HI,欢迎来到学术之家,期刊咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 高层建筑结构抗震设计

高层建筑结构抗震设计

时间:2023-07-13 17:24:16

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇高层建筑结构抗震设计,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

高层建筑结构抗震设计

第1篇

关键字:高层结构设计抗震

随着科学的发展和时代的进步,高层建筑如雨后春笋般的出现。高层建筑的高度在一定程度上反映了一个国家的综合国力和科技水平,世界著名的建筑更是建筑史上的纪念碑。但是如果高层建筑因结构设计不清,而造成结构布置不合理,不仅会造成大量的浪费,更重要的是给高层建筑留下了结构质量的安全隐患。因此高层建筑的结构设计就显得尤为重要了。

一 结构设计特点

1.1 水平载荷是设计的主要因素

高层结构总是要同时承受竖向载荷和水平载荷作用。载荷对结构产生的内力是随着建筑物的高度增加而变化的,随着建筑物高度的增加,水平载荷产生的内力和位移迅速增大。

1.2 侧向位移是结构设计控制因素

随着楼房高度的增加,水平载荷作用下结构的侧向变形迅速增大,结构顶点侧移与建筑高度的四次方成正比,设计高层建筑结构时要求结构不仅要具有足够的强度,还要具有足够的抗推强度,使结构在水平载荷下产生的侧移被控制在范围之内。

1.3 结构延性是重要的设计指标

高层建筑还必须有良好的抗震性能,做到“小震不坏,大震能修。”为此,要求结构具有较好的延性,也就是说,结构在强烈地震作用下,当结构构件进入屈服阶段后具有较强的变形能力,能吸收地震作用下产生能量,结构能维持一定的承载力。

1.4 轴向变形不容忽视

高层结构竖向构件的变位是由弯曲变形、轴向变形及剪切变形三项因素的影响叠加求得的。在计算多层建筑结构内力和位移时,只考虑弯曲变形,因为轴力项影响很小,剪力项一般可不考虑。但对于高层建筑结构,由于层数多,高度大,轴力值很大,再加上沿高度积累的轴向变形显著,轴向变形会使高层建筑结构的内力数值与分布产生明显的变化。

二 建筑抗震的理论分析

2.1 建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2 抗震设计的理论

拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三 高层建筑结构抗震设计

3.1 抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3.3 高层建筑结构的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

四 高层建筑结构发展趋势

随着城市人口的不断增加建设可用地的减少,高层建筑继续向着更高发展,结构所需承担的荷载和倾覆力矩将越来越大。在确保高层建筑物具有足够可靠度的前提下,为了进一步节约材料和降低造价,高层建筑结构够构件正在不断更新,设计理念也在不断发展。高层建筑结构也正朝着结构立体化,布置周边化,体型多样化,结构支撑化,体型多样化,材料高强化,建筑轻量化,组合结构化,结构耗能减震化等方向发展。

五 总结

高层建筑物有效地减轻了住房压力,但必然也带来了安全隐患,其结构设计显得尤为重要。随着设计理念的不断发展,高层建筑物必将朝着更加合理的方向发展。

参考文献

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

第2篇

关键词:高层建筑;抗震设计;探讨

引言:

震惊世界的汶川大地震毁坏了21万多间房屋,已夺去了近3万多条生命,四川全省遇难人数预计将超过5万人。这次地震将为中国今后改进建筑抗震设防提供经验,如此惨烈的人员伤亡给中国敲响了警钟:随着城市化进程的加快,必须防患于未然。

一、高层建筑结构的面临的相关问题

1、结构的超高问题:在抗震规范和高规范中,对结构的总高度有着严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度以为,增加了B级高度,处理措施与设计方法都有较大改变。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。 2、 短肢剪力墙的设置问题:在新规范中,对墙肢截面高厚比为5~8的墙定义为短肢剪力墙,且根据实验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。 3、嵌固端的设置问题:由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌的设置、结构抗震缝设置与嵌固端位置的协调等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。 4、 结构的规则性问题:新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。”因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。

二.高层建筑抗震结构设计的基本原则

1. 结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能

(1)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。(3)承受竖向荷载的主要构件不宜作为主要耗能构件。

2. 尽可能设置多道抗震防线

(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架―剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。(2)强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。(4)在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

3.对可能出现的薄弱部位,应采取措施提高其抗震能力

(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。(2)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。(3)要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。(4)在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段

三.我国现行规范对抗震设计的要求

地震作用是一种随机的不可复制的自然运动,是其大小和方向都无法确定的一种偶然荷载。根据我国《抗规》规定,建筑物的抗震设计按“三水准二阶段”进行,即体现“小震不坏,中震可修,大震不倒”的原则,一般情况下遭遇第一水准烈度时,建筑处于正常使用状态,从结构抗震设计计算的角度,可以视为弹性体系,用弹性反应谱进行弹性阶段分析;当遭遇第二水准烈度时,结构进入非弹性工作阶段,但非弹性变形或结构体系的损坏控制在可修复的范围,此阶段的设计主要由构造来体现;遭遇第三水准烈度时,结构有较大的非弹性变形,但变形控制在规定的范围内,以免倒塌。二阶段的设计即是按小震作用效应和其他荷载效应的基本组合验算结构构件的承载能力以及在小震作用下验算结构的弹性变形,一般采用的是弹性反应谱分析方法,以满足第一水准抗震设防目标的要求;第二阶段是在大震作用下验算结构的弹性塑性变形,以满足第三水准抗震设防目标的要求。对于第二水准抗震设防目标的要求,《抗规》是以抗震措施来加以保证的。

四.建筑抗震的理论分析

1. 建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2. 抗震设计的理论

拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论。反应谱理论是在20世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

五、结论

近些年来,我国的高层建筑建设发展迅速。但从设计质量方面来看,并不理想。在高层建筑结构设计中,结构工程师不能仅仅重视结构计算的准确性而忽略结构方案的具体实际情况,应作出合理的结构方案选择。随着设计理念的不断发展,高层建筑物必将朝着更加合理的方向发展。

参考文献:

[1]王翠坤,杨沈. 汶川地震对建筑结构设计的启示[J]. 震灾防御技术;

[2]从维熹. 对底层框架抗震墙砖房结构抗震设计的探讨[J]. 山西建筑。

第3篇

关键词:抗震设计;高层建筑;措施;分析方法

1.前言

由于城市人口的发展,为了节约用地,更好地利用空间,往往在建筑设计时首先考虑高层建筑,从而高层建筑有了飞速的发展,高层建筑的发展趋势是高度越来越增加,体型和平面日趋复杂。由于高层建筑又坐落在不同的地域,加上地质构造复杂,高层建筑很容易受到地震等自然灾害的损害,地震发生具有很大的随机性,破坏后果严重。而高层建筑抗震设计方法研究目前还不十分成熟,仅仅依据微观的数学力学,没有充分考虑高层建筑结构内力的阻尼变化、材料时效、非弹性性质以及空间作用等其他相关因素,很难在结构上提高高层建筑的抗震能力。为了降低在遭遇地震时的经济和人力损失,因此,对高层建筑结构的抗震设计方法研究具有很大的必要性。

2.地震对高层建筑的作用影响分析

2.1对高层建筑构件形式方面

(1)在高层建筑的框架结构中,通常地震对板和梁的破坏程度轻于柱;

(2)地震作用经常在多肢剪力墙(钢筋混凝土结构)的窗下引起交叉斜向的裂缝;

(3)如果混凝土柱配置螺旋箍筋,即使地震引起较大的层问位移,对柱以及核心混凝土作用并不明显;

(4)钢筋混凝土框架结构,如长、短柱并用于同一楼层,长柱受损害较轻。

2.2对高层建筑结构体系方面

(1)对于钢筋混凝土柱、板体系的高层建筑,各层楼板因楼层柱脚破坏或者侧移过大以及楼板冲切等因素而在地面坠落重叠;

(2)对于“填墙框架”体系的高层建筑,由于受窗下墙的约束,因而容易发生外墙框架柱在窗洞处短柱型剪切现象;

(3)对于“填墙框架”体系的高层建筑,地震对采用敞开式框架问未砌砖墙的底层破坏严重;

(4)对于框架一抗震墙体系的高层建筑,地震损害不大;

(5)对于“底框结构”体系的高层建筑,地震严重破坏刚度柔弱的底层。

2.3对高层建筑地基方面

(1)如果地基自振周期与高层建筑结构的基本周期相同或相近,地震作用因共振效应而增加;

(2)如果高层建筑处在危险和地形不利的区域,则容易使高层建筑因地基破坏而受损;

(3)地基处地质不均匀,在地震作用下容易使上部结构倾斜甚至倒塌;

(4)若高层建筑的地基处有较厚的软弱冲积土层,则地震作用对高层建筑的损害显著增大。

2.4对高层建筑刚度分布方面

(1)对于采用L形以及三角形等平面不对称的高层建筑,地震作用能够使建筑结构发生扭转振动,因而损害现象严重;

(2)对于采用矩形平面布置的高层建筑结构,如果该建筑的抗侧力构件(如电梯井等)布置存在偏心情况时时,同样会使建筑结构发生扭转振动。

3.建筑结构抗震设计方法分析

3.1静力法

如果以F作为地震作用于建筑设施的力,以M表示建筑物的重量,以R表示地震震度,则有以下公式:

F=R×M (1)

这种以“震度”表示地震尺度的想法,在1924年(日本关东发生大地震后第二年)被纳入日本的建筑工程相关的技术规范中,当时,人们已经意识到房屋的重量是影响地震破坏能力的一个极为重要的因素。在当时的条件下人们认为为建筑重量10%的水平力大约地震惯性力相当。在当时还假定:建筑结构的承载能力大小决定了房屋的抗震能力大小;地震力与建筑地基以及结构的实际特性等因素无关。

3.2反应谱法

美国在1933年长滩发生大地震以及在1940年ELcentro发生大地震时。均取得了强震加速度记录。美国的一些相关研究者依据建筑物自振特性资料以及这些强震记录提出了著名的地震反应谱理论,具有非常重要的现实意义。近些年来,我国在抗震设计领域也取得了较大的进展,逐渐形成了科学合理而又普遍适用的建筑结构抗震设计方法。大部分的建筑结构抗震设计规范都是根据结构能力以及反应谱理论建立起来的。

3.3弹性动力时程法

弹性动力时程分析法抗震结构设计的原理是,根据地震烈度、高层建筑场地类别以及设计分组的判断,然后选用合适数量的地震地面运动加速度的记录,对其积分然后求解运动方程,最终计算出在模拟的地震中建筑的加速度、速度以及位移的响应,进行抗震设计。高层建筑运动方程是独立的,我们要计算各个时刻的结构反应只需用到数值方法求解。

3.4静力弹塑性法

静力弹塑性分析方法的原理为计算现有设计方案的抗侧力能力,进而估计出其抗震能力,其具体方法为:根据房屋的具体情况在房屋上施加某种分布的水平力,逐渐增加水平力使结构各构件依次进入塑性,调整水平力的分布和大小,直到结构达到位移超限。其优点在于:据结构的振型变化可以求得水平力的分布,根据结构在不同工作阶段的周期通过设计反应谱可以求得水平力的大小。

3.5动力弹塑性分析法

我们以{y},{y'},{y''}分别表示运动的水平位移和速度以及加速度,以yg表示地面运动水平加速度,则在多自由度系统中,在地面运动作用下的振动方程可以用以下公式表示:

[M]{y''}+[C]{y'}+[K]{y}=-[M]{L}yg (2)

采用各种手段划分由强震记录的水平方向上的时间一加速度曲线,将其分为一系列极小的时间段,运用震动方程对对每一个时段方程进行积分求解,可求得每个时间段内体系的加速度、速度以及位移,最终可计算出结构内力。

4.建筑结构抗震方法的比较

地震是一种破坏性严重的自然现象,其三要素分别为:幅值、持时与频谱特征。建筑结构抗震设计的方案应体现地震动特性和结构特性,所考虑的地震作用应在在地震作用下最大程度地反映结构的真实响应。表1为抗震设计方法反应结构特性以及地震动特性的具体情况对比。

5.建筑结构设计案例分析

某高层建筑,地下3层,地上28层,总建筑面积约6万m2。其中,7~28层为住宅区;第6层作为空中花园以及设备转换层;4~5层为办公用区域;1~3层为商场楼层;地下3层作为设备用房和车库;第7层楼盖作为高层建筑的结构转换层。高层建筑总高度(地面以上)为90.4m。该高层建筑以钢筋混凝土框架剪力墙作为工程主体,柱截面面积为700×1100m2、800×1100m2,墙厚2-4m,板厚为:转换层1.8m、天面1.2m、住宅1m、裙楼1.1m,梁截面面积为190×400-240×600m2。转换层框支梁为400×1300-500×1500m2。该高层建筑要求Ⅶ度的防烈度;建筑设防类别为丙类;设计第1组为地震分组。预期的抗震等级为:8层以上为二级;1-8层为一级;6层以下普通框架为一级;框支框架为特一级。根据建筑结构抗震设计的相关规范,本工程设计中有四项不合理,具体为:

5.1扭转不规则

在考虑各种因素的情况下,楼层竖向构件的水平位移最大应小于等于该楼层平均值的1.2倍,而在本高层建筑中此比值最大为1.32,大于1.2,属于扭转不规则。

5.2凹凸不规则

在该高层建筑中,平面最大凸出部位凸出尺寸为L=17.24m,Bmax=41.20m,L与Bmax之比为41.84%,而规范要求的此值为35%。

5.3楼板局部不连续

塔楼部分楼层电梯间局部楼板最小净宽3m,相关的建筑规范规定此值为5m。

5.4竖向抗侧力构件不连续

塔楼剪力墙通过转换梁向框支柱传递,属竖向抗侧力构件不连续。

5.5解决措施

具体到本高层建筑,在进行建筑结构抗震设计时为了满足相关规范的要求,需要采取的措施如下:

(1)加强剪力墙底部部位。

(2)根据规范要求提高框支柱的配筋率。

(3)塔楼楼梯问及周边楼板厚度增大至1.5m。

(4)转换层板厚度增大至1.8m。

(5)将剪力墙底部加强部位的钢筋配筋率提高到0.5%。

(6)将剪力墙的底部加强部位以及框支柱等部位的抗震等级均提高一级。

6.结束语

随着高层建筑的发展,建筑结构的抗震设计显得越来越重要。高层建筑结构的抗震设计方法和抗震措施在不断的改进,在对建筑结构进行抗震设计时要根据高层建筑的实际情况而选择科学合理的抗震结构设计方法。

参考文献

[1]包世华,王建东.大底盘多塔楼连体结构的受力分析[J].建筑结构学报,2010,(16):52-56.

[2]娄宇,王红庆,陈义明.大底盘上双塔和连体高层建筑的振动分析[J].建筑结构学报2009,(24):31-33.

[3]卞朝东,李爱群,娄宇,吴耀辉.高层连体结构振型及其参与系数的分析[J].建筑结构学报,2009,(14):81-82.

[4]傅赣清.关于对称结构体系自由振动力特性的证明[J].广州工业大学学报,2009,(19):21-32.

[5]钱镓茹,罗文斌.建筑结构基于位移的抗震设计[J],建筑结构,2010,(14):3-61.

[6]彭光华、查松山.桥梁设计抗震技术的探索[J],中国水运(下半月),2011,(12):27-31.

收稿日期:2013-4-17

第4篇

关键字:高层结构设计抗震

Abstract: The high-rise building is a development direction in the construction industry with its particular meaning. As for a high-rise structure design, the problem may be intricate. This paper analyzes aseismic design of the necessary from the structure of the high-rise building characteristics of buildings, and explores the high-rise building design concept and aseismatic measures. And a high-rise building structure development trend is briefly introduced.Keywords: high-rise building, structure, seismic design

中图分类号:S611文献标识码:A 文章编号:

随着科学的发展和时代的进步,高层建筑如雨后春笋般的出现。高层建筑的高度在一定程度上反映了一个国家的综合国力和科技水平,世界著名的建筑更是建筑史上的纪念碑。但是如果高层建筑因结构设计不清,而造成结构布置不合理,不仅会造成大量的浪费,更重要的是给高层建筑留下了结构质量的安全隐患。因此高层建筑的结构设计就显得尤为重要了。

一 结构设计特点

1.1 水平载荷是设计的主要因素

高层结构总是要同时承受竖向载荷和水平载荷作用。载荷对结构产生的内力是随着建筑物的高度增加而变化的,随着建筑物高度的增加,水平载荷产生的内力和位移迅速增大。

1.2 侧向位移是结构设计控制因素

随着楼房高度的增加,水平载荷作用下结构的侧向变形迅速增大,结构顶点侧移与建筑高度的四次方成正比,设计高层建筑结构时要求结构不仅要具有足够的强度,还要具有足够的抗推强度,使结构在水平载荷下产生的侧移被控制在范围之内。

1.3 结构延性是重要的设计指标

高层建筑还必须有良好的抗震性能,做到“小震不坏,大震能修。”为此,要求结构具有较好的延性,也就是说,结构在强烈地震作用下,当结构构件进入屈服阶段后具有较强的变形能力,能吸收地震作用下产生能量,结构能维持一定的承载力。

1.4 轴向变形不容忽视

高层结构竖向构件的变位是由弯曲变形、轴向变形及剪切变形三项因素的影响叠加求得的。在计算多层建筑结构内力和位移时,只考虑弯曲变形,因为轴力项影响很小,剪力项一般可不考虑。但对于高层建筑结构,由于层数多,高度大,轴力值很大,再加上沿高度积累的轴向变形显著,轴向变形会使高层建筑结构的内力数值与分布产生明显的变化。

二 建筑抗震的理论分析

2.1 建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2 抗震设计的理论

拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三 高层建筑结构抗震设计

3.1 抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3.3 高层建筑结构的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

四 高层建筑结构发展趋势

随着城市人口的不断增加建设可用地的减少,高层建筑继续向着更高发展,结构所需承担的荷载和倾覆力矩将越来越大。在确保高层建筑物具有足够可靠度的前提下,为了进一步节约材料和降低造价,高层建筑结构够构件正在不断更新,设计理念也在不断发展。高层建筑结构也正朝着结构立体化,布置周边化,体型多样化,结构支撑化,体型多样化,材料高强化,建筑轻量化,组合结构化,结构耗能减震化等方向发展。

五 总结

高层建筑物有效地减轻了住房压力,但必然也带来了安全隐患,其结构设计显得尤为重要。随着设计理念的不断发展,高层建筑物必将朝着更加合理的方向发展。

参考文献

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

第5篇

超高层建筑高度要求与结构类型和抗震烈度密不可分,超高层结构设计要进行两种方法以上的抗震核算,并且进行抗震设防专项审查。世界超高层建筑有迪拜哈利法塔,高828m;广州塔,高600m、上海环球金融中心,高492m等。超高层建筑因其超高的高度而具有不同于普通建筑和高层建筑的特点。首先,对于超高层建筑,传统的砖、石等材料已难以适用,其结构类型也更具选择多样性,如钢筋混凝土结构、全钢结构和混合结构等。其次,超高层建筑的垂直交通与消防,由于其超高的高度,较依赖于垂直交通,同时也给消防增加了困难,这就要求超高层建筑的每一层都需设置灵敏的烟雾报警器、自动喷淋和适当的避难所。最后,超高层建筑通过对风作用效应、重力荷载作用效应、施工过程的影响、空间整体工作计算、结构整体内力与位移、抗震性能等设计计算分析,进而提高超高层的抗震性和安全性。

2超高层建筑结构抗侧刚度设计与控制

为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。

2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。

2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的安全性,而非单纯增高地震力的调整系数。

3超高层建筑的性能化抗震设计

超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。

4超高层建筑多道设防抗震设计

除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。

5结语

第6篇

关键词: 高层建筑;结构抗震;设计;分析

Abstract: The author analyzes the characteristics of high-rise buildings by the force of the split-level structure, the split-level structure affect unfavorable factors, summed up the seismic design points.Key words: high-rise buildings; seismic; design; analysis

中图分类号:TU2文献标识码:A文章编号:2095-2104(2012)

带有错层的高层建筑的错层结构空间变化丰富、层次感较强,极大地满足了人们的心理要求,同时为结构的发展提出了新的课题。诸如其受力复杂、不确定因素较多、地震的特点要求等也带来了设计施工难度较大、结构抗震性能较差等诸多问题,这也成为阻碍高层建筑错层结构发展的主要因素。因此,要加大对带错层的高层建筑结构的深入研究、提高结构整体性能、有效改善错层结构的抗震性能。这对进一步推动错层结构的发展有着十分重要的意义。

1.高层建筑错层结构的受力特点及影响因素

1.1 错层结构的形式

错层高层建筑为了取得多样变化的室内空间,通常在一个单元的几个房间设在有高差的几个层面上,当错层高度不同时,就形成了各种类型的梁柱集合体。从工程实用情况来看,可将错层结构归纳为三类: 包含型错层结构、交叉型错层结构和混合型错层结构。如图 1 所示。

图 1 错层结构示意图

1.2 错层框架结构的受力特点

错层框架结构与框架结构的相比主要由于在错层处错开的楼层导致了在结构的一些部位形成竖向的短构件,使受力集中,不利于抗震。主要的原因可能是在同向受力中由于错层构件刚度大,而产生内力集中。在错层结构中,短柱问题应该得到足够的重视。

1.3 错层框架剪力墙结构的受力特点

错层框架剪力墙结构中的剪力墙承担了水平力中的一大部分,特别是在地震作用下,错层框架剪力墙结构有两道设防线,能够较好地改善错层结构的受力性能。

2.错层对结构影响的不利因素

错层对结构的不利影响主要源于两个方面:一是楼板分块错置,在错层构件中会产生很大的变形内力,从而削弱了楼板协调结构整体受力的能力;二是楼板错层,容易在某些部位形成竖向短构件,从而可能在同向受力中因错层构件刚度较大而产生内力集中。基于以上两个根本原因,错层将进而对结构的整体性产生较大影响。相互错层的相邻楼板仅由中间的错层柱(墙) 相联系,而楼板在自身平面内的抗弯刚度远远大于错层柱(墙) 的抗弯刚度,当结构受力时,结构左右两部分将产生不协调变形,在错层柱(墙) 中形成较大内力。显然,这对于错层结构抗震是十分不利的。以上 3 种错层结构对结构抗震性能的影响主要体现在以下几个方面:

2.1 对包含型错层结构,由于上下层楼面刚度发生突变,当地震作用发生时,地震力在楼层之间分配不均匀,从而影响了各楼层总地震作用沿建筑全高分配的连续性,影响结构整体的抗震性能。

2.2 交叉型错层结构上下层平面刚度不重叠,易使地震作用在楼层之间产生局部扭矩,对主体结构产生不利影响; 且其共用柱多为短柱,分配的地震作用弯矩往往比其他柱大很多,从而形成相对薄弱的受力构件。

2.3 混合型错层结构存在较长错层柱,当地震作用发生时,会导致地震作用在楼层竖向构件之间分配不均匀,使同层构件内力产生很大差别,从而使各结构构件间的可靠度出现较大差别。错层结构错层部位的竖向抗侧力构件一般均为低矮构件,在地震作用下的延性较差。

3.带错层的高层建筑结构抗震设计要点

3.1 设计要点

高层错层建筑结构由于在错层短柱存在很大的内力集中,且错层框架结构在错层处的短柱要协调相互错开的楼盖的变形,特别是在地震作用下,更易发生破坏。为改善普通错层框架结构的受力性能,主要采取以下措施来解决:

3.1.1 在普通错层框架结构的错层处根据实际需要增设若干撑杆,用撑杆的轴力来转移普通错层框架结构错层处短柱受的剪力。

3.1.2 在普通错层框架结构的适当位置增设若干剪力墙,用剪力墙来承担大部分的结构水平剪力。

3.1.3 错层不宜沿建筑通高设置,错层中应设置一定数量的贯通层,将错层分为几个区段,且每个错层区段包含的错层层数也不宜太多,通层要重点加强。

3.1.4 对于电算结果给出的超筋、超限的连梁,在提高其混凝土强度等级,截面调整仍无效果的情况下,可采用钢骨混凝土连梁加以解决,采用钢骨时要注意钢骨和墙体暗柱的连接构造。

3.1.5 在对复杂高层建筑进行设计时,运用概念设计的思想确定结构方案、进行结构布置是十分重要的。在此基础上还要有充分的计算分析手段例如采用二种不同计算程序进行分析对比、相互验证,并采用结构动力分析方法进行补充分析。

3.1.6 对高层错层建筑在错层处应在纵横向布置剪力墙,并使其互相形成扶壁,错层处布置单独的框架柱是不可取的。

3.2 错层结构设计注意事项

错层结构应用较广,如何保证结构安全,采取有效措施正确处理错层结构就显得尤为重要。在设计时应具体问题具体分析,充分考虑各种不利因素,针对错层结构可能出现的薄弱部位从建筑平面布置、理论计算及抗震构造措施等方面出发,增强结构的整体受力性能,提高结构的延性。

3.2.1 结构的共用柱大多为短柱,而短柱的延性很差,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌,因此对因错层形成的短柱,应该尽量提高短柱的承载力,减小短柱的截面尺寸,采取各种有效措施提高短柱的延性,改善短柱的抗震性能。

3.2.2 尽可能使结构平面布置合理化,使错层部位两层的竖向构件刚度相等,对结构平面布置不对称的结构,地震的扭转效应将十分显著,可能造成角部抗侧力构件开裂,在设计中应加强这些部位的配筋,增强抗震构造措施。

3.2.3 加强错层结构中错层柱及其上连梁的抗扭能力,同时使错层柱与相邻普通柱的长细比控制在 1~2 之间。

3.2.4 在高层建筑中,竖向体型应避免过大的外挑和内收,立面收进部分的尺寸比值应满足≥0.75 的要求。

3.2.5 对设防烈度较高、抗震等级较高的高层钢筋混凝土结构,应尽可能限制使用错层结构,如不可避免,则应用剪力墙结构,并尽量避免上下层楼面刚度突变。

4.结束语

高层建筑错层结构由于同一楼层的楼板沿高度方向相互错开而形成了室内空间的变化富于多样性,深受消费者的青睐。因此在城市住宅区广为使用。但是,作为一种结构体系,其结构形式复杂,地震反应特性与普通高层结构也有很大的不同,借助于计算机技术的发展,对错层结构地震反应的研究也越来越深入。如何通过适当的设计来满足错层结构的抗震性能是本文的主要内容。

参考文献:

[1] 杨光明.对高层建筑结构设计中提高短柱抗震措施的探讨[J].建材与装饰(中旬刊).2009(06).

[2] 建筑抗震设计的基本概念和原则[J].建筑技术.2005(Z4).

[3] 连晓庄,何照明.建筑学专业“建筑抗震设计”课程教学探讨[J].南方建筑.2010( 03).

[4] 裘民川.建筑设计在建筑抗震设计中的重要作用[J].工程抗震.2009(04).

第7篇

关键词:带转换层; 高层建筑;抗震设计

Abstract: With the rapid development of high-rise buildings in our country, as well as to the building structure with transfer function requirements, more and more high-rise structure, and set the location of the conversion layer is also more and more high. Therefore, this paper analysis of tall building structures with transfer story is not difference between seismic and seismic fortification intensity six seismic designs, for the majority of the engineering design personnel to deepen understanding, provide reference for different situations to take different measures to achieve the economic design, the purpose of safety.

Keywords: with the conversion layer of high-rise building; seismic design;

中图分类号:[TU208.3]文献标识码A 文章编号

六度抗震地区与非抗震地区在带转换层高层建筑结构设计上的存在区别,不同区域的建筑结构设计,根据抗震等级不同也存在区别,对不同地区进行整体结构概念设计,应避免在实际设计工程中造成不必要的浪费或者安全度偏大,以达到节省建筑工程造价的目的。

一、带转换层结构的设计原则

带转换层建筑结构是一种受力复杂、不利于抗震的结构体系,在结构总体设计时,特别是在抗震设防地区,应遵循的如下原则:

首先,传力直接,避免多次转换。布置转换层上下主体竖向结构时,要尽量使水平转换结构传力直接,通过结构的合理布置,使不落地的剪力墙通过转换托梁直接传给竖向承重构件,尽可能的避免转换次梁及水平多级转换,实现传力路劲的最短化。

其次,强化下部、弱化上部。要保证底部大空间有适宜的刚度、强度、延性和抗震能力,要有意识的强化转换层下部主体结构刚度,弱化转换层上部主体结构的刚度,使得转换层上下部主体结构的刚度及变形特征尽量接近,以避免出现薄弱层。

再次,计算全面准确。必须将转换结构作为整体结构中一个重要组成部分,采用符合实际受力变形状态的正确计算模型进行三维空间整体结构计算分析。采用有限元方法对转换结构进行局部补充计算时,转换结构以上至少取2层结构进入局部计算模型,同时应计及转换层及所有楼盖平面内刚度,计及实际结构三维空间盒子效应,采用比较符合实际边界条件的正确计算模型。

二、建筑结构平面布置

关于建筑物的结构平面布置,仅在《高层建筑混凝土结构技术规程》表4.3. 3中对建筑物在考虑地震作用时的平面长宽比以及局部凹凸进行明确规定;并且在4.3.5条中对建筑的位移比和周期比进行严格的限制。非抗震设计时,由于对周期比没有严格的限制,故在设计转换层以上的小开间住宅部分的竖向构件时,可以只按照竖向构件的承载力进行设计;作抗震设计时,为了使周期比满足规范要求的限值,必须对建筑物周围的竖向构件进行加强处理,这就人为地增大了转换层上部的建筑物结构刚度,也增加了竖向构件的数量或者截面,同时也会引起转换层下部刚度相应增大。

三、建筑结构竖向布置

考虑地震作用下,仅在《高层建筑混凝土结构技术规程》中4.4.2和4.4.3条对建筑物的侧向刚度进行限制,保证建筑物的侧向刚度的连续。4.4.5条对建筑物的竖向收进和外挑进行限制。

(1)底部大空间为1层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ 不应大于3,抗震设计时γ不应大于2。

(2)底部大空间层数大于1层时,其转换层上部与下部结构的等效侧向刚度比γe宜接近1,非抗震设计时γe不应大于2,抗震设计时γe不应大于1.3。由于转换层结构上部建筑多为住宅,根据建筑住宅使用功能的要求,房间分隔较小且对结构梁高进行限制,故造成上部住宅部分的竖向构件柱子或短肢剪力墙数量较多,梁较密。并且转换层上部住宅部分层高一般比下部大开间的商场部分小得多。这些都是造成转换层上部结构刚度远远大于下部结构刚度的客观原因。为了增加下部结构刚度,只能在适当位置处增加竖向构件或原竖向构件的截面尺寸。上、下部刚度越要求接近,则增加的下部竖向构件越多或者截面越大。

因此,高层建筑转换层结构设计时一定要注意按照转换层所在位置的三种不同情况,分别采用三种不同的控制方法,特别要注意的是当转换层在3 层及3 层以上时,应采用同时满足等效剪切刚度比和楼层侧向刚度比的两个控制条件,才能满足安全的要求。

四、结构构件承载力设计的区别

《高层建筑混凝土结构技术规程》4.7.1 条中规定:无地震作用时,构件承载力设计值大于等于结构作用效应组合的设计值与结构重要性系数的乘值(结构重要性系数的取值在1.~1.1之间);有地震作用组合时,构件承载力设计值大于等于结构作用效应组合的设计值与结构构件承载力抗震调整系数的乘值(结构构件承载力抗震调整系数的取值在1.0~1.33之间)。

以上分析均针对非抗震设计和抗震设计在结构概念设计上的区别,属于确定建筑方案前需要考虑的结构体系对建筑物的总体影响,是非抗震设计和抗震设计在性能设计上的根本区别,需要在建筑方案确定前进行经济综合性比较分析。整体结构概念设计是实现非抗震结构性能经济性设计的根本方向。

五、具体建筑构件单项比较分析

1.框支梁

梁上、下部纵向钢筋的最小配筋率,非抗震设计时不应小于0.30%;抗震设计时,特一、一和二级不应小于0.60%、0.50%和0.40%;加密区箍筋最小面积含箍率在非抗震设计时不应小于0.9ft/f yv;抗震设计时,特一、一和二级不应小于1.3ft/fyv、1.2ft/fyv和1.1ft/fyv。

梁截面高度在抗震设计时不应小于计算跨度的1/ 6,非抗震设计时不应小于计算跨度的1/ 8;框支梁截面组合的最大剪力设计值应符合下列要求:

无地震作用组合时:V≤0.2β cfcbh0;

有地震作用组合时:V≤0. 15β cfcbh0/γRE。

2.框支柱

框支柱截面组合的最大剪力设计值应符合下列要求:无地震作用组合时,V≤0.2β cfcbh0;有地震作用组合时,V≤0.15β cfcbh0/γRE。

柱截面宽度,非抗震设计时不宜小于400mm,抗震设计时不应小于450mm;柱截面高度,非抗震设计时不宜小于框支梁跨度的1/15,抗震设计时不宜小于框支梁跨度的1/12;

非抗震设计时,框支柱宜采用复合螺旋箍或井字复合箍,箍筋体积配箍率不宜小于0.8%,箍筋直径不宜小于10mm,箍筋间距不宜大于150mm。

3.剪力墙

部分框支剪力墙结构,剪力墙底部应加强部位墙体的水平和竖向分布钢筋最小配筋率,抗震设计时不应小于0.3%,非抗震设计时不应小于0.25%;

错层处平面外受力的剪力墙,其截面厚度,非抗震设计时不应小于200mm,抗震设计时不应小于250mm,并均应设置与之垂直的墙肢或扶壁柱;抗震等级应提高一级采用。错层处剪力墙的混凝土强度等级不应低于C30,水平和竖向分布钢筋的配筋率,非抗震设计时不应小于0.3%,抗震设计时不应小于0.5%。

4.一般框架梁、柱、抗震墙

根据对国内外规范最小配筋率取值情况的研究成果,可知各国设计规范梁类构件受拉钢筋最小配筋率取值存在两种体系。

一种是对抗震及非抗震情况取用相同的最小配筋率,如美国、新西兰规范。另一种是对抗震及非抗震情况分别取用大小不同的最小配筋率,如欧共体混凝土结构设计规范EC2 和抗震设计规范EC8。后者非抗震最小配筋率的取值水准比第一种取值体系明显偏低。结合我国现行规范分析如下:

(1)《混凝土结构设计规范》(GB50010-2002)第9.5.1 条规定在非抗震的情况下,钢筋混凝土结构构件中纵向受力钢筋的最小配筋百分率。具体规定如下:①受压构件。全部纵向钢筋最小配筋百分率0. 6%;一侧纵向钢筋最小配筋百分率0.2%。②受弯构件、偏心受拉、轴心受拉构件一侧的受拉钢筋最小配筋百分率0.2和45ft/fy中的较大值。

(2)《建筑抗震设计规范》(GB50011-2001)第6.3.3 条规定在考虑抗震的情况下,梁端截面的底面和顶面纵向钢筋配筋量的比值,除按计算确定外,一级不应小于0.5,二、三级不应小于0.3。《混凝土结构设计规范》(GB50010-2002)第10.2.6 条规定当梁端实际受到部分约束但按简支计算时,应在支座区上部设置纵向构造钢筋,其截面面积不应小于梁跨中下部纵向受力钢筋计算所需截面面积的0. 25。故在非抗震的情况下部分符合该情况的梁局部支座负筋可比考虑抗震时低25%左右。

(3)《建筑抗震设计规范》(GB50011-2001)第6.3.8.1 条规定在考虑抗震的情况下,根据抗震等级的不同,中柱和边柱截面纵向钢筋的最小总配筋率由0. 6%逐步递增到1.0%;角柱、框支柱截面纵向钢筋的最小总配筋率由0.8%逐步递增到1.2%。故在非抗震的情况下,当柱截面配筋均为构造配筋时,柱截面纵向钢筋仅为考虑抗震时的50%~75%左右。

(4)《建筑抗震设计规范》(GB50011-2001)第6.4.3 条规定在考虑抗震的情况下,一、二、三级抗震墙的竖向和横向分布钢筋最小配筋率不应小于0.25%;四级抗震墙不应小于0.20%。故当剪力墙竖向和横向配筋均为构造配筋时,在非抗震的情况下的剪力墙配筋与四级情况下的剪力墙配筋相同,但仅为考虑地震作用时一、二、三级剪力墙配筋的80%左右。

第8篇

关键词:高层建筑结构;抗震设计

随着经济的发展和社会需求的多样性,建筑的高度越来越高,体型变得更加复杂,抗震设计也变得愈加重要;从20世纪最初提出的简单抗震设计思想,到目前国际上普遍认可的“小震不坏、中震可修、大震不倒”的设计理念,再到基于性能的抗震设计思想,结构抗震设计经历两次质的飞跃。我国处于地震多发区,高层建筑抗震设防是工程设计面临的迫切任务,作为工程抗震设计的依据,高层建筑抗震分析处于非常重要的地位。

1 高层建筑结构抗震分析和设计的主要内容

我国现行抗震设计规范(GB50011-2010)要求高层建筑的抗震计算主要是在多遇地震作用下(小震),按反应谱理论计算地震作用,用弹性方法计算内力和位移,并用极限状态方法设计构件。对于重要建筑或有特殊要求时,要用时程分析法补充计算,并进行大震作用下的变形验算。这种先用多遇地震作用进行结构设计,再校核罕遇地震作用下结构弹塑性变形的方法,即二阶段设计方法。同时规范还规定了结构在罕遇地震作用下结构弹塑性变形的结构弹塑性分析方法。

结构弹塑性分析可分为弹塑性动力分析(时程分析)和弹塑性静力分析两大类。

2 高层建筑结构抗震设计中的一些问题

2.1 高度问题

按我国现行高层建筑混凝土结构技术规程(JGJ3-2010)规定,在一定设防烈度和结构形式下,钢筋混凝土高层建筑有一个适宜的高度。这个高度是目前我国建筑科研水平、经济发展水平、施工技术水平下,比较稳妥的。实际情况下,有很多混凝土高层建筑的高度超过了这个限值,对于超限建筑物,应当采取科学严谨的态度:一要有专家论证,二要有模型振动台实验。在地震力作用下,超限建筑物的破坏形态会发生很大的变化。因为随着建筑物高度的增加,许多对其有影响的因素将发生质变。

2.2 抗震变形验算中的位移问题

高层建筑结构抗震变形验算中,任一楼层的位移(含顶点位移)是相对结构固定端(基底)的相对侧向位移;层间位移是上、下层侧向位移之差;层间位移角是层间位移与层高之比值。抗震计算中对结构侧向位移有顶点位移和层间位移角双重要求。实践表明,如果层间位移角得到有效控制,结构的侧移安全性和适用性均可得到满足。同时,规范对150m以上的高层建筑提出了舒适度要求,即增加了结构顶点风震加速度的限制条件。楼层位移、层间位移角的要求时从宏观上保证结构具有必要的侧向刚度,结构构件基本处于弹性工作状态,非结构构件不破坏。

目前,层间位移没有考虑由于结构整体转动而产生的所谓无害位移的影响。但实际上,对高度较高的高层建筑,结构整体弯曲引起的侧移影响是不可忽视的。规范对楼层层间位移角控制条件,采用了层间最大位移计算,考虑了扭转的影响。抗震设计中,核算楼层层间位移角限制条件时,可不考虑质量偶然偏心的影响,主要考虑到,新规范采用楼层最大层间位移控制层间位移角已经比原规程JGJ3-91严格,而侧向位移的控制是相对宏观的要求,同时也考虑到与《抗震规范 》等国家标准保持一致。

2.3 轴压比与短柱问题

在钢筋混凝土高层建筑结构中,往往为了控制轴压比而使柱截面很大,而柱的纵向钢筋却为构造钢筋。即使采用高强混凝土,柱截面尺寸也不能明显减小。限制柱的轴压比是为了使柱处于大偏压状态,防止受拉钢筋未屈服而混凝土被压碎。柱的塑性变形能力小,结构的延性就差。遭遇地震力作用时,耗散和吸收地震能量小,结构容易受到破坏。许多高层建筑中虽然底部几层柱长细比小于4,但不一定是短柱。因为确定是不是短柱的参数是柱的剪跨比,只有剪跨比M/Vh≦2的柱才是短柱;有专家提出现有抗震规范应采用较高轴压比,但是即使能调整柱轴压比限值,柱断面并不能因为略微提高轴压比限值而显著减小。

2.4 结构体系问题

在地震多发区,采用何种结构体系应该得到人们的重视。我国150m以上的建筑,采用的三种主要结构体系(框-筒、筒中筒和框架-支撑),这些也是其他国家高层建筑采用的结构体系。但国外特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%.如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验;混合结构的钢筋混凝土内筒往往要承受80%以上的地震作用剪力,有的高达90%以上。由于结构以钢筋混凝土核心筒为主,变形抗震要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小测移,不但增大了钢结构的负担,而且效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值。此外,在结构体系和柱距变化时,需要设置结构转换层。

2.5 在某些烈度区采用了较低的抗震措施与构造措施

现在许多专家提出,现行的建筑结构安全度已不能适应国情的需要,主张“建筑结构的安全度水平应该大幅度提高”。

设防标准低的根本原因在于国家财力物力有限,我国建筑结构抗震设计除了设防烈度低外,具体抗震计算方法和构造规定的安全度也不如国外,在配筋率、轴压比、梁柱承载力和一系列保证抗震延性的要求上,与外国相比,也有异同。随着社会财富的增长,有人主张结构在设防烈度下应采用弹性设计,特别是高烈度区要有严格的抗震措施和抗震构造措施来保证结构的安全。

3 高层建筑结构抗震设计的新趋势

3.1 动力时程响应分析的状态空间迭代法

这种方法把现代控制理论中的状态空间理论应用到高层建筑结构动力响应问题,根据结构动力方程,引入位移与速度为状态变量,导出状态方程,给出非齐次方程的解,进而建立状态空间迭代状态格式。经工程实例验算,具有较高精度。

3.2 材料参数随机性的抗震模糊可靠度分析

该方法从结构整体性出发,改变过去对结构抗震可靠度的研究只考虑荷载的不确定性而忽略了其他不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性,烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。研究成果可用于对现有的结构进行抗震可靠度评估,并可用于指导基于可靠度理论的结构抗震设计。

第9篇

关键词:高层建筑;建筑结构;抗震设计

Abstract: the rapid development of urbanization causes the urban construction of the ends of the earth have nervous, therefore, in order to meet the improvement of the living, city buildings can only longitudinal for construction space, which prompted the modern city of the high-rise building has increased. Especially 08 5 ・ 12 earthquake on, high-rise buildings for anti-seismic structure design of increasingly more strict requirements. In the design of anti-seismic structure, not only should reflect scientific, more important is to reflect human nature, pay great attention to the humanistic idea. In this paper, the structure design of high-rise building a brief analysis, face the different design problems, puts forward the corresponding solutions for your reference.

Keywords: high building; Building structure; Seismic design

中图分类号:[TU208.3]文献标识码:A 文章编号:

一、前言

在众多自然灾害中,地震的不可抗拒性是最强的,而城市的高层建筑所受到的最大威胁也是来自于地震。所以,为了避免地震给人们带来的巨大伤害和损失,在现代高层建筑设计过程中,就必须更加注重高层建筑结构抗震设计,以此来最大限度避免地震所带来的财物损失。在下文中,我们从抗震结构设计的理念和抗震方法两个方面展开,以论证抗震设计在整个建筑设计中的重要性。

二、高层建筑抗震结构设计的理念

(一)在高层建筑结构设计中,建筑结构的构件必须要具备一下几个方面的优势性能:刚度、承载力、延性、稳定性等。

总体上来说,建筑结构的构件要遵循这样的原则:强剪弱弯、强节点弱构件、强柱弱梁、强底层墙。其次,对于在设计和施工中,对可能产生结构相对薄弱的地带或者部位,一定要采取各种合理的强化措施来提高此部位的抗震性能,从而达到整个建筑抗震的均衡性。再次,在设计中,面对纵向载荷的重要构件,为保证整个建筑体的纵向受力平衡,就要尽量避免在此设置主要的耗能构件。

(二)最大限度地设置抗震防线

在一个巨大的建筑体中,抗震系统是根据建筑系统的设计而设计的。所以,整个抗震结构体系不是单一存在的,而是由多个抗震延展性能较好的分体系合理构成,各体系通过合理的连接,才构成了建筑体的抗震体系。例如:剪力墙―框架的设计结构,是由剪力墙和延性框架两个部分构成的,而在剪力墙体系中,则由多肢或者双肢剪力墙组成。

为了抵抗地震以及余震的伤害,一道地震防线难以抵挡强大外力的破坏的,所以在抗震体系的设计中,要尽可能地多设置外部和内部的冗余度,设置合理科学而具有完整体系的分布屈服区。在主要耗能构件的设计中,要尽量采用刚度适当、延性较强的设备。同时,在同一楼层中,采用主要耗能构件屈服后,则需要其他的侧力构件保持足够的弹性,以最大限度保持“有效屈服”。在设计中,一定要避免同一建筑平面出现抗震力出现极度反差的两个地段,避免在设计中出现不合理的加强或者在施工中出现以大带小的现象。

(三)对于可能出现受力薄弱的地段,要采取合理的措施补强

在判断建筑设计中的薄弱地段时,最基本的判断方式就是量化构件的实际承载能力,而构件在地震的过程中,基本上不存在强度的安全储备。在设计和施工中,一定要使得设计计算的弹性和楼层的实际承载能力的比值在总体上保持一个大致的变化范围,倘若有突发位置的比值发生数值巨变,那么就会使得塑性由于内力的重新分布而导致集中产生。在设计中,一定要避免因为加强局部而造成整个建筑体的承载力和刚度产生极度的不协调的情况出现。

三、高层建筑抗震结构设计的方法

(一)最大限度减少地震能量的输入

在设计中,采用合理的设计方法,例如,可以采用基于位移的抗震结构设计,在这个设计中,对各种数据要进行详尽的定量分析,将建筑体的抗震变形承受能能力满足预期地震作用下的变形要求。除了要保证构件的抗震作用,为了最大限度的减少地震能量的摄入,就要考虑到控制结构的因素,在大地震的强力作用下,要保证控制结构的间层位移延性比或者阈值。根据构件位移和构件变形的相互关系,来确定建筑结构中构件的变形值。同时要根据建筑截面的应变分布和应变大小来确定建筑构件的构造分布要求。在建筑选址上,最好在坚硬的地段上建造高层建筑,这样也可以最大限度地减少地震能量的摄入。

(二)推广采用隔震和消能减震的设计方式

我国高层建设的抗震设计一般采用的是“延性结构设计体系”,这种设计体系的原理是通过适当地控制建筑物的刚度,保证建筑物在地震中能够即时进入到非弹性状态,在这种状态下,保持合理的延性,通过延性来释放地震传输的能量,减少地震反应,以达到“裂而不倒”的效果。在设计中,建议在采用“延性结构设计体系”的同时,同时采取滑移隔震、软垫隔震、悬挑隔震、摆动隔震等隔震措施,从而改变建筑结构的整体动力特征,最大限度的降低了地震能量的摄入。同时,建议提高结构阻尼,在设备设计中,最好采用延性较好的构件,这样就可以很好地提高结构的耗能能力,来减少高层建筑各楼层的地震剪力,从而减轻地震作用力。

(三)高层建筑减轻结构的自重

减轻结构自重,要从两个方面入手。第一,首先要看到的是高层建筑的地基承载能力,如果是在相同的地基条件下,减轻建筑结构就意味着通过节省重量来增加了建筑的延伸高度,这种高度的延伸,不涉及到增加地基处理的造价和不增加地基基础。所以,在建设高层建筑时,如果需要在高度上有所增加时,自重的问题就必须要重视起来,这样的情况对于软土地基的影响更为明显。第二,地震的效应和建筑的重量是呈正比的,在建筑结构重量增加的情况下,地震的作用力也是相对增加的。高层建筑因为高度的因素,其中心一般会较高,重心高就意味着在地震外力的作用下,建筑的倾覆力矩也随之增大。所以在设计的过程中,建议高层建筑的隔墙和填充墙最好采用轻质材料。

结语:

相对于其他自然灾害,地震的不可预测性是最大的,因而给人们造成的损失也是最大的,所以建筑设计人员在工程设计中,一定要从建筑结构的整体出发,本着人本主义的理念,处理好建筑安全性能和建筑功能之间的关系,从而来提升建筑的建筑质量,提升高层建筑的抗震能力,以保证人们的生命财产安全,创造出更加安全和谐的人居环境。

参考文献:

第10篇

关键词:超限;高层建筑;剪力墙结构;抗震设计;性能设计

中图分类号: TU97 文献标识码: A 文章编号:

1 工程概况

本工程位于昆明市,规划用地25万㎡,总建筑面积为127万㎡。该工程住宅部分为剪力墙结构,均为高层及超高层建筑,其中有18栋达到B级高度。设计使用年限50年,抗震设防类别丙类,设防烈度8度,基本地震加速度0.20g,设计地震分组第二组,抗震等级一级。结构的安全等级二级,地基基础设计等级甲级,建筑桩基设计等级甲级。场地类别Ⅲ类,基本风压为0.35KN/㎡(100年重现期)。本文以16#主楼(39层,建筑高度120m)为例进行分析,户型如下图所示:

2 基础设计及沉降控制

根据地质报告,基础为桩筏基础,筏板厚度2m,每边扩出主楼范围1.5~3m;采用边长450预应力混凝土空心方桩,桩受力为摩擦桩,桩长约35m,以粉土层为持力层,单桩承载力特征值为2600~3000KN。该楼地下三层,基础底板埋深均达17m以上,最大附加应力约为240Kpa,沉降可控制在100mm以内,沉降差满足要求。

3 嵌固位置

主楼嵌固位置为地下室顶板。地下一层以下设置施工后浇带及沉降后浇带。住宅楼地下室与地下车库及商业在地下室连为一体,地下一层顶板以上(包括商业部分)设置伸缩缝,形成单塔结构,避免了大底盘多塔结构。各楼嵌固层与上层剪切刚度比采用的是要求较高的剪切刚度算法,刚度比≈2。

4 超限情况

根据《超限高层建筑工程抗震设防管理规定》(建设部令第111号),对高层住宅的各项指标进行检查,超限结果为:高度超过100m但不大于130m,为B类高层。平面规则性:不规则结构,位移比大于1.2但不大于1.4部分楼平面凹凸尺寸大于相应边长30%。竖向规则性:各楼平面上下无变化,仅楼底部层高有变化,通过改变墙厚及混凝土标号,刚度变化满足规范要求,无薄弱层。其他情况:无错层、无转换、无多塔、无连体,无扭转不规则。

5 计算及结果

本工程采用SATWE及PMSAP进行对比,两者计算的结果接近,结果如下:周期及阵型均是1、2周期平动,3周期扭转;扭转周期与平动周期的比值小于0.85,满足规范要求。位移满足1/1000的要求,位移比满足不大于1.4。阵型数不小于15,有效质量不小于90%。楼层最小剪重比大于 3.20%。刚度无突变,无薄弱层。整体稳定满足要求可以不考虑重力二阶效应。剪力墙的轴压比不超过限值0.5。

通过两个不同模型的计算软件比较,确定力学模型计算的可靠性;SATWE和PMSAP两个程序的计算结果基本一致,只是由于程序在某些方面处理方法在概念上不尽相同,计算结果在数值上存在一定差异,但均在工程上可接受的范围内。对比分析表如下:

6 时程分析

采用SATWE程序进行了弹性时程分析,时程分析采用三类场地天然波(简称TH3TG055,TH4TG055)及三类场地人工波(简称RH1TG055),峰值加速度取0.7m/s2,采用包络设计。

弹性时程分析表明:时程分析的最大楼层剪力曲线和CQC的最大楼层剪力曲线基本符合,说明CQC计算基本符合计算要求。时程的最大楼层剪力仅少数顶部楼层略大于反应谱结果,其余均小于反应谱结果,超出不多,拟在施工图时候考虑放大该部分楼层的地震剪力;3条时程曲线计算的结构响应位移与振型分解反应谱结果比较接近,位移响应曲线基本光滑无突变,说明竖向刚度变化平缓;3条时程曲线计算的结构响应层间位移与振型分解反应谱结果比较接近,均略小于CQC结果;时程计算楼层剪力分布曲线光滑无突变,底部剪力均大于振型分解反应谱法下的65%,3条时程曲线计算得到的底部剪力平均值大于振型分解反应谱法下的80%,满足规范相应要求。

通过对比时程分析的最大楼层剪力曲线和CQC最大楼层剪力曲线的计算结果,说明CQC计算基本符合计算要求。具体对比见下面的表格及图形。

7 性能设计

本结构为超限高层建筑,考虑采取性能设计。结合经济条件及抗震设防类别、设防烈度、场地条件、结构类型和不规则性,确定以下性能设计。

1)采用合理的结构形式,避免复杂高层结构,使结构尽可能合理。本结构选用剪力墙结构,有较好的抗震性能。避免采用复杂的高层结构体系,无错层、无加强层;底部与多层商业设缝,嵌固于地下室顶板,形成单塔结构,避免大底盘多塔结构。

2)选定地震动水准。本设计使用年限50年的结构,选用规范给定的的多遇地震、设防地震和罕遇地震的地震作用。

3)抗震性能目标设计:抗震性能设计执行规范的三水准设防目标,对结构进行多遇地震作用下的结构和构件承载力验算和结构弹性变形验算。选定性能设计指标。对关键部位底部加强区剪力墙的抗震承载力、变形能力进行适当提高。控制结构整体周期比及竖向刚度不出现薄弱层,使结构在设防地震和罕遇地震下的受力性能较为合理。做法如下:

ⅰ 控制底部加强区的剪力墙轴压比在0.3左右:在小震下结构为弹性受力,在中震作用下,底部加强区为结构塑性铰产生的部位,为使塑性铰有足够的转动能力,就要保证底部加强区剪力墙具有一定的延性,其有效的措施之一就是控制其轴压比。本工程底部加强区剪力墙的轴压比基本控制在0.30左右,因轴压比较小,中震下有较强的塑性变形能力,不易发生脆性破坏。

ⅱ 控制结构的周期比在0.7以内:规范要求B级高层周期比应控制在0.85以内,为了减少结构在罕遇大震下的扭转效应,本结构周期比控制在0.7以内。 结构不致于出现过大的扭转效应,结构受力也比较合理。

ⅲ 控制不出现薄弱层:薄弱层会引起结构受力突变,本结构上部为标准层,布置较为合理,底部商业层高通过调整墙厚避免了薄弱层。

ⅳ 提高底部加强区剪力墙的配筋率:底部加强区的剪力墙为主要的塑性铰发生区。经计算在多遇地震下底部加强区剪力墙配筋基本为构造配筋,满足规范要求的最小配筋率0.25%。考虑在施工图设计中适当提高底部加强区的剪力墙配筋,控制最小配筋率提高到0.3%,提高剪力墙的承载力及塑性变形能力。

第11篇

【关键词】高层建筑 结构 抗震 优化设计

一、引言

建筑抗震表明,高层建筑物如果缺乏良好的抗震设计,没有良好的总体布置方案,仅仅依靠结构抗震计算,采取抗震构造措施是远远不够的,不能达到良好的抗震效果。当较强地震发生的时候,高层建筑物无法发挥很好的抗震效果,不能起到降低震害的效果。因此,在高层建筑设计的实际工作中,为了提高设计水平,保证高层建筑的强度和质量,提高高层建筑的抗震能力,必须重视采取相应的策略,从多个方面入手,优化高层建筑结构的抗震设计,提高建筑结构的抗震能力,为人们的生产生活创造良好的条件。

二、高层建筑结构抗震优化设计的关键问题

对于高层建筑来说,提高其抗震能力无疑是其十分重要的工作。而要提高抗震能力,首先就得做好设计工作,优化抗震设计能力,首先就得做好设计工作,优化抗震设计,把握好其中的关键问题。具体来说,这些关键问题包括以下几个方面。

1.场地选择。

场地的选择对高层建筑结构的抗震能力会产生直接的影响。如果场地选择不好,不仅影响高层建筑的抗震性能,还会给人们的生产生活带来极大的不便。具体来说,在进行场地选择的时候,应该选择有利于抗震的场地,避开危险地段,避开对高层建筑结构抗震不利的地段。选择地段安全、地基稳定的地段。如果确实不能避开不良地段的话,为了提高高层建筑的抗震性能,就必须采取相应的促使对地段进行处理和加工,以满足施工的要求,提高高层建筑结构的抗震能力。

2.结构体系选择。

第一,结构体系需要避免对高层建筑整体抗震产生不利影响。在进行设计的时候,需要考虑不能因为部分结构的破坏而导致整个高层建筑结构抗震能力下降或者丧失。即使某一构件停止工作,但是其他的构件却不能失去效能,以免影响整个高层建筑物的抗震能力。第二,架构体系需要有明确的计算简图好阿赫利的地震作用传播途径。第三,结构体系必须具备良好的承载能力、变形能力、消耗地震能量的能力。由于钢筋混凝土结构具有上述良好的能力,所以在高层建筑结构设计中,钢筋混凝土结构应用较为普遍。第四,结构体系需要具有合理的刚度和强度。这是应对地震,降低地震给高层建筑物带来损害的必备条件。此外,对于有可能出现的薄弱部位,需要采取相应的加固措施,以提高高层建筑结构抗震能力。

3.结构的规则性。

在高层建筑结构抗震设计中,还需要重视建筑平面布置的规则性。在平面布置上需要注意符合抗震的设计原则,应采用规则的设计方案,不宜采用不规则的方案。所以在建筑方案初期结构设计人员宜及早参与进去,避免建筑方案通过后,发现建筑设计人员采用了结构不规则的结构,造成了后续设计工作的不必要麻烦。结构的规则性主要表现在高层建筑主体抗侧力结构上,尤其需要注意以下四个问题。第一,从高层建筑主体抗侧力结构的平面布置来看,需要注意的是,应该注意同一主轴方向的各片抗侧力结构刚度尽量均匀,这样有利于高层建筑整体的抗震性能的发挥。第二,高层建筑主体抗侧力机构需要注意两个主轴方向的刚度需要比较接近,其变形特性还需要比较相似。第三,高层建筑主体抗侧力结构应变化比较均匀,不应当有突变的情况发生。第四,高层建筑主体抗侧力结构的平面布置需要注意,中央核心和周边结构的刚度协调均匀,以避免产生过大的扭曲变形。

三、抗震设计中存在的问题分析

1.抗震规范方面。

国外在规划抗震的延性要求等级时,多结合当地实际情况,利用不同的地震系数来确定抗震延性,即“小震”取值越高,延性要求越低,反之亦然。与此同时,有些地区还结合了高烈度区使用高延性、低裂度区使用低延性的抗震设计理念。这两种抗震设计都与实际需要的抗震效果是一致的。而我国将地震作用降低系数统一取值,并且将小震定义为一个固定的统计数字。这样对于抗震延性而言,其性能就是由抗震等级来决定,这就造成同一个数值对应不同抗震效果,也就间接造成低烈度区建筑结构延性要求无法满足实际建筑抗震需要。

2.抗震设防目标。

我国规范中的“大震框架不倒,中震结构可修,小震建筑不坏”这个抗震设防目标也有一些不妥。这个设防目标针对的只是甲、乙、丙类三种具备不同重要性的建筑实物而言,因此并不对所有的建筑都适用。如此模糊的设防目标与目前国际上倡导的“多性态、多层次的控制目标”思想貌合神离,对于这类多性态的目标思想需要的是在建筑抗震的设计中能够采用灵活的多重性态目标进行划分。甲类一般指的是重大的工程建筑以及可能会在地震中造成次生灾害的乙类建筑,而乙类主要是指受到地震影响后不能中断对其的使用或者必须尽快得到抢修的建筑。因为不用类别的建筑其对应的重要性各异,所以,最好不笼统地使用同一个设防目标(性态目标),再者,还要考虑到建筑最终归属者是否提出了什么要求,再根据其要求来选择合适的设防目标,这样才能真正实现在选择设防目标上的灵活性。

四、优化高层建筑结构抗震设计的对策

1.地理位置的选择

具有不同工程地质条件的场地上,建筑物在地震中的破坏程度是明显不同的。选择对抗震有利的场地和避开不利的场地进行建设,就能大大地减轻地震灾害。因此,应加强地基勘察,应采取有效措施。对于不力地段,这就考虑了地震因场地条件间接引起结构破坏的原因。由于建设用地受到地震以外的许多因素的限制,除了极不利和有严重危险性的场地以外往往是不能排除其作为建设用场地的。这样就有必要按照场地、地基对建筑物所受地震破坏作用的强弱和特征进行分类,以便按照不同场地特点采取抗震措施。尽量避开不利地质环境,结构工程师应提出避开要求,如活动段根据抗震设防类别、地基液化等级,分别采取加强地基和上部结构整体性和刚度、部分消除或全部消除地基液化沉陷的措施。

2.优化建筑结构设计

力求对称均匀是抗震概念设计十分重要的原则。“综合抗震能力”的概念,就是要综合考虑整个结构的承载力和构造等因素衡量结构抵抗地震作用的能力,与其具有合理的刚度和承载力分布以及与之匹配的延性密切相关。房屋是纵、横向承重构件和楼盖组成的一个具有空间刚度的结构体系,其抗震能力的强弱取决于结构的空间整体刚度和整体稳定性。提高建筑物的抗震性能,最理想的措施是使机构中的所有构件都具有较高的延性,采现浇楼、屋盖是一种较好的增强楼房结构空间刚度和整体稳定性的方法,在适当的部位增设构造柱,并配置些构造钢筋,也能达到增强结构整体性的作用;另外,设置配筋圈梁可限制散落问题,增强空间刚度,提高结构整体稳定性,从而提高房屋的抗震性能。结构主要靠延性来抵抗较大地震作用下的非弹性变形,因此,地震作用下,结构的延性与结构的强度具有同等重要的意义。为了使钢筋混凝土结构在地震引起的动力反应过程中表现出必要的延性,就必须使塑性变形更多地集中在比较容易保证良好延性性能或者具有一定延性能力的构件上。第一步是选择一个可接受的塑性变形机构;第二步是要通过人为增大各类构件的抗剪能力,使其不致在强烈地震作用下,在结构延性未发挥出来之前出现非延性的剪切破坏,这即是我们通常所说的强剪弱弯;第三步是通过相应的构造措施,保证可能出现塑性铰的部位具有所需的塑性转动能力和塑性耗能能力。

3.优化抗震设计

在高层建筑的抗震方案设计中,建筑结构的材料选择也非常重要。可以对建筑材料的参数进行抗震性能的分析,从整体上对材料的参数变异性进行研究,选用符合抗震要求又经济实用的结构类别。同时,又不能仅考虑建筑材料的承载力忽略其他因素。从高层建筑建设施工的各方面,来选择符合抗震需求而且经济适用的建筑结构材料。按此标准来衡量,适用不同材料的几种结构类型,依其抗震延性性能优劣的顺序是:钢结构,型钢混凝土结构,现浇钢筋混凝土结构,装配式钢筋混凝土结构,配筋砌体结构。在高层建筑结构抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。结构构件应遵循“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(强)”的权责。对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。

五、结束语

总之,高层建筑抗震结构设计需要从目前抗震设计现状出发,提高结构与设备的关系,设计者应根据建筑工程抗震概念的知识和经验,作出判断,找出结构安全与经济合理的最佳结合点,探求出一种实用可行的二步或三步设防的合理有效的抗震设计方法,以更好地适应社会经济和科学技术的发展,满足人们使用需求。

参考文献:

[1]刘建政.住宅高层建筑结构抗震的优化设计[J]建筑设计管理 2012(29)

第12篇

【关键词】高层建筑;抗震;设计

0 引言

地震作用影响因素极为复杂,它是一种随机的、尚不能准确预见和准确计算的外部作用,目前规范给出的计算方法还是一种半经验半理论的方法,要进行精确的抗震计算还有一定的困难,但是近年来,地震等自然灾害多发,影响到人们的基本生活和生命财产安全,因此,建筑(尤其是高层建筑)抗震安全问题必须引起建筑师们的高度重视。

1 建筑结构抗震等级的规定和标准

震级是根据地震的强度而进行的划分,在我国,地震划分为六个级别:3级为小地震,3~4.5级为有感地震,4.5"--6级为中强地震,6~7为级强烈地震,7~8级为大地震,8级以上的为巨大地震,是国家根据相关的历史、地理和地质方面的经验资料,经过勘查和验证,对进行地震分组的一个经验数值,它是地域概念。抗震设防有甲、乙、丁类建筑,在我国大部分的房屋抗震等级是8度,可以抵抗6级地震的作用。国家设计部门依据有关规定,按照建筑物的分类和设防标准,根据房屋高度、结构等方面,采用不同的抗震等级。比如,在钢筋混凝土结构中,抗震等级可以分一般、较为严重、严重和很严重这4个级别。

在高层建筑的抗震设计中,混凝土结构应高根据建筑的高度、建筑的结构和设防的烈度运用不同的抗震等级,而且应该符合相应的计算和措施要求。

2 影响建筑物抗震效果的因素

研究高层建筑结构的抗震设计,必需明确建筑物抗震效果的主要影响因素。下面,将从建筑结构本身的设计效果、施工材料施工过程以及建筑场地情况3个方面进行分析。

2.1 建筑结构建造过程中所使用的材料和施工过程

建筑结构的材料是影响抗震效果非常重要的因素,但是这个因素往往被人们忽视,工作人员需要明确这样一点:在一般情况下,地震对建筑物作用力的大小与建筑物的质量成正比。在同等地震环境下,建筑物材料使用越好,其受到的地震作用力也相对较小;反之,建筑物就会遭到来自地震的很大的作用力。所以,在实际的建筑物的建设中,建议他们多采用隔断、板楼、维护墙等构件,广泛采用空心砖、加气混凝土板、塑料板材等质轻的建筑材料,这将会有利于建筑物抗震性能的提高。建筑结构施工过程同施工材料共同影响整个建筑工程的质量,在施工过程中,每一个环节都可以影响建筑结构抗震效果。所以,高层建筑在具体施工中,要加强监管和规范,严格做好高层建筑施工管理,从建筑结构的质量上来提高抗震效果。

2.2 建筑物自身的结构设计

建筑物的结构设计是影响抗震效果极为关键的一个因素,建筑物若要达到抗震目的,必须进行合适的结构设计,保证抗震措施合理,能够基本实现小地震不坏、大地震不倒这样的目标。无论点式住宅或是版式住宅,都要进行合理的结构设计,提高建筑结构的抗震性能。如果建筑物对平面的布置较为复杂,质心与

刚心不一致,在地震情况下,将会加剧地震的作用影响力,破坏性增强。所以,建筑物的结构平面布置尽量保证建筑物质心和刚心重合,提高建筑物的抗震能力。

在建筑结构的设计中,出屋面建筑部分不宜太高,以降低地震过程中的鞭梢影响;平面布置不规则的房屋注意偏离建筑结构刚心远端的抗震墙等等。

2.3 建筑物所处地质环境情况

在地震中,对建筑物造成破坏的原因是多方面的,比如:岩石断层、山体崩塌、地表滑坡等使得地表发生运动,造成建筑物的破坏;海啸、水灾等次生灾害对建筑物造成破坏。在造成建筑物破坏的诸多原因中,有些是可以通过工程措施加以预防的。所以,在选择建筑工地的位置之前,要进行详尽的勘探考察,分析地形和地质条件,避开不利地段,挑选对建筑物抗震有利的地点。

3 高层建筑抗震设计的方法

对高层建筑结构的抗震设计时,要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。下面将从五个方面进行分析:尽可能减小地震作用能量的输入,运用高延性设计、推广消震和隔震措施的运用,注重抗震结构的设计,重视建筑材料的选择,增多抗震防线的建设。将减小地震作用力和增强建筑的地震抵抗力二者结合起来,从两方面入手,进行建筑抗震的设计施工。

3.1 减少地震发生时能量的输入

在具体的设计中,积极采用基于位移的结构抗震方法,对具体的方案进行定量分析,使结构的变形弹性满足预期地震作用力下的变形需求。对建筑构件的承载力进行验收的同时,还要控制建筑结构在地震作用下的层间位移限值;并且更具建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑界面的应变分布以及大小,来确定建筑构件的构造需求。对于高层建筑来讲,在坚固的场地上进行建筑施工,可以有效减少地震发生作用时能量的输入,从而减弱地震对高层建筑的破坏程度。

3.2 运用高延性设计、推广消震和隔震措施的运用

现在在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当的空着建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏和重大损失。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒一。

3.3 注重抗震结构的设计

高层建筑抗震设计的结构应该得到人们的重视。我国150 m以上的建筑,采用的3种主要结构体系(框.筒、筒中筒和框架.支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量已较大,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。

我国传统文化中“以柔克刚”具有价高的思想价值,可以指导很多实际问题。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。比如,在高层建筑的拱形结构中有这样一个例子迪拜帆船酒店,外观如同一张鼓满了风的帆,一共有56层、321 m高,就是运用拱结构抗震减灾的很好的例子。

4 高层建筑结构抗震设计前景展望

今后若干年,中国仍将是世界上修建高层建筑最多的国家,这将会给高层建筑抗震设防带来新的难题。21世纪,高层建筑结构抗震将有如下变化:

4.1 高层建筑的抗震结构体系将从以硬性为主向柔性为主的结构抗震转变,通过“以柔克刚”方式,调整建筑结构构件的隔震、减震和消震来实现抗震目的。

4.2 建筑材料对结构抗震的影响越来越得到重视。建筑材料的各个抗震指标的提升可以提高高层建筑的抗震能力,研制新的建筑材料可推动高层建筑结构抗震技术的发展。通过优化的抗震方法设计,来实现高层建筑的抗震要求。

4.3 计算机模拟抗震试验得到广泛应用。将制作好的模型或结构构件放在模拟地震振动台上,台面输入某一确定性的地震记录,能够较好地反映该次确定性地震作用的效果。计算机模拟环境可以拟真抗震效果,帮助科学改进各因素,有效抗震。

另外,高层建筑结构的抗震设计的计算方法也有了新的转变:从线性分析向非线性分析转变,从确定性分析向非确定性分析转变,从振型分解反应分析向时程分析法转变 。

5 结语

高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。

参考文献