时间:2023-06-07 09:31:35
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇量子学习法,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
半导体物理学是以半导体中原子状态和电子状态以及各种半导体器件内部电子运动过程为研究对象的学科,是固体物理的一个重要组成部分,凝聚态物理的一个活跃分支[1]。半导体物理学是一门公认的难教、难学的课程,为了提高半导体物理学的教学质量,相关院校的教师们提出了许多有益的建议和有效的方法,如类比学习法[2]、多媒体教学法、市场导向法[3]等。基于提高课堂效率、改善半导体物理学课程的教学效果的目标,作者在乐山师范学院材料科学工程专业(光伏方向)的半导体物理学的教学中,对传统的课堂教学模式进行改革,在半导体物理学的课堂教学中采用“学案导学”教学模式,该文就“学案导学”教学模式在乐山师范学院材料科学工程专业(光伏方向)的半导体物理学课程教学实践作一简述,供同行参考。
1 半导体物理学课程教学模式改革的必要性和迫切性
传统半导体物理学的主要内容包含半导体的晶格结构、半导体中的电子状态、杂质和缺陷能级、载流子的统计分布、非平衡载流子及载流子的运动规律、p―n结、异质结、金属半导体接触、表面及MIS结构等半导体表面和界面问题以及半导体的光、热、磁、压阻等物理现象[4]。但是近年来半导体物理发展迅猛,新现象、新理论、新的研究领域不断涌现。上世纪50~60年代,属于以固体能带理论、晶格动力学理论、金属―半导体接触理论、p-n结理论和隧道效应理论为主的晶态半导体物理时代;70~80年代则形成半导体超晶格物理、半导体表面物理和非晶态半导体物理三足鼎立的格局;90 年代以后,随着多孔硅、C60以及碳纳米管、纳米团簇、量子线与量子点微结构的兴起,纳米半导体物理的研究开始出现并深化;现在,以GaN为主的第三代半导体、有机聚合物半导体、光子带隙晶体以及自旋电子学的研究,使半导体物理研究进入一个新的里程[5]。
半导体物理学是材料科学工程专业(光伏方向)的核心专业课程,是太阳能电池原理等后续专业课程的基础。它是一门理论性较强同时又和实践密切结合的课程。要透彻学习半导体物理学,既要求有较强的数学功底,熟悉微积分和数理方程;又要求有深厚的物理理论基础,需要原子物理、统计物理、量子力学、固体物理等前置课程作为理论基础。由于材料科学工程(光伏方向)培养目标侧重于培养光伏工程专业技术人才,而不是学术型的研究人才,在课程设置方面有自己的独特要求,学生在学习半导体物理之前,没有系统学习过数学物理方程、量子力学、固体物体、统计物理等专业课程,所以理论基础极其薄弱,这给该门课程的教学带来极大的困难和挑战。而且半导体物理的理论深奥,概念多,公式多,涉及知识范围广,理论推导复杂,沿用“教师讲学生听”的传统课堂教学模式,学生学习兴趣不高,直接的结果就是课程教学质量较低,教学效果不好,学生学习普遍被动。面对发展迅猛的半导体物理和目前教学现状,如果不对“教师讲、学生听”的半导体物理学的课堂教学模式进行改革,难以跟上形势的发展。为此教师要在半导体物理学教学中采用了“学案导学”教学模式。
2 “学案导学”导学教学模式在半导体物理课程教学中的实施过程
“学案导学”教学模式由“学、教、练、评”四个模块构成。“学”,就是学生根据教师出示的教学目标、教学重点、教学难点,通过自学掌握所学内容。“教”,就是教师讲重点、难点、讲思路等。“练”,就是通过课堂训练和课后练习相结合,检验学习效果。“评”,就是通过教师点评方式矫正错误,总结方法,揭示规律。“学案导学”教学模式相对于传统教学模式的改革绝不是一蹴而就的课堂教学形式的简单改变,而是一项复杂的系统工程,包括教学模式的总体目标确定、教学内容的重新构建、导学案的编写、课堂教学过程的实施。
2.1 半导体物理学“学案导学”教学模式总体目标的确定
半导体物理学课堂教学模式创新的总体目标是:以材料科学工程专业(光伏方向)人才培养方案和半导体物理学课程教学大纲依据,以学生为主体,以训练为主线,以培养学生的思维方式、创新精神和实践能力为根本宗旨,倡导自主、合作、探究的新型学习方式,构建自主高效的课堂教学模式;注重学生的主体参与,体现课堂的师生互动和生生互动,关注学生的兴趣、动机、情感和态度,突出学生的思维开发和能力培养;针对学生的不同需求,实行差异化教学,面向全体,分层实施。
2.2 根据人才培养方案构建合理有效的教学内容
半导体物理学的教材种类较多,经典教材包括:黄昆、谢希德主编的《半导体物理》(科学出版社出版);叶修良主编《半导体物理学》(高等教育出版社出版);刘恩科、朱秉生主编《半导体物理学》(电子工业出版社出版)。该校教研组经过认真分析,选择刘恩科主编的《半导体物理学》第7版作为教材,该书内容极其丰富,全书共分13章,前五章主要讲解晶体半导体的结构、电子的能带、载流子的统计分布、半导体的导电性、非平衡载流子理论等基础知识,第6章讲PN结理论,第7章讲金属和半导体的接触性能、第8章讲半导体的表面理论、第9章讲半导体的异质结构,第10、11、12章讲解半导体的光学性质、热电性质、磁和压电效应,第13章讲解非晶态半导体的结构和性质;该教材理论性很强,有很多繁杂的数学推导,要真正掌握教材所讲内容,需要深厚的数学功底和物理理论功底。该校材料科学工程专业(光伏方向)立足于培养光伏工程的应用型人才,学生理论功底较为薄弱,故我们对理论推导不做过高的要求,但对推导的结果要形成定性的理解。具体要求学生掌握半导体物理学的基本理论、晶体半导体材料的基本结构、半导体材料基本参数的测定方法。根据人才培养方案的要求,我们确定的主要理论教学内容有:(1)半导体中的电子状态;(2)半导体中的杂质和缺陷能级;(3)半导体中载流子的统计分布;(4)半导体的导电性;(5)非平衡载流子理论;(6)PN节;(7)金属和半导体接触;(8)半导体表面理论。对半导体的光学性质、热电性质、磁和压电效应以及非晶态半导体不做要求。在课程实践方面我们开设四个实验:(1)半导体载流子浓度的测定;(2)少数载流子寿命的测量;(3)多晶硅和单晶硅电阻率的测量;(4)PN节正向特性的研究和应用。
2.3 立足学生实际精心编写导学案
“导学案”是我们指导学生自主学习的纲领性文件,对每个教学内容都精心编写了“导学案”。“导学案”主要包括每章节的主要内容、课程重点、课程难点、基本概念、基本要求、思考题等六个方面的内容。以“半导体中的电子状态”为例,我们编写的导学案如下:
2.3.1 本节主要内容
原子中的电子状态:
(1)玻耳的氢原子理论;(2)玻耳氢原子理论的意义;(3)氢原子能级公式及玻耳氢原子轨道半径;(4)索末菲对玻耳理论的发展;(5)量子力学对半经典理论的修正;(6)原子能级的简并度。
晶体中的电子状态:
(1)电子共有化运动;(2)电子共有化运动使能级分裂为能带。
半导体硅、锗晶体的能带:
(1)硅、锗原子的电子结构;(2)硅、锗晶体能带的形成;(3)半导体(硅、锗)的能带特点
2.3.2 课程重点
(1)氢原子能级公式,氢原子第一玻耳轨道半径,这两个公式还可用于类氢原子。(今后用到)
(2)量子力学认为微观粒子(如电子)的运动须用波函数来描述,经典意义上的轨道实质上是电子出现几率最大的地方。电子的状态可用四个量子数表示。
(3)晶体形成能带的原因是由于电子共有化运动。
(4)半导体(硅、锗)能带的特点:
①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带。
②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。
③导带与价带间的能隙(Energy gap)称为禁带(forbidden band),禁带宽度取决于晶体种类、晶体结构及温度。
④当原子数很大时,导带、价带内能级密度很大,可以认为能级准连续。
课程难点:原子能级的简并度为(2l+1),若记入自旋,简并度为2(2l+1);注意一点,原子是不能简并的。
基本概念:电子共有化运动是指原子组成晶体后,由于原子壳层的交叠,电子不再局限在某一个原子上,可以由一个原子转移到另一个原子上去。因而,电子将可以在整个晶体中运动,这种运动称为电子的共有化运动。但须注意,因为各原子中相似壳层上的电子才有相同的能量,电子只能在相似壳层中转移。
基本要求:掌握氢原子能级公式和氢原子轨道半径公式;掌握能带形成的原因及电子共有化运动的特点;掌握硅、锗能带的特点。
思考题:(1)原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同,原子中内层电子和外层电子参与共有化运动有何不同。(2)晶体体积的大小对能级和能带有什么影响。
2.4 以学生为主体组织课堂教学
在每次上课的前一周,我们将下周要学习的内容的导学案印发给学生,人手一份,让学生按照导学案的要求先在课余时间提前预习,对一些基本概念要有初步的理解,对该课内容要形成基本的认识。比如,我们在学习“半导体中的电子状态”这一内容时,要求学生通过预习要清楚:孤立原子中的电子所处的状态是怎样的;晶体中的原子状态又是怎样的;半导体硅、锗的能带有何特点。在课堂教学中我们的教学组织程序是一问、二讨论、三讲解、四总结。一问,是指通过提问,抽取个别同学回答问题,了解学生的自主学习情况。二讨论是指让同学们就教师提出的问题开展自主深入的讨论。例如就晶体中电子的状态这一问题,让学生讨论什么是共有化运动;电子的共有化远动是如何产生的;电子的共有化运动有何特征;电子的共有化运动如何使能级分裂为能带。让学生畅所欲言,充分发表自己的意见,教师认真聆听,发现学生的错误认识,为下一步的讲解做好准备。三讲解是指就三个方面的知识进行讲解,其一是就学生讨论过程中的错误认识和错误观点及时的纠正;其二是对学生不具备的理论知识进行补充讲解,例如学生不具备量子力学基础,就要给学生补充讲解量子力学认为微观粒子(如电子)的运动须用波函数来描述,经典意义上的轨道实质上是电子出现几率最大的地方,电子的状态可用四个量子数表示;其三是就难点进行讲解,比如原子能级的简并度,学生理解起来较为困难,就需要教师深入细致地讲解;四总结就是归纳本堂课要掌握的重点知识,那些基本概念必须掌握,那些基本公式必须会应用。
【关键词】高中数学 学习方法 高效 学习习惯 纠错 试错 动手操作 空间思维 知识迁移
中图分类号:G4 文献标识码:A DOI:10.3969/j.issn.1672-0407.2013.11.134
高中数学的学习不同于语文等一些人文学科的学习,它对学生的思维能力和逻辑思考都有很高的要求。毫无疑问,正确的学习方法是学生们学好数学知识的关键影响因素,学生们只要领悟了正确的学习方法,就可以实现知识的高效掌握,但是如果学生一直不能够找到适合自己的高效学习方法的话,就会在学习的道路上遇到很多的挫折和困境,逐渐增大学习的压力。因此,我们教师在授课的同时,一定要注意引导学生们找到适合他们自己的学习方法,帮助学生们实现数学知识的高效学习、学得轻松并且快乐。有效的数学学习方法有很多,教师在实际的引导中关键是要根据学生的性格差异和其他方面的不同做出准确地判断和选择,实践证明以下几个方面的学习方法都是比较行之有效的。
一、养成正确的数学学习习惯是关键
1.建立纠错本的习惯。
纠错是学生学好数学必须掌握的一个高效学习方法。具体的做法是学生把平时课上课下练习数学题目时,遇到的各种较为典型的出错题目都工整有序地整理记录到一个本子上,然后有规律地经常温习这个本子,就可以降低下次在同样题目上出错的概率了。教师尤其需要引导学生在考试之前将错题集认真地温习一遍,因为这是提升复习效率的一个好方法。这是一个对学生学好数学很重要的学习习惯,可以帮助学生们准确找到自己数学学习的薄弱环节,及时弥补、提升效率。
2.做题中使用试错法。
选择题是高考数学中的一个重要题型,也是比较容易拉开学生之间分数差距的题型。学生在做选择题的时候,除了使用平时的计算、带入等方法之外,也可以采取试错的解题方法。世界著名的科学家爱因斯坦先生曾经讲过:“发现并且剔除一种错误的可能,就是离真理更进一步。”也正是在这一方法的有效践行下,爱因斯坦成功提出了EPR佯谬学说,开创了量子力学研究的新领域。其实所谓试错法其实就是我们平时所说的排除法,学生通过排除错误答案的方法,可以较为迅速地锁定正确答案的范围,然后再结合其他的带入等做题方法,能够节省更多的时间,提升答题的效率。不仅是在考场上,在平时的学习中,学生掌握试错的技巧也是很有必要的。
二、注意知识的迁移联系的学习方法
1.数学学科内的横向迁移。
在心理学理论中,迁移是一个非常重要的概念。人们将以往的经验有机地结合并且指导当下的工作和生活中,就是迁移的成功运用。数学知识对学生的思维联系能力本身要求就很高,有经验的高中数学教师都很清楚学生们学会数学学科内部知识横向迁移的必要性。知识的横向迁移其实指的是学生以时间为线索,将过去学习的和现在正在学习的数学知识有机地联系在一起,找到更加普遍的学习规律。在教学中,我们发现但凡是熟练运用知识迁移学习法的学生在学习的时候不仅能够举一反三、而且空间思维能力都得到了进一步的发展。因此,我们引导学生掌握数学知识横向迁移的学习方法,无疑是保证学生高效学习的重要举措。
2.相关学科的纵向迁移。
学生除了要掌握知识横向迁移的学习方法之外,学会将各个学科之间的知识进行纵向迁移也是具有重要意义的。学生在学习高中数学、物理、化学的时候,常常会感受到这些学科之间的很多知识点都有一些密切联系的,甚至说是相通的知识内容。因此我们常常会发现一些数学成绩比较好的学生,物理能力和化学能力也不会太差。如果学生掌握了足够的知识纵向迁移能力的话,在学习这些科目的时候往往能够融会贯通,更加轻松和高效。我们教师的职责就是在课下和相关学科的教师进行互动沟通,同时在教学中就渗透学科之间知识迁移的技巧和方法,潜移默化地影响学生学会主动纵向地迁移知识。
三、积极利用身边资源的学习方法