HI,欢迎来到学术之家,期刊咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 高层建筑论文

高层建筑论文

时间:2022-07-23 09:08:18

高层建筑论文

第1篇

高层建筑其体量巨大,往往给街道空间一种突然的压迫感,使人感觉好像从一个大空间突然进入一个小空间。处在街道两旁的高层建筑在设计时应该对其进行后退处理,并在其退出的用地上设计一个广场空间,这个广场空间就建筑本体来说起到了缓冲作用,并且是对建筑的场所标识;就城市空间而言,后退广场在城市空间中起到了重要作用,它往往能成为城市的共享空间,使城市空间变化丰富。有的建筑师甚至直接设计成下沉式的广场,不仅为公众提供了一个舒适的安静的休闲场所,而且使建筑塔楼的形象特征更加突出。这种下沉式的广场往往更容易给人留下印象,就空间形式而言它是一种非常富有情趣的空间。在进行高层建筑设计时广场和建筑应该作为一体来考虑。

2高层建筑主体设计

高层建筑承担着城市的高级偶像的作用。高层建筑有提供天际线视觉趣味的独特的城市设计机会,能够创造壮丽的天际线,而在街道层上却以人的尺度行事。建筑物的顶部一般服务于天际线,衬在天空上的形状是高层建筑“联系于无限”之点,是塔楼的一个特色。没有天际线的摩天楼大概就像空间里一大堆不引人注目的体快。像高度发达的纽约和弹丸之地的香港都是由高楼大厦堆砌起来的,且看这两大城市的天际线,错落有致的城市建筑,间中穿插的塔楼,为城市的天空勾画了优美的轮廓,线条生动活泼、色彩缤纷多变。城市的天际线只是一维的立面边线为主的轮廓线,可正如一幅艺术摄影,照片是单向面的,可它反映的是三维的城市空间,以及整个城市风貌的特点。也就是说,三维城市空间的布局,不仅仅是功能性的问题,也有个审美意向在内——对建筑风貌的选择与城市风貌的构建。城市天际轮廓线,是城市规划宏观把握中必不可少的参照,也是一座城市的文化与美学的体现。

3高层建筑的整体尺度

整体尺度是指高层建筑各构成部分,如:裙房、主体和顶部等主要体块之间的相互关系以及给人的感觉。一个十分均衡匀称的建筑体,就是要通过理解和运用有数学关系的比例系统并征对实际被感受到的各种条件要求加以调节,营造出一种自然而然的愉悦、和谐的比例感受的效果。如果一座建筑的各部分比例合理且相协调,同时能够满足正常人的心里要求,那么它就很容易被人们接受,也可称之为成功的建筑。因此,建筑物的整体尺度的掌握是十分重要的,在设计时要注意下面的两点:

(1)各部分尺度比例的协调

不难看出一个美的高层建筑是裙房、主体和顶部三者相结合的产物。当其三者合理的处理比例尺度的问题,同时这种尺度比例关系应是统一的,这样建筑物才会给人舒服的感觉。然后在加入适当的装饰手法,使建筑造型生动化。总之这三部分的比例关系是高层建筑形象设计的重点。

(2)高层建筑中立面细部尺度应有层次性

立面设计的结构构成必须明确划分为水平因素和垂直因素。一般都要使各要素的比例与整体的关系相配,以达成令人愉悦的观感效果。因此很自然的,较低矮而横向舒展的建筑物,其窗户开间之类,其比例必定使宽阔状为主导,而高层建筑则以修长的因素更有利于综合微型和巨型因素,使大中有小,小中有大。这一原则使高层建筑产生强烈的统一性和协调性。

除了需注意以上两点外,还应考虑细部尺度。在进行高层建筑设计时,应从城市设计的整体角度对其进行分析,高层建筑不是单个存在,而是整体存在。城市设计及城市规划应将高层建筑群集中设计,以形成城市的主节奏,使城市天际线统一且富于变化。然后根据不同街区的需要设计具有该区特色的高层建筑,最后使高层建筑与外部街道生活及周围环境相适应,最终达到城市设计的目的。

4高层建筑生态设计与城市空间

随着近几年来资源短缺问题的出现,全球提出了可持续性发展,而高层建筑就环保节能方面来说是很浪费的,随之就出现了生态型建筑的概念,这是在当今建筑设计思想中的一种新思潮。高层建筑生态设计具有一些共同特点,它们都注重把绿化引入建筑楼层,考虑日照、防晒、通风,以及与城市环境的有机结合等因素。此外,屋顶绿化也是近些年来比较流行的做法,可以看出建筑的第五立面显得尤为重要,最重要的是使城市空间更加丰富。伴随着建筑物的增加,大块的绿地面积锐减,相应的环境条件愈加恶化,致使人们对环境的关注和重视达到前所未有的程度。因此,可看到在城市的发展建设过程中,都充分利用各块绿地,增加绿地面积,即便这样,还是达不到人们预期的目的,而现代建筑物大多为平屋顶,屋顶多采用钢筋混凝土预制板结构,现代的建筑方法是在预制板上面做隔热防水层,从空中鸟瞰,一栋栋楼群好似戴着黑帽子,住在屋顶的居民也备受沥青之害,过着冬冷夏热的生活。近两年许多人开始建造屋顶花园,让死气沉沉的屋顶生机盎然。

5高层建筑顶部造型处理

造型独特的顶部设计对高层建筑的整体形象起着画龙点睛的作用,并成为林立在建筑群中区别于其他建筑的一个重要标志,即是城市的标志。在十分重视城市空间设计的今天,高层建筑顶部造型在保护传统街道空间特色和维护城市空间形态方面发挥着重要的作用。但是一段时间以来,存在着一种错误的认识,肤浅甚至盲目地把它仅仅当作权利、财富和技术的象征,极力追求所谓的个性,而产生了一批极尽奢华甚至怪异的高层建筑顶部,或者为了眼前的利益而制造了大量平庸的复制品。这个结果导致了整个城市空间的破坏,城市整体性的支解和“千城一面”的局面。

高层建筑是城市空间的元素,优秀的高层建筑并不是排斥城市空间的明星建筑而是一个创造人性的场所,又融入文脉的关系,不去破坏城市空间的和谐。优秀的高层建筑要考虑使用者的需要,以城市的公众利益为追求的目标。我们必须在高层和城市的发展中取得平衡,才能创造出更好的城市景观和适合人们生活的环境,才能沿着可持续发展的道路健康地发展下去。

第2篇

关键词:嵌固端首层地面刚度比地下室基础埋深

1.引言

高层高层建筑在进行结构分析计算之前必须首先确定结构嵌固端的所在位置,而嵌固端的选取却面临着各种不同情况,如不设地下室但基础埋深较大;没有地下室但其层数或多或少,且基础形式不同等。根据以上情况正确选取其结构嵌固端,是高层建筑结构计算模式中的一个重要假定,它不仅关系到结构中某些构件内力分配的准确性,而且还影响结构产生侧移的真实性,以及结构局部的经济性,因此有必要对结构嵌固端的选取作进一步探讨,并由此引伸出若干相关的技术问题。

2.结构嵌固端的条件

高层高层建筑的结构嵌固端通常是选择在地面标高处,但地面标高处要真正成为结构嵌固端是有条件的,而且在输入首层计算高度时还有许多讲究。

2.1设有地下室时的条件

(1)地下室顶板标高与室外地坪的高差不能太大,极端的情况如半地下室则首层楼面一般不能成为结构嵌固端,除非其高差仅为1—3级台阶高度时才可能考虑;

(2)地下室顶板结构应为梁板体系(即不可设计成元梁楼盖),且该层楼面不得留有大孔洞,楼面框架梁的抗弯刚度要足够大,楼板也要有相当厚度;

(3)地下室侧壁要有良好的侧限,即必须与“地球”有良好的接壤,上述半地下室顶板不能成为结构嵌固端的原因就是不满足此条件。

对于上述条件中对首层楼面框架梁的要求,假设满足《抗震规范》第6.1.14条“位于地下室的梁柱节点左右梁端截面实际受弯承载力之和不宜小于上下柱端实际受弯承载力之和”的要求,对于高层建筑来说,由于首层处的柱截面往往远大于框架梁截面,故即使有意增大框架梁截面并增加抗弯钢筋用量,上述要求仍很难满足。就此要求而言,则只有多层或小高层建筑才有可能以首层顶板作为结构的嵌固端,而真正意义的高层建筑则完全排除了这种可能性。

2.2不设地下室时的条件

高层建筑不设地下室通常是针对层数有限的小高层,或其基础持力层较浅的情况,但从抗震角度考虑是不宜提倡的。

(1)不管是采用天然地基基础或桩基础,都是以基础(承台)面作为结构嵌固端,且必须在该标高处的纵横方向设置刚度较大的基础梁加以连结,故首层层高应从基础面算起;

(2)若基础(承台)面标高与首层标高有一定距离而不设基础梁连结或其刚度过小,则地面标高处应设有刚性地面来作为结构嵌固端,首层层高可从地面层算起。若不设刚性地面,则上部结构无从形成嵌固端,也即结构计算简图不成立,设计上显然是不允许的。

以上列举的条件无非是说明要成为上部结构的嵌固端,其下部结构必须具有足够的刚度以保证柱根之间不产生相对位移,且能承受或平衡柱根弯矩。规范中规定“当地下室顶板作为上部结构嵌固部位时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的二倍”正是基于这一考虑。

3与嵌固端相关的技术问题

结构嵌固端的形成或者说上部结构对嵌固端的要求,在工程设计中还可引伸出若干相关的技术问题及其正确的设计方法,以下将分别探讨。

(1)单层地下室

当高层建筑仅设单层地下室且底板采用天然地基筏板基础或桩一筏基础时,通常选择基础底板而非首层作为结构嵌固端,这有利于充分利用其基础的“无限”刚度,为首层楼面的灵活结构选型创造条件,即使是首层楼面留有大孔洞,或选用无梁楼盖结构,都不影响结构计算的准确性。此外,规范规定地下室负一层的抗震等级与上部结构必须一致,以基础底板作为嵌固端不会造成地下室结构造价的提高,反而可能取得较好的经济效益。即使单层地下室底板是以桩为基础的普通梁板结构,一般情况下仍然取底板处为结构嵌固端,唯一例外的是地下室作为抗爆级别较高的防空地下室时,其顶板通常具有作为结构嵌固端的刚度,因此可取其作为上部结构的嵌固端。

(2)投影面积比例

高层塔楼在地下室顶板上的投影面积比例大小对首层作为嵌固端的结构有着不同的影响。当该比例*1时,若首层楼面符合作为嵌固端的其它条件,则该首层作为结构嵌固端就毫无疑问了,但当上述投影面积比例<<1时,说明地下室侧限远离塔楼,塔楼发生的侧向位移将波及首层楼面并使其发生变形,即使变形量很小,但严格说来首层作为嵌固端的刚度必然小于前一种情况,且变形又增大了上部结构侧移的计算值,同时首层骨架构件也会由于自身的变形而产生附加内力。作为有经验的结构工程师,在实际设计中都会根据工程实际情况予以鉴别并作出相应的结构处理。

(3)大底盘多塔楼

大底盘多塔楼大多为商住楼,而且由于商用及居住性质不同,对柱网的要求也不同,故通常需设置结构转换层。当大底盘的商用部分层数不多(如仅1—2层),且结构转换层设于大底盘的屋顶标高处时,塔楼的嵌固端就可考虑取在大底盘的屋顶处,至少在塔楼初算时可以如此假定,如图3所示。这一考虑基于以下两点:①既然属大底盘,其楼层面积肯定大于塔楼的投影面积,加上大底盘屋顶设置转换层,故大底盘的楼层平面刚度远大于塔楼的楼层刚度;②转换层之上通常为剪力墙、部分短肢剪力墙或异形柱一短肢剪力墙结构,为使转换层上下部的侧向刚度相近,大底盘部分肯定要将原位剪力墙增厚或增加新的剪力墙,从而使塔楼下的大底盘部分具有足够的侧向刚度。目前高层建筑结构计算软件的功能已较为完善,因此大底盘多塔楼建筑均以整体结构进行计算,其嵌固端也不像结构初算阶段选择在大底盘屋顶标高处。

(4)高层建筑的基础埋深

在研究探讨高层建筑的结构嵌固端时,必然牵涉到其基础埋深问题,高层建筑基础要具有一定的埋置深度,首先是为了保证结构的整体稳定(包括抗滑),其次有利于减弱地震反应。规范对高层建筑的基础埋深有一量化规定,即“天然地基或复合地基基础,可取阶15,桩基础可取阶18”,但这一规定仅与建筑物的总高月有关,而与其它因素无关。

但我们在认真思考后发现基础埋深除了与建筑物总高月有关外,还应与控制高层建筑体型重要指标的高宽比风心有关。如两栋建筑物的高度量相同,但其高宽比阶B分别为5,0和2,5,显然风/B值较小者整体稳定性更高,若采用相同的基础形式,则阶B值较大者其基础埋深应更大。换言之,基础埋深对月/B较大者应偏于严格,而对月/B较小者则可略为放松,不宜作相同处理甚至反其道而行之,否则就违背了基础需一定埋深的原则。除了高宽比风/6外,基础埋深还应与高层建筑的裙房底座宽度、地下室底盘宽度等因素有关,对地下室面积仅为塔楼投影面积者应偏于严格,相反对没有裙房或地下室面积大于塔楼投影面积者则可略为放松。

(5)首层楼面的活载作为结构嵌固端的首层楼面(地下室顶板),其正常使用时的活载一般不太大,即使作为商业用途,其活载也仅为3.5kN/m2,但设计中要考虑施工过程中可能产生的施工荷载,对于首层梁板构件取活载8.0—10.0kN/m2则往往是必要的。

当高层建筑主体结构建至2层楼面时,首层地面自然而然就成为理想的施工场所,或用于堆放材料(袋装水泥、砌块、搭架钢脚手架等),或用于钢筋加工,甚至作为载重汽车的行驶停放场等,即使是临时荷载,其楼面活载也就有必要取较高值(该活载值仅作用于该层梁板,并不需传给竖向构件的墙柱)。

此外,该层楼板配置通长面筋,不仅是出于增大刚度的考虑,而且是抵抗混凝土收缩和温度应力的需要,特别是由于开发商的原因可能导致地下室顶板完成后要一段时间(从几个月到几年不等),为了防止或减少由于暴晒或暴露时间过长而产生的裂缝,配置足够的楼板面筋尤为必要。首层楼面考虑较大的施工荷载,其梁板截面就需较大,有利于满足首层楼面作为结构嵌固端刚度要较大的要求。

第3篇

关键词:高层建筑;板式转换层;施工

1高层建筑转换层的应用与发展现状

中国目前的钢筋混凝土高层建筑一般在二十至五十层之间,其中尤以二十至三十五层居多。中国国内己建成的这个高度范围内的高层建筑占全部高层钢筋混凝土建筑的80%左右,可见这个高度范围内的高层建筑是与中国城市的经济发展和需求水平相适应的,因而应用最多。在建筑功能的要求上,高层建筑中很少是功能单一的住宅、写字楼或宾馆,高层钢筋混凝土建筑多是地下部分是停车场,地上1-7层左右为商场、娱乐场所等,上部小开间的使用部分可以设置住宅、宾馆、或办公室。有统计表明,高层建筑中有转换层结构的占80%左右。带转换层的高层建筑转换层部分,由于梁、柱或板的尺寸较大,所以从模板的支撑系统,钢筋的绑扎、钢析架的安装或预应力的张拉顺序,大体积混凝土的浇注等方面在施工技术要求上都有极为严格的限制。在某种程度上可以说,转换层施工是高层建筑的“瓶颈”,如果说一幢高层建筑在支撑系统选择,钢筋绑扎,混凝土浇注,预应力张拉,机械设备的选择等方面做到方案科学,现场施工组织合理,定会带来良好的经济效益和社会效益。

2高层建筑板式转换层的设计技术

转换板设置位置,是人们关心的板式转换框支剪力墙结构抗震性能的重要问题之一。随着人们对梁式转换框支剪力墙结构在转换层位置设置较高时,转换层对结构抗震性能不利的认识,从而提出了转换层位置较高的框支剪力墙的抗震设计概念,并且限制转换层下大空间结构的层数。然而,板式转换结构随着转换层位置的提高,结构是否也表现出同样的动力特性及反应,也是值得讨论的。本文结合厦门安宝大厦工程,采用三种模型来计算和分析板式转换结构转换层位置对结构抗震性能的影响。计算模型中,转换层、标准层结构布置如图1所示。图中黑色填充区域为转换层下部框支柱和落地剪力墙;实线部位为转换板上布置的剪力墙。转换板厚2200mm;落地剪力墙厚度为400mm;框支柱截面为1200mm×1200mm和1000mm×1000mm两种;标准层x向剪力墙厚为250mm,y向剪力墙厚为200mm。转换板所在的上、下楼层的层高分别为2.2m、3.6m(净高,不含转换板厚),结构总高度为98.70m。三种模型分别为:

Hst0——无转换层结构,以原工程转换板上部结构为基础,增加结构标准层,使其高度与原结构相同;

Hst3——转换板设置在第3层顶,并将原工程x向井筒开洞,转换层上、下结构等效侧向刚度比γex=0.7046,γey=0.8971。

Hst6——转换板设置在第6层顶,将模型Hst3的第1层复制增加三层,使其高度与原结构相同,同时,其转换层上、下结构等效侧向刚度比也与模型Hst3接近。结构计算分析采用ANSYS软件。

图板式转换最大的优点是可以在转换层以上随意布置结构型式和轴网,特别适用于建筑物上下部轴网错位复杂甚至互不正交的情况。但转换板传力路径不清晰,受力状态复杂,结构分析计算繁冗。由于抗剪和抗冲切的需要,转换板厚一般在2M以上,这一方面造成转换层质量和刚度的突变,在地震作用时结构反应增大,转换层上下相邻层更成为结构薄弱层,不利于建筑物抗震;另一方面由于自重和地震作用的增加,下部竖向构件的荷载明显增大,设计难度大。研究表明,转换厚板的内力和位移分布严重不均,最大值与最小值间相差可达几十倍。从整体上看,板式转换的力学性能和经济指标均较差,在实际工程中应慎用。当上下轴网变化但仍正交时,可采用正交主次转换梁的结构型式来实现转换。3板式转换层施工方案决策问题和模型的确立

3.1板式转换层施工方案决策问题

最常用模板支撑方式有上面谈到的三种方法,①落地支撑法②叠合梁原理法③吊模法。那么对于一个含有转换层的施工项目而言,如何选用更优的施工方案,如何安全可靠、质量优良、工期准时、技术方便、简单可行、工程造价成本又比较低的情况下完成转换层结构的施工,是项目承建者的所追求的目标,所以在遇到此类问题时,经常存在如何决策方案才比较科学的问题。由于方案的优劣是一个相对的概念,并且施工方案的选择还受很多外部因素的影响。对于转换层施工来说,如果转换层所在位置较低,距离基础在四层以内的话,落地支撑法将是最为理想的选择;对于大于四层以上的情况,以上三种施工方法哪个方案最优,决策者如何进行决策。

3.2转换层施工方案决策模型的建立

层次分析法(AnalyticHierarchyProcess,简称AHP法)是美国运筹学家沙旦(T.L.Saaty)于上世纪70年代提出的,是一种定性与定量分析相结合的多目标决策分析方法。特别是将决策者的经验判断给予量化,对目标(因素)结构复杂且缺乏必要数据情况下更为实用,所以近几年来此法在我国工程实践的方案决策中得到了广泛应用。层次分析法的基本内容是:首先根据问题的性质和要求,提出一个总的目标;然后将问题按层次分解,对同一层次内的诸因素通过两两比较的方法确定出相对于上一层目标各自的权系数。这样层层分析下去,直到最后一层,即可给出所有因素(或方案)相对于总目标而言按重要性(或偏好)程度的一个排序。

4高层建筑板式转换层的施工要点

由于板式转换层结构的上述特点,在确定转换层结构施工方案时应考虑下列几个方面的问题:①转换层的自重和施工荷载往往非常大,应选择合理的模板支撑方案,并进行模板支撑体系的设计。②对大体积转换层,混凝土施工时应考虑采取减小混凝土水化热的措施,防止新浇混凝土的温度裂缝。③转换层的跨度和承受的荷载很大,其配筋较多,而且钢筋骨架的高度较高,施工时应采取措施保证钢筋骨架的稳定和便于钢筋的布置。④对预应力混凝土转换层,由于其跨度和承受的荷载都很大,预应力钢筋数量大,因此,要合理选择预应力的张拉技术以防止张拉阶段预拉区开裂或反拱过大。⑤设置模板支撑系统后,转换结构施工阶段的受力状态与使用阶段是不同的,应对转换梁(或转换厚度)及其下部楼层的楼板进行施工阶段的承载力验算。

(1)混凝土工程。在进行大跨度超高度转换梁及转换厚板的混凝土施工时,应采取措施防止新浇混凝土产生温度裂缝。目前实际工程中采取的措施有:

①根据混凝土的配合比和预计的施工气候及现场条件,采用大体积混凝土结构三维有限元温度分析程序(3DTFEP),对大跨度超高度转换梁及转换厚板整个过程中的温度状况进行模拟计算,掌握混凝土在浇筑后一个月内的各部分温度的变化规律,为大跨度超高度转换梁及转换厚板的施工提供科学的预测分析和依据。

②大体积混凝土转换结构施工时,应采取措施控制混凝土内部与混凝土表面温度差小于15℃,实际工程中可采用下列方法:a.蓄热保温法,即常规保温方法。混凝土的养护要把握两个关键,即在升温阶段以保湿为主,在降温阶段以保温为主。b.内降外保法,即在大体积混凝土内部循环埋管通水冷却降温,使大体积混凝土水化热温升降低,减少混凝土内部与混凝土表面的温差,然后在大体积混凝土转换结构的表面及其底面采取保湿措施。c.蓄水养护法,即在混凝土初凝后先洒水养护2h,随后进行蓄水养护,蓄水高度一般为100mm。

③浇筑厚大的转换层结构混凝土时,为防止混凝土内外温差过大和提高混凝土抗拉强度,在选用水泥方面可采取下列措施:a.优先选用水化热低的矿渣硅酸盐水泥或火山灰硅酸盐水泥。b.掺用沸石粉代替部分水泥,降低水泥用量,使水化热相应降低。c.掺入减水剂,减少水泥用量,使混凝土缓凝,推迟水化热峰值的出现,使升温延长,降低水化热峰值,使混凝土的表面温度梯度减少。

④浇筑厚大的转换层结构混凝土时,为防止混凝土内外温差过大和提高混凝土抗拉强度,在施工方法上可采取下列措施:a.采取先施工转换结构周围结构或墙体,防止混凝土表面散热过快,内外温差过大。b.变冬季施工的不利因素为有利因素,减低混凝土的入模温度。在夏季高温气候施工时,采用冰水搅拌,以减低混凝土的入模温度。c.采用分层次施工,每层厚300mm~500mm,连续浇筑,并在每一层混凝土初凝之前,将后一层混凝土浇筑完毕。D.采用叠合梁原理,将转换结构按叠合构件施工,可缓解大体积混凝土水化热高,温度应力过大,对控制裂缝发展有利。

(2)钢筋工程。转换梁的含钢量大,主筋长,布置密,在梁柱节点区钢筋“相聚”。因此,正确地翻样和下料,合理安排好钢筋就位次序是钢筋施工的关键。

①钢筋翻样前必须弄清设计意图,审核、熟悉设计文件及有关说明,掌关规定。翻样时考虑好钢筋之间的穿插避让关系,确定制作尺寸和绑扎次序。

②一般转换层结构主筋接头全部采用闪光对焊或锥螺纹接头连接、冷挤压套筒连接;对于两端做弯头的钢筋,采用可调伸螺纹接头解决钢筋旋转的困难。

③当转换梁高度或转换板厚度较大时,应采取措施保证钢筋骨架的稳定和便于操作。

参考文献

[1]唐兴荣.高层建筑转换层结构设计与施工[M].北京:中国建筑工业出版社,2004.

[2]余红生.转换层支撑系统的选型及其安全性分析[M].建筑安全.2003.

第4篇

建筑设计课程教学的目标之一即为通过一系列的训练实践,使学生能够掌握理性高效的设计流程与方法。但在教学过程中,部分同学的设计过程仍然是“野路子”的:从某些图书杂志或网络资料中东拼西凑出的资料图纸或是效果图片就是“超脱”于基地的“灵感来源”,由此发端出的设计成果有多大的意义也就可想而知了。在图面表达方面也普遍存在着“重视觉效果,轻逻辑表达”的误区,学生往往把精力用在如何使图纸描绘得更炫丽,而忽视了表达的深度和技术规范性。如最常见的剖面图表达,就很少有同学能够完全画对,长此以往肯定会影响学生的专业发展和今后的职业成长。

2.解决问题的途径和方法

通过对高层建筑设计课程教学中遇到的主要问题进行分析,立足于时展和教学实际,提出以下解决途径和方法,以便可以切实提高四年级学生的设计综合能力,促进学生职业素质的培养。

2.1打破设计教学长周期模式

中低年级的课程设计教学周期一般为九周,在这样的长周期中,容易出现学生“前松后紧”的散漫状态和教师“放羊式”低效管理以及只重视最终图纸成果等弊端。故可以将九周的设计长周期拆解为长短周期相结合的模式,如在高层综合办公楼课题设计中:第一、二周为学生实地调研、查找文献及教师理论教学,在这个环节中鼓励学生多人成组调研,带着批判的眼光去调研,“带着问题去发现问题”,通过采用调查问卷采访及计算机辅助模拟等方式为后续设计提供定量的分析依据,使调研成果真正能为后续设计服务;在第二周穿插一次与课题相关的快速设计及研究环节,促使学生尽快进入设计状态,并在快速设计中反思问题、总结经验从而反映到正式设计环节中;第三周至第八周即展开正常的高层建筑设计课题,变传统的师生“一对一”坐诊式交流为调研小组讨论,激发每个学生的参与热情,督促学生提高效率、严格按照时间节点完成相应的成果,引导学生运用专业的表达方法进行成果汇报;在第八周时再次穿插一次快速设计及研究环节,对学生之前所学进行总结和回顾;第九周提交正图并进行公开的答辩评图。由此可以看到,这种长短周期相结合的教学模式不仅贴近了设计院实际的工作状态、提高了学习效率,而且更加符合学生对于知识学习巩固的内在规律。

2.2理论课教学与课程设计相结合

高层建筑的诞生本是技术革新与飞跃的产物,对其技术问题的钻研应是本设计课程教学中必然包含的内容。由于设计教学时间有限,需要与其他相关专业理论课教学相结合才能更好地使理论为设计实践服务。以高层建筑设备部分为例,在四年级同时进行的建筑设备课教学中可开设专门的研究环节,针对建筑设备对于高层建筑平面设计、立面设计及剖面设计的影响及互动关系进行深入讲解。如通过图示说明建筑设备管线对于高层建筑剖面设计的制约,总结出了剖面净高的设计数据,让学生既知其然,又了解了其所以然。同样的,诸如建筑结构选型、建筑防火设计等专业理论课均以类似的形式同课程设计进行有机结合,从而发挥其最优的教学效果。

2.3注重设计过程的研究

在课程设计教学中,教师对学生设计全过程的积极引导可视作教学工作的核心,具体则体现在引导学生运用理性的设计方法完成整个设计上。如在设计展开阶段,引导学生根据设计任务书的要求及地基特点估算出建筑基底面积、层数等数据并划定出可建范围,并在可建范围内选择适当的形体组织模式进行多样性、可行性的组合;随后在结构可行性的基础上,通过把握时代的美学要素、建筑与城市的关联、建筑的个性与标志性等方面来塑造高层建筑的内部与外部空间形态。在上述引导式的设计教学过程中,教师始终扮演向导的角色,学生则是互动教学的主体。通过实践,即使是基础较为薄弱的学生,也可以顺利展开设计,从而取得较为满意的成果。这不仅使学生的设计能力和自信心普遍得到提升,有力地提高了学生主动思考、积极学习的意识,也增进了其对专业学习的兴趣和热情。

3.结语

第5篇

改革开放以来,随着经济的快速发展,城市不断扩张,城市的土地日趋紧张,高层建筑如同雨后春笋般的在全国各个大中城市拔地而起。它给人们带来了更多的使用空间,更多的绿地面积,同时也丰富了城市的轮廓线,使城市变得更加美丽。然而它也给人们带来了一系列的问题。有很多高层建筑的建造忽视了城市设计,孤立的存在于城市环境中,没有亲切感,使人们对之产生畏惧感。再加之交通问题,高层建筑与周围环境关系已成为目前城市设计的一个严峻的问题。如何解决就要以高层建筑的产生、发展作为切入点,寻求合适的解决方案。

一、高层建筑产生的原因及存在的理由

产业革命带来了生产力发展与经济的繁荣,大工业的兴起使人口集中到城市中来,造成城市用地紧张,地价上涨,城市不断向周边扩展,但城市空间仍然局促。为了在较小的用地范围内建造更多的使用面积,建筑物不得不向高空发展。也是高层建筑产生的根本原因。也可以说高层建筑的产生是社会发展的必然产物,两者相互依存,相互影响。

概括而言,高层建筑类型可以被认为是土地经济、金融、城市运输、投资机遇和技术进步、再加上其他原因造成的结果。简单地讲,高层建筑是在一个不大的底层上叠加许多层。从功能上,它能使可用的楼层空间向高出堆积。从商业上,它能使其所有者从土地上获利更多,并且可以放置更多货物、更多的人,和在一个地方收入更多租金。它在经济上的存在是土地高价的结果,土地高价与城市交通便利密切相关,也是配套基础设施和土地利用的必然结果。高层建筑实际上是一种商业建筑类型,它的开发将增加城市的就业及生产力,促进城市的有益发展。同时由于它的发展也推动了与之相关的建筑结构、技术、材料、交通等的发展,进而影响到整个城市的发展。

二、高层建筑对城市产生的影响

高层建筑对其所在的城市街区具有重要的影响。仅以它绝对的规模和人口总量,就对城市街区的集中化、对街上的行人以及街景本身都具有明显的重要性。我们可以将这些归于高层建筑的环境关系,它必须成为在一定位置上的有效的城市设计方面的主题。在这个层面上,高层建筑的发展可以由规划者通过地方规划来加以控制。一座高层建筑必须首先与城市达成的协议,就是那里的现状,例如:它如何决定体量的问题,以及新的塔楼以何种尺度才能为整体联系于城市的形象、城市的街区和周围的建筑,最重要,它必须决定如何适应于街道的边沿、周围的人行道尺度、现有的土地利用以及它所在街区的特点。

由于其相对体量和高度,高层建筑对城市已有的周围环境及尺度影响甚大。不论是独立的或是混入在城市环境里,建筑物的体量越大,影响也就越大。不断增大尺度的高层建筑的空前激增已引起环境条件不断的恶化,因而变成城市生活质量的祸害。高层建筑插入到城市环境中,这些大都市里深谷剥夺了城市居民的光线、日照、和自然通风,对城市街区及其周围小气候环境的造成很大影响。诸如在阳光照到街面上的主要几个小时以内,高层建筑可能投下的阴影。这些阴影可能极大地改变着该区域的性质,影响着小气候以及遮断视景。塔楼也可能在底部造成强力的下行风和不舒服的旋风,那是很令人讨厌的。还有这些大型建筑项目的能耗过大,如空调、取暖和照明等需要较大的能量供应,从而产生大量的热量,改变了城市原有的热平衡关系,加剧了城市的热岛现象,恶化了市民的生存环境。

总之,在城市整体环境中,高层建筑具有举足轻重的作用。由于高层建筑的体量大高度大,在城市设计中主要控制高层建筑的高度和体量这两方面,既建筑的尺度。主要表现在以下几个方面:

1、城市尺度(对城市、其系统和天际线方面)

一座城市中所有的新建筑皆对城市的形式及其系统产生影响。不过,高层建筑对于城市,以其绝对的强度,具有重要的影响。首先它得与城市达成协议,就是那里的现状。它必须决定体量问题,以及新塔楼以何种尺度才能作为整体联系于城市的形象、城市的街区和周围的建筑。从对城市整体影响的角度来看,表现在高层建筑对城市天际轮廓线的影响,城市的天际轮廓线有实、虚之分,实的天际线即是建筑物的轮廓,虚的天际线是建筑物顶部之间连接的光滑曲线,高层建筑在城市天际线创造中起着重要的作用,因为天际线会成为城市标志,高层建筑构成各种形象并深印到人们心里,甚至人们已经把天际线看作他们的城市、地区,有时还包括他们生活方式的象征。因此,高层建筑尺度的确定应与整个城市的尺度相一致,而不能脱离城市,孑然孤立,不利于优美、良好天际线的形成,直接影响到城市景观。高层建筑对城市局部或部分产生的影响,是指从市内比较开阔的地方,如:广场、道路、开放的水系和绿地所看到的天际线,会直接影响人民的日常生活。因此,城市天际轮廓线不仅影响人从城市所看的景观,也直接影响到市内居民的生活与视觉观赏。

高层建筑对城市各构成要素也产生重大的影响,高层建筑的位置、高度的确定,也应充分地考虑该城市尺度、传统文化。不当的尺度会对城市产生不良的影响,改变了城市传统的历史文化,也改变了原来城市各构成要素之间有机协调的比例关系,如:西安市,兴善寺为文物保护单位,由于房地产开发使得兴善寺周边建设了一些高层建筑,削弱了兴善寺作为该区的标志性建筑群,从而失去了该区特色。而以钟楼为中心向外辐射的建筑高度的控制,是比较成功的,虽然开元庞大的体量对其造成压迫。

2、街道尺度(对城市街区、人行道和街景方面)

街道尺度是根据街道生活来确定的,显然最重要的是街道上行人与大楼之间的关系。高层建筑必须形成与周围建筑物的联系以加强城市结构,并促进在其底部的城市生活。如果这些被忽略,高层建筑将孑然孤立,缺乏与街区的任何联系或不承认自己属于城市街区,而它却是其中的一部分。为避免高层建筑与城市环境分离,可以使高层建筑的立面正好位于街道线上,而且在其门厅内部结合着过渡区的话,那么这座高层建筑的底部就能将内部空间与外面的街道生活联系起来。

具体的说街道尺度是指高层建筑临街面的尺度对街道行人的视觉影响。这是人对高层建筑近距离的感知,也是高层建筑设计中重要的一环。高层建筑的底部必须与街区的城市结构联系,并与城市的水平尺度比例相当。其设计应该对周围建筑的场地范围予以密切注意。临近街道的高层建筑部分的尺度确定,主要考虑到街道行人的舒适度,高层建筑主体因为尺度过大,易向后退,使底层的裙房置于沿街部分,减少了高层建筑对街道的压迫感,但如果退后尺度不当,高层建筑就变得与街道分离了,并可能变得与其环境失去联系,还有高层建筑物之间的地面场地不要仅仅作为行车道路,而应该加入更多的街道生活,使环境丰富生动起来。

为了保持街道空间及视觉的连续性,高层建筑临街面应与沿街的其他建筑相一致,宜有所呼应,但每个建筑都必须拥有各自的特点,这样除了丰富空间外,还可以缓解人的视觉疲劳。对于重点文物保护单位,可使周围建筑与之相协调,但不能过多的采用保护建筑的元素,以免削弱原有保护建筑的特征,如泉州清净寺街区的改造。

3、整体尺度(建筑本身及造型方面)

整体尺度是指高层建筑各构成部分,如:裙房、主体和顶部等主要体块之间的相互关系以及给人的感觉。一个十分均衡匀称的建筑体,就是要通过理解和运用有数学关系的比例系统并征对实际被感受到的各种条件要求加以调节,营造出一种自然而然的愉悦、和谐的比例感受的效果。如果一座建筑的各部分比例合理且相协调,同时能够满足正常人的心里要求,那么它就很容易被人们接受,也可称之为成功的建筑。因此,建筑物的整体尺度的掌握是十分重要的,在设计时要注意下面的两点:

1)各部分尺度比例的协调

不难看出一个美的高层建筑是裙房、主体和顶部三者相结合的产物。当其三者合理的处理比例尺度的问题,同时这种尺度比例关系应是统一的,这样建筑物才会给人舒服的感觉。然后在加入适当的装饰手法,使建筑造型生动化。总之这三部分的比例关系使高层建筑形象设计的重点;

2)高层建筑中立面细部尺度应有层次性

立面设计的结构构成必须明确划分为水平因素和垂直因素。一般都要使各要素的比例与整体的关系相配,以达成令人愉悦的观感效果。因此很自然的,较低矮而横向舒展的建筑物,其窗户开间之类,其比例必定使宽阔状为主导,而高层建筑则以修长的因素更有利于综合微型和巨型因素,使大中有小,小中有大。这一原则使高层建筑产生强烈的统一性和协调性。

除了需注意以上三点外,还应考虑细部尺度。在进行高层建筑设计时,应从城市设计的角度对其进行分析,结合城市尺度、街道尺度、整体尺度、细部尺度等综合考虑。高层建筑不是单个存在,而是整体存在。城市设计及城市规划应将高层建筑群集中设计,以形成城市的主节奏,使城市天际线统一且富于变化。然后根据不同街区的需要设计具有该区特色的高层建筑,最后使高层建筑与外部街道生活及周围环境相适应,最终达到城市设计的目的。

三、结束语

高层建筑影响一座城市环境的平衡,集中注意高层建筑对环境质量的责任,对城市及周围的影响,这和建筑本身的功能方案一样,对设计者都是根本的问题。高层建筑设计必须用协调环境的方法以尝试保持最少的环境干扰性。高层建筑是城市的主要建筑大厦,创造着城市引人注意的轮廓线,它们限定着创造城市活动场所的公共空间,为城市中人们的活动提供布景。

高层建筑是城市空间的元素,优秀的高层建筑并不是排斥城市空间的明星建筑而是能一个创造人性的场所,又融入文脉的关系,不去破坏城市空间的和谐。优秀的高层建筑要考虑使用者的需要,以城市的公众利益为追求的目标。我们必须在高层和城市的发展中取得平衡,才能创造出更好的城市景观和适合人们生活的环境,才能沿着可持续发展的道理健康地发展下去!

参考文献

《城市意象》凯文林奇

第6篇

防火设计属于高层建筑中不常见、不易受到关注和重视的隐性设计。而高层建筑的外部和内部整体设计却往往是施工设计单位和施工授权单位所关注和可以追求的,部分施工和设计单位甚至为了追求整体效果而随意更改消防防火设计,严重影响建筑本身的防火性能。

2当前现代城市高层建筑防火设计的对策

(1)明确火灾指示标识

首先,要将建筑物中的安装事故照明和疏散指示标识安装在封闭的楼梯间、防烟楼梯间及其前室、消防控制室以及餐厅、观众厅、多功能厅等人员密集的场所,以便于火灾发生后的逃生。在安装要求上,也有明确的规定。首先,安装在疏散走道、疏散门、太平门和居住建筑内长度超过20m的内走道的墙面上顶棚上、门顶部、转角处;其次,安装高度距本楼层地面1.5~1.8m处;第三,安装在非燃烧材料或难燃烧材料上,并应有玻璃或其它非燃症材料制成的透明保护罩;第四、事故照明和疏散指示标志应有备用电源,并有一定的光照度。

(2)消防电梯的设计

在高层建筑发生火灾后,消防扑救人员能否及时快速地到达起火部位,显得非常重要。有些高层建筑具有较高的楼层,消防人员通过楼梯到达需要较长的时间,因此,需要设置专用的消防电梯,提升灭火战斗力。对于消防电梯的设计需要注意:首先,哪些建筑物需要设置消防电梯呢,需要明确一下。在有关规范中规定,建筑高度超过32m的高层厂房和仓库、一类公共建筑、塔式住宅、12层及12层以上的单元式住宅和通廊式住宅、高度超过32m的其它二类公共建筑等需要设置消防电梯。对消防电梯的设计,需要注意:首先,对消防电梯的设置必须要设置前室,而且面积不能小于4.5平方米,而公共建筑的面积要在6平方米之上。前室与走道之间应设乙级防火门或具有停滞功能的防火卷帘,还应设有消防专用电话、专用操纵按钮和事故照明。在前室门外走道上应该设置消火栓和紧急用插座;其次,消防电梯间前室宜靠外墙设置,在首层应设直通室外的出口或经过长度不超过30m的通道向室外;第三,消防电梯的井壁、机房隔墙的耐火极限应不低于2h,井道顶部要有排烟措施;第四、消防电梯应有备用电源,使之不受火灾时断电的影响;第五、消防电梯前室门口宜设挡水设施,井底应有排除积水的设施;第六、由于火灾并非经常发生,所以平时应将消防电梯与服务电梯兼用,但必须满足消防电梯的要求。

(3)安全出口的设计

安全出口的合理设置,对于高层建筑发生火灾时减少人员生命财产损失具有重要的意义。所谓安全出口设计,可以归纳为凡是符合安全疏散要求的走道、楼梯和门等,都可以称之为安全出口。在高层建筑物中,对安全出口的设置要遵守双向疏散的原则,并且要有明确的安全疏散标志。另外,还要针对人员密集程度等,对安全出口的数量进行明确,以保证人员和物资能得到及时的疏散。

(4)设置火灾广播

在上文中,本文已经论述过需要在高层建筑中安装事故照明和疏散指示标志,但是这还是不够的,除了安装有事故照明和疏散指示标志,还应该同时安装事故广播系统。以便在紧急情况下同时有声光效应,使人员尽快有秩序地疏散。事故广播系统可与火灾报警系统联动,并按现行国家标准《火灾自动报警系统设计规范》的有关规定设置。

3结语

第7篇

关键词:高层沉降观测

随着社会的不断进步,物质文明的极大提高及建筑设计施工技术水平的日臻成熟完善,同时,也因土地资源日渐减少与人口增长之间日益突出的矛盾,高层及超高层建(构)筑物越来越多。为了保证建构筑物的正常使用寿命和建(构)筑物的安全性,并为以后的勘察设计施工提供可靠的资料及相应的沉降参数,建(构)筑物沉降观测的必要性和重要性愈加明显。

现行规范也规定,高层建筑物、高耸构筑物、重要古建筑物及连续生产设施基础、动力设备基础、滑坡监测等均要进行沉降观测。

特别在高层建筑物施工过程中应用沉降观测加强过程监控,指导合理的施工工序,预防在施工过程中出现不均匀沉降,及时反馈信息为勘察设计施工部门提供详尽的一手资料,避免因沉降原因造成建筑物主体结构的破坏或产生影响结构使用功能的裂缝,造成巨大的经济损失。

根据本人在高层建筑施工过程中沉降观测的应用,在此对高层建筑施工过程中沉降观测工作浅谈管窥之见。

一、沉降观测的基本要求

1、仪器设备、人员素质的要求

根据沉降观测精度要求高的特点,为能精确地反映出建构筑物在不断加荷作下的沉降情况,一般规定测量的误差应小于变形值的1/10——1/20,为此要求沉降观测应使用精密水准仪(S1或S05级),水准尺也应使用受环境及温差变化影肉小的高精度铟合金水准尺。在不具备铟合金水准尺的情况下,使用一般塔尺尽量使用第一段标尺。

人员素质的要求,必须接受专业学习及技能培训,熟练掌握仪器的操作规程,熟悉测量理论能针对不同工程特点、具体情况采用不同的观测方法及观测程序,对实施过程中出现的问题能够会分析原因并正确的运用误差理论进行平差计算,做到按时、快速、精确地完成每次观测任务

2、观测时间的要求

建构筑物的沉降观测对时间有严格的限制条件,特别是首次观测必须按时进行,否则沉降观测得不到原始数据,而是整个观测得不到完整的观测意义。其他各阶段的复测,根据工程进展情况必须定时进行,不得漏测或补测。只有这样,才能得到准确的沉降情况或规律。相邻的两次时间间隔称为一个观测周期,一般高层建筑物的沉降观测按一定的时间段为一观测周期(如:次/30天)或按建筑物的加荷情况每升高一层(或数层)为一观测周期,无论采取何种方式都必须按施测方案中规定的观测周期准时进行。

3、观测点的要求

为了能够反映出建构筑物的准确沉降情况,沉降观测点要埋设在最能反映沉降特征且便于观测的位置。一般要求建筑物上设置的沉降观测点纵横向要对称,且相邻点之间间距以15——30米为宜,均匀地分布在建筑物的周围。通常情况下,建筑物设计图纸上有专门的沉降观测点布置图。

再就是,埋设的沉降观测点要符合各施工阶段的观测要求,特别要考虑到装修装饰阶段因墙或柱饰面施工而破坏或掩盖住观测点,不能连续观测而失去观测意义。

4、沉降观测的自始至终要遵循“五定”原则

所谓“五定”,即通常所说的沉降观测依据的基准点、工作基点和被观测物上的沉降观测点,点位要稳定;所用仪器、设备要稳定;观测人员要稳定;观测时的环境条件基本一致;观测路线、镜位、程序和方法要固定。以上措施在客观上尽量减少观测误差的不定性,使所测的结果具有统一的趋向性,保证各次复测结果与首次观测的结果可比性更一致,使所观测的沉降量更真实。

5、施测要求

仪器、设备的操作方法与观测程序要熟悉、正确。在首次观测前要对所用仪器的各项指标进行检测校正,必要时经计量单位予以鉴定。连续使用3——6个月重新对所用仪器、设备进行检校。

在观测过程中,操作人员要相互配合,工作协调一致,认真仔细,做到步步有校核。

6、沉降观测精度的要求

根据建筑物的特性和建设、设计单位的要求选择沉降观测精度的等级。再未有特除要求情况下,一般性的高层建构筑物施工过程中,采用二等水准测量的观测方法就能满足沉降观测的要求。我们在河北省交通培训中心工程施工过程中就采用二等水测量的观测方法。

各项观测指标要求如下:

(1)往返较差、附和或环线闭合差:h=∑a-∑b≤l√n—,表示测站数。(或h=∑a-∑b≤1.0√L—,L表示观测路线距离)

(2)前后视距:≤30m

(3)前后视距差:≤1.0m

(4)前后视距累积差≤3.0m

(5)沉降观测点相对于后视点的高差容差:≤1.0mm

(6)水准仪的精度不低于N2级别

7、沉降观测成果整理及计算要求

原始数据要真实可靠,记录计算要符合施工测量规范的要求,依据正确,严谨有序,步步校核,结果有效的原则进行成果整理及计算。

二、具体施测程序及步骤

1、建立水准控制网

根据工程的特点布局、现场的环境条件制订测量施测方案,由建设单位提供的水准控制点(或城市精密导线点)根据工程的测量施测方案和布网原则的要求建立水准控制网。要求:

(1)一般高层建筑物周围要布置三个以上水准点,水准点的间距不大于100米。

(2)在场区内任何地方架设仪器至少后视到两个水准点,并且场区内各水准点构成闭合图形,以便闭合检校。

(3)各水准点要设在建筑物开挖、地面沉降和震动区范围之外,水准点的埋深要符合二等水准测量的要求(大于1.5米)

根据工程特点,建立合理的水准控制网,与基准点联测,平差计算出各水准点的高程。

2、建立固定的观测路线

由场区水准控制网,依据沉降观测点的埋设要求或图纸设计的沉降观测点布点图,确定沉降观测点的位置。在控制点与沉降观测点之间建立固定的观测路线,并在架设仪器站点与转点处作好标记桩,保证各次观测均沿统一路线。

3、沉降观测

根据编制的工程施测方案及确定的观测周期,首次观测应在观测点安稳固后及时进行。一般高层建筑物有一或数层地下结构,首次观测应自基础开始,在基础的纵横轴线上(基础局边)按设计好的位置埋设沉降观测点(临时的),等临时观测点稳固好,进行首次观测。

首次观测的沉降观测点高程值是以后各次观测用以比较的基础,其精度要求非常高,施测时一般用N2或N3级精密水准仪。并且要求每个观测点首次高程应在同期观测两次后决定。

随着结构每升高一层,临时观测点移上一层并进行观测直到十0.00再按规定埋设永久观测点(为便于观测可将永久观测点设于十500mm)。然后每施工一层就复测一次,直至竣工。

4、将各次观测记录整理检查无误后,进行平差计算,求出各次每个观测点的高程值。从而确定出沉降量。

某个观测点的每周期沉降量:c=Hh,I—Hn,I-1.

N表示某个观测点,I表示观测周期数(I=1,2,3……)且H1=H0

累计沉降量:C=∑c(n),n表示观测点号。

5、统计表汇总

(1)、根据各观测周期平差计算的沉降量,列统计表,进行汇总。

(2)、绘制各观测点的下沉曲线

首先建立下沉曲线坐标,横坐标为时间坐标,纵坐标上半部为荷载值,下半部为各沉降观测周期的沉降量。

将统计表中各观测点对应的观测周期所测得沉降量画于坐标中,并将相应的荷载值也画于坐标中,连线,就得到对应于荷载值的沉降曲线。

(3)根据沉降量统计表和沉降曲线图,我们可以预测建筑物的沉降趋势,将建筑物的沉降情况及时的反馈到有关主管部门,正确地指导施工。特别座在沉陷性较大的地基上重要建筑物的不均匀沉降的观测显得更为重要。

利用沉降曲线还可计算出因地基不均匀沉降引起的建筑物倾斜度:q=│Cm-Cn│/Lmn,Cm,Cn分别为m,n点的总沉降量,Lmn为m,n点的距离。

对沉降观测的成果分析,我们还可以找出同一地区类似结构形式建筑物影响其沉降的主要因素,指导施工单位编好施工组织设计正确指导施工大有裨益,同样也为勘察设计单位提供宝贵的一手资料,设计出更完善的施工图纸。

6.观测中的注意事项:

(1)严格按测量规范的要求施测。

(2)前后视观测最好用同一水平尺。

(3)各次观测必须按照固定的观测路线进行。

(4)观测时要避免阳光直射,且各观测环境基本一致。

(5)成像清晰、稳定时再读数。

(6)随时观测,随时检核计算,观测时要—气阿成。

(7)在雨季前后要联测,检查水准点的标高是否有变动。

(8)将各次所观测沉降情况及时反馈有关部门,当建筑物每天(24h)连续沉降量超过1mm时应停止施工,会同有关部门采取应急措施。

三、探讨的两个问题

(1)确定建筑物沉降观测精度的合理性。由于现行规范对施工单位施工过程的沉降观测要求不明朗,这对施工单位在建筑物沉降观测精度选择随意性较大,但是精度的高低直接关系到沉降观测成败。对沉降观测精度选择既不能太高也不能太低,要合理适宜,适合工程特性的需要。既不造成无谓的浪费也要保证观测结果的准确性。这样,本人认为一般高层及重要的建(构)筑物在首次观测过程中适用精密仪器的设备(高级水准仪、铟合金尺等)在±0.00以上部分按二等以上水准测量方法,采用放大率倍数较大的S2或S3水准仪进行观测,也可以测出较理想的结果。

(2)在沉降观测过程中,沉降量与时问关系曲线不是单边下行光滑曲线,而是起伏状现象。这就分析原因,进行修正。

①第二次观测出现回升,而以后各次观测又逐渐下降。可能是首次观测精过低,若回升超过5mm时,第一次观测作废,若回升5mm内,第二次与第一次调整标高一致。

②曲线在某点突然回升。

原因:水准点或观测点被碰动所致且水准点碰动后标高低于碰前标高,观测点碰后高于碰前。

处理措施:取相邻另一观测点的相同期间沉降量作为被碰观测点之沉降量。

③曲线自某点起渐渐回升

第8篇

1.1建筑高度

截至2012年底,我国共建成高度超过250m的超高层建筑94幢,其高度分布比例如图1所示。高度250~300m的超高层建筑数量最多,约占建筑总数的59%;高度500m以上超高层建筑仅1幢;港澳地区超高层建筑共计18幢,约占总数的20%。这一阶段国内典型超高层建筑,有上海环球金融中心(高度492m)和深圳京基金融中心(高度442m)。2013—2018年,我国计划建成高度250m以上的超高层建筑共计164幢,如图2所示。与图1相比,高度300~400m的超高层建筑数量显著增多,约占总数的43%。港澳地区超高层建筑共2幢,约占总数的1.2%。除超高层建筑数量增多外,超高层建筑的高度近年来不断增加。高度500m以上的超高层建筑增多,部分建筑高度已突破600m。如上海中心大厦,总高度632m。建成之后将与高度420m的金茂大厦、492m的环球金融中心共同构成浦东陆家嘴金融城的新三角。建造中的深圳平安金融中心塔楼桅杆顶高度为648m。

1.2分布地区

截至2012年底,我国已建成高度250m以上的超高层建筑地域分布如图3所示,可见,超高层建筑主要集中在经济较发达的珠三角和长三角地区;主要城市包括上海、香港、广州和深圳。2013—2018年,我国计划建设高度250m以上的超高层建筑分布如图4所示,可见,超高层建筑分布区域明显增加,其中环渤海地区将成为超高层建筑的集中地,二线城市的超高层建筑数量亦显著增加。

2超高层建筑结构发展新特点

2.1结构体系

高度超过250m的超高层建筑结构,一般采用框架-核心筒、框筒-核心筒、巨型框架-核心筒和巨型框架-核心筒-巨型支撑4种结构体系,分别适用于不同高度的超高层建筑,如图5所示。框架-核心筒、框筒-核心筒适用于高度250~400m的超高层建筑;巨型框架-核心筒、巨型框架-核心筒-巨型支撑适用于高度300m以上的超高层建筑。框架-核心筒结构是目前高层及超高层结构中应用最广泛的结构形式之一。核心筒除了四周的剪力墙外,内部还有楼梯间、电梯间的分隔墙,核心筒的刚度和承载力都较大,成为抗侧力的主体,框架承受的水平剪力较小。为使周边框架柱参与抗倾覆,增大结构抗倾覆力矩的能力,在核心筒和框架柱之间设置水平伸臂构件。伸臂桁架使一侧框架柱受压、另一侧框架柱受拉,减小结构的侧移和伸臂构件所在楼层以下核心筒的弯矩。为了进一步增大结构的刚度,使周边的框架柱都参与抗倾覆力矩,在设置伸臂构件的楼层设置周边环带构件。设置加强层后,框架-核心筒结构的建造高度与筒中筒结构的建造高度接近。巨型框架-核心筒-巨型支撑结构具有多道抗震防线。设置巨型支撑可提高结构抗侧刚度,且减小刚度突变;水平地震作用下,巨型支撑可提高外框架刚度,使框架底部剪力和弯矩明显提高。在建的上海中心大厦塔楼抗侧力体系为巨型框架-核心筒-外伸臂结构体系[1]。在8个机电层区布置6道两层高的外伸臂桁架和8道箱形空间环形桁架。由箱形空间环形桁架和巨柱形成巨型框架。在建的深圳平安中心大厦,采用巨型斜撑框架-核心筒-外伸臂体系。结构设置了4道钢外伸臂,将核心筒与巨柱有效地连接在一起,从而控制层间位移,改善结构的承载性能,增加了承载冗余度和结构抗侧刚度。7道空间双桁架均匀布置于每区避难/机电层,用于连接巨柱,将结构的形成巨型框架,承担大部分由侧向力引起的倾覆力矩。

2.2结构材料

超高层建筑所采用的材料可分为三类:钢结构、混凝土结构和钢-混凝土混合结构。钢结构强度高、自质量轻、抗震性能好,施工速度快,但由于造价较高、防火性能差等问题,限制了钢结构在高层建筑中的广泛应用。混凝土结构可塑性强、用钢量少,取材方便,维护成本低,加之混凝土和钢筋强度等级不断提高,促使混凝土结构在超高层建筑建造中得到广泛应用。然而,混凝土结构存在自质量大、结构构件尺寸较大等问题。钢-混凝土混合结构是将钢与混凝土组合而成的结构类型,可有效发挥钢与混凝土自身的优点。图8为我国高度250m以上超高层建筑结构体系材料的使用情况,由图可见,我国超高层建筑结构中,钢-混凝土混合结构占98.4%。如上海环球金融中心及金茂大厦内部均为钢筋混凝土核心筒,外框为型钢混凝土柱及钢柱[3-4];正在建设中的天津117大厦,外框采用钢管混凝土柱,核心筒在底部区域采用钢板混凝土剪力墙结构。

2.3建筑经济性分析

超高层建筑结构工程造价的影响因素主要包括:建筑造型与平面布置、建筑物所在地区的抗震设防烈度和风荷载、结构体系选型和材料等方面。图9统计了上海(抗震设防烈度7度)、郑州(抗震设防烈度7度,0.15g)及兰州(抗震设防烈度8度)地区7座超高层建筑单位面积所需的建安造价和土建造价,以分析建筑高度、结构材料、抗震设防烈度对工程造价的影响。所涉及的工程实例有:上海国金中心(高度250m)、郑州绿地广场(高度283m)[5]、兰州鸿运金茂(高度250m)[6]、上海嘉里中心(高度260m)、上海会德丰(高度280m)、上海恒隆广场(高度280m)和上海中心大厦(高度632m)。其中,上海嘉里中心、上海会德丰及上海恒隆广场为钢筋混凝土框架-核心筒结构,其余为SRC外框-钢筋混凝土核心筒结构。图10以上海中心大厦为例,给出其土建工程各部分造价及其占土建工程总造价的百分比。图9和图10表明:1)超高层建筑高度增加,工程造价随之增加;2)混合结构造价高于钢筋混凝土结构;3)抗震设防烈度增加,工程造价随之增加;4)高度250~300m的超高层建筑,土建工程造价约占建安造价的30%~35%,当高度超过600m时,土建工程造价将超过建安造价的35%;5)超高层建筑地下部分与地上部分土建造价之比约4∶6。

3超高层建筑结构分析进展

3.1抗风优化设计研究

随着建筑高度不断增加,结构抗侧刚度趋于变柔、阻尼降低,结构对风作用更加敏感,因此,建筑形态成为超高层建筑结构设计中一个重要的控制因素。建筑形态的空气动力学优化,减小结构风荷载和控制建筑舒适度,从而降低结构造价。超高层建筑的空气动力学优化主要体现在平面、立面和局部形态等方面[7]。

3.1.1选取合适的平面形状

一般的高层建筑采用矩形平面,但对于超高层建筑,采用矩形平面不利于结构抗风。相比而言,平面为圆形、椭圆形、三角形、Y形、月牙形的建筑,对横向作用力的敏感性没有矩形平面强。此外,角部修正也是建筑平面形状优化的另一重要方面。角部修正主要有倒角、削角和圆形化(图11[8])。角部修正改变剪切层的流动特征,促使分离流再附,减小尾流宽度,从而有效地降低阻力和脉动升力。

3.1.2沿高度变化调整平面

沿高度变化调整平面可以分为两种形式:一种是锥形化立面与阶梯缩进平面;另一种是随高度变化改变平面形状。锥形立面与阶梯缩进平面的建筑平面宽度随建筑高度的增加而减小,产生涡激共振的临界风速也减小。而边界层内的风剖面表明[8],风速随高度的增加而增大,这就使得涡激共振得到有效控制。随高度改变平面形状的方法,主要是使建筑在不同高度处的平面形状发生改变。不同的平面形状对应着不同的斯脱罗哈数,这将影响涡激共振产生的临界风速。同时,平面形状的改变,扰乱脉动风荷载沿高度的相关性,削弱叠加效应,从而达到减弱风致响应的目的。

3.1.3改变局部形态

改变局部形态的优化方法通常是在前两类方法的基础上使用。该方法具体可分为建筑附加开洞、附加扰流翼、以及使塔冠形态复杂化[7]。

3.2长周期地震作用研究

超高层建筑的长周期特点成为结构设计的重点。在超高层建筑结构设计中,有必要考虑不同长周期地震运动参数的影响。受模拟式强震仪频率特性的限制,长周期地震记录数量较少或者欠精确,准确的记录往往集中在3s以内。因此,本文的长周期定义为大于3s。对超高层建筑,由于高宽比较大,自振频率较低,结构低阶自振频率的响应构成结构动力响应的主要成分,针对结构的长周期效应,以3个超高层结构作为算例进行分析,研究长周期效应对超高层抗震设计的影响。工程概况:上海中心大厦(模型A)高度为632m,124层,采用巨型框架-核心筒-环带桁架-伸臂桁架结构体系,包括12根巨柱,8道环带桁架,6道伸臂桁架和内含钢骨的核心筒剪力墙[1]。长沙国际金融中心(模型B)高452m,采用框架-核心筒-环带桁架-伸臂桁架结构体系,包括20根框架柱,5道环带桁架,2道伸臂桁架和内含钢骨的核心筒剪力墙[9]。郑州绿地广场(模型C)高度为283m,采用框架-核心筒-环带桁架结构体系[5]。采用ETABS软件进行模态分析。结构沿X向的自振周期如表1所示。可见,模型A的前2阶振型、模型B和模型C的第1阶振型均为长周期振型(周期大于3s),结构越高,长周期振型越多。采用设计地震反应谱法对对上述3个结构模型进行地震响应分析。多遇地震设计参数如表2所示。表3给出了3个结构模型X向地震响应结果。由表2、3可见,结构长周期模态的基底剪力占结构地震总响应的50%以上;长周期模态的倾覆力矩占结构总响应的90%以上。超高层建筑总动力响应中,长周期响应分量占据了绝大部分。

3.3耗能减震技术研究

消能减震结构是在结构上附加衰减机能,在地震作用下吸收地震能量,进而实现消能减振。消能减震结构所使用的消能部件分为:利用位移相关性的消能部件和利用速度相关性的消能部件。黏滞阻尼器为速度相关性消能部件,此种消能部件通过依靠速度产生的内力吸收能量。菲律宾马尼拉SaintFrancisShangri-La双塔[10],每个塔楼高210m,在加强层处设置8个悬臂墙,每个悬臂墙的端部连接处设置2个垂直放置的黏滞阻尼器。该阻尼器的布置较好地降低了塔楼在侧向荷载作用下的结构响应,工作效率较高。文献[11]研究了黏滞阻尼器在伸臂桁架体系中的应用。通过对比普通刚性伸臂加强层方案与设置粘滞阻尼器的伸臂方案在地震作用下的结构动力响应,分析塑性损伤结果及能量耗散情况,结果表明:黏滞阻尼器在伸臂桁架结构中的设置可以吸收地震能量,减小结构的地震响应,同时减小核心筒剪力墙的塑性损伤,是提高结构抗震性能的有效方法。

4结论及展望

第9篇

论文摘要:本文介绍了高层建筑转换层的施工,并详细地阐述了转换层施工的质量控制措施。

1前言

现代高层建筑是向更高、体型更复杂、结构形式更多样、功能更齐全、综合性更强的方向发展。然而在设计中,由于结构下部楼层受力较大,上部楼层受力较少,正常布置时是下部刚度大,墙多柱网密,到上部渐渐减少墙,柱扩大轴线间距。为满足建筑物的功能要求,实现结构布置,必须在结构变换的楼层设置转换层,转换层大致有梁式、桁架式、空腹桁架式、箱形和板式等。本文着重介绍结构转换层的施工方法及其质量控制。

2钢筋混凝土转换层结构的施工

2.1转换层模板支撑系统

工程中常用以下几种模板支撑体系:

2.1.1一次性支模

从转换层底一直撑到底层地面或地下室底版,需要模板支撑材料,适用于施工现场可用的支撑材料较多,且转换层位置较低的情况。

2.1.2荷载传递法支模

将转换梁(板)的自重和施工荷载通过支撑系统传递给若干层楼板。支撑楼板的数量应通过设计来确定。另一种方案是充分利用转换层支撑柱的传力作用;另一部分通过楼面设置的竖向支撑构成的梁下排架体系传递给下面若干个楼层。

2.1.3叠合浇筑法支模

应用叠合梁原理将转化梁(板)分2次或3次浇筑成型,支撑系统只需考虑承受第1次的混凝土自重和施工荷载,施工时应注意叠合面的处理,同时应对叠层浇筑的转换验算。

2.1.4埋设型钢法

支撑。在转换梁中埋设型钢或钢桁架,并与模板连为-体,以承受全部大梁自重及施工荷载,大梁一次浇捣成型,可节省模板支撑材料,转换梁可采用钢骨混凝土结构。

搭设模板支撑时,要求上、下层支撑在同一位置。当转换结构下层空间可采用叠合浇注法或埋设型钢法支模。设置模板支撑系统后,应对转换梁(板)及其下部楼层的楼板进行施工阶段的承载力验算。结构设计时,应综合考虑转换结构的施工方案,建立符合实际的力学分析模式,达到设计和施工的统一。

2.2混凝土工程施工。

大体积混凝土转换层施工时,应采取措施防止温度裂缝:

2.2.1根据混凝土的配合比和施工气候及现场条件,预测监控混凝土在浇筑后1个月内的各部位温度的变化情况。

2.2.2应采用以下方法控制混凝土内外温差小于25℃,蓄热保温法,即常规保温方法;内降外保法,即在大体积混凝土内部循环埋管通水冷却降温,在大体积混凝土转换结构的上表面及面采取保湿措施;蓄水养护法,即在混凝土初凝后先洒水养护2h,随后进行蓄水养护,蓄高度100。

2.2.3水泥的选用:采用水化热低的矿渣硅酸盐水泥或火山灰硅酸盐水泥;掺用沸石粉代替部分水泥,降低水泥用量,使水化热相应降低;掺入减水剂,减少水泥用量,使混凝土缓凝推迟水化热峰值的出现,使升温延长,降低水化热峰值,使混凝土的表面温度梯度减小。

2.2.4施工方法:先施工转换结构周围结构或墙体,防止混凝土表面散热过快,内外温差过大;在夏季高温气候施工时,采用冰水搅拌,以降低混凝土的人模温度;分层浇筑混凝土,每层厚300~500mm,并在前一层混凝土初凝之前,将后一层混凝土浇筑完毕;采用叠合梁原理浇筑转换结构,可缓解大体积混凝土水化热高、温度过大对控制裂缝的不利影响。

2.3钢筋工程施工

转换梁(板)的含钢量高,主筋长,梁柱节点区钢筋密集。因此,正确地翻样和下料,合理安排好就位次序是钢筋施工的关键。

2.4预应力混凝土转换层结构施工

施工时采取以下措施防止张拉阶段预拉区开裂或反拱过大:

2.4.1采用择期张拉技术,即待转换结构上部施工数层之后再张拉预应力,在此之前转换结构下的支撑必须加强。

2.4.2在预拉区配置一定数量的预应力筋用以反拱,该部分的预应力筋是使用阶段不需要的。

2.4.3采用分阶段张拉技术,即逐渐施加预应力以平衡各阶段荷载,但由于张拉次数较多,施工费用略高。

3转换层施工的质量控制

3.1模板安装、拆除的质量控制

3.1.1梁侧模板的安装

应采用30mm×2.5mm的扁铁作为拉片,其长度为梁截面宽度加2倍钢模板肋高,两端适当位置钻孔;钢模外侧应用似8钢管扣件夹具竖向夹住梁的模板,每根小横杆上设置一付夹具,并用水平背杆将这些夹具横向连通;梁、板支撑的部分横向水平杆的端部应顶住梁的两侧模板,并与钢管扣件夹具连接,以承受新浇筑混凝土的侧向压力;为确保混凝土不漏浆,应采用塑料泡沫条或毛草纸对拼缝进行嵌缝;当梁、板的跨度不小于4000mm时。若无设计要求,梁、板底模应按全长跨度的2%起拱量起拱。

3.1.2底板模板的安装

板底模板宜采用2000mm×1000mm×18mm的竹压板,竹压板周边可采用镀锌铁皮包边,以减轻因碰撞造成的损坏。在钢管支撑架顶部水平杆上先平铺150mm×50mm的木拐,间隙距200mm;安装模板后,用钉子将模板与木枋固定。拼缝采用宽50mm的不干胶带封闭,以确保板缝处不漏浆。模板安装完成后,浇筑混凝土前需由项目技术负责人组织有关人员进行模板工程验收,合格后方准浇筑混凝土。3.1.3模板的拆除

混凝土浇筑完成后,对于板,当混凝土强度达到设计强度75%时,对于梁,若跨度不大于8m,当混凝土强度达到设计强度75%时,若梁跨度大于8m,当混凝土强度达到设计强度的100%时,才允许拆除模板及支撑系统。模板拆除前,须由施工人员提出模板拆除申请,由项目技术负责人组织有关人员进行验证,符合有关规定后方准予拆除模板。

3.2钢筋安装的质量控制

对于梁内同一位置有多层钢筋时,为确保受力钢筋位置准确,摆放平直,即采用25的短节钢筋横向水平放置于两层钢筋之间,楞头铁间趾为沿梁长方向每1000mm长放置一根,且每层受力钢筋之间竖向排,均用楞头铁隔开。

梁底部钢筋的混凝土保护层厚度为25mm,其垫块可用预制的(20以上细石混凝土小方块作垫块;但对于截面高度在1200mm及以上的框架梁,由于其钢筋直径在25及以上,且根数又很多,因此钢筋自重很大,细石混凝土垫块已不能承受其荷载。必须采用14~20,长度为1.4倍梁截面宽度的短节钢筋作垫块,将此短钢筋与底层纵向受力钢筋约呈45。夹角平放在底模板与底层箍筋之间,或采用专用料混凝土保护层垫块。

转换层主、次梁的上层承重结构的柱、薄壁柱或剪力墙等,其结构钢筋必须插入转换层的梁、柱内,并与梁、柱内的钢筋焊牢固定,且在距楼面50mm处设置二道箍筋,以确保上部结构钢筋位置正确。

3.3混凝土浇筑的质量控制

3.3.1混凝土配合比设计

混凝土配合比设计,必须由具有相应设计资格的试验室在对施工现场使用的水泥、砂、石、外加剂等进行试(检)验的基础上,设计出混凝土配合比。为防止在浇筑中出现施工冷缝,要求在混凝土配合比中添加缓凝减水剂。

3.3.2混凝土浇筑及下料方法

混凝土浇筑采取从房屋一端的边梁开始浇筑,在边梁浇筑完成后再浇筑垂直于该边梁的其余各框架梁,浇筑长度至相邻轴线的框架柱暂停,再返回浇筑楼盖板混凝土,以此浇筑方法类推,向前平行推进,直至浇筑完成。在浇筑框架梁混凝土过程中,对于截面高度为1800m的梁应采用4次下料浇筑,4次振捣,每次浇筑厚度不大于500m的方法;相应地对于截面高度为1200m的梁应采用3次下料,3次振捣的方法;以确保混凝土密实,不出现施工冷缝,并有利于减小梁侧模板承受的侧向压力。

计量工必须严格控制混凝土的配合比,水泥(散装)、砂、石、外加剂等必须认真过称计量,外加剂由专人负责计量下料,保证供应,如采用商品混凝土也应保证供应。

第10篇

湖南株洲某住宅小区由多栋多层和9~15层小高层住宅组成,框剪结构,总建筑面积为120000m2。以地上9层小高层为例,标准1层结构单元见图1,层高3m;9层上有个跃层为第10层,局部突出屋面部分为电梯机房。建筑总面积为4337.18m2,建筑总高为27.600m。本工程建筑结构的安全等级为二级,抗震设防类别为丙类,按6度设防,地面粗糙度为C类,场地土类别为Ⅱ类。

2结构方案布置分析与选择

原结构方案采用一般的剪力墙结构,这种结构形式对于房屋高度不太大的小高层建筑来说,这种结构会造成刚度过大,重量增加,导致地震反应过强,使得上部结构和基础造价提高。所以,为了有效提高经济指标,经多方案论证,决定采用短肢剪力墙结构体系。

短肢剪力墙结构是指墙肢截面高度为厚度5~8倍的剪力墙结构,和一般剪力墙相比,这种结构型式的优点在于:

1)墙肢较短,布置灵活,可调整性大,容易满足建筑平面的要求。

2)减少了剪力墙而代之以轻质砌体,结构自重相应减轻,从而减小结构整体刚度,增大振动周期,降低地震作用力。

3)墙肢高宽比较大,延性较好,对抗震有利。

4)连梁跨高比较大,以受弯破坏为主,地震作用下首先在弱连梁两端出现塑性铰,能起到很好的耗能作用。

5)墙肢的承载力得到了较充分的发挥。

目前,《高层建筑混凝土结构技术规程》JGJ3-2002已对短肢剪力墙结构的设计作出了规定。

在本住宅结构平面布置中,尽量使结构平面形状和刚度均匀对称,短肢剪力墙双向布置,尽量拉通、对直,竖向布置中,力求规划均匀,避免有过大的外挑、内收,以及楼层刚度沿竖向突变,使整个房屋的抗侧刚度中心靠近水平荷载合力的作用线,以免房屋发生扭转。

根据建筑的平面布置,在房间、楼梯间、电梯间的四角,采用Z形、L形、T形或异形的墙肢。在设计过程中还应注意同周期的关系,使结构的第一自振周期避开场地土的卓越周期,以免地基与结构形成共振或类共振,既保证结构在风和地震荷载作用下的变形控制在规范允许的范围内,又要保证建筑物有相对合理的自振周期,做到结构设计经济、合理且实用。

本方案根据上述分析并经过多次调试,得到了4种结构方案,结构平面布置见图2。剪力墙截面厚度同相邻砌体填充墙厚度均为100mm。剪力墙、梁混凝土强度等级为C30。板的混凝土强度等级均为C25。主要连梁的尺寸大都为200mm×400mm。标准层楼板厚度为120mm,顶层楼板厚度为150mm,有别于肢长肢厚比不大于4.0的异形柱,短肢剪力墙的肢长肢厚比按规范要求控制在5~8范围内,一般剪力墙的肢长肢厚比均大于8。值得注意的是,对肢长肢厚比为4~5范围内的墙肢,目前规范尚无明确条文规定其构件类型,故设计时建议不要采用。

由于原方案的剪力墙过多,使底部剪力过大,使结构很不经济,同时布置了少量钢筋混凝土柱子,使结构不是很合理。故方案1在一般剪力墙结构的基础上去掉了构造柱并减少了少量的剪力墙(见图2a)。

在方案1基础上适当的减少一些剪力墙,从而使方案更经济,在调试过程中由于F轴剪力墙较少,从而使电梯间X方向的剪力墙承受过大的剪力造成超筋,故把电梯间X方向的剪力墙开洞口,使结构X向的刚度减少。(见图2b)

方案3是在方案2的基础上改善了Y方向的刚度,使两个方向的刚度相接近,使结构更合理且均匀对称(见图2c)。

在方案3的基础上把Y向的一些T型剪力墙变成一字型,虽然在多层、高层住宅设计中剪力墙结构应尽量避免一字型,但由于该结构的实际情况,所以采用了部分一字型(见图2d)。

3上部结构设计计算结果分析

3.1计算结果分析

从构件力学特性上来说,短肢剪力墙的肢长与肢厚比≥5.0,更接近于剪力墙,故计算时将短肢剪力墙作为剪力墙而不是柱考虑应更合理。因此,结构整体计算采用中国建筑科学研究院开发的SATWE程序(2003年版)进行。SATWE采用的是在每个节点有六个自由度的壳元基础上凝聚而成的墙元模拟剪力墙墙元不仅具有平面内刚度也具有平面外刚度,可以较好地模拟工程中剪力墙的真实受力状态,计算结果较精确;同时,对楼板SATWE可以考虑其弹性变形。虽然主楼结构平面较规则,立面也无刚度突变现象,但由于刚度较大的电梯井处筒体有点偏置,会产生扭转的影响,为了计算准确,地震作用计算考虑了结构的扭转耦联和5%偶然偏心的影响,取了27个振型计算。

1)自振周期的控制

考虑扭转耦联时的自振周期(计算时自振周期折减系数取0.8)如表1(只列了前6个)所示。从表1可得,方案4结构扭转为主的第一自振周期T3=0.9959s,平动为主的第一自振周期T1=1.1656s,T3/T1=0.854<0.9,满足(JGJ3-2002)

第4.3.5条的规定。

2)结构位移的控制

最大层间位移角(应≤1/1000)、最大水平位移与层平均位移的比值(不宜大于1.2,不应大于1.5)及最大层间位移与平均层间位移的比值(不宜大于1.2,不应大于1.5)见表2。从中可以看出,结构在风荷载和地震作用下的位移均能很好地满足规范限值。

3)剪重比控制

剪重比是反映结构承受地震作用大小的指标之一,地震力计算不能偏大,但也不能太小。因为短肢剪力墙本身抵抗地震的能力较差,如果短肢剪力墙分配的地震力太大,则很有可能不满足要求。本工程X方向的最小剪重比为4.50%,Y方向的最小剪重比为4.62%,根据“抗震规范”(5.2.5)条要求的X、Y向楼层最小剪重比均为3.20%,所以各层均满足要求。

4)轴压比是体现墙肢抵抗重力荷载代表值作用下的能力,“规范”对短肢剪力墙(尤其一字墙肢)要求更高一些。上述工程出现的短肢剪力墙轴压比在0.20~0.45之间,轴压比小于规范规定值。

3.2短肢剪力墙结构经济性分析

为了与工程实际情况相符,假设混凝土的成本与混凝土的体积成正比,钢筋的成本与钢筋的体积成正比。在总造价上,暂不考虑模板及楼板等工程的造价影响。材料的单方造价混凝土为430元/m3,钢筋4200元/t。表4为方案的经济指标汇总,由表4知,方案4比一般剪力墙结构在总造价上要节约17.8%,使材料得到了充分的发挥。

4结语

本文针对小高层住宅的结构特点,采用短肢剪力墙结构,在比普通剪力墙结构方案节省投资17.8%的情况下,使结构受力更合理,整体变形能力和结构吸能能力对抗震更为有利。本工程剪力墙结构的薄弱环节是建筑平面外边缘及角点处的墙肢,因而设计时在以上部位布置L型或一字型短肢墙,受条件所限也出现了少量一字型短肢墙,设计时严格控制其轴压比<0.6,且相差不应太悬殊,避免墙肢应力差异过大。高层建筑中的连梁是一个耗能构件,对抗震不利。多、高层结构设计中允许连梁的刚度有所下降。但应注意短肢剪力墙结构中,墙肢刚度相对较小,连接各墙肢的梁已类似普通框架梁,而不同于一般剪力墙间的连梁,不应在计算的总体中将连梁的刚度大幅下调,使其设计内力降低,应按普通框架梁的要求进行设计。

参考文献:

[1]高层建筑混凝土结构技术规程(JGJ3-2002)〔S〕1北京:中国建筑工业出版社,20021.

[2]建筑抗震设计规范(GB50011-2001)〔S〕1北京:中国建筑工业出版社,2001,1.

[3]李国胜.高层钢筋混凝土结构设计手册(第二版)〔M〕北京:中国建筑工业出版社,2003,1.

第11篇

论文摘要:在建筑施工中采用的基础是多样化的,采由深基础到浅基础的施工步骤,对各种不同的混凝土基础均制定不同的施工方案和采取不同的施工措施,大体积混凝土施工灌注时采取阶梯式的平面和跑道式的灌注方法,有效地降低大体积混凝土的升温,克服了混凝土中产生的冷缝现象,在施工中取得良好的效果。

笔者在实习期有幸参加了一栋高层基础的施工。广州市、天河区、禺东西路某企业一栋33层住宅楼,地下室共有三层,主要用于人防、停车,设备于一体的地下室,长75.7米宽46—38米不等宽的异形平面,基础混凝土采用筏板形设计方案,板的施工厚度为2.0米,总混凝土量为5876.69m3,基础中间设有一条1.2m的后浇带,强度设计为C40的S6级抗渗混凝土基础。

一、施工前的准备

为了确保施工进度和施工质量,施工前我们在现场进行了认真的调查和对施工方案反复的进行了讨论,并做出了充分大量的准备工作。如对市区内可能产生的道路堵塞、可能造成的停电、停水、及现场设备出现故障等均相应地做好了应急的准备工作。我们对泵送混凝土搅拌站选用方面我们选用了市区一家最有实力、且一家公司分别有两个不同方向运送混凝土的搅拌站,如果出现东面断道就从西面供给,西面断道就从东面供给的方式,确保混凝土能满足施工的需求。在用电方面先用了两路电源并备用一台360千瓦/时发电机确保施工用电万无一失。在用水方面我们除了准备自来水之外,还利用市政2米的排水管道设闸堵水以防停水时无法降温而影响混凝土的施工质量。对现场的各种设备都相应地做了应急准备。

二、施工方案的选定

(一)为了保证相邻住房的安全,我们选定以西向东推进的施工方案。

(二)由于施工场地比较宽敞,充分发挥优势,泵站选用HP—800自动配料机2台,现场采用HBT—60混凝土输送泵三台,管径直125mm2,同时还采用一台12m3/h的汽车混凝土输送泵,专用来做小体积混凝土的补救及找平。

(三)采用38台6m3/台混凝土运输车。

(四)人员采用四班不间隔连续作战的的施工方法,确保施工进度,每班交接班需提前半小时。

(五)为了防止由于混凝土自身产生的高温而烧坏混凝土的现象,我们采用双排直径为50mm的钢管通水降温的方法,(左右间隔1米,上下1米且交叉布置)取得了良好的效果。

三、保证混凝土出厂质量的措施

(一)选择高质量的水泥

我们选用“珠江牌”625R硅酸盐水泥。

(二)混凝土出厂前的技术处理

为了减少水泥的水化热,降低混凝土自身的温度,在满足设计和混凝土保证用泵输送的前提下,将625R硅酸盐水泥控制在450kg/m3。

(三)适当参加一定的添加剂,控制水灰比

根据设计要求,混凝土中掺和水泥用量4%的复合液,它具有防水、膨胀、缓凝而一体,溶液中的糖钙能提高混凝土的和易性,使用水减少20%左右,水灰比一般能够控制在0.55以下,初凝可延长4小时左右,对大混凝土施工的质量提供了有利的保证。

(四)对骨料的控制

选用70—40mm连续配碎石,细度模数2.8—3.0的中砂,砂石的含泥量控制在1%以内,并不能混有其他有机杂质和使用海砂。(五)混凝土的施工配合比

根据设计强度和泵送混凝土对坍塌度的要求,经试验确定采用:625R硅酸盐水泥,其水∶水泥∶砂∶碎石∶复合剂=0、25∶1∶1、82∶2、5∶0、04。

(六)加强技术管理确保施工质量

加强原材料的检验试验工作,分工由监理单位安排人员跟班检查,并对每批原材料都做详细的记录。

(七)采用确实可行的施工工艺

浇灌混凝土同采用三班人员交叉流水作业的形式,分层次地采用跑道式的施工路线,一层一层向前推进,每层保证振动器跟上施工步伐,在施工最后一层混凝土时除了采用平板振动器外,还采取长4米的园条形振动器做一次压平处理,事后人工压浆收尾。

(八)混凝土的保养

为了防止在大体积混凝土施工时由于产生的高温而烧坏混凝土,影响混凝土的施工质量,我们采用了循环水系统降温的办法,保证进入口水温在C25度以下,出口水温在C58—C68度以内,在水温超过C70时我们采用加快循环水量的办法,并在混凝土上部采用麻袋湿水保养的办法,在施工过程中做到了一丝不苟,其结果是工夫不负有心人,仅仅在30小时内元满地完成了5876.69m3混凝土的施工任务。

四、谈几点体会

(一)施工前的准备和施工时可能出现问题,采取相应的应急措施,是非常必要的,给施工增加了保证力量。

(二)采用内外降温的养护措施有效地控制了混凝土的升温,大大缩短养护周期,对大体积混凝土的施工时的采用尤其重要。

(三)大体积混凝土施工浇灌时采用分层跑道式的施工方法,对施工进度和施工质量均有利,是可借鉴的一种施工方法。

第12篇

1.1高层建筑结构受力特征

高层建筑结构在模型上一般可以假想为一个从地基出发并不断上升的悬臂构件。高层建筑主要承受水平作用效应和竖向作用效应,水平作用效应一般指风荷载,在抗震设防地区还包括水平地震作用。竖向作用效应则一般由结构自重荷载产生,在抗震设防烈度为8、9度时的大跨度和长悬臂结构及9度时的高层建筑,还应考虑竖向地震作用。在这些作用效应下,结构整体及主体构件均需具有足够的承载能力、刚度和延性,整体的设计注重概念,应符合相关规定中对于建筑形体的规则性要求,包括平面布置的规则性及竖向布置的规则性。结构在抵抗弯曲方面来说,结构体系务必满足:不能使建筑物产生倾覆;在承受荷载时,它的支撑体系的某些部位不应被压屈、压碎或者直接被拉伸破坏;同时弯曲侧移不能超出弹性极限的范围。而结构在抵抗剪力方面来说,结构体系务必满足:建筑物不至于发生剪切破坏;同时结构的整体剪切侧移不能超过弹性极限的范围。最后对于结构的地基和基础来说,由于高层建筑一般是高次不静定结构,所以结构体系在支承点处应避免较大的不均匀变形,从而可以防止出现较大的二次内力。

1.2高层建筑结构的传力路线

高层建筑的竖向平面结构和水平平面结构都必须有明确的传力路线。以某个作用在楼面上的重力荷载为例,它要通过楼盖构件的弯曲传递给竖向结构的某个构件,直到建筑物的基础和地基。传力路线的模式根据结构的类别和布置而异。高层建筑的底层往往只允许有少量的立柱,以便有足够的空间可以设置宽敞的入口、前厅或广场。这时,有较密柱间距的上层结构的重力荷载,就要通过另一种结构体系传给底层立柱以及底层立柱基础。当高层建筑的楼层平面有突变时(如楼层有收进,或由矩形平面变成其他形状的平面时),或结构体系有变化时,它们的传力路线也会发生改变,这时往往既要有竖向的转换结构,也要有水平方向的转换结构。在高层建筑结构传力路线中还有一个区别于底层建筑结构的特殊问题,那就是高层建筑的每个立柱都承受着上层传来的重力荷载,要考虑它们各自在施工和使用过程中竖向压缩量的差异。这既要在设计中加以考虑,也要在施工过程中及时加以调整,以保证各层楼面的水平度,减小因不同柱的压缩量有过大差异而引起的结构内力。

2概念设计

2.1抗关于侧力构件合理布置规定

对于一个单独的结构单元,在设计上的通常做法是,一般会尽力避免设计出应力集中的缩颈和凹角部位;而且尽量不要在这些部位设置楼、电梯间。整个结构外形也要避免外挑,尺寸内收也不宜过急,避免在结构上形成薄弱部位。最大限度地防止因局部结构或构件破坏,而出现全部结构失去承载力的情况。

2.2关于高宽比的规定

高宽比的规定是对结构整体刚度、整体稳定、抗倾覆能力、承载能力以及经济合理性的综合考虑,是长期工程经验的总结,根据当前的实际工程来看,这一限值是比较经济合理与实用。但随着目前高层建筑的快速发展,设计师们发现其实高宽比并不是必须要满足的。实际工程已有一些超过高宽比限制的例子(如深圳京基100大厦高441.8m,共100层,高宽比为9.5,天津117大厦,高597m,共117层,高宽比为9.7),当然高宽比超过限值时,应对结构进行更加准确的受力分析,并施加可靠的构造措施。

2.3短肢剪力墙的设置问题

在新的规范中,将墙肢截面高度与厚度比为5-8的剪力墙定义为短肢剪力墙,且根据试验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制。比如在剪力墙设计等级为四级,短肢剪力墙的配筋率要求是1%以上,而普通剪力墙则为0.2%。高厚比较小的构件的脆性破坏较大,不利于抗震。所以,在具体的高层结构设计里,设计师们应该充分利用其它现有构造形式来代替短肢剪力墙,减少不必要的麻烦。

2.4嵌固端的设置问题

在结构计算模型的选择上,如何准确地确定嵌固端位置是一个十分关键的问题,这直接关系到实际的受力状态与选择的计算模型是否符合以及内力等相应计算结果是否无误。因为现在高层结构通常会设有一层或者是二层的地下室(可以当作人防工程来使用),而嵌固端的选择,可以结合各层的刚度变化,再根据它的实际布置状况,可以选择在一层顶板的位置,也可以是二层顶板的位置,同时在地下室其他楼层等部位也是有很大可能的。但是在这个问题上,结构设计师们往往会忽略了一系列需要注意的问题,例如嵌固端的设置和刚度比的限制等问题,忽视这些问题将会对工程的质量和后期数据的分析造成很大的隐患。

3地基与基础结构设计

在基础的具体设计中,应根据地基复杂程度、建筑物规模和功能特征以及由于地基问题可能造成建筑破坏或影响正常使用的程度来确定基础设计等级。首先,地基计算应满足承载力计算的有关规定;其次,由于高层建筑的基础设计等级均为甲级或乙级,因此均应按地基变形设计;若地下室存在上浮问题时,还应进行抗浮验算。下面就高层建筑中不同的基础类型分别阐述在设计计算中应注意的事项:在对箱基和筏基的梁板进行配筋计算时,务必相应地扣除底板上直接作用的梁板荷载和自重,当出现箱筏的四边区格和地基反力过大的情况,这时要对梁板进行加强配筋;而在进行箱基结构设计时,要考虑洞口上下的连梁的影响,验算其截面面积,若洞口的位置或者大小有变动,要复核连梁的抗剪强度和抗弯强度;若是进行整体箱基和筏基的设计,必须考虑桩土的因素,其共同工作会对结构造成一定程度的影响。

4结构计算与分析

4.1结构整体计算的软件选择

当前比较常用的计算软件一般包括:建科院PKPM其中的SAT-WE,MIDAS,ANYSYS,ETABS,SAP等。由于各个软件使用的计算模型有一定区别,所以在各个软件计算结果上就会有或大或小的差异。实际工程中,务必考虑结构类型和计算模型的具体特点,在进行整体分析时选择最恰当的软件,并使用不同软件进行对比分析计算,从不同软件计算的相差较大的结果中,选择最接近工程实际情况的数据。若不能选择合适的计算软件,不但会消耗大量的时间和精力,更重要的是会对结构埋下安全隐患,造成日后的工程问题。所以为了保险起见,通常在布置复杂的高层设计中,宜使用不少于两种不同的模型来进行内力分析和计算。

4.2剪力墙底部加强部位墙厚的确定

在进行抗震设计时,剪力墙的底部加强部位一般采取增加边缘构件箍筋和墙体的布筋来防止地震荷载的影响,预防结构出现脆性破坏,从而能够比较有效的改善结构的抗震性能,在现行的规范中,明确指出剪力墙结构底部加强部位的高度可以参考墙肢的1/8和底部两层二者中的较大值;而部分框支剪力墙结构底部的取值,可考虑以上两层的高度及墙肢总高度1/8中的较大值。一般情况下,高层建筑结构底部加强部位的剪力墙截面厚度bw的取法按照以下规定,按照一、二级级抗震标准的情况,bw宜选择剪力墙无支长度的1/16或层高;按照三、四级抗震标准的情况,bw宜选择剪力墙无支长度的1/20或层高。但在墙底受力较小且结构层高相对较高的情况下,其厚度还按上述要求取值,就显得很不经济。所以,根据具体的工程实践,厚度可以适当减小,而且必须按照下面的公式计算稳定性。

5结束语