时间:2023-06-07 09:35:50
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇工程数学论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
本人热爱社会主义祖国,坚持四项基本原则,忠诚党的教育事业,工作中具有改革创新的精神和良好的教师职业道德,爱岗敬业,教书育人,为人师表。
平时我认真钻研教材,准确把握教学要求,累计送过毕业班两届。所任的班级教学质量始终处于年级前列:2005年所教两个一年级班优秀率及格率均100℅,、年所教班级在市培优检测中优秀率均为学校第一,年、年所教的毕业班在毕业会考中优秀率、及格率均达到市局不扣分标准,并处于年级第一。
自参加工作后,一直比较乐意担任公开课任务,学校也给与比较多的机会让我锻炼成长。年月执教市级公开课《圆的周长》,年执教片级公开课《分数乘法》、《可能性》,年参加海门市数学优课比赛获一等奖,并被选拔参加南通比赛,获二等奖。
在工作之余,我还笔耕不断,经常撰写教学反思,曾在海教在线撰写反思随笔一百多篇,被海门市教育局评为“博客之星”,教学随笔《有心的“伤害”》发表与年第四期《小学教学》杂志。年数学教学案例《让情境图动起来》获海门市二等奖,年数学教学论文《让预习成为课堂美妙的前奏》获海门市二等奖,年数学论文《小学数学概念引入法略谈》发表于《海门教育周刊》,另外还有多篇数学论文获等级奖。另外我还参与学校省级课题《农村小学特色(乒乓)文化蕴育的实践研究》,已经顺利结题。
身为学校的教导主任,我积极带领好学校教师走专业知识成长之路,曾指导沈佳美老师在学程导航现文秘杂烩网场会上执教市级公开课《求比一个数多(少)多少的实际问题》,曾指导杨翠娟老师在区域共同体活动中执教公开课《探索积的变化规律》。
作为教师,我深知给学生一杯水,教师要有一桶水。所以一毕业我就投入到继续学习的大浪中,通过函授学习,现已取得本科学历。平时积极参加各级各类机构组织的继续学习、计算机培训,都能认真参与,并取得优良的好成绩。
在今后的工作中,我将更加努力钻研,踏踏实实做好教学六认真工作,发挥好示范引领作用,带动好学校一批年轻的教师也投入到教学改革、教学创新的热潮中,为学校教学质量上台阶工程再添新力。
纳什还是奥斯卡获奖电影《美丽心灵》主人公原型、“博弈论”大师、著名数学家。2015年3月25日纳什因在非线性偏微分方程方面做出的卓越贡献,与数学家路易斯・尼伦伯格一同获得2015年度阿贝尔奖(也有人把它称为“数学界的诺贝尔奖”)。然而,就在领奖之后不到2个月,纳什和妻子因为车祸双双离世。
相关链接:
“数学界的诺贝尔奖”之争
菲尔兹奖是最著名的世界性数学奖,1936年设立,一般4年颁发一次。由于诺贝尔奖没有数学奖,因此,也有人将菲尔兹奖誉为“数学界的诺贝尔奖”。菲尔兹奖只授予40岁以下的数学家,且奖金额仅有1500美元。2001年,为纪念挪威最著名的数学家阿贝尔诞辰200周年,挪威政府宣布设立“阿贝尔奖”。“阿贝尔奖”尽管历史较短,但由于奖金额(约100万美元)巨大可以与诺贝尔奖相媲美,且每年颁发一次,获奖者不设年龄限制,很快在世界范围内获得了承认,目前已被公认为“数学界的诺贝尔奖”。
早慧的天才少年
约翰・纳什曾担任普林斯顿大学数学系教授、美国科学院院士,其主要研究领域为博弈理论,同时,在代数簇理论、黎曼几何、抛物和椭圆型方程上取得了一些突破。纳什写的论文不多,仅仅几篇便足够引起学界瞩目。
1928年6月13日,约翰・纳什出生于美国西弗吉尼亚州的一个中产家庭,父亲是电力公司的工程师,母亲同样受过良好教育,做过教师。纳什的才华在小学四年级就显露出来,不过,他的数学成绩只有B-。纳什的老师告诉他的母亲,说他不怎么懂得做功课,但母亲很清楚孩子已经学会自己的方式去解决问题。到了高中阶段,当老师好不容易才做出一个冗长的证明,纳什却只用两三步就能解决问题。
高中毕业后,纳什进入了卡耐基梅隆大学学习,之后又进入卡耐基技术学院化学工程系。1948年,大学三年级的纳什同时被美国几所顶尖高校哈佛、普林斯顿、芝加哥和密执安大学录取。普林斯顿大学则表现得更加热情,当数学系主任列夫谢茨感到纳什的犹豫时,就立即写信敦促他选择普林斯顿,这促使纳什接受了一份1150美元的奖学金。由于优厚的奖学金以及离家乡较近的地理位置,纳什选择了普林斯顿,来到爱因斯坦当时生活的地方。在此,纳什显露出对拓扑学、代数几何、博弈论和逻辑学的浓厚兴趣。
孤独天才造就神奇的“纳什均衡”
1950年,纳什把自己的研究成果撰写成主题为《非合作博弈》的长篇博士论文,当年11月发表后,立即引起轰动。这篇论文所探讨的问题后来也被称为“纳什均衡”。“纳什均衡”首先是指个人理性与集体理性的冲突,各人追求利己行为而导致的最终结局,也是对所有人都不利的结局;其次,“纳什均衡”是一种非合作博弈均衡,在现实中非合作的情况要比合作情况普遍。
“纳什均衡”的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。生活中,常见的“价格战博弈”“污染博弈”“易自由与壁垒”这3种现象可以用来直观地理解“纳什均衡”。
纳什是一个天才数学家,然而,他的天才发现――非合作博弈的均衡(纳什均衡),并不是一帆风顺的。1948年,纳什来到普林斯顿大学,那一年他不到20岁。当时,普林斯顿可谓人杰地灵,大师云集。爱因斯坦、冯・诺依曼、列夫谢茨(数学系主任)等人全都在这里。
其实,博弈论的主体架构是由冯・诺依曼创立的。早在20世纪初,塞梅、鲍罗和冯・诺伊曼已经开始研究博弈的准确的数学表达。直到1939年,冯・诺依曼遇到经济学家奥斯卡・摩根斯特恩,并与其合作才使博弈论进入广阔的经济学领域。
1944年,冯・诺依曼与奥斯卡・摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的初步形成。其中,合作型博弈在20世纪50年代达到了巅峰期。然而,其局限性也日益暴露出来,这表现在它过于抽象、应用范围极有限。在很长时间里,人们对博弈论的研究知之甚少,它只是少数数学家的专利。正是在这个时候,非合作博弈(纳什均衡)应运而生了,它标志着博弈论的新时代的到来!
纳什当时研究的博弈论,正是一门以各种博弈为研究对象的应用数学分支。1950年后,纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。然而,纳什天才的发现却遭到冯・诺依曼的断然否定,在此之前,他还受到爱因斯坦的冷遇。骨子里挑战权威的本性,使纳什坚持了自己的观点。
走向学术巅峰却堕入生命谷底
当我们回首纳什的年轻时代,仍然会被其天才的智慧和传奇的经历而吸引。1945年,纳什进入卡耐基梅隆大学,他的数学天才在这里得到了公认,教授们称他为“年轻的高斯”。1948年,在普林斯顿热情地召唤下,纳什来到了这里并很快表现出他的机敏和才能。不久,他就发明了一种在洗手间里六角形瓷砖上打记号玩的游戏,并一时风靡。1950年6月13日,是纳什22岁生日,也恰好是他获得博士学位的日子。1950年11月,纳什的博士,这背后纳什的师兄戴维・盖尔功不可没。就在遭到冯・诺依曼“贬低”几天之后,纳什遇到盖尔,并向他介绍了自己的想法,盖尔听得很认真,意识到纳什的思路比冯・诺伊曼的合作博弈的理论更能反映现实的情况,而对其严密优美的数学证明极为赞叹。盖尔建议他马上整理出来发表,以免被别人捷足先登。纳什这个初出茅庐的年轻人,根本不知道竞争的险恶,从未想过要这么做。结果还是盖尔充当了他的“经纪人”,代为起草致科学院的短信,系主任列夫谢茨则亲自将文稿递交给科学院。
1957年,纳什结婚了。之后,漫长的岁月证明,这也许是纳什一生中比获得诺贝尔奖更重要的事。1958年,纳什因其在数学领域的优异表现被美国《财富》杂志评为新一代天才数学家中最杰出的人物。然而,纳什不是一个善于为人处世并受大多数人欢迎的人,他有着天才们常有的骄傲、自我为中心的毛病。虽然事业爱情双双得意,但纳什还是喜欢独来独往,喜欢解决折磨人的数学问题,而且被称为“孤独的天才”。
30岁时,纳什突然出现了许多古怪的举动:他担心被征兵入伍而毁了自己的数学创造力;他梦想成立一个世界政府;他认为《纽约时报》上每一个字母都隐含着神秘的意义,而只有他才能读懂其中的寓意;他认为世界上的一切都可以用一个数学公式表达;他给联合国写信,跑到华盛顿给每个国家的大使馆投递信件,要求各国使馆支持他成立世界政府的想法;他迷上了法语,甚至要用法语写数学论文,他认为语言与数学有神秘的关联……最终,他因为幻听被确诊为严重的精神分裂症,后来是接二连三的诊治与复发。1962年,当他被认为是理所当然的菲尔兹奖获得者时,他的精神状况却使他与奖项失之交臂。
正当纳什处于梦境一般的状态时,他的名字开始出现在20世纪七八十年代的经济学课本、进化生物学论文、政治学专著和数学期刊等各领域中。同时,他的名字已经成为经济学或数学中的常见名词,如“纳什均衡”“纳什谈判解”“纳什程序”“德乔治-纳什结果”“纳什嵌入”和“纳什破裂”等。20世纪80年代末的一个清晨,当普林斯顿高等研究院的戴森教授像平常一样向纳什道早安时,纳什回答说:“我看见你的女儿今天又上电视了。”从来没有听到过纳什说话的戴森仍然记得当时的震惊之情:“我觉得最奇妙的还是这个缓慢的苏醒。渐渐地他就越来越清醒,还没有任何人曾经像他这样清醒过来。”
纳什渐渐康复,从疯癫中苏醒,这似乎是为了迎接他生命中的一件大事:荣获诺贝尔经济学奖!当1994年瑞典国王宣布年度诺贝尔经济学奖的获得者是约翰・纳什时,数学圈里的许多人惊叹的是:原来纳什还活着。
从未停止思考的数学大师
纳什没有因为获得了诺贝尔奖就放松自己的研究,在诺贝尔奖得主自传中,他写道:“从统计学看来,没有任何一个已经66岁的数学家或科学家能通过持续的研究工作,在其以前的成就基础上更进一步。但是,我仍然继续努力尝试。由于出现了长达25年部分不真实的思维,相当于提供了某种假期,我的情况可能并不符合常规。因此,我希望通过目前的研究成果或以后出现的任何新鲜想法,取得一些有价值的成果。”
20世纪50年代,美国麻省理工学院的数学家纽曼曾对纳什有过这样的评价:“其他人通常会在山上寻找攀登顶峰的道路。纳什干脆爬上另外一座山,再反过来从那个遥远的山峰用探照灯照射这座山。”20世纪70年代,普林斯顿大学的师生们总能在校园里看见一个非常奇特、消瘦而沉默的男人在徘徊,他穿着紫色的拖鞋,偶尔在黑板上写下“数字命理学”(亦称为“占卜算术”)的论题。他被称为“幽灵”,人们知道这个“幽灵”是一个数学天才,只是突然发疯了。如果有人敢抱怨纳什在附近徘徊使人不自在的话,他会立即受到警告:“你这辈子都不可能成为像他那样杰出的数学家!”
【关键词】计算机专业;应用数学;模块化设计;教学实践
关于高职数学和计算机数学基础的课程改革、课程设计、教学模式设想等探索已经进行了许多年,相关的文章很丰富[1][2],其中大部分从数学课程的重要性、现状剖析和存在的问题、课程改革的意义、改革设想[3]等方面阐述了作者的见解.这些问题已基本形成共识,但宏观论述的较多,拜读文章之后,读者对作者理念的实践效果及如何借鉴实施的认识仍然比较模糊.本文尝试将课程组多年的教学实践和对课程改革的不断探索进行总结,在厘清理念的同时,对实践做法和效果进行较为详尽的介绍,愿抛砖引玉,与基础课教师和专业课教师共同学习探讨.
计算机技术的特点之一就是日新月异,人们不由自主地被裹进数字化、智能化、网络化、多媒体化的技术进步浪潮里,高职计算机专业人才培养受到层出不穷的新技术的影响.如何使学生掌握未来职业所需的专业知识与技能,使之具备适应职场技术快速变化的能力?数学课程在培养学生的学习能力和应用能力上有怎样的作用?又该怎样做?这是计算机专业导向下应用数学课程建设关心和思考的问题.
一、学情教情调查
为了解学生的数学基础状况及学习情况,我们设计了两份问卷调查表,分别在学生大学入学时和第一学期结束时进行调查,调查内容包括个人中学数学学习兴趣和水平的自我评价,对数学的认识,对大学数学学习的期待,大学数学学习途径和学习情况自我评价,对大学数学教学内容、教学方法和考核方式等的评价,以及对老师教学的意见和建议.抽样调查了2009级、2010级、2011级和12级软件专业、网络专业、信息管理专业若干班级.调查结果如下:
1.入学初调查
76%的同学对数学学习有兴趣并在中学数学学习中感到充实愉快,但成绩一般.90%的同学都认为学数学有必要,86%的学生相信能继续学好数学或能改变现状,75%的学生期待大学数学能提高数学应用能力,80%的同学喜欢思考,有一定独立学习的能力和习惯,62%乐于和同学共同探讨.
2.第一学期末调查
60%左右的学生仍然有兴趣,65%认为数学课程训练了思维,教学内容比较合适,影响数学学习的主要因素是自身基础和学习方法,对老师的教学15%表示很满意,70%表示满意,7%表示不满意.对自己的学习状况,3%表示很满意,42%表示满意,50%表示不满意.对老师教学的意见和建议是:改变一言堂占16%,少讲多练占26%,增加课堂互动占34%,改革教学内容占24%.学生学习数学的途径基本在课堂内,边听边看书,以完成作业为度.大部分学生很少或从不借阅数学参考书,说明在数学学习上学生缺乏探索钻研,自我要求不高,仅凭课内的90分钟时间,课外复习方式就是完成作业.软件和网络专业近20%学生抄作业或懒得做作业.
3.调查统计后的若干结论
软件专业学生在数学兴趣、理解消化知识的能力、挑战自我上表现更为突出,软件专业32%的学生有参加数学建模学习比赛的意愿.信管专业学生习惯听从老师的安排,自律性、学习积极性更高.网络专业学生的学习状态相对更平淡,但是对学习内容和教师教学的期待比其他两个专业学生高,所谓有心向学,无力“杀敌”.在数学学习兴趣、学习能力上呈现的整体性差异,间接反映出数学课程与各专业课程的相关性.计算机各专业人才培养方向和职业岗位目标不同,需要的数学知识与技能训练不同,分配在数学上的总学时不同,因此应用数学课程在教学中需进行适当的模块划分,加强针对性以适应不同专业的需要.
二、计算机专业导向下应用数学课程的教学理念与设计
应用数学是高职计算机类专业的基础能力课程模块中的必修课程.从短期看,为学生的专业课程学习服务,要适应计算机专业培养人才的任务导向、项目驱动等工学结合的教学模式.从长期看,为学生继续学习提供具有数学特色的思考方式和技能训练,包括抽象化、最优化、逻辑分析、数据整理推断、运用符号、量化能力、建模能力、人工计算能力、数学软件运用能力等.但数学课程的教学时数受到制约,不可能面面俱到地为学生准备所有的知识和进行系统全面的数学能力训练,让不同的专业侧重选择不同的学习内容,实施模块化教学成为必然选择,为此,我们从教学内容、教学方法、教学组织形式、考核评价等方面提出一种模块化教学设计的理念.
1.优化课程知识结构
课程设计遵循“学有所用、够用为度”的原则,以整合计算机专业背景知识、程序设计思想方法、应用问题为主线,将课程教学内容设计成三大模块和若干子模块,各模块知识有独立性和适用性,便于计算机各专业根据需要和课时限制针对性选择.恰当案例是教学核心,通过模块学习和案例分析来训练学生的思维能力和应用能力,使学生获得新的知识和新的经验,并在新知识经验的基础上建立个人的理解力,扩展智力框架.[4]
2.教学方法
课程形式上有理论讲授课、数学实验课、数学建模实践指导课,各部分课时约占1/3.各部分的逻辑关系是:理论知识模块实操模块综合应用模块.教学方法以综合应用模块中的项目为导向,根据项目需要选择理论知识模块的学习深度,兼顾内容衔接和层次递进,应用实验课程强化巩固,使数学理论知识学习、数学实验操作和数学建模形成一个项目式整体.
有数学家说过:“数学素质中最重要的是数学建模意识和基本的数学头脑.”实践表明,数学实验和数学建模实践是扩展学生学习途径、提高学生参与学习的广泛性、提升学生查阅资料能力和团队合作精神的有效形式.
3.教学组织方式
以问题解决为核心组织教学,教学的问题可分为概念问题、方法问题、思想问题、计算问题、推论问题、应用问题、实际操作以及模拟实现等问题.通过项目化分组实施“模块案例+MATLAB软件实现”教学做一体化,逐步解决上述问题,实现教学目标.
4.构建课程新的评价体系
评价的主要目的是为了全面了解学生的数学学习过程,考查学生的“输出”能力,同时督促学生学习和改进教师教学.但以往的评价手段“期末一考定终身”过于单一,不能全面反映学生的真实情况.
对数学学习的评价要关注学生学习的结果,更要关注学习的过程,所以采用过程考核与目标考核、笔试与机试相结合,通过强化项目化分组的过程监控,将作业、小组讨论、实验报告、论文写作、资料查阅等任务的完成情况纳入考核系统,加权计算数学成绩,更能反映学生学习成果的真实情况,同时也能提高学生平时学习的积极性.
三、计算机专业导向下应用数学课程模块化教学实践经验
1.进一步明确了模块化教学的思路
通过研究,教师更清楚地把握了要教什么,教到什么程度,什么教学形式更有效果.学生普遍比较喜欢MATLAB上机学习的形式和体验,新鲜有趣,在老师布置的任务驱动下能全神贯注,通过阅读实验指导,向老师提问和相互交流,大多数学生都能完成任务,特别是听理论课有些吃力的学生,发现自己也能读懂教材,可以动手操作,自然而然就有收获参与的良好心理体验,学生“尝试应用数学”的愿望得到最基本满足.因此加大实践实践教学环节的学时比重成为共识.
2.项目导向,教学做一体化,锻炼和提高了学生的能力
从教学实践来看,在实验室教学,讲解操作演示模仿练习项目训练的方式比较有效果.把一个建模任务以数学论文的形式完成,学生首先感到很困难,但坚持下去,通过查阅资料,小组合作完成的过程带给学生与以往不一样的体验.有的学生在数学学习的总结中写道:“这次写的小论文给我收获蛮大,一来提高了我的思维,那是一次真正思想上自由的思考,虽然一开始摸不着头脑,找不到头绪,只能到处去查资料、看书、查看相关专题,在短时间要理解运用知识,这是平时我们学习很难得到的,真正锻炼到了思维.二来又锻炼了我的计算机应用能力、检索文献的能力、学习新知识的能力和论文写作能力等.这次写论文对我来说是一次很好的经历,这段日子的体会和收获,相信对我今后的学习会有一定影响,让我不断努力进步.”教学做的方式同时促进了学生计算机专业课程的学习和知识的运用.有学生反馈:“这次实训使我对计算机编程有了新认识,虽然我是学计算机的,平时写过很多程序,不过那是事先设计好的题目,要么是课本上的,要么是老师限定好所有条件的,虽然做出来了,却不知道在现实中有什么用,然而这次写程序却给了我很大挑战,感觉写得很辛苦,但是蛮有成就感,因为是自己第一次联系现实用计算机解决问题.”
计算机专业课程(如数据结构、C语言程序设计)教师对应用数学课程中讲授算法逻辑结构、递归算法、最短路算法等的做法大加肯定,在他们传授相关知识时学生理解接受得比较快,数学课程为计算机专业课程教学起到一定的先导作用.
数学教学的层次性更加鲜明.通过课堂普及性教学建模选修提高性教学全国大学生数学建模竞赛集训三级渐次提高的教学链,使具有创新精神和独立钻研能力的优秀学生突颖而出.从2009年开始参加的每届全国大学生数学建模竞赛,均取得全国一等奖、二等奖的佳绩,尤其是2010年,五个参赛队中两个获得全国一等奖并获“高教社”杯,已有三篇学生数学竞赛论文在《数学工程学报》上发表.
3.考核评价方式改变,降低了学习压力,改变学习状况
通过强化项目化分组的过程监控,以数学建模论文写作作为考查学生掌握和运用知识的能力的主要依据,使得学生改变平时混课,学习没有压力也没有动力,考前抱佛脚的情况.把考试压力分解到日常的学习中,学生感到只要平时认真上课,就不会畏惧考试,消除了有句话说的“大学有一棵树叫‘高数’,许多人都挂在上面”的大面积考试不及格现象.
结束语
虽然本课程在教学上取得一些令人鼓舞的改变,摸索出一点适合高职计算机类的数学教学理念、设计和实践经验,学生对数学教学的认可度也得到提高,但要达到“数学学习对每名学生有用”的境界,仍然艰巨.当今数学的范畴不再是几何、代数、微积分.数学扎根于数据,展现于抽象形式中,对诸如表格、图形、趋势分析、财务报告、逻辑辩论、概率推断等等生活、新闻报刊、例行公事中的数学概念的理解展现了数学基本能力,这些能力的掌握程度必然影响到学生未来的职业能力.愿与同行们共同探讨基础课程贴近生活实际和专业需要的教学改革问题,不断改进数学教学工作.
【参考文献】
[1]张秀英,王艳萍,李海燕.计算机数学基础课程改革的探讨[J].郑州铁路职业技术学院学报,2007,3:47.
[关键词] 小学数学;专业发展;教研
教育大计教师为本,教师大计发展为要。教师专业发展直接影响着教育教学的质量,加强教研是提高教师专业素养的有效途径。
一、树立正确理念,实施教研兴校
首先,确立教研兴校战略。近年来,根据新课程改革的新形势新任务和新要求,学校结合数学教师队伍实际,确定了教研兴教战略,旨在通过数学教研活动,既能解决教育教学实践中的问题、困惑,又能促进教师自身专业发展,实现教师发展与学校发展的双赢目标。
其次,坚持以规划为前提。针对教师实际,找到教师专业发展方面存在的问题,深入剖析存在问题的原因,然后从促进教师专业发展的角度,制定学校教师发展规划,其中包括远期中期和近期规划,每个教师也相应制定专业发展规划,以此确保教师专业发展的系统性、持续性和长期性。再次,以问题为导向。立足数学教学实践实际,针对教学中发现的问题作为研究选题,分年级,以教研组为单位,开展团队研修与个人微型课题研究相结合的方式,不仅可以有效分析解决教学实践中存在的问题,而且可以促进教师专业发展,从而不断提高小学数学教学质量。在这样的模式下,教师会带着问题开展数学教学教研,带着问题进入课堂教学,从而增强教学的针对性和教研的有效性,更容易获得成功。最后,以活动为载体。数学教研活动是实现教研兴校战略目标的主要途径,因此,可以开展丰富多彩的数学教研活动,让广大教师在教研活动中充分展示自我、发现差距、相互借鉴、相互促进。
例如,笔者学校在开展教研活动的过程之别注意强调正确的教学理念在教研工作之中的重要性。在一些教研会议之中,有关管理者专门抽出时间仔细讲述在接下来的一段时间的工作之中需要注意的地方,同时就课程改革的推进状况和新时期对教育的要求等各个方面听取一线教师们的意见,同时表达校领导对相关工作开展的意见。同时,在教研会议的过程之中会进一步分析学校的教师情况,明确学校的师资力量,并且根据实际教学情况和师资力量进行教研活动计划的制订和实行。数学教研活动的开展需要教师和相关管理者相互交流和沟通,这样才能够解决好计划制订和计划实行过程之中可能出现的各种问题。一些校领导经常会要求教师在会上就自己在教研活动中遇到的问题和解决办法谈谈想法,同时要求大家群策群力寻求更好的解决办法。学校还会帮助教师根据自己的实际情况制定专业发展方向,同时根据每个教师的不同,制定有针对性的阶段性的发展目标和执行规划。为了确保教师能够保证自己专业发展的系统性和持续性,学校会专门安排人员对教师的计划制订和执行情况进行监督和审核,对于其中可能存在的问题,监督审核人员会及时地指出并给出自己的建议。教研活动以小组为单位,这样既可以保证教师的独立性,又能够保证教师在遇到问题的时候有寻求帮助的地方。同时通过交流和沟通,教师可以更好地解决问题,提高教研的质量。一些学校要求教研小组必须有计划地开展小组讨论和小组检查,定期汇总整理学生学习的新情况、学生在学习之中遇到的新问题,并且针对这些问题寻求最理想的解决办法。这样的教研活动才能够真正做到从实践之中来,到实践之中去,将理论研究和实践检验完美结合。通过这样的方式,学校的教研活动效率和质量都有了明显的提高。在小组沟通交流的过程之中教师们的关系会更加和谐,同时教师交流的内容也会有所拓展,长期坚持,教学质量也可能会有明显的提升。
另外,为了更好地将理论研究成果转化成为“看得见的成绩”,学校也要根据学生的学习情况和学期的时间安排举办一些有趣的活动,比如在听课环节上,不仅教师能够听课,学校管理者可选择一定数量的学生参与听课,由学生来给教师的课评分。另外学校也会组织两个或多个班级进行比赛,激发班级学生们的好胜心,培养他们的集体荣誉感和责任使命感。除此以外,露天开放式的教学也可给教师们更大的展示空间和舞台,教师们的积极性都得到了明显的提升。
二、开展教学研修,发挥教研作用
教研不仅仅是教师的个体行为,更应是团队行动。因此,作为数学教研组,通过实施团队研修,充分发挥团队作用,能够集思广益,在相互沟通交流中达到最佳效果。
1.充分发挥年级教研组长的作用。教研组长可以由教师共同推荐,也可以由学校任命安排,其人选不仅应具有一定的数学教学理论和实践水平,而且要具有较强的责任感、组织能力、协调能力和感召能力,这样才能成为教研团队中的核心人物。另外教研组长也要做好榜样和模范作用。榜样和模范作用可以对组员的积极性和动力等产生重要的影响,一个优秀的管理者有时候甚至可以对团队的整体实力产生关键性的影响。
2.实施好团队研修。学校可以周、月、半学期、学期和年度等为时间单位,召开教研会议,专题研究教学实践中存在的问题,由教研组收集整理汇总,最终确定几个最为主要的问题作为总课题,然后分解成几个子课题,进行时间段分解和任务分配。一周结束后,教研组进行沟通,交流进度,及时提出意见,调整教学措施。此外团队领导者也要注意处理好团队之中的关系,领导者和被领导者的关系、团队成员之间的关系等,这些对团队的教研效率和教研质量都会产生十分重要的影响。只有处理好这些关系才能够为以后教研工作的开展提供可靠的保证。
3.实施微型课题,提高教学效果。根据年级教研组确定的总课题,每个教师将自己感到最迫切需要解决的问题作为子课题,然后将此课题纳入到团队研修的规划中去,制订具体实施方案。譬如针对学生对数学兴趣不够的问题,教师可以根据实际进行研究,摸清学生的数学学习兴趣现状的调研与分析,找到症结所在,然后将拟实施的对策逐步付诸于数学教学实践中,并通过写教后记、教学反思等方式,对实施的效果进行评估,根据评估效果对采取的措施进行调整,在不断的完善和调整中,寻找规律,总结经验,并升华到理论层面,形成微型课题研究成果。校领导要帮助教师们树立对微型课题的正确认识,帮助教师们更好地面对和处理微型课题。微课题的研究成果要不断地在实践之中检验和修改,这样可以确保其成果的科学性和合理性。
三、积极开展教育活动,助推教师专业发展
教师的工作是传道授业解惑。因此,教师就必须具备有比较强的专业能力。专业能力的培养是教师教学工作质量的重要保证。而要推动教师的专业发展,笔者认为我们应该做到以下两个方面:一是实施数学教学素养理论发展工程。学校应加大投入,积极搭建各种平台,促进教师数学专业理论水平的提升。如开展数学教师课题成果展示、数学论文投稿和评选、数学理论讲座等活动。此外,还可拓展理论学习渠道,丰富学习方式,倡导教师以自主学习为主,采用阅读数学教育教学报刊书籍、登陆数学网站等方式,提升教师的数学理论素养。
二是实施数学教学实践能力发展工程。采用“名师教学”工程,通过名师教学风采展示、骨干教师示范课、优秀数学教师座谈交流等方式,推荐一批数学名师,发挥引领作用。同时积极开展各种数学教学比赛、听课评课、同课异构等活动,让广大数学教师都能充分展示自己,在活动中体验到数学教研带来的快乐和实际效果,从而更加主动积极地支持和参与教研工作。
总之,教研兴校是实现科教兴国的重要举措之一,教研是教师专业发展的快车道。因此,作为学校管理者,必须站在全局和未来发展的高度,树立正确的管理理念,切实做好教师团队专业发展的引领者,不断提升教师队伍的专业素质,从而更好地促进学校发展,更好地为教育事业服务。
参考文献
[1]马冬琳.积极开展数学教研活动 促进教师专业发展[J].中国教育技术装备,2013,(08):42.
[2]张群.校本教研活动促进教师专业发展的个案研究[D].武汉:华中师范大学,2012.
数学是研究客观世界数量关系和空间形式的科学。数学美即是蕴藏于她所特有的抽象概念、公式符号、命题模型、结构系统、推理论证、思维方法之中以及自然、简单、严谨、和谐等形式当中,她是数学创造的自由形式,她揭示了规律性,是一种科学的真实美。数学的魅力是多方面的、具体的、意义深刻的,其主要表现在以下4方面:
一、自然美
数学存在的意义,在于理性地揭示自然界的一些现象、规律,帮助人们认识自然、改造自然。可以这样说,数学是取诸生活而用诸生活的。数学最早的起源,大概来自古代人们的结绳记事,一个一个的绳扣,把数学的根和生活从一开始就牢牢地系在了一起。后来出现的记数法,是牲畜养殖或商品买卖的需要,古代几何学的产生,是为了丈量土地。中国古代的众多数学著作(如:《九章算术》)中,几乎全是对于某个具体问题的探究和推广。阿基米德的数学成果,都用于当时的军事、建筑、工程等众多科学领域,牛顿见物象而思数学之所出,即有微积分的创作。费尔玛和笛卡儿一起奠定的解析几何的基础理论及欧拉对变分法(最终寻求的是极值函数,使得泛函数取得极大或极小值)的开创性发明也是由探索自然界的现象而引起的。
二、简洁美
简单性是美的特征,也是数学美的基本内容。数学的简单美具有形式简洁、秩序规整和高度统一的特点,还具有数学规律的普遍性和应用的广泛性。例如,众所周知的三角形、平行四边形、梯形的面积公式,形式多么简洁规整,应用又多么的广泛普遍。在梯形的面积公式s=1/2(a+b)h(a为上底,b为下底,h为高)中,当a=0时变成三角形的面积公式;当a=b时,变成平行四边形的面积公式,这种既有区别又有联系、既对立又统一、从量变到质变的辨证方法在数学中处处可见,其思维方式引人深思。
“数学是语言所能达到的最高境界。”如果说,诗歌的简洁是写意的、是欲言还休的、是中国水墨画中的留白,那么数学语言的微言大义则是写实的、是简洁精确、抽象规范的,是严谨的科学态度的体现。数学的简洁,不仅使人们更快、更准确地把握理论的精髓,促进自身学科的发展,也使数学学科具有了很强的通用性。目前,数学作为自然科学的语言和工具,已经成了所有科学――包括社会科学在内的语言和工具。最为典型的例子,莫过于二进制在计算机领域的应用。试想,任何一个复杂的指令,都被译做明确的01数字串,这是多么伟大的一个构想。可以说,没有数学的简化,就没有现在这个互联网四通八达、信息技术飞速发展的时代。
三、严谨美
严谨性是数学的独特之美。它表现在数学定义准确地揭示了概念的本质属性;数学结论存在且唯一,对错分明,不模棱两可;数学的逻辑推理严密,从它的公理开始到演绎的最后一个环节不允许有一句假话,即使错一个符号也不行。数学规律由一些基本定理出发,雅洁、鲜明地表达出来。大多数的数学论文都是艰涩难懂,但有些却能令人流连再三。牛顿三大定律,非常简单,但可以解释非常繁杂的现象,如天体运行的规律。这就是数学家的口味,不够严谨、经不起推敲,就不入法眼。此外,数学结构系统协调完备,数学图形美丽和谐,数学语言生动严密等都表现了数学的严谨性,例如,极限过程,是一个无限接近的过程,人们无法经历它的全过程,而极限理论却使我们在推理想象中完成这个过程。对她所推出的结论的正确性人们确信无疑,达到尽善尽美,令人陶醉的境界。数学美的这种严谨性,要求数学工作者具有实事求是,谦虚谨慎,孜孜不倦地追求真理的美德,这正式数学美的伦理价值所在。
四、对称美
中国的文学讲究对称,这点可以从历时百年的楹联文化中窥见一斑。而更胜一筹的对称,就是回文。苏轼有一首著名的七律《游金山寺》,便是这方面的上乘之作:
《游金山寺》
潮随暗浪雪山倾,远浦渔舟钓月明。
桥对寺门松径小,槛当泉眼石波清。
迢迢绿树江天晓,霭霭红霞晚日晴。
遥望四边云接水,碧峰千点数鸥轻。
不难看出,把它倒转过来,仍然是一首完整的七律:
轻鸥数点千峰碧,水接云边四望遥。
晴日晚霞红霭霭,晓天江树绿迢迢。
清波石眼泉当槛,小径松门寺对桥。
明月钓舟渔浦远,倾山雪浪暗随潮。
这首回文诗无论是顺读或倒读,都是情景交融、清新可读的好诗。类似的又如“香莲碧水动风凉,水动风凉夏日长。长日夏凉风动水,凉风动水碧莲香”。这些诗凭着精巧的构思,给人以奇妙的感受,每每读之,读者都会暗自叫绝。
而数学中,也不乏这样的回文现象,如:
12×12=144,21×21=441;
13×13=169,31×31=961;
102×102=10404,201×201=40401;
103×103=10609,301×301=90601;
而数学中更为一般的对称,则体现在函数图像的对称性和几何图形上。前者给我们探求函数的性质提供了方便,后者则运用在建筑、美术领域后给人以无穷的美感。各种自然形态,特别是动植物的生态以及人类的许多造物形态都蕴涵丰富的数学关系,有丰富的对称美、和谐美。作为反映和研究客观规律的数学科学,集中反映了这种美的特征。
人的爱美天性在青少年时期表现尤为突出,数学教师理应抓住这个最佳时期,不失时机地向学生揭示数学之美,在教学中可以遵循以下4点对学生进行审美教育,充分发挥数学的美育功能。
一、展示数学之美,激发学习兴趣
心理学研究表明:没有丝毫兴趣的强制性学习,将会扼杀学生探求真理的欲望。兴趣是思维的动因之一,兴趣是强烈而有持久的学习动机。只有学生热爱数学,才能产生积极而又持久的求学劲头。因此,教师应充分运用数学美的诱发力引起学生浓厚的学习兴趣、强烈的求知欲。具体方法如下:1.通过学生熟悉的实际事例、形象直观的教具,组织学生进行实际操作等引入数学概念、定理、公式,使学生感受到数学与日常生活密切相关;2.结合教材内容,向学生介绍数学的发展史和进展情况以及在社会主义现代化建设中的广泛应用,使学生看到数学的用处,明确今天的学习是为了明天的应用;3.根据教材内容,经常有选择地向学生介绍一些形象生动的数学典故、趣闻轶事和中外数学家探索数学思维王国的故事;4.根据教学需要和学生的智力发展水平提出一些趣味性、思考性强的数学问题等。
二、融贯数学之美,加深知识理解
数学美是美的高级形式,它的特点在于抽象的理性形式中包含着无限丰富的感性内容。在教学中,教师运用大量生动的感性材料给学生以美感直觉,把抽象枯燥的数学概念、公式、定理先给学生以具体的直观形象,再上升为理性形象,成为字母与运算符号间的造型艺术,使学生对所学知识易于接受,便于理解。教师通过严密的推理、生动的语言、优美的图形、科学的板书等作出审美示范,创设思维情境,把数学美的简单统一、和谐对称等特征融贯在教学的整个过程中,使学生在美的享受中获得知识、理解知识、掌握知识,在潜移默化中理解数学美的真正含义。
教师通过引导学生对所学知识进行前后比较,归纳总结,揭示内在规律,形成有序结构体系,并教给学生归纳整理的方法等手段融贯数学之美,既能促进学生进一步巩固和加深对所学知识的理解和应用,也能提高教学质量,起到事半功倍的效果。例如,教师带领学生把正棱柱内接于圆锥、圆柱内接于圆锥、圆柱内接于球、圆锥内接于球、球内切于圆柱、球内切于圆锥等常见的特殊多面体与旋转体的相“接”相“切”问题,画出图形、分析比较,区别异同。根据多面体与旋转体的定义和性质,归纳总结各种情况下“接”与“切”的空间位置关系和各个元素之间的相互数量关系,寻觅解决问题的截面和把空间问题转化为平面问题解决的途径。这些优美对称的图形使学生看到美的形象,领略到美的神韵。在感受美、鉴赏美的过程中建立起“知识链”,形成了知识的有序结构和解题的方法体系,巩固和加深了对所学知识的理解和应用。
三、创造数学之美,培养思维能力
数学教学的基本任务之一是传授数学知识和培养技能、技巧的过程中发展学生的思维能力。根据青少年“好想”、“好动”的特点,在教学中教师应通过一题多解(证)、一题多变、一法多用、一图多变等数学的奇异美,鼓励学生多向思维,标新立异,找出最优方法。教师要善于把握教学机制,创设思维情境,用数学的美启发学生思维,当学生对数学美感受最灵敏、最强烈、最深刻的时候,他们的思维也进入最佳时期,逻辑思维和灵感思维交融促进,聪明才智得到充分发挥,一旦灵感出现,他们就会感受到创造数学美的喜悦和成功后的乐趣。毫无疑问他们的思维能力也得到培养和提高。学生亲身感受到数学的奇异之美,陶醉在创造数学美的愉悦之中。这个对学生来说,可视为创造性发现。此时,师生情感交融,学生思维的灵活性、发散性、深刻性、独创性等诸方面得到培养和提高。
四、发掘数学之美,陶冶思想情操
数学中的审美教育同文学艺术一样,具有潜在的思想教育功能。不过,数学美是美的高级形式,对缺乏数学素养的人来讲,特别是青少年受阅历、知识和审美能力的局限,不可能像文学艺术那样轻易地感受和意识到,这就需要教师不断提高自身的专业知识水平和美学修养,认真钻研教材,深入发掘和精心提炼教材中蕴涵的美育因素,为学生创设一个和谐、优美、愉快的学习环境和气氛,引导学生按照美的规律去发现美、感受美、鉴赏美和创造美,进行审美教育,提高审美能力,培养审美意识。它的核心是通过情感教育,让学生在美的熏陶中开启心灵,以自己的知、意、情去追求客观世界的真、善、美,引起精神上的升华,产生共鸣,起到净化感情,陶冶情操的效果,对培养学生良好的个性品质和形成他们正确的人生观、完美的世界观也能起积极作用。例如,向学生介绍数学在祖国现代化建设和最新科学技术中广泛应用,既激励了他们为振兴中华而努力学好数学的信心和决心,又美化了学生的心灵;向学生介绍我国数学发展的历史,介绍我国古代数学家的杰出成就和现代数学家对数学发展的巨大贡献,既激发了学生学习兴趣,又对他们进行了爱国主义教育,增强了他们的民族自尊心、自信心和自豪感。又如,数学美的严谨性可以培养学生言必有据,一丝不苟,坚持真理,修正错误,实事求是的科学态度和高尚品德;寻觅数学结论完美和接替方法最优,可以培养学生独立思考、标新立异、勇于探索、坚韧不拔、顽强拼搏的意识。