HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 水利水电工程抗震设防标准

水利水电工程抗震设防标准

时间:2023-07-06 17:15:19

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇水利水电工程抗震设防标准,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

水利水电工程抗震设防标准

第1篇

关键词:水工建筑物;可靠性设计;因素

中图分类号: TV文献标识码: A

前言

可靠性理论在水工建筑物设计中的应用,使水工结构设计理论进入了一个新的阶段。可靠度设计方法只能解决可统计的随机性不确定性问题,例如结构相对简单、对其作用、作用效应、材料性能和抗力已基本了解和认识的建筑构件,随机变异性是其设计中主要考虑的因素。所以,在工程结构设计中,可靠度分析方法与传统的总安全系数方法最本质的差异就在于其未计入不可统计的非随机不确定性因素。

一、可靠度和安全系数

安全系数包含了不可统计的非随机不确定性因素。诸如,从作用到作用效应的转换、从试件的强度到结构抗力的转换、以及可能存在的设计中的人为差错、地基查勘中未被查明的隐患等,这些因素都只能依据工程经验确定。所以基于概率理论的可靠度分析对这些不可统计的非随机不确定性因素是不能适用的。

对随机变异性是设计中主要考虑因素的结构,可靠度设计方法具有综合考虑抗力 R 和作用效应 S 的发生概率、对各类结构给出以功能函数Z <0 标志的真实失效概率的优势,对其作为工程设计趋势的前景需要积极关注。但同时也应充分认识到在当前的工程设计中,尤其是对高坝这类复杂的水工建筑物,设计中安全水准的设置在相当程度上仍需依据工程实践经验,其诸多非随机不确定性因素是可靠度设计方法所无法解决的。而对如大坝这类复杂的水工建筑物设计,可靠度设计方法也存在着相当的复杂性和局限性,例如作为统计基础的样本资料的不足,而可靠度方法本身对非线性的大坝结构分析也有不少有待解决的困难,特别是地震作用实际并非随机变量,而是非平稳的随机过程,其动态可靠度分析更是非常复杂难解的。因此,对待可靠度方法在水工建筑物设计中的实际应用,必须十分慎重,应当说,目前在水利水电工程中,直接推行可靠度设计尚不具备条件。但在水利水电工程中,采用笼统的单一安全系数的传统,也确有突破的必要。当前可行的途径是向采用分项系数极限状态的方式转轨,包括考虑作用效应和抗力随机性的分项系数,以及引入计入非随机性的不确定性因素影响的结构系数 γd,这实际上是从单一的安全系数向多安全系数的转轨。但至少在目前,对转轨后分项系数的取值,在相当程度上仍需要依据工程实践经验,因此总体上仍需要由传统的安全系数套改,以保持规范的连续性。

 二、单一安全系数向分项系数的“转轨套改”

1、两种分项系数极限状态方程的本质差异

在可靠度分析中,抗力和作用效应的分项系数 γR、γS是通过与目标可靠度相应的验算点的设计值 Rd、Sd求解的,因而是相互关联而并非独立确定的。虽然可靠度设计和转轨后的多安全系数法都是以分项系数极限状态方程表征的,但如上所述,两者间有本质差异,因此,把以分项系数表征的多安全系数法混同于可靠度分析方法,正是源于上述这些概念上的混淆。在计入结构系数 γd的情况下,仍要求按可靠度方法确定抗力和作用效应的分项系数,实际也是难以推行的。

2、向分项系数“转轨”的内涵

由于从传统的单一安全系数 K 向以分项系数表征的多安全系数转轨,目前分项系数的取值仍需由安全系数套改,因此,实际上只是将安全系数 K 拆分为考虑抗力和作用效应从标准值到设计值的随机变异性的分项系数 γR和 γS、以及考虑非随机不确定性因素的结构系数 γd三者的乘积。因而就安全标准的设置而言,两者并无本质差异。但分项系数法使工程人员更清楚了解安全系数 K 的内涵中包含的各个因素的性质及其在总的安全裕度中所占有的比重,且能根据不同作用产生的作用效应及构成抗力的不同因素之间随机变异性的差异,对相应的分项系数进行适当调整。由于转轨后以分项系数表征的多安全系数法并非可靠度设计,其取值并不以目标可靠度 β 相关联,因而也不存在工程人员要按可靠度理论进行复杂计算的困难。实际上,多安全系数极限状态的设计方法在国际上已广为应用,但在水工建筑物设计的“转轨套改”中,对各个分项系数,特别是引入的结构系数 γd,赋予了更为明确的内涵和取值依据。显然,采用统一的多安全系数极限状态的设计方法,也有利于我国在国际承担愈益增多的水利水电工程建设任务。

三、水工建筑物设计中作用分项系数的特点

在重大的壅水建筑物设计中,作为主要作用的水荷载,其在不同工况下的相应设计水位,就已经考虑了相应的洪水发生概率,可以通过工程具有的控制水位的可靠设施,加以人为调度,因而可以视为定值。另一个主要作用是结构的自重荷载,对大体积坝体而言,其尺寸和容重的随机变异性也是很小的,同样可以视为定值。其余的具有一定随机变异性的作用,如坝基的渗透压力,由于坝基地质条件的复杂和系统观测数据资料所限,很难进行概率分布和统计参数的计算分析; 又如温度作用,与气候条件、人工调度方式、库水中泥沙含量等因素有关,也很难用统计理论进行分析而提出准确的统计参数。所以如文献中所述,把这些作用作为随机变量,实际上也是有一定困难的。

至于地震作用,是随机变异性最大的作用。实际上,地震作用应当视为随时间变化的非平稳随机过程,其失效概率的表征所涉及的对作用效应的动态超越概率分析,十分复杂,目前尚难在工程中实际应用。因而通常还只能把地震动输入的峰值加速度作为与时间无关的随机变量处理。我国地震动输入的设防准则是依据基于概率理论的地震危险性分析的结果。与洪水设防准则相似,水工建筑物的抗震设防准则采用相应于基准期内一定的超越概率水准。

国地震动输入的设防准则是依据基于概率理论的地震危险性分析的结果。与洪水设防准则相似,水工建筑物的抗震设防准则采用相应于基准期内一定的超越概率水准。对于抗震设防类别为甲类的重大的壅水水工建筑物,现行水工抗震规范规定,其抗震设防水准为 100 年超越概率2%,约相当于遭遇约 5 000 年一遇的地震作用,高于国外同类规范、导则中的规定值,并且在 2008 年的汶川大地震中经受了一定的检验。地震作用的随机变异性在设计地震作用的代表值已经得到了反映。在可靠度分析中,属偶然作用的地震作用,其分项系数也应是取为 1. 0 的。因此,作为对于包括高坝在内的水工建筑物的特点,目前是基本可以把作用视作定值处理的。

四、《水工建筑物抗震设计规范》中分项系数的取值

在考虑地震作用的偶然设计状况中,《水工建筑物抗震设计规范》根据已有试验资料,给出了大坝混凝土的抗压强度的动态标准值。对抗滑稳定校核中的抗剪强度参数 f 和 c,目前一般采用 0. 2 分位值的静态参数。

为适合我国的国情,规范中规定,对包括坝高70 m 以下的水坝在内的量大面广的水工建筑物,仍可按拟静力法进行抗震校核计算; 而对重要的水工建筑物应按动力进行抗震校核计算。在拟静力法中,由于地震作用的简化和结构地震作用效应按静力计算、并引入了对地震作用效应进行折减的系数,是主要基于工程实践经验的近似方法,难以反映结构的作用效应和抗力的随机变异性。因此,在套改中,作用效应和抗力设计值的分项系数都取为 1. 0。因考虑地震作用是属于偶然设计状况,其结构系数取为 γd= K/ψ。在动力法中,结构动态抗力设计值的分项系数取其在正常设计状况中相同的值,从而从相应的安全系数中套改结构系数 γd值。

结束语

从上述各项,对水工建筑物统一采用现行的分项系数极限状态方程方法,并不存在实质。这样也有利于我国在国际承担愈益增多的水利水电工程建设任务。

参考文献

[1] Duncan J M. Factor of safety and reliability in geotechnical engineer-ing[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(4): 307-316.

第2篇

(SoutheastofGuizhouWaterpowerSurveyandDesignInstituteKailiGuizhou556000)

【Abstract】Ourcountryisawiderangeofgeologicaldisasters,severedisasters,widelydistributedcountry-proneareasworst-hitGuizhoubelongs,alongwithsocialandeconomicdevelopment,thefrequencyandscaleofdisastersincreaseseveryyear,preventionhasbecomeincreasinglydifficult.Theso-calledgeologicaldisasters,isintendedtoincludenaturalfactorsorhumanactivitiescauseharmtopeople´slifeandpropertysafetyofthemountaincollapse,landslides,mudslides,groundsubsidence,groundfissures,groundsubsidenceassociatedwithgeologicaldisasters.Inthispaper,anewlibraryinGuizhoudistrictstation,duetowater-inducedlandslidepreventionandcontroldesign,theconclusionsforsimilarprojects!

【Keywords】Geologicaldisasters;Landslideanalysis;Preventionandtreatment;Preliminarydesign

1.基本情况

1.1地理位置。

岩脚寨山体滑坡地质灾害位于贵州省丹寨县排调镇岩脚寨,排调河左岸,距码头电站坝址约1.5Km,未通公路,交通不便。排调河发源于丹寨县排调镇四方山,在三都县打鱼寨汇入都柳江,是珠江流域都柳江干流的一级支流。码头水电站位于排调河中上游河段,坝址位于码头村上游1.6Km处,距排调镇约4Km。

1.2自然概况。

(1)全流域面积1132Km2,主河道长87Km,天然落差570m,河道平均比降7.28‰,年径流总量9.41亿m3。河谷多呈“V”型,阶地不发育,是一典型的山区型河流。坝址以上集雨面积322.3Km2,河长39Km。

(2)区内气候属亚热带湿润季风性气候,四季分明,气候温和,雨量充沛,云雾多,日照少,冬暖夏凉,年平均气温14.7℃,最冷月平均气温4.2℃,最热月平均气温23.5℃,极端最高气温34.8℃,极端最低气温-9.5℃,年平均降水量1427.3mm,24h最大降雨量为212.5mm。

1.3滑坡体级别。

(1)根据现场勘查,滑坡体前缘位于码头电站库区排调河河床,后缘至岩脚寨寨脚,滑坡纵长280m,横宽534m,面积约15万m2,沿基岩面及强风化带滑动,主滑方向倾角近24°,平均厚度约15m,滑体总量约200万m3。

(2)滑坡变形破坏主要表现为中下部鼓胀剪切及上部地面拉裂变形,为大型牵引式滑坡。此滑坡危及到上部岩脚寨村、下部码头电站安全运行及下游码头村的人民生命和财产的安全,直接经济损失将达6000万元以上,因此对滑坡进行处理是非常必要和迫切。

根据《水利水电工程边坡设计规范》的等级标准,确定该滑坡级别为3级。

2.滑坡成因

2.1工程地质。

工程区位于贵州省东南缘苗岭山脉向湘桂丘陵过渡带,地势由北向南倾斜,地形变化较大。山顶高程一般为900~1100m,地表切割深度为500~700m,山坡坡度为10°~70°。地貌类型属构造侵蚀的中山、中低山地貌,以峡谷、齿状中山为主。勘察区属构造剥蚀中低山地貌,地处排调河左岸斜坡上。滑坡整体地形南西高北东低,最低点为排调河河床,相对高差150m以上。斜坡上缓下陡,地形坡角一般在25~38°之间,535m高程以上地形相对较缓,坡角10~20°。出露地层为第四系残坡积物、崩坡积物和清白口系清水江组粉砂质板岩。

2.2滑坡成因。

(1)内因:第四系残积土层及极破碎的强风化岩层较厚;地形坡度较大,土层和强风化层与中风化层基岩分界面较陡,岩层走向与坡向呈小角度相交,且岩层倾角小于坡角,堆积于地形较陡处的上部夹碎块石粉质粘土具有相对的透水性,地表水易下渗至土层,自重增大,基岩面相对隔水,易在岩面形成集水带,使岩土分界处,土的抗剪性能变差,达到临界状态。

(2)外因(诱发因素):降雨入渗到透水性较强的土体中,致使抗剪强度降低,遇到连续集中降雨或高强度降雨时,雨水渗入到下部粉砂质板岩顶面时受阻,顺分界面运移,土体软化,促使坡体发生变形;当水库蓄水后,降低了坡脚残积土和极破碎的强风化板岩强度,减轻坡脚反压力,在水位反复升降变化时,水流对坡脚冲涮及反复加荷和减压,坡体变形进一步积累,最终产生裂缝、蠕变和滑动。

3.滑坡预防和处理设计

3.1码头电站基本情况。

大坝为砼砌石重力坝,最大坝高47.3m,坝顶宽5.0m,坝轴线总长115.00m,其中非溢流段73.6m,溢流段41.40m,无闸控制,采用挑流消能,水库总库容1095万m3,属中型水库。

校核洪水位(P=0.2%):489.75m;相应下游水位:460.73m;

设计洪水位(P=2%):487.05m;相应下游水位:457.91m;

正常蓄水位:481.00m;相应下游水位:450.61m;

死水位:475.0m。

3.2地质参数。

根据地勘资料,确定最不利的工况(暴雨)下的地质参数为:

(1)饱和状态残积粘土饱和重度γ=18.8KN/m3,饱和状态C=28.0KPa,Ф=20°;

(2)强风化板岩饱和重度γ=21.00KN/m3,C=60KPa,Ф=25°;

(3)中等风化板岩饱和重度γ=26.7KN/m3,饱和抗压强度平均值17.36MPa。

查《中国地震动参数区划图》,区内地震动峰值加速度值小于0.05g,地震动反应谱特征周期为0.35S,勘察区抗震烈度小于6度,根据《建筑工程抗震设防分类标准》规定,不进行地震作用计算。

3.3稳定分析方法及成果。

(1)根据《水利水电工程边坡设计规范》规定,当滑动面呈非圆弧形时,宜采用摩根斯顿-普赖斯法和不平衡推力传递法进行抗滑稳定分析。经地质勘察,该滑坡体滑面形态呈折线型,故采用摩根斯顿-普赖斯法进行抗滑稳定分析和简化毕肖普法进行稳定验算。

(2)根据滑坡体的特点和诱发因素,将滑坡分成ABC三个区,每区选择一个典型的滑坡特征断面,在饱和工况下,滑体上部沿基岩面滑动、下部极破碎强风化层沿中风化层滑动两种最不利情况下进行计算,如图1。

(3)计算程序采用中国岩土工程协会推荐,由清华大学按现行规范编制的《SLOPE2004-版本V4边坡稳定计算程序》进行稳定分析(滑坡体稳定性计算成果见表1)。

C-C断面 1.1633(摩根斯顿-普赖斯法),1.1639(简化毕肖普法)

3.4稳定性分析。

(1)根据计算成果分析,A、B区滑坡体处于不稳定状态;C区滑坡体基本处于稳定状态。经稳定复核,A、B区残积土层和强风化层需部分卸载,C区修整平顺,共需卸载土石方20.55万m3,可以使整个坡面基本处于稳定状态。若不进行工程措施处理,则残积土层和强风化层将会整体下滑,滑坡总量达到42.73万m3。

(2)若滑坡在最不利的情况下一次性下滑,会使水库水位平均升高约0.57m,最高水位超过码头电站大坝坝顶高程0.42m,对大坝的安全运行极为不利,下游受到洪水威胁。

3.5设计方案。

(1)岩脚寨整体避让搬迁至安全的安置点;滑坡体上所有农田均水改旱,或改种经济林,以增加坡面稳定性;

(2)治理总面积5万m2,卸载土方22万m3。在滑坡体周边设截水沟,坡面设纵横排水沟,采用5条纵向排洪沟将治理区域划分为6个片区,在各片区内每隔10m高差设一条水平排水沟,与周边截水沟和排洪沟连接,组成排水网络,使暴雨期能迅速、最大限度地排除坡面降水及坡体内积水,抑制滑坡大规模发生。

(3)及时封闭滑坡拉裂缝,并设置边缘警戒线。

(4)在工程施工期及电站运行期,在整个滑坡范围内布置观测设施,对截水、排水设施和边坡稳定进行长期动态观测。通过观测坡面的变形及蠕动情况,作为评价边坡的稳定性和排水效果的依据,以指导设计和施工,以及及时控制水库水位,保证电站正常运行和合理调度。

4.结语

随着社会经济的发展,工程建设必不可少,工程建设诱发滑坡等地质灾害不可避免,由此产生的后果也非常严重,但是采取合理、科学的防治方法可以预防和治理。岩脚寨山体滑坡地质灾害通过治理,没有造成经济损失,有效地保障了人民群众的生命和财产安全。

参考文献

[1]《水利水电工程边坡设计规范》(SL386-2007)中华人民共和国水利部2007.7.14.

[2]《建筑工程抗震设防分类标准》(GB50223-2008)中华人民共和国住房和城乡建设部国家质量监督检验检疫总局2007.7.30联合.

[3]《SLOPE2004-版本V4边坡稳定计算程序》清华大学编制.

[文章编号]1006-7619(2014)09-11-536

[作者简介]李玮(1968.3.29-),女,籍贯:湖北武汉,学历:大学本科,职称:高级工程师,国家注册造价师,工作单位:贵州省黔东南州水利电力勘察设计院,研究方向:水利工程设计,从事水利工程设计、监理及工程造价工作。

李玮

(贵州省黔东南州水利电力勘察设计院贵州凯里556000)

第3篇

[摘要]充分考虑黄河堤防土体参数随机变异性的基础上,基于非饱和渗流理论及黄河下游堤防渗透、强度的随机性试验研究成果,采用GEO-STUDIO软件与自编Fortran程序,应用边坡稳定随机分析理论建立堤顶宽度分析方法,计算与评价边坡稳定安全区域分布范围,据此提出黄河堤防堤顶宽度设计应大于12m。

[关键词]堤防工程;堤顶宽度设计;黄河下游;标准化堤防

0引言

近年来汛期,黄河下游堤防工程出现了不同程度的渗水险情。险情的发展具有随机性,从发现险情到开始抢护需要一定时间。堤顶宽度必须具有一定的宽度,以便于抗御设计标准的洪水,除满足堤身稳定要求外,还应满足防汛抢险交通、工程机械化抢险及工程正常运行管理的需要。因此,为保证堤防安全,需要合理设计堤防工程堤顶宽度。

1计算工况、断面及参数的选取

1.1计算工况

根据GB50286-98《堤防工程设计规范》条文说明第8.2.2条规定中对堤防稳定计算的要求,结合黄河下游堤坡稳定的实际情况,计算拟先选取黄河下游堤防的平工、险工、老口门段具有代表性的6个断面,采用GEO-STUDIO软件中的SEEP及SLOPE模块计算设计洪水位骤降期的临水侧堤坡的稳定性,模拟水位骤降的渗流过程,搜索不同堤顶宽度的最危险滑弧面,利用可靠度理论的蒙特卡罗法得出临河堤顶不同部位的失效概率,结合相关的评判标准,确定堤顶稳定范围。

1.2计算断面及参数

1)计算断面选取。为充分论证影响黄河大堤临河堤坡稳定堤顶宽度范围,根据计算断面的选取原则,选择以下典型断面进行下一步的计算分析。①险工段:山东齐河程官庄险工董家寺79+850断面、河南新乡原阳139+700断面;②平工段:河南段的武陟张菜园87+000断面、新乡封丘167+200断面、山东段济南章丘83+500断面;③口门段:章丘兴国寺70+600断面。

2)临河冲坑深度及堤顶最大荷载的概化参数选取。堤防临河堤脚处由于历次洪水的冲刷普遍具有冲坑,冲坑的深浅主要随水流的垂线平均流速、水流与堤岸轴线的夹角变化较大。

3)模型计算参数选取。黄河大堤土体可分为粘土、壤土、砂壤土、粉土、粉砂、细砂、砂土七类土,各类土体渗流计算参数根据黄科院沈细中、赵寿刚、兰雁等的研究成果选取。

2堤坡失稳风险概率判别标准

失效概率是评价结构可靠性的尺度,黄河大堤边坡的允许失效概率如何确定,目前还没有一个针对性的明确标准。黄河大堤堤身土体组成主要以砂壤土、壤土为主,砂性含量较高,洪水期水位骤降时破坏大部分以沿堤坡或堤顶滑塌形式发生,参照GB50199-94《水利水电工程结构可靠度设计统一标准》、GB50286-98《堤防工程设计标准》和以往黄河水利科学研究院对黄河大堤研究成果,认为不同大堤断面模型风险评判要求是有差异的。因此,根据堤防概化模型断面风险度要求不同,提出以下堤坡失稳概率判别标准:

1)对于无冲坑、荷载一般断面。失效概率值小于0.1%,则风险度较低,如大于0.1%失效风险度较高。

2)对于有冲坑、荷载特殊断面。失效概率值小于5%,则堤坡失稳的风险度较低,如大于5%堤坡失稳的风险度较高。

3计算模型及成果

3.1边坡稳定计算模型

临河堤坡稳定计算根据规范采用瑞典弧滑动法,为保证可靠度计算精度,抽样数即计算次数取10万次。

3.2计算成果

以新乡封丘167+200断面为例,基于蒙特卡罗法计算堤顶不同宽度失效概率成果。

4临河堤坡失稳区域分析

临河堤坡失稳区域是在堤顶不同位置失效概率计算成果的基础上,依据堤坡稳定分析可靠性原理与前述实施方法中提出的判别标准确定的。无冲坑、荷载断面,以0.1%为允许失效概率,失效概率大于0.1%为失稳区域,反之为相对稳定区域;有冲坑、荷载断面,以5%为允许失效概率,失效概率大于5%为失稳区域,反之为相对稳定区域。各断面无冲坑、荷载及有冲坑、荷载临河堤坡在水位骤降时,堤坡失效概率随堤顶不同宽度位置变化分布。无冲坑、荷载断面,平工、险工、老口门不同位置断面距临河堤顶起点9.0~11.2m之后失稳风险很小,稳定区域之前临河堤坡出险几率相对偏高;有冲坑及荷载断面,平工、险工、老口门不同位置断面距临河堤顶起点10.0~12.0m之后失稳风险相对很小,稳定区域之前临河堤坡出险几率较高,最高可达33%。由上述计算分析可得出如下结论:在水位骤降情况下,所设定临河堤坡无冲坑及荷载情况下,对六断面失稳区域计算值统计,临河堤顶前端9.0~11.0m易出险,后端1.0~3.0m仍具有一定的抵御洪水的功能;如设定堤坡临河有冲坑、有荷载不利组合计算条件下,对6个断面失稳区域计算值统计,即使允许失效概率提高到5%,临河侧堤顶前端10.0~11.0m仍易出险,后端1.0~2.0m具有一定的抵御洪水的功能,但个别计算断面堤顶宽度即使为12.0m,断面前端仍会产生脱坡或塌陷。因此,如汛期及洪水期临河堤坡仍保证处于稳定状态,堤顶宽度应至少为12.0m,由于各断面地质情况复杂,具体设计指标应根据断面所在位置及地层条件而确定。

5结语

基于指标数据库中的堤防及淤区土体力学参数概率统计指标,应用边坡稳定随机性分析方法,计算与评价边坡稳定安全区域分布范围,据此提出黄河堤防堤顶宽度设计应大于12m。堤顶宽度合理设计能充分满足黄河汛期防洪抢险的需要,确保黄河大堤充分发挥防洪保障线、抢险交通线、生态景观线等重要功能,科学指导了黄河下游堤防工程的规划与设计。

[参考文献]

[1]胡一三.黄河下游的防洪体系[J].人民黄河,1996(8):1-6.

[2]陈厚群.水工抗震设计规范和可靠性设计[J].中国水利水电科学研究院学报,2007,5(3):163-169.

[3]赵宇坤,刘汉东,乔兰.不同浸水时间黄河堤防土体强度特性试验研究[J].岩石力学与工程学报,2008,27(增1):3047-3051.

[4]崔建中,张喜泉.黄河下游标准化堤防建设的思路与对策研究[J].人民黄河,2002,24(4):11-14.

[5]柯丽萍,时志宇.堤防设计中堤基设防深度探讨[J].内蒙古水利,2010,128(4):145-146.

[6]张忠慧.武山县渭河南堤堤防工程设计[J].甘肃水利水电技术,2010,46(6):32-33.

[7]沈细中,兰雁,赵寿刚,等.黄河标准化堤防工程淤背的合理设计宽度[J].哈尔滨工业大学学报,2009,41(10):197-201.

第4篇

一、混凝土材料质量控制

(一)水的质量要求

凡可以饮用的水均可用于拌制和养护混凝土。未经处理的工业废水,污水及沼泽水不能使用,对钢筋混凝土及预应力混凝土工程不允许使用海水。拌制混凝土用水还应符合下表要求。

拌制混凝土用水的质量控制

项目

指标

含有影响水泥正常凝结和硬化的油类,糖类或其他有害杂质

不允许

PH值不小于

4

硫酸盐,折成SO4,其含量不大于

1%

(二)水泥的质量控制

水泥品种较多,按用途和性能分为通用水泥、专用水泥及特种水泥。通用水泥主要用于一般土建工程。包括硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤硅酸盐水泥以及复合硅酸盐水泥。在使用水泥的时候必须区分水泥的品种及强度等级掌握其性能和使用方法,根据工程的具体情况合理选择与使用水泥,这样既可提高工程质量又能节约水泥。

在施工过程中还应注意以下几点:

(1)优先使用散装水泥。

(2)运到工地的水泥,应按标明的品种、强度等级、生产厂家和出厂批号,分别储存到有明显标志的仓库中,不得混装。

(3)水泥在运输和储存过程中应防水防潮,已受潮结块的水泥应经处理并检验合格方可使用。

(4)水泥库房应有排水、通风措施,保持干燥。堆放袋装水泥时,应设防潮层,距地面、边墙至少30CM,堆放高度不得超过15袋,并留出运输通道。

(5)先出厂的水泥先用。

(6)应避免水泥的散失浪费,作好环境保护。

(三)骨料的质量控制

砂石骨料是混凝土最基本的组成成分。通常1立方米的混凝土需要1.5立方米的松散砂石骨料。所以对混凝土用量很大的水利水电工程,砂石骨料的需求量是很大的,骨料的质量好坏直接影响混凝土强度、水泥用量和混凝土要求,从而影响水工建筑物的质量和造价。为此,在水利水电工程施工中应统筹规划,认真研究砂石骨料储量、物理力学指标、杂质含量及开采、储存和加工等各个环节。

使用的骨料应根据优质、经济、就地取材的原则进行选择。可以选用天然骨料、人工骨料,或者互相补充。选用人工骨料时,有条件的地方宜选用石灰岩质的料源。

1骨料料场规划

骨料料场的合理规划是骨料生产系统的设计基础,是保证骨料质量、促进工程进展的有力保障。

骨料料场规划的原则

(1)满足水工混凝土对骨料的各项质量要求,其储量力求满足各设计级配的需要,并有必要的富裕量。

(2)选用的料场,特别是主要料场应场地开阔,高程适宜,储量大,质量好,开采季节长,主辅料场应能兼顾洪枯季节互为备用的要求。

(3)选择可采率高,天然级配与设计级配较为接近,用人工骨料调整级配数量少的料场。

(4)料场附近有足够的回车和堆料场地,且占用农田少。

(5)选择开采准备量小,施工简便的料场。

2骨料的质量要求包括:强度、抗冻、化学成分、颗粒形状、级配和杂质含量。骨料分为粗骨料和细骨料。

粗骨料质量要求:

(1)粗骨料最大粒径:不应超过钢筋净距的2/3、构件断面最小边长的1/4、素混凝土板厚的1/2。对少筋或无筋的混凝土结构,应选用较大的粗骨料粒径。

(2)在施工中,宜将粗骨料按粒径分成下列几种粒径组合:当最大粒径为40mm时,分成D20、D40两级;当最大粒径为80mm时,分成D20、D40、D80三级;当最大粒径为150(120)mm时,分成D20、D40、D80、D150(D120)四级;

(3)应控制各级骨料的超、逊径含量。

(4)采用连续级配或间断级配,应由实验确定。

(5)粗骨料表面应洁净,如有裹粉、裹泥或被污染等应清除。

(6)粗骨料的其它品质要求见下表:粗骨料的品质要求

项目

指标

备注

含泥量

%

D20D40粒径级

≤1

D80,D150(D120)粒径级

≤0.5

泥块含量

不允许

坚固性

%

有抗冻要求的混凝土

≤5

无抗冻要求的混凝土

≤12

硫化物及硫酸盐含量%

≤0.5

折算成SO3,按质量计

有机质含量

浅于标准色

如深于标准色,应进行混凝土强度对比实验,抗压强度比不应低于0.95

表观密度kg/m3

≥2550

吸水率%

≤2.5

针片状颗粒含量%

≤15

经实验论证,可以放宽至25%

细骨料质量要求:

(1)细骨料应质地坚硬、清洁、继配良好;人工砂的细度模数宜在2.4-2.8范围内,天然砂的细度模数宜在2.2-3.0范围内。使用山砂、粗砂、特细砂应经实验论证。

(2)细骨料的含水率应保持稳定,人工砂饱和面干的含水率不宜超过6%,必要时应采取加速脱水措施。

(3)细骨料的其它品质要求见下表:

细骨料的品质要求

项目

指标

备注

天然砂

人工砂

含泥量

%

≥和抗冻要求的

≤3

≤5

泥块含量

不允许

不允许

坚固性

%

有抗冻要求的混凝土

≤8

≤8

无抗冻要求的混凝土

≤10

≤10

硫化物及硫酸盐含量%

≤1

≤1

折算成SO3,按质量计

有机质含量

浅于标准色

不允许

表观密度kg/m3

≥2500

≥2500

云母含量%

≤2

≤2

轻物质含量%

≤1

经实验论证,可以放宽至25%

石粉含量%

6---18

二、混凝土配合比

混凝土施工配合比必须通过实验,满足设计技术指标和施工要求,并经审批后方可使用。混凝土施工配料必须经审核后签发,并严格按签发的混凝土施工配料单进行配料,严禁擅自更改。在施工配料中一旦出现漏配、少配或者错配,混凝土将不允许进仓。

三、混凝土的搅拌及输送质量控制

根据工程量的大小并结合施工单位自身设备条件选取相应的拌和设备和运输设备。提前预测拌和设备和运输设备可能出现的故障和问题,并及时安排机修人员作好设备的检查和修理工作。不能因为设备故障而停止混凝土的浇筑,确保在施工过程中及时提供工程所许混凝土,促进工程有序向前推进,保证施工进度。

1混凝土拌和质量控制要点

(1)混凝土最小拌和时间

拌和容量Q(立方米)

最大骨料粒径(mm)

最少拌和时间(s)

自落式拌和机

强制式

0.8≤Q≤1

80

90

60

1<Q≤3

150

120

75

Q>3

150

150

90

注:①入机拌和量应在拌和机额定容量的110%以内。

②加冰混凝土拌和时间应延长30s(强制式15s)

(2)在混凝土拌和中应定时检测骨料含水量。

(3)混凝土掺和料在现场宜用干掺法,且必须拌和均匀。

(4)混凝土拌和物出现下列情况之一,按不合格处理。

①错用配合比。

②混凝土配料时,任意一种材料计量失控或漏配。

③拌和不均匀或夹带生料。

④出口混凝土坍落度超过最大允许质。

2混凝土运输过程注意事项

(1)运输中不致发生分离、漏浆、严重泌水、过多温度回升和坍落度损失。

(2)混凝土运输时间:

运输时段平均气温

混凝土运输时间(min)

20—30

45

10—20

60

(3)5—10

(4)90

(4)低温天气应避免天气、气温等因素的影响,采取遮盖或保温设施。

(5)混凝土的自由下落度不宜大于1.5m否者应设缓降措施,防止骨料分离。

(6)混凝土在运输过程中如果出现故障,必须及时处理。在混凝土初凝前想办法将混凝土运送到浇筑仓位否者以不合格处理。

四、混凝土浇筑、养护及拆模质量控制

(一)混凝土的浇筑

混凝土浇筑前作业包括:基础处理、施工缝处理、立模钢筋及预埋件的安设。(其质量要求参见《水工混凝土施工规范》)其次必须经监理人员验仓合格,并取得准浇许可证方能进仓作业。

1入仓铺料

混凝土入仓铺料多采用平浇法,它是由仓面某一边逐层有序连续铺填。铺料层的厚度与振动设备的性能、混凝土粘稠度、骨料强度和气温高低有关。

其具体要求参见下表:

振动设备

浇筑层厚度

插入式

振捣机

振捣棒头长度1.0倍

电/风振捣器

0.8倍

软轴式振捣器

1.25倍

平板式

单层钢筋

250mm

双层钢筋

200mm

混凝土层间间歇超过混凝土初凝时间,会出现冷缝,使层间抗渗、抗剪能力明显下降,在施工过程中,其允许间歇时间:

混凝土浇筑气温

允许间歇时间(min)

中热、硅酸、普通硅酸盐水泥

低热、矿渣、火山灰质硅酸盐水泥

20—30

90

120

10—20

135

180

(5)5—10

195

----

2平仓与振捣

卸入仓内成堆的混凝土料,应平仓后再振捣,严禁以振捣代平仓。振捣时间以混凝土粗骨料不在显著下沉,并开始泛浆为准。应避免欠振、过振使混凝土振捣均匀密实。其振捣具体要求参见《水工混凝土施工规范》

3浇筑中仓面出现下列情况之一应停止浇筑。

(1)混凝土初凝并超过允许面积。

(2)混凝土平均浇筑气温超过允许偏差质,并在1小时内无法调整至允许温度内。

(3)在浇筑过程中出现大雨或暴雨天气。

4在施工过程中出现下列情况之一应挖出混凝土。

(1)不能保证混凝土振捣密实或对水工建筑带来不利影响的级配错误的混凝土料。

(2)长时间凝固、超过规定时间的混凝土料。

(3)下到高等级混凝土浇筑部位的低等级混凝土料。

5在浇筑埋石混凝土的时候应该严格控制施工单位的埋石量、埋石大小并保证埋石洁净以及埋石与模板的距离,杜绝施工单位为了单纯提高埋石率而放弃质量。在施工中努力确保埋石垂直和水平距离,以不影响振捣为原则,提高埋石混凝土质量。

6浇筑完的混凝土必须遮盖来保温或者防雨。

五、混凝土的养护及拆模质量控制

(一)混凝土的养护

为使混凝土中水泥充分水化,加速混凝土的硬化,防止混凝土成型后因曝晒、风吹、干燥、寒冷等自然因素的影响出现不正常的收缩、裂缝破坏等现象。混凝土浇筑完毕后应及时洒水养护保持混凝土表面湿润。

混凝土表面的养护要求:

(1)塑性混凝土应在浇筑完毕后6-18h内开始洒水养护,低塑性混凝土宜在浇筑完毕后立即喷雾养护,并及早开始洒水养护。

(2)混凝土应该连续养护,养护期内必须确保混凝土表面处于湿润状态。

(3)混凝土养护时间不宜少于28d。

(二)拆模

拆模的迟早直接影响到混凝土质量和模板使用周转率。拆模时间应根据设计要求、气温和混凝土强度等级情况而定。对非承重模板,混凝土强度达到2.5Mpa以上,其表面和棱角不因为拆模而损坏方可拆除。对承重模板达到下表规定的混凝土设计标号的百分率后才能拆模。

悬臂板、梁

其它梁、板、拱

跨度≤2米

跨度>2米

跨度≤2

跨度2-8米

跨度>8米

70%

100%

50%

70%

100%

参考文献

1水利工程施工武汉大学出版社

2混凝土工手册中国建筑工业出版社李立全

第5篇

关键词:建筑;结构;设计;问题

中图分类号:TU

文献标识码:A

文章编号:1672-3198(2010)07-0316-01

1 有关建筑结构设计

(1)建筑结构设计基本内容。结构设计简而言之就是用结构语言来表达建筑师及其它专业工程师所要表达的东西。结构语言就是结构师从建筑及其它专业图纸中所提炼简化出来的结构元素。包括基础,墙,柱,梁,板,楼梯,大样细部等等。然后用这些结构元素来构成建筑物或构筑物的结构体系,包括竖向和水平的承重及抗力体系。把各种情况产生的荷载以最简洁的方式传递至基础。结构设计的内容由上可知为:基础的设计上部结构的设计和下部设计。

(2)建筑结构设计基本原则。工程结构可靠度设计统一标准,该标准为统一工程结构可靠度设计的基本原则和方法,使设计符合技术先进、经济合理、安全适用、确保质量的要求,制定本标准。本标准是制定房屋建筑、铁路、公路、港口、水利水电工程结构可靠度设计统一标准应遵守的准则。在各类工程结构的统一标准中尚应制定相应的具体规定。本标准适用于整个结构、组成整个结构的构件以及地基基础,适用于结构的施工阶段和使用阶段。工程结构必须满足下列功能要求:①在正常施工和正常使用时,能承受可能出现的各种作用;②在正常使用时,具有良好的工作性能;③在正常维护下,具有足够的耐久性能;④在设计规定的偶然事件发生时和发生后,能保持必需的整体稳定性。结构在规定的时间内,在规定的条件下,对完成其预定功能应具有足够的可靠度,可靠度一般可用概率度量。确定结构可靠度及其有关设计参数时,应结合结构使用期选定适当的设计基准期作为结构可靠度设计所依据的时间参数。工程结构设计宜采用分项系数表达的以概率理论为基础的极限状态设计方法。工程结构设计时,应根据结构破坏可能产生的后果(危及人的生命,造成经济损失,产生社会影响等)的严重性。

(3)建筑结构设计的基本方法。结构设计的阶段大体可以分为三个阶段:结构方案阶段、结构计算阶段和施工图设计阶段。以方案阶段为例,方案阶段的内容为:根据建筑的重要性,建筑所在地的抗震设防烈度、工程地质勘查报告、建筑场地的类别及建筑的高度和层数来确定建筑的结构形式(例如,砖混结构、框架结构、框剪结构、剪力墙结构、筒体结构、混合结构等等,以及由这些结构来组合而成的结构形式)。确定了结构的形式之后就要根据不同结构形式的特点和要求来布置结构的承重体系和受力构件。

2 我国建筑结构设计应该注意的问题

2.1 切实提高设计质量

(1)提高设计质量保证结构安全。中央多次强调同时也制定了一些重要的法规,第68号令和质量条例,对各方责任主体的违法违纪行为作出了具体的规定。质量责任制重在责任追究,从设计行业来看,在有些方面还需继续完善。①制定合理设计周期。②建立工程设计各级行政和技术人员责任制。③工程设计签字制度统一规定。(2)推行工程设计咨询和强化设计审查。设计院对某些已建成工程进行回访时,甲方反映在工程开始阶段对发展趋势不了解,建成后在使用功能和内部设施方面感到滞后,留下不少遗憾,希望设计单位在工程前期多介绍一些超前的设计思想。可以预见,开展设计咨询的必要性将会逐步被认识。设计审查有利于政府对设计质量实行监督。设计是工程建设的龙头,抓好设计审查对保证结构安全,节约投资将起到重要作用。

2.2 建筑结构设计与电气专业设计的协调

电气专业的室内敷线,原则上应以导线在金属管中沿墙及楼板暗设,这对于预制装配整体框架、框架一剪力墙结构是很困难的。穿梁的垂直管道要在预制梁制作时预留孔道,并且梁宽和墙厚尽量一致,如不一致则要求墙的一侧与梁的侧面平齐,使穿梁管不露墙外。高层建筑平面电梯井道的位置确定后,电梯机房位置也就确定下来,电梯机房内孔洞、预埋件较多,电梯机房荷载也比较大,因此应详细了解所选型号电梯土建条件并注意单台布置和多台布置的差别。由于电梯井道一般作为钢筋混凝土剪力墙,除承受竖向荷载外,还承受水平力作用,因此应校核洞口削弱后的强度。

2.3 在多高层结构设计时,应尽可能避免短柱

其主要的目的是使同层各柱在相同的水平位移时,能同时达到最大承载能力,但随着建筑物的高度与层数的加大,巨大的竖向和水平荷载使底层柱截面越来越大,从而造成高层建筑的底部数层出现大量短柱,为了避免这种现象的出现,对于大截面柱,可以通过对柱截面开竖槽,使矩形柱成为田形柱,从而增大长细比,避免短柱的出现,这样就能使同层的抗侧力结构在相近的水平位移下,达到最大的水平承载力。

3 今后建筑结构设计的发展展望

(1)概念设计将发挥越来越大的作用。概念设计是指正确地解决总体方案、材料使用和细部构造的问题,以达到合理抗震设计的目的。概念设计是根据抗震设计的复杂胜、难以精确计算而提出来的一种从宏观上实现合理抗震,避免不必要的繁琐计算,同时为抗震设计创造有利条件,使计算分析结果更能反映地震时结构反应的实际情况的设计方法。

(2)采用先进的计算理论。空间受力分析,非弹性变形分析,塑性内力分析,由加载到破坏的全过程受力分析,时程分析,最优化设计,方案优化等先进科学的设计方法、设计理论将得到越来越多的应用。

(3)采用主动设计,使设计更合理、更经济。今后的设计除了提高结构抗力,还应考虑尽可育跳咧氏作用效应。因为阳氏作用效应,对增加结构安全性,阳氏造价,节约投资意义重大。

参考文献

第6篇

关键词:窄河谷;高混凝土面板堆石坝;设计;施工;工程措施

0概述

土石坝工程是最普及、最常见的坝型,施工简便、就地取材、料源丰富、地质条件要求低、造价便宜。自20世纪80年代,我国就开始建设混凝土面板堆石坝,已取得了较为丰富的经验。由于面板堆石坝不受当地防渗土料和筑坝材料限制,可利用建筑物开挖料直接上坝碾压,而重型碾压施工机械成套设备的迅猛发展,使得面板堆石坝的建设几乎不受任何条件的制约,加上施工工期的缩短,坝型比较中面板堆石坝往往比其他坝型更有竞争优势,已建面板坝高度也已经突破200m,清江水布垭面板堆石坝最大坝高达到233m。工程建设中,常需要在窄河谷上修建面板堆石坝,由于窄河谷对面板堆石坝会引起诸多的不利影响,需要采取恰当措施予以解决或规避。据不完全统计,坝高超过100m、长高比小于3.1的窄河谷上已建面板堆石坝有28座,其中坝高最高的4座面板堆石坝分别为水布垭(坝高233m,长高比2.9)、三板溪(坝高185.5m,长高比2.3)、洪家渡(坝高179.5m,长高比2.4)、卡基娃面板堆石坝(坝高171m,长高比2.08),而已建面板堆石坝中长高比较小,坝高相对较高的是甘肃黑河龙首二级面板堆石坝(坝高146.5m,长高比1.3)和甘肃洮河九甸峡面板堆石坝(坝高133m,长高比1.7,覆盖层深度56m)。龙首二级和九甸峡均位于8度地震烈度区。上述大坝建成之后,运行总体正常。在建窄河谷面板堆石坝坝高最高的为猴子岩水电站面板堆石坝(坝高223.5m,长高比1.26,位于8度地震烈度区),其次为江坪河面板堆石坝(坝高219m,长高比1.9,位于7度地震烈度区)。据不完全统计,拟建坝高在200m以上面板堆石坝7座,长高比均在1.6~2.6之间,地震烈度多数在8度区,一座为9度地震区。因此,总结和研究窄河谷修建面板堆石坝有关设计和施工技术是十分必要的。

1窄河谷判别标准判断

河谷形状常用两个参数,即宽高比以及谷形系数(A/H2,其中,A为面板面积,H为坝高)。一般认为,当河谷宽高比小于3.1或谷形系数小于2.6的为窄河谷,需要在坝体设计和施工中专门研究窄河谷对面板堆石坝的不利影响。在实际工程建设中,多以大坝的长高比作为是否窄河谷的判别指标。

2窄河谷面板堆石坝的不利影响

窄河谷对面板堆石坝的不利影响主要在于窄河谷修建的坝体存在拱效应,堆石体的应力应变特性、面板的变形特征与常规坝体有明显差异。在坝体填筑初期,堆石体变形速率受到抑制,表现为堆石体的初始变形模量较常规大,但后期徐变较大;随着坝体升高或蓄水后水压力加大等因素,拱效应会突然消失(或部分消失),表现为堆石体后期或蓄水期的变形模量较常规小。窄河谷面板堆石坝三维有限元应力、变形计算成果较二维成果明显偏小,沉降极值位置偏高。蓄水后,窄河谷两岸基岩还会阻止面板的移动,对面板产生“拖曳”作用,面板被“卡”在河谷中间,致使靠近岸边的面板极易产生顺岸坡方向的裂缝。堆石体以及面板的窄河谷效应,往往使得面板堆石坝在蓄水初期就很快发生变形破坏现象,因此,窄河谷上建造高面板堆石坝,需要专门对堆石体以及面板的设计和施工技术进行研究,采取有针对性的措施以有效减小窄河谷的不利影响。有的高面板堆石坝还存在扭曲的冲沟、陡坎及漏斗状河谷地形,有的建在深厚覆盖层上,或建在强地震区,需要考虑的问题就更加复杂、多样。

3窄河谷面板堆石坝的典型工程实例

在窄河谷上修建面板堆石坝,为有效地避免可能产生的由于窄河谷引起的不利影响,都会不同程度地采取适合相应的坝址条件、料场资源和其他工程措施等。本文收集了不同时期修建的九甸峡、洪家渡、卡基娃等3座面板堆石坝,以及在建的猴子岩面板堆石坝在应对窄河谷所采取的的主要设计和施工措施。

3.1九甸峡面板堆石坝

九甸峡面板堆石坝是建在深厚覆盖层上的高面板堆石坝,最大坝高133m,大坝长高比1.7,属于较为典型的窄河谷、深厚覆盖层上修建的面板堆石坝,地震设防烈度Ⅷ度,地震设计动峰值加速度0.283g。覆盖层充填密实-中密实崩积或冲积物,深40~50m,最大厚度54~56m,宽30~50m。坝体填筑料分区自上游向下游依次为:面板上游面下部土质斜铺盖及其盖重保护区、混凝土面板、垫层区、周边缝处特殊垫层区、过渡层区、主堆石区、下游堆石区以及下游面干砌块石区。垫层区水平宽度3m,过渡层水平宽度5m,均为等宽布置。一般情况下,混凝土面板的损坏及破损程度、大坝渗漏量都与坝体变形存在直接的联系,而九甸峡面板堆石坝基础为深厚覆盖层,且建设在窄河谷上,其应力变形呈现出特殊的复杂性,覆盖层变形和河谷条件都会对大坝的应力变形性状产生显著影响。

通常认为,一方面,窄河谷岸坡对坝体沉降变形的拱效应可能抑制堆石体变形,减小堆石体沉降;另一方面,覆盖层的变形可能较大,导致面板整体向下位移、底部趾板沉降增大和接缝异常张开。鉴于此,九甸峡大坝在填筑前,在大坝平趾板下游约100m范围建基面采用先振动碾压、后用强夯措施进行了坝基处理,处理以后,建基面的整体沉降约30~40cm。大坝筑坝材料主要为灰岩,单轴抗压强度为80MPa。为有效减小坝体沉降,设计垫层料孔隙率16.2%,过渡料孔隙率17.3%,主堆石料孔隙率17.3%,次堆石料孔隙率19.1%。即主堆石料的压实度与过渡料压实度相同。工程施工时,混凝土面板分两期浇筑,一期面板混凝土在堆石体填筑到相应高程2个月后开始浇筑,二期面板混凝土在堆石体完成填筑后即开始浇筑。大坝填筑完成后,覆盖层与大坝底部之间在上下游方向大致等距埋设的8支土压力计测值表明,土压力测值总体与其坝体高度无明显相关关系,量值小于上覆土重,最大坝高处所对应土压力计测值最小,较邻近土压力计测值小约50%。水库蓄水后,土压力计测值均有增加,但只有坝轴线上游侧土压力计有显著增加,坝顶对应的土压力计测值仍然最小。

覆盖层沉降变形方面,蓄水前,在坝踵和坝趾附近覆盖层沉降变形相对较大;蓄水后,在坝轴线下游,覆盖层表面沉降变形均小于蓄水前,呈“上抬”变形趋势。覆盖层最大沉降为20cm。大坝蓄水至第7年,堆石体累计沉降160cm,为最大坝高的1.2%。混凝土面板下没有发现明显的脱空现象。蓄水后,实测面板最大挠度变形为14.5cm,挠度变形分布符合面板堆石坝一般规律。周边缝变形方面,经蓄水一段时期后,中部及下部面板相对趾板为下沉,变形稳定期相对较短,中上部面板以上相对趾板为上抬,变形稳定期相对较长。周边缝最大张开51mm,上部部分位置由张开变为压缩;最大沉降变形64mm,最大上抬55mm;周边缝最大下错变形57mm,最大上错变形21mm。从覆盖层应力及变形,以及混凝土面板变形监测成果分析,该面板堆石坝窄河谷效应比较明显。通过对覆盖层进行处理,采用主堆石体与过渡料同样的压实度,同时提高次堆石体压实度,有效限制了混凝土面板的沉降和变形,较好解决了窄河谷建造面板堆石坝的变形控制问题。

3.2洪家渡面板堆石坝

洪家渡水电站工程于2000年开工,2004年下闸蓄水,2005年完工,是当时建设的200m级土石坝类最高坝。洪家渡面板堆石坝[1-2]最大坝高179.5m,大坝长高比2.38,属窄河谷面板堆石坝,地震设防烈度为Ⅶ度,由于该大坝工程河谷束窄效应显著、几何不对称,岸高坡陡,无成熟经验可供借鉴,给大坝设计施工带来了严峻挑战。为配合窄河谷坝体变形控制需要,横断面增设排水堆石区,纵断面增设特别碾压区,以尽可能提高堆石填筑的密实度。大坝的基础覆盖层全部清除。大坝自上游至下游依次为防渗补强区(压重区和粘土铺盖区)、上游防渗区(混凝土面板)、垫层区、过渡区、主堆石区、次堆石区、排水堆石区。其中,排水堆石区位于次堆石区下部,在周边缝底部设有特殊垫层区,在左岸陡边坡大部、右岸陡边坡局部设特别碾压区。垫层料区水平厚4m,过渡料区自上而下水平厚度由4m渐变至11m。

坝体堆石密度、堆石区材料特性、坝体填筑施工顺序和面板浇筑时机等都对面板应力变形特性有一定影响。控制坝体变形是避免面板结构性裂缝多、脱空大、沿垂直缝挤压破坏和周边缝位移大的根本措施,而控制坝体变形必须从筑坝材料、坝体结构及填筑施工等综合措施入手。大坝填筑材料以灰岩为主,平均饱和单轴抗压强度达到80MPa以上。垫层料、过渡料、主堆石区、主堆石区特别碾压料、次堆石区、排水堆石区设计孔隙率分别为19.14%、19.69%、20.02%、19.69%、20.02%、22.26%。由于坝区河谷狭窄,边坡较陡峻,为改善坝体与陡岸坡的连接,在岸坡趾板嵌深确定后,向下游开挖20~30m,平顺开挖边坡与堆石体基础连接,垫层料在两岸和河床向下游延伸20~30m,过渡料也相应下延。左岸陡坡及右岸小陡壁处设置特别碾压区,以提高接触带的压实密度和变形模量,减少堆石滑移,即使坝料沿岸坡滑移后也不易出现空隙,以此减小左、右岸不均匀变形量。

坝体填筑施工基本均匀上升,且在三期面板施工之前面板下部坝体都留出预沉降时间,预沉降时间采用“双控”,即至少预沉降3~7个月,且预沉降变形量不小于2~5mm,由此确定三期面板施工前的预沉降时间分别为7~8、3.7、3.7个月。大坝建设完工时坝体最大沉降量约为132.1cm,为大坝总高度的0.74%。坝轴线处各高程压缩模量在124.7~172.4MPa之间。水库初期达到正常蓄水位附近,总渗水量约135L/s。洪家渡面板堆石坝从筑坝材料、坝体结构及填筑施工等综合措施入手,即采用中等以上硬度岩石;采用较高堆石压实度,孔隙率控制在20%以下;提高次堆石区压实度;陡边坡用混凝土整形并增设增模碾压带;面板浇筑时机合理采用预沉降技术;坝体填筑总体平衡上升等坝体变形控制措施,辅以控制坝体变形等综合措施应对窄河谷问题,其效果是明显的。

3.3卡基娃面板堆石坝

卡基娃面板堆石坝最大坝高171m,大坝长高比2.08,属于窄河谷面板堆石坝,地震设防烈度Ⅶ度,地震水平动峰值加速度0.15g。大坝坝基为漂卵砾石层松散结构,厚度一般在4.7~22.3m,为减小沉降变形影响,将主堆石区范围内的河床覆盖层(约占2/3坝基宽度)全部清除,剩余河床覆盖层表面约1~2m的松散层清除后,采用振动碾碾压处理。大坝自上游至下游依次为弃渣压重区、粘土铺盖区、混凝土面板、垫层区、过渡区、主堆石区、下游堆石区、排水堆石区、大块石护坡、下游压重区。垫层料区水平厚度4m,过渡料区自上而下水平厚度由6m渐变至10m。大坝填筑材料以砂岩为主。为满足坝体变形协调,使坝体在水荷载作用下变形最小,在设计中扩大主堆石区范围,提高次堆石区压实度,使坝体上下游堆石体成为均一密实体,确保坝体上下游均匀变形,坝体下部设置特别碾压区,以尽量减少坝体的拱效应。特殊垫层料设计孔隙率不大于15%,垫层料设计孔隙率不大于18%;过渡料设计孔隙率小于19%;主堆石区在下部约1/3高度范围内设计孔隙率小于19%,其他范围设计孔隙率小于20%;下游堆石区下部约1/2高度范围内设计孔隙率小于20%,上部下游堆石区采用板岩与砂岩混合料填筑,其中板岩比例不大于30%,设计孔隙率小于19%。

混凝土面板分三期实施,不设水平缝,只设垂直缝,根据三维应力应变计算成果和参考已建工程经验,左、右岸面板垂直缝间距取8m,河床段面板垂直缝间距取16m。混凝土面板周边缝沉降、张开、剪切方向的位移设计值分别为50、70、50mm;垂直缝沉降、张开、剪切方向的位移设计值均为45mm。卡基娃水电站工程于2007年5月30日动工筹建,2011年8月18日正式开始大坝填筑,2014年12月大坝填筑至2852m高程,最后一块混凝土面板于2015年5月14日全部浇筑完成。大坝坝顶高程2856m,河床段趾板建基面高程2692.00m。正常蓄水位2850m,死水位2800m。施工结束时,观测到的大坝最大沉降值为1.13m,在设计预测范围内。

卡基娃水电站窄河谷面板堆石坝设计采取了逐步缩小下游堆石区与主堆石区的孔隙率差距或采取基本一致的孔隙率,并且缩小两岸附近面板垂直缝间距,以适应堆石体的变形。工程2015年1月8日导流洞下闸蓄水,2015年2月18日水库水位达到2805m;2015年6月22日开始第二期蓄水,2015年12月5日库水位抬升至正常蓄水位2850m。库水位抬升过程中,在库水位升至2779m时,坝后量水堰开始出现小量渗水,后随着水位抬高渗水量迅速增加,且渗漏量与库水位密切相关。经降低水位检查,发现面板、趾板发生挤压破坏、面板出现脱空等,目前已指定处理方案,原因尚需进一步查明。

3.4猴子岩面板堆石坝

猴子岩水电站工程于2011年开工建设,大坝位于十分典型的窄河谷上。猴子岩面板堆石坝最大坝高223.5m,坝顶总长281.50m,大坝长高比1.26,属特别狭窄河谷面板堆石坝,抗震设计采用基岩地震水平峰值加速度为0.297g。由于该大坝工程河谷束窄效应特别显著,岸高坡陡,给大坝设计施工带来了严峻挑战。大坝坝顶高程1848.5m,上游坝坡1∶1.4,下游坝顶附近55m高度坝坡为1∶1.6,其他为1∶1.5;大坝上游坝坡在1765.00m高程以下设上游压重,1763.00m高程以下设一定厚度的砾石土铺盖和粉煤灰铺盖。

猴子岩面板堆石坝坝址为深厚河床覆盖层基础,最大厚度75m,自上而下分为4层,其中第3层为粘质粉土,力学指标较低,且含有可能液化土层,不能用作面板堆石坝的基础。将趾板以下90m范围内坝基覆盖层全部挖除,大坝基础其余部位仅保留第4层含漂(块)卵(碎)砂砾石(fglQ23)作为坝基。为减小覆盖层的变形,对保留的河床砂卵石覆盖层采用振动碾碾压处理。为控制坝体变形,根据料源和实际来料条件、施工条件,在实施阶段调整和优化了坝体材料分区,根据仿真分析计算,大坝在1690m高程以下有较明显的拱效应,因此,在河床开挖深基坑下部增设了覆盖层开挖砂砾石利用料填筑区,充分利用其所具有的低压缩性、高压缩模量的特性,该区顶部高程为1690m。坝体从上游至下游依次为上游压重区、砾石土铺盖区、粉煤灰铺盖区、混凝土防渗面板、垫层区、过渡区、堆石区(包括河床覆盖层开挖利用料填筑区)、下游护坡及坝脚压重区。垫层料区水平厚度采用4m等宽布置;过渡区上部水平厚度为4m,底面坡度为1∶1.36。为减小坝体顺坝轴向的变形梯度,在主堆石区两岸设置了特别碾压区作为岸坡与堆石体的变形过渡。在坝顶部1/4坝高设置了主堆石特别碾压区,除了提高该部位抗震能力外,也使得堆石体与面板在坝轴线方向变形协调,避免面板产生拉裂缝和发生挤压破坏。垫层料采用灰岩,孔隙率按17%控制,特殊垫层料孔隙率不大于16.5%。

过渡料采用与垫层料相同的岩石和孔隙率控制。主堆石体下部1690m高程以下的覆盖层开挖砂砾石料填筑区,按照相对密度不小于0.9控制;其他上游主堆石体采用灰岩,设计孔隙率不大于19%。下游堆石体及坝体上部采用流纹岩,设计孔隙率与上游灰岩堆石区一致。混凝土面板拟分3期施工。面板浇筑前需要满足预沉降控制参数:预沉降时间为3~7个月,月沉降变形值不大于2~5mm,要求坝体填筑总体平衡上升,适当提高分期面板顶部堆石填筑超高。对于建在狭窄河谷的猴子岩面板堆石坝,主要采取了较为严格的变形控制措施,提高堆石体压缩模量,以减小面板的变形和接缝位移,设计预测周边缝的张拉位移极值约30mm。

4窄河谷面板堆石坝主要工程措施建议

窄河谷对建造面板堆石坝的影响程度与工程的实际地形地质条件关系密切,有的高坝,虽然高宽比不小,但下部较大范围河谷十分狭窄,或大坝两岸一侧岸坡很陡、严重不对称等,都会产生较为明显的窄河谷问题,需要采取合理的工程措施。从设计、施工等方面对近年来已建和在建窄河谷修建面板堆石坝的有关工程措施进行了概括。

4.1设计措施

(1)提高堆石体(包括次堆石区)压实度,特别是提高大坝下部的压实度,减小或取消次堆石区范围。有的采用V字形增模区,即在冲沟及两岸接坡部位采用过渡料或垫层料填筑,且越接近坝体底部增模区范围越大、填筑要求越高。堆石体分区之间的压实度需要满足变形协调,这是减小窄河谷面板堆石坝后期沉降、变形,使坝体变形均一的最基本的方法,一般情况下要求主堆石体的设计孔隙率达到或小于20%。水布垭在1/3水头范围与基岩接触部位铺设2m厚的垫层料,主堆石区与基础、岸坡接触部位全部铺设2m厚过渡料;洪家渡在左岸陡坡及右岸小陡壁处设置宽度50~40m的特别碾压区,增加碾压遍数;三板溪主、次堆石区与岸坡全部采用2m宽的过渡料为接坡料,主堆石区与高趾墙间设置碾压层厚40cm过渡料的低压缩区;猴子岩主、次堆石区采用同一压实控制标准;江坪河采取综合措施,取消次堆石区,并将堆石体压实标准较规范要求提高8%,在冲沟及两岸接坡部位设置低压缩区,采用过渡料填筑,主堆石区设计孔隙率采用18.8%;卡基娃缩小了次堆石区范围,采用与主堆石区同样的压实控制标准,坝体下部设置特别碾压区;龙首二级主堆石区设计孔隙率19.7%;九甸峡主堆石区设计孔隙率同过渡料,达到17.3%。另外,在高地震烈度区,修建高面板堆石坝,还需在坝顶附近设置增模碾压区,以减小坝体变形,同时可以增强坝顶附近抗震能力。

(2)修整两岸陡坎,使趾板下游边坡形成较为平顺的连续面,尽量避免出现较大的陡坡突变。一般采用混凝土或堆石混凝土整形。

(3)减小两岸岸坡附近面板分缝间距,以有效吸收面板可能出现的较大的拉伸变位。一般在受拉区将面板垂直分缝取为常规分缝间距的1/2。如水布垭、卡基娃、猴子岩在岸坡附近面板采用较小的分缝间距。

(4)设置高趾墙,解决河槽部位的趾板平顺受力问题,使坝体应力应变分布规律合理。三板溪采用高趾墙;龙首二级采用39.8m高趾墙。

(5)周边缝采用止水与自愈相结合的止水结构型式。选择耐水性能好的止水材料,垫层料内设特别级配区,以满足防渗自愈的功能。

(6)面板间设置挤压缓冲缝,以防地震引起面板挤压破坏。如龙首二级面板间隔设置挤压缓冲缝,缝宽1cm。

(7)覆盖层保留区采用强夯处理。九甸峡面板堆石坝建在深覆盖层上,为有效降低覆盖层变形对大坝以及面板产生的不利影响,大坝填筑前,对覆盖层采用振动碾压和强夯措施进行了坝基处理。

4.2施工措施

(1)选择合适的碾压机具及碾压工艺。减小碾压层厚度,并洒水,采用大吨位振动碾及冲碾压实技术。洪家渡采用冲碾压实技术,有效提高了主、次堆石区的压实密度,使次堆石区干密度从2.12g/cm3提高到与主堆石区相同的2.181g/cm3,加快了施工进度,减小了压实施工费用;江坪河面板堆石坝选用32t振动碾,碾压层厚减至60cm,洒水率15%。

(2)大坝填筑上、下游均衡上升。保证坝体均衡沉降,减小坝体不均匀沉降对周边缝和面板应力、变形等不利影响。

(3)适当延长堆石体预沉降期。专门安排或利用严寒地区施工间歇来延长堆石体的预沉降期。一般情况下,坝体预沉降时间不应少于3个月,以6~8个月为宜。洪家渡面板堆石坝最大坝高179.5m,坝体长高比为2.49,施工中采用预沉降时间和预沉降收敛两项量化指标控制,其中预沉降收敛指标为,每期面板浇筑前,面板下堆石体的沉降变形率已趋于收敛,而且月沉降变形值不大于2~5mm。根据施工统计,其面板浇筑分为三期,一期坝体预沉降时间7个月,二期和三期坝体预沉降时间均为3个月。

4.3其他措施

除设计和施工所需要采取的措施外,必要的放空及检修功能设置可以解决紧急情况时对灾损进行修复。如紫坪铺面板堆石坝放空设施底坎低于辅助防渗体10m,底坎至趾板40m;九甸峡面板堆石坝放空设施底坎低于辅助防渗体5m,底坎距趾板50m;黔中平寨面板堆石坝,坝高157.5m,长宽比2.2,放空洞底坎距趾板30m;洪家渡面板堆石坝由于地质条件限制,其放空设施底坎高程无法降低,将混凝土面板上游辅助防渗体高程抬高23m,使之与放空设施底坎高程平齐;卡基娃面板堆石坝放空设施底板高程较辅助防渗体顶高程低8m。由于水利水电工程的地形地质和环境条件复杂,为有效避免窄河谷效应,都应结合本工程实际,在认真开展有关试验研究工作的基础上,充分论证各项工程措施的有效性,合理选择工程措施,使工程能适应窄河谷带来的影响。

参考文献:

[1]王柏乐.中国当代土石坝工程[M].北京:中国水利水电出版社,2004.

[2]关志诚.土石坝工程———面板与沥青混凝土防渗技术[M].北京:中国水利水电出版社,2015.

[3]中国电建贵阳勘测设计院有限公司.洪家渡水电站工程设计创新技术与应用[M].北京:中国水利水电出版社,2008.

第7篇

关键词:水库;设计

Abstract: whistle reservation during reservoir is mile county town of friends at a important small (2) type reservoir, mainly for the downstream of the 800 mu of farmland irrigation task, with the downstream of the village of flood control to protect, protect the downstream a total population of 700 people and cultivated land area of 300 mu. But because it now exists many problems of above, it is difficult to play to their normal function, therefore, on watcher reservation during danger-eliminating and reinforcing the reservoir is very necessary, is also a very urgent. This paper analyzes the problems of the reservoir engineering reinforcement design is discussed in this paper.

Keywords: reservoir; design

中图分类号:S611文献标识码:A文章编号:

1、工程概况

哨中安水库位于红河州弥勒县朋普镇新车村委会白土凹村,地理位置东经103°23′22.8″,北纬24°00′40.3″。哨中安水库坝址距朋普镇约6.0km,距弥勒县城约45.0km。哨中安水库所在河流属属珠江流域南盘江支流的甸溪河。

2 、大坝除险加固设计

2.1 病害及病害分析

大坝坝型为均质土坝。由于受筑坝当时条件限制,坝体回填土料差,坝体压实度达不到标准,坝体出现不均匀沉降,加之经多年的风雨淘刷,顶部高矮不平,坝顶宽度在6~8m,上游坝坡风浪淘刷严重。下游坝坡面凹凸不平,坝坡长满杂草和灌木丛,下游坝坡没有设置上下坝踏步,上下坝坡较困难。由于建坝时清基不到位,没有对坝基进行相应的防渗处理,所以坝体与坝基、坝体与坝肩结合部位在水库蓄水后,坝脚与坝基结合部位就出现了渗漏,在坝脚形成集中水流和片状浸水潮湿区。在坝脚处,由于修建石蒙高速公路,施工方把公路弃土堆放在水库脚,土方量大,堆放不规则,且没有经过任何压实,土体松散,现平均高度有11m左右,平均宽40m。

2.2设计计算

2.2.1坝顶高程复核

1、基本资料:大坝按5级建筑物设计,地震设防烈度为Ⅶ度,多年平均最大风速为15.4m/s,大坝吹程为0.2km,主风向为西南风。根据《碾压式土石坝设计规范》SL274-2001进行计算。

2、坝顶超高

按公式y=R+e+A计算坝顶超高

R――波浪爬高;

e ―― 最大风壅水面高度;

A ―― 安全加高。正常情况取0.5m,非常情况取0.3m。

3、坝顶高程取以下三种计算情况中的最大值:

(1)坝顶高程=设计洪水位+正常超高+风浪爬高

=1170.797+0.5+0.67

=1171.967m

式中,正常超高取0.5m,风浪爬高h浪高=3.2Kh波高tgθ,

K―坝坡坡面糙率系数,取0.85;

θ―坝迎水面与水平面的夹角,为26.6°;

h波高=0.0166V5/4D1/3(官厅水库公式);

V―取多年平均最大风速值的1.5倍,V=23.1 m/s;

D―吹程,为0.2km。

(2)坝顶高程=校核洪水位+非常超高+风浪爬高

=1171.29+0.3+0.41

=1172.00m

式中,非常超高取0.3m,风浪爬高h浪高=3.2Kh波高tgθ,

K―坝坡坡面糙率系数,取0.85;

θ―坝迎水面与水平面的夹角,为26.6°;

h波高=0.0166V5/4D1/3(官厅水库公式);

V―多年平均最大风速值,V=15.4 m/s;

D―吹程,为0.2km。

(3)坝顶高程=正常蓄水位+非常超高+风浪爬高+地震安全加高

=1169.954+0.3+0.41+1.2

=1171.864m

复核后的坝顶高程为1172.00m,低于实测坝顶高程(1172.18m)0.18m,故坝顶高程满足超高复核要求。

2.2.2大坝渗流及稳定复核

一、渗漏及渗透变形分析

1、坝体渗流计算

大坝进行防渗处理后,坝体及坝基渗流主要受防渗体系(灌浆)控制。按《碾压式土石坝设计手册》介绍的方法―采用透水地基上的土石坝渗流计算方法计算坝体和坝基的渗漏量,采用河海大学工程力学研究所编制的水工结构有限元分析系统(AutoBank v5.5)软件进行坝体渗流复核计算,并确定浸润线,本次成果采用本次复核的水位成果。

根据钻孔注水试验成果分析,坝体填筑料及坝基的计算渗透系数采用钻孔内压注水试验成果的加权平均值,根据钻孔注水试验成果分析,原坝土渗透系数为3.97×10-4~4.79×10-3cm/s,取值为7.656×10-4cm/s;坝基冲洪积层渗透系数1.19×10-3~3.59×10-3cm/s,取值为2.38×10-3cm/s;强风化全坝基基岩透水率为12.41~62.45Lu, 取值为34.74Lu;排水棱体渗透系数1.0×10-2cm/s;灌浆渗透系数采用1×10-6cm/s;计算采用值及成果见表5.2-1、表5.2-2及图5.2-1。

2、大坝稳定渗流复核

计算断面采用大坝实测最大横断面,按透水地基上的均质土坝进行计算。

据钻孔注(抽)水试验得知,坝体土透水率K=7.57×10-4~1.49×10-3cm/s,坝体与坝基接触带K=1.19×10-3~3.59×10-3cm/s。从以上数据明显而知,坝体土透水不均匀,总体较大,故直接反映为外坝脚产生大片浸水湿地面积为(135m2)。在坝体土中可能造成的渗流破坏是流土,据《水利水电工程地质勘察规范》附录M(土的渗透变形判别)可能造成流土破坏。

由流土型临界水力比降计算公式:Jcr=(GS-1)(1-n)。

式中:Jcr―土的临界水力比降;

GS―土的颗粒密度与水的密度之比;

n―土的孔隙率(%)。

计算得坝体土临界水力坡降Jcr=0.974~1.013,采用2的安全系数,允许水力坡降坝体为J允=0. 0.487~0.507,而实际水力坡降值为J实=0.251~0.313,J实<J允,据以上判断,在现坝体土中不存在渗流稳定问题。但是,在坝体与坝基接触带由于透水性较大(K=1.19×10-3~3.59×10-3cm/s),且相对集中,随时间推移在渗透动水压力的作用破坏下,渗漏量会不断加大,坝体就会产生渗透破坏变形,严重影响坝体稳定和安全。

2、大坝稳定安全复核

坝坡稳定采用简化毕肖普法,计算程序采用北京水科院陈祖编制的土质边坡稳定计算程序(STAB2005)进行大坝稳定分析计算,计算方法采用毕肖普法,选取最大断面采用圆弧滑裂面进行计算。

(1)基本参数的确定

坝体稳定计算各区的物理力学指标根据本次土工试验成果并结合本工程实际情况取用。本次稳定复核坝土和坝基C值、φ值取用土工试验成果的均值、饱和容重及天然容重取用土工试验成果的平均值,物理力学性质指标计算值见表5.2-3。

(2)稳定计算

计算断面:据大坝目前现状,地质钻探的试验成果,采用大坝实测最大横断面作为坝体稳定计算的标准断面。

(3)计算工况及成果

大坝稳定计算根据《碾压式土石坝设计规范》(SL274-2001),坝体上游坝坡稳定分析工况为稳定渗流期和库水位降落期的各种工况,下游坝坡稳定分析工况为稳定渗流期的各种工况,地震作用力按《水工建筑物抗震设计规范》中规定进行计算,地震动峰值加速度值为0.15g,地震动反应谱特征周期0.45s,相应的地震基本烈度Ⅶ度。各种工况稳定计算结果见表5.2-4、图5.2-2~5.2-5。

(4)大坝抗滑稳定分析

大坝经过防渗后减少坝体、坝基渗漏量,且降低了坝体的浸润线,有利于坝体的稳定。从表5.3-4看出上、下游坝坡抗滑稳定安全系数均能满足规范要求。

2.3除险加固设计

根据对坝体病害的分析,决定采取的工程除险加固措施为:防渗堵漏,加固坝体。即对渗漏严重,透水大的坝体、两坝肩、坝基进行帷幕灌浆处理,对不稳定的下游坝坡进行加固,满足坝体稳定要求,修整上、下游坝面,新建坝脚排水设施,下游人行踏步,为保证工程除险加固后的安全运行及管理,还需增设必要的渗漏、变形监测设施。

2.3.1 坝体结构设计

(1)坝顶高程确定

根据规划计算结果,坝顶高程仍为1172.18m。

(2)大坝结构布置

①坝顶

大坝坝顶高程1172.18m,坝顶宽6m,长130m。坝顶上游侧设0.3m×0.3m的砼护肩,下游侧设路缘石,路面为砂石路面。为便于坝顶排水,设2%横坡倾向下游。

②坝坡

坝坡比分别为:上游坝坡坡比为1:2.6。下游坝坡1165.25m以下坝段的坡比为1:3.8,1165.25m设一道宽4.8m的戗台;1165.25m~1172.18m(坝顶高程)坝段的坡比为1:2.6。

③护坡

上游坡死水位以上采用干砌块石护坡,下设20cm厚、由砂、碎石组成的混合反滤层。下游坡采用植草护坡。

④排水

下游坝坡与岸坡连接处及戗台内侧设置0.3m×0.3m排水明沟,截断山体地表水对坝坡冲刷,将坝面集水和岸坡集水引向下游。坝脚排水采用贴坡排水方式,排水体与坝体、坝基相接处设置反滤层,排水体下游测设置导渗沟。

⑤基础处理

基础处理包括上、下游坝坡面的开挖、削坡。对坝体上游坡面、下游坡面的开挖,将坡面较为松散的表层土、树根、杂草等全部清除,上游坡面平均开挖深度为0.60m,下游坡面平均开挖深度为0.40m。

2.3.2 坝体、坝肩以及坝基防渗处理

根据《碾压式土石坝设计规范》(SL274―2001)、《土坝坝体灌浆技术规范》(SD266―88)等规范并结合本工程坝基、坝土地质条件,对大坝防渗设计采用对坝体、坝基、坝肩及结合部进行帷幕灌浆的方法。

对大坝坝体、坝基、坝肩结合部采用帷幕灌浆方案,并结合大坝下游新建排水设施,以形成完善的防渗体系。拟定防渗帷幕灌浆长度为150.5m,大坝防渗帷幕灌浆共布置101个灌浆孔。帷幕底界进入弱透水层5m,防渗底界以<10Lu控制。防渗帷幕灌浆沿坝轴线布置,单排孔,顶界至正常蓄水位1169.954m。对坝土基岩结合部,应采用结合部灌浆工艺,孔距1.5m,孔口第一段、结合部每2~3m为一个灌段,其它每5m为一个灌段;坝体采用1:3的水泥粘土浆灌注;对基岩采用帷幕灌浆,孔距1.5m,基岩灌浆段长大于5.0m,用纯水泥砂浆灌注,均分为三序进行施工。

灌浆土料的控制指标为:充填灌浆―塑性指数10~25%,粘粒含量20~45%,粉粒含量40~70%,砂粒含量

坝基帷幕灌浆采用灌注纯水泥浆,灌浆压力可按P=P。+mD计算, 初定为0.2~0.4MPa,灌浆水灰比采用5:1、3:1、2:1、1:1、0.8:1、0.6:1、0.5:1等比级,灌浆时由稀到浓,逐级变换,开浆水灰比可采用5:1。

2.3.3观测设计

1、大坝观测

大坝的安全是水库能否正常运行的关键。为了监测大坝施工期及运行情况,在水库运行期间,除应进行一般外表观测外,还应对坝面位移、坝体及坝基渗流、绕坝渗漏、库水位等进行观测并作详细记录。

(1)一般外表观测

一般外表观测是对坝面是否受到人为或生物破坏,坝面是否出现裂缝、坍陷、隆起、渗水、流土、管涌等异常现象进行观测。

(2)渗流观测

大坝渗流观测包括坝体浸润线、渗流量及绕坝渗漏等观测。

渗流量包括坝体、坝基及绕坝渗漏,这三种形式的渗漏量一般难以分开,因此,在下游坝脚处设一座三角堰观测总渗漏量。由于该坝为除险加固,加强施工期的渗流观测是十分必要的。在大坝加固后,坝体浸润线采用测压管观测。坝面设测压管,总长46.2m。测压管采用50mm镀锌钢管。

(3)位移观测

位移观测包括坝面垂直位移观测和水平位移观测。大坝位移观测标点设于坝顶下游侧和下游坡戗台内侧。在两岸坡上设水平位移观测工作基点和校核基点。为提高垂直位移观测精度,方便观测实施,将垂直位移观测基点设在与观测标点埋设高程相近的左右岸山坡。位移观测需配备J2经纬仪、S1水准仪各一台。

(4)库水位观测

库水位是水库运行调度的重要依据,也是大坝安全运行控制参数,故必须进行观测。拟定用水尺作为库水位观测设施。水尺布置在岸坡较稳定、观测较方便的位置。

(5)其它观测

其它观测包括泄洪输水涵洞出流量、消能、建筑物外表观测。在高水位期间,应加强泄洪输水涵洞进口洞脸附近渗流观测。通过出流量观测。验证泄洪输水涵洞的水位~开度~流量关系。

根据《土石坝观测技术规范》要求,锅底塘水库大坝所布设的观测设施见表表5.2.5。

3、 溢洪道除险加固设计

3.1 溢洪道现状及主要病害

溢洪道型式为开敞式溢洪道,布置于右坝肩,无衬砌,两壁及渠底大部位于第四系坡、残积层中,少部位于强风化之泥盆系中统宣武田组(D2x)粉砂质泥岩中,稳定性较差。尺寸为1.5×2.4m,进口底板高程1169.954m。通过水力计算,最大泄流量3.04 m3/s,不能够满足200年一遇(洪峰流量为Q=9.3m3/s)校核洪水泄洪要求。长度不足以将下泄洪水输送到下游河道,出口处为进库公路,无消能设施及尾部渠道,汛期洪水将危会及大坝安全及冲毁下游进库公路、农田。

3.2 除险加固设计

针对溢洪道存在的问题以及经过现场勘查,决定不再使用老溢洪道,老溢洪道采用坝土回填压实,并在大坝左坝端新建溢洪道,加大溢洪道断面尺寸以满足泄洪要求,在尾部增加消能设施。

此次除险加固设计溢洪道堰顶高程1169.954m,进口控制段宽2.5m,由进水渠段、控制段、泄槽段、出口消能段及出口段渠道等部分组成,全长147.9m。设计洪水位1170.797m,相应下泄流量为4.66m3/s,校核洪水位1171.29m,相应下泄流量为9.3m3/s,本次设计需要根据设计洪水计算溢洪道断面尺寸以满足泄洪要求。进口八字段底板宽度为4.5m~2.5m,底部为30cm厚浆砌石、15cm厚混凝土;边墙为M5.0浆砌石和M7.5浆砌毛条石,边墙顶宽0.5m。消力池长8m,消力池出口段接渠道将尾水归入下游老河道。

3.3 设计计算

溢洪道的泄洪能力,采用宽顶堰自由溢流计算公式进行计算,计算公式如下:

式中:流量系数m=0.32+0.01

净宽b=2.5m

重力加速度g=9.81m/s2

复核成果见下表:

4、 输水涵洞除险加固设计

4.1 输水涵洞现状及病害

输水涵洞位于大坝中偏右段,为一坝下涵洞,为浆砌石城门形无压洞,采用锅盖闸门放水,由于年久失修、设备老化,启闭困难且安全隐患严重,洞身受多年水压、水浸蚀作用,造成水泥砂浆填缝被溶解,洞室整体砌石强度降低,洞壁四周渗漏较为严重,若长期渗漏,将造成坝体的破坏,其病害已经威胁了坝体的稳定。

4.2 除险加固设计

4.2.1 结构布置

本次设计不改变涵洞的走向、位置,只采用钢管内衬、灌浆和C15砼填充处理措施,更换闸阀并新建闸室。

鉴于输水涵洞尚未出现断裂等严重影响结构稳定的因素,而且涵洞断面尺寸很大,具备进行加固处理的实际条件,拟对老涵洞采用DN500mm钢管内衬,进行C15砼填充加固,然后再进行灌浆处理。先造竖孔并用套管固壁,待水平灌浆结束后,再进行竖向灌C15细石砼充填灌浆处理,对老涵洞内原渗漏部位进行封堵,截断坝体与管周边可能出现的渗漏通道,使老涵洞结构的整体性得以加强,新建出口闸室。该方案对原有建筑物进行除险加固,不破坏原枢纽建筑物及涵洞结构,投资较省,工程量较小;加固输水涵洞,可免除长期存在的渗漏问题,有利于坝体稳定。但是工程施工与灌溉、防洪、供水等方面干扰较大,施工导流困难;另外灌浆工程质量难以控制。

原输水涵洞除险加固改造后,全长81.7m,出口端接下游原灌溉渠道。输水涵洞进口设拦污栅一道,拦污栅型式为平面拦污栅,采用钢板与型钢焊接结构;出口增设2套DN500闸阀,并新建闸室(20m2)。

4.2.2 输水能力复核

输水涵管为有压流,过流量计算公式如下:

式中: μ――流量系数;

ξi――某一局部能量损失系数;

li――涵管某一段长度,m;

ω――涵管出口断面面积,m;

ωi――断面面积;

T0――上游水面与涵洞出口底板高程差

Hp――闸门出口断面水流的平均势能

经计算,闸门全开时,不同水位涵管过流量如下:

校核洪水位1171.29m:Q=1.50m/s。

设计洪水位1170.797m:Q=1.46m/s。

正常蓄水位1169.954m:Q=1.41m/s。

5、结语

哨中安水库除险加固工程的主要任务是解决下游村庄的灌溉用水。工程实施后的受益区面积为1100亩,合理利用了当地水资源,发挥了工程效益,有力促进地方社会经济的可持续发展和人民生活水平的提高。