.010.050
c变/mol/Lxx2x
c平/mol/L0.015
0+2x=0.015mol/L
x=0.0075mol/L
平衡浓度:
c(I2)平=C(I2)始-C(I2)
=0.05mol/L-0.0075mol/L
=0.0425mol/L
c(H2)平=0.01-0.0075=0.0025mol/L
c(HI)平=c(HI)始+c(HI)
=0.015mol/L
w(H2)=0.0025/(0.05+0.01)
通过具体计算弄清起始浓度、变化浓度、平衡浓度三者之间的关系,掌握有关化学平衡的计算。
【小结】①起始浓度、变化浓度、平衡浓度三者的关系,只有变化浓度才与方程式前面的系数成比例。
②可逆反应中任一组分的平衡浓度不可能为0。
(2)转化率的有关计算
例202molCO与0.02×100%=4.2%mol水蒸气在2L密闭容器里加热至1200℃经2min达平衡,生成CO2和H2,已知V(CO)=0.003mol/(L·min),求平衡时各物质的浓度及CO的转化率。
c(CO)=V(CO)·t
=0.003mol/(L·min)×2min
=0.006mol/L
a=c/c(始)×100%
=0.006/0.01×100%
=60%
【小结】变化浓度是联系化学方程式,平衡浓度与起始浓度,转化率,化学反应速率的桥梁。因此,抓变化浓度是解题的关键。
(3)综合计算
例3一定条件下,在密闭容器内将N2和H2以体积比为1∶3混合,当反应达平衡时,混合气中氨占25%(体积比),若混合前有100molN2,求平衡后N2、H2、NH3的物质的量及N2的转化率。
思考分析:
方法一:
设反应消耗xmolN2
n(始)1003000
nx3x2x
n(平)100-x300-3x2x
(mol)
x=40mol
n(N2)平=100mol-xmol=100mol-40mol
=60mol
n(N2)平=300mol-3xmol=180mol
a=40/100×100%=40%
方法二:设有xmolN2反应
n
122
x2x2x
【小结】方法一是结合新学的起始量与平衡量之间的关系从每种物质入手来考虑,方法二是根据以前学过的差量从总效应列式,方法二有时更简单。
巩固转化率的概念并弄清转化率与变化浓度,速率化学方程式之间的关系。
通过一题多解将不同过程的差量计算与平衡计算联系起来加深对平衡的理解,加强对所学知识(如差量的计算,阿伏加德罗定律的计算)的运用,培养学生综合思维能力和计算能力。
强调重点,加强学法指导。
【课堂小结】今天我们重点学习了化学平衡的概念及有关计算,比较抽象,希望大家加强练习,以便熟练地掌握平衡的概念。
【随堂检测】1.对于一定温度下的密闭容器中,可逆反应达平衡的标志是()。
(A)压强不随时间的变化而变化
(B)混合气的平均分子量一定
(C)生成nmolH2同时生成2nmolHI
(D)v(H2)=v(I2)
2.合成氨生产中,进入塔内的氮气和氢气体积比为1∶3,p=1.52×107Pa(150atm),从合成塔出来的氨占平衡混合气体积的16%,求合成塔出来的气体的压强。
平衡时NH3的体积分数为:
n(平NH3)/n(平总)×100%
=n(平NH3)/(n始-n)
=2x/(400-2x)×100%
=25%