时间:2023-07-14 17:35:21
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇数字农业的前景,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
1、业经理人,也可以叫做农业职业经理人,是最近出现的一种新型职业,有着良好的就业前景跟发展方向。这个职业跟农业发展有着千丝万缕的联系,比农业经纪人更加有分量,它既是生产者,又是商人,更是农业发展进步不可缺少的“领头羊”。
2、数字化管理师的岗位,看上去门槛并不高,上手也容易,但是却有着非常不错的薪水回报,有企业都开出了五万的月薪来招聘这样的职务,可以说是新兴的数字化金领了。未来,数字化管理师有可能成为大型跨国企业,甚至海外企业的核心骨干,发展前景非常广阔。
(来源:文章屋网 )
关键词:数字农业;时空推理;专家系统
0引言
数字农业应用涉及大量的气象、环境、水文、地质、土壤等领域的时空数据。这些时空数据分散在异构系统中,有着不同的数据格式和规范,采用不同的概念和术语,基于不同的数学模型和分析推理方法。这些多领域时空信息对农业生产、决策均起着重要作用。但是以前由于缺乏高效、合理的技术手段,即使付出很高的代价,也很难将这些时空信息完整无损地共享和融合集成到数字农业应用中,在很大程度上制约了数字农业的应用发展。同时GIS等商业软件平台成本较高也不利于大规模应用推广。
为此,本文基于自主版权GIS、专家系统等系统软件,应用时空推理、本体论、语义Web、关系数据挖掘和专家系统等技术,建立一个数字农业时空信息智能管理平台,对多源、异构的数字农业时空数据和推理分析方法进行集中统一的规范化管理,便于在实际应用中进行融合、集成和共享。基于该平台快速建立起了数字化测土施肥系统、大豆种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批智能应用系统。这些应用系统精确控制农田每一地块种子、化肥和农药的施用量,在提高作物产量的同时,能够实现精确控制农业生产过程,有效降低成本,充分保证农业资源科学地综合开发利用,减少和防止对环境和生态的污染破坏,保持农业生态环境的良性循环,是实现“绿色农业”的重要途径。
1主要关键技术研究现状
1.1数字农业
数字农业是在“数字地球”的基础上提出并发展的,是21世纪新型的农业模式和挑战性的国家目标,包括精准农业、虚拟农业等内容,其核心是精准农业。以3S技术应用为核心的数字农业空间信息管理平台开发研究是数字农业研究的突破口[1,2]。美国于20世纪80年代初提出数字农业的概念,它是针对农业生产稳定性差、技术措施差异程度大等情况,运用卫星全球定位系统控制位置,用计算机精确定量,把农业技术措施的差异从地块水平精确到平方厘米水平,从而极大地提高种子、化肥、农药等农业资源的利用率,提高农产量,减少环境污染。法国农业部植保总局建立了全国范围内的病虫测报计算机网络系统。日本农林水产省建立了水稻、大豆、大麦等多种作物品种、品系的数据库系统。新西兰农牧研究院利用信息技术向农场主提供土地肥力测定、动物接种免疫、草场建设、饲料质量分析等各种信息服务。同时,我国紧跟国际研究的前沿,开展了系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统、地理信息系统等技术在农业、资源、环境和灾害方面的应用研究。
1.2时空推理
近年来,时空推理(Spatio-temporalReasoning)已成为十分活跃的研究方向,在军事、航天、能源、交通、农业、环境等领域有着广泛的应用。近十年来我国国家基础地理信息中心、清华大学、信息大学、中国科学院、武汉测绘科技大学、武汉大学、吉林大学等单位在时态GIS、时空数据模型、时空拓扑、时空数据库等时空推理相关领域开展了大量研究工作。
1.3时空数据标准与共享
不同领域和应用环境对时空数据的理解存在很大差异,这造成了异构时空系统集成的困难,因此时空数据共享、互操作和标准化的研究具有重要意义。这方面研究最初从空间数据入手,近期开始向时间数据和时空结合数据发展。时空数据的共享有以下方式:
(1)空间数据交换
空间数据交换的基本思想是各系统使用自身的数据格式,通过标准格式进行数据交换。目前空间数据交换标准有:SDTS、DIGEST、RINEX等国际标准;以色列的IEF、英国的MOEPSTD、加拿大的SAIF、我国的CNSDTF等国家标准;AutoDesk的DXF、ESRI的E00、MapInfo的MIF等厂商标准。尽管各GIS软件厂商提供了公开的交换文件格式来进行空间数据的转换,但由于底层数据模型的不同,最终导致不同的GIS的空间数据不能无损的共享。虽然空间数据交换仍然在使用,但效果并不理想。空间数据互操作标准是当前国际公认的,比空间数据交换标准更有前途的数据标准。
(2)基于GML的空间数据互操作
开放式地理信息系统协会(OpenGISConsortium,OGC)提出了简单要素实现规范和地理标记语言(GeographyMarkupLanguage,GML)。OGC相继推出了一整套GIS互操作的抽象规范,包括地理几何要素、要素集、OGIS要素、要素之间的关系、空间参考系统、定位几何结构、存储函数和插值、覆盖类型及地球影像等17个抽象规范,2003年1月推出GML3.10版[3]。近年来,国内外众多学者基于GML在空间数据共享等方面开展了大量研究。2001年Rancourt等人[4]将GML与先前所定义的空间标准进行比较,认为GML能有效地满足空间数据交换标准。2002年,ZhangJianting等人[5]提出了一种基于GML的Internet地理信息搜索引擎。2003年,ZhangChuanrong等人[6]在网络环境下以GML作为异构空间数据库交换共享空间数据的格式,成功实现数据的互操作。2003年,崔希民等人[7]提出了GIS数据集成和互操作的系统架构,在数据层次上实现GIS数据的集成和互操作。2003年,张霞等人[8]提出一种基于GML构造WebGIS的框架结构,给出实现框架技术。其中采用GML作为空间数据集成格式。2004年,朱前飞等人[9]提出了一种新的基于GML的数据共享解决方案。2005年,陈传彬等人[10]提出了基于GML的多源异构空间数据集成框架。GML数据类型较完整,支持厂家较多,相关研究丰富,是目前最有前景的时空数据标准。本文选择GML作为农业时空数据标准。
1.4时空本体
1.4.1本体、语义Web和OWL
本体方法目前已经成为计算机科学中的一种重要方法,在语义Web、搜索引擎、知识处理平台、异构系统集成、电子商务、自然语言理解、知识工程等领域有着重要应用。尤其是目前随着对语义Web研究的深入,本体论方法受到了越来越多的关注,人们普遍认为它是建立语义Web的核心技术。OWL是当前最有发展前景的本体表示语言。2002年7月29日,W3C组织公布了本体描述语言(WebOntologyLanguage,OWL)的工作草案1.0版。目前工作草案的最新更新为2004年2月10日的版本[11]。
1.4.2时空本体
基于本体方法对时空建模的相关研究工作如下:
1998年,Roberto考虑了作为地理表示基础的某些本体问题,给出了关于一般空间表示理论的某些建议[12]。2000年ZhouQ.和FikesR.定义了一种考虑时间点和时段的时间本体[13]。2000年,Córcoles基于XML定义了一个类似SQL的时空查询语言,该语言包含八种空间算子和三种时态算子用于表达时空关系[14]。2003年,Grenon基于一阶谓词逻辑定义了时空本体,使用斯坦福大学的Protégé环境实现[15]。2003年,Bittner等人[16]提出了用于描述复杂时空过程和其中的持续实体的形式化本体。以上工作中Grenon的时空本体研究相对完整,相关研究成果已经在网上共享,本文在此基础上开展研究,建立农业时空本体。
2主要研究内容(1)农业时空数据规范
现阶段我国还没有公认的农业时空数据标准出台。本文基于时空推理技术,研究通用性更强的时空数据表示模型,能表示气象、土壤、环境、水文、地质等各领域的农业时空数据。GML是目前公认的时空数据标准,利用上述模型扩充GML,兼容中国农业科学院的“农业资源空间信息元数据的分类及编码体系草案”等国内现有的地方性标准,构建针对数字农业中时空数据的DA-GML标准,作为数字农业基础时空数据的规范。现有的土壤、环境等基础空间数据库均支持到GML格式的转换。
(2)农业基础时空数据库
基于笔者自主开发的GIS平台建立农业基础时空数据库,该平台具有运行稳定、资源占用少、结构灵活、功能可裁减、成本较低、便于移植等特点。采用了时空推理技术,支持对空间和时空信息的表示和推理。通过DA-GML能够直接从现有系统中获取领域农业基础时空数据,主要包括土壤数据库、环境数据库、气象资料数据库、农业生产条件数据库、林业信息数据库、影像数据库等。
(3)农业时空分析方法库与农业时空知识库
时空推理是研究时间、空间及时空结合信息本质的技术,通过时空推理技术将现有面向农业领域的时空分析技术进行整合和规范化表示,形成农业时空分析方法库。对领域农业时空知识进行归纳、整理,同时通过数据挖掘方法从基础数据中提炼知识,建立农业时空知识库。
(4)农业时空本体库
在(2)、(3)中存储的数据、方法和知识需要一个有效的机制进行组织和管理。就目前技术而言,本体是表达一个领域内完整的体系(概念层次、概念之间的关联等)的最有效工具,所以本文选择建立农业时空本体库。具体包括本体获取、本体管理、本体服务与展示三个模块。使用Protégé做本体开发环境编辑。Protégé是斯坦福大学开发的基于Java的本体编辑与知识获取工具,带有OWL插件的Protégé可以支持OWL格式的本体编辑与输出。
以上三个库通过WebService方式提供基于Internet的服务,可以在线对库中信息进行维护和检索,并能无缝集成到应用系统中。
(5)系统体系结构
系统工作原理如图1所示。首先,外部系统的时空数据转换成GML格式(现在绝大多数系统支持该数据标准),进入农业基础时空数据库。通过本体获取与编辑模块将时空数据和时空知识整理,形成本体库。外部系统的请求通过WebSer-vices发给仲裁者,仲裁者区分各类情况调用三个库调用服务、提取数据和执行操作,结果返回给用户。
(6)基于平台开发农业生产智能应用系统
基于数字农业时空信息管理平台建立数字化测土施肥系统、作物种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批农业生产智能应用系统,解决实际问题。
3相关系统对比分析
3.1数字农业空间信息管理平台
平台基于信息和知识支持的现代农业管理的集成技术,对农田信息进行动态采集、分析、处理和输出,从而根据农田区域差异、农事安排进行模拟分析、决策支持管理和指挥控制,并对农业生产过程的区域差异进行精确定位、动态控制等定量操作[17]。
3.2全国农业资源空间信息管理系统
全国农业资源空间信息管理系统(NASIS)实现对全国农业资源空间信息的查询分发,具有系统管理、动态数据字典、数据检索、查询、数据分发、制图、报表统计、数据分发等功能。该系统已经用于全国农作物遥感监测、农业资源调查、农业科研和农业政策信息支持服务等方面[18]。
3.3中国西部农业空间信息服务系统
计算机技术、互联网技术的迅速发展为建立基于Web的中国西部农业空间信息服务系统提供技术支撑。本文从西部农业空间信息服务系统的数据库构建开始,全面地介绍了系统的运行模式和数据库访问技术,详细论述了系统的总体结构、平台环境和开发实现等。
(1)基于平台提供的开发框架,能方便、高效地建立大量的数字农业智能应用系统,基层农业科技人员也能快速开发出技术含量高的应用系统,各应用系统能互通、共享,便于升级维护。
(2)由于大量的底层服务、数据、知识和方法由平台集中统一提供,简化了开发数字农业应用软件的工作,节约了成本。
4结束语
数字农业时空信息管理平台从系统目标、适用范围、采用技术、系统接口等方面不同于任何现有的基础农业空间数据管理平台,是一个概念全新的系统,定位于基础农业空间数据管理平台的上层,更便于开发数字农业应用。其中的本体库等机制为将来建立农业时空数据网格奠定了良好的基础。
参考文献:
[1]于淑惠.数字农业及其实现技术[J].农业图书情报学刊,2004,15(7):5-8.
[2]唐世浩,朱启疆,闫广建,等.关于数字农业的基本构想[J].农业现代化研究,2002,23(3):183-187.
[3]Geographymarkuplanguage(GML)[EB/OL].(2003).
[4]RANCOURTM.GML:spatialdataexchangefortheinternetage[D].NewBrunswick:DepartmentofGeodesyandGeomaticsEngineering,UniversityofNewBrunswick,2001.
[5]ZHANGJianting,GRUENWALDL.AGML2basedopenarchitectureforbuildingageographicalinformationsearchengineovertheinternet[DB/OL].(2002).
“信息化示范村”的农民能做到“政策文件网上看、科技知识网上学、农业产品网上卖”。真正“把干部请到家里,把市场带到家里,把文明留到家里”
近年来,浙江省嘉兴市委市政府把加快农村信息化建设作为和谐新农村建设的新亮点,并取得了一些成效,网络村村通,电脑村村会,2005年宽带网络覆盖全市所有行政村,2006年宽带网络覆盖全市共14150个所有自然村,全市34%的行政村建成“信息化示范村”,已建成30多个村级网站,农村信息化建设走在全国前列。
搭建农民获利增收的新平台
嘉兴市先后出台了《“数字嘉兴”建设纲要》,提出了加快推进农村信息化的战略目标,编制了《电子政务“十一五”建设规划》,把“金农工程”列为政府公共服务的“一号工程”,全市各级各有关部门响应市委市政府的号召,积极参与农村信息化建设,形成了“各地政府搭台,通信公司支撑,涉农组织唱戏,广大农民受益”的农村信息化建设良好局面。
嘉兴市委市政府鼓励各基础网络运营商完善农村基础网络,搭建“信息高速公路”,形成多网进村、有序竞争格局。同时,整合农村信息化资源,把农村数字家园、爱农信息驿站、远程教育站点等构建成农民网上行政办事、农村市场信息服务、农村科技信息等一系列综合服务。
煅造农民获利增收的助推器
已建立的“信息示范村”主要探索农村科技知识普及、农业市场信息应用、农村党员干部教育、村务管理方面的新农村信息化应用。
目前,“信息化示范村”的农民能做到“政策文件网上看、科技知识网上学、农业产品网上卖”。真正“把干部请到家里,把市场带到家里,把文明留到家里。”2006年12月,嘉兴所辖的桐乡市在全省首次命名50户农业信息应用示范户,他们都是乡亲眼中的“大能人”,其中桐乡市濮院镇新东村农业信息应用示范户李其芳,在今春蚕种紧缺时,运用农民信箱向省领导求援,很快为乡亲们解决300张蚕种。
近几年,全市通过农业信息网络销售的农产品交易额年均达到5000余万元,通过农民信箱达成交易400多笔,节约营销成本150多万元。农民卖猪、求购饲料、卖鱼卖虾、卖水果蔬菜等等都可在网上寻求交易。我市还把信息化技术与加强农村党员干部教育培训有机结合,每个网点配备了电脑、数字电视,接通互联网、有线电视,党员干部和农民通过网络都可以看到“党员教育、科技培训、保健知识”等内容。信息化使政府公共服务向农村延伸,创新了农村管理方式,给乡镇站所与村委会联网,实现信息资源共享。
培育农民获利增收的增长极
加快农村信息化建设是培育农民获利增收的新的增长极,是一项前景广宽,惠及农民的“民心工程”,是富民强市的好事情。不仅能带动农民发家致富,也能滋润心灵、陶冶情操、愉悦身心,是农村传播先进文化的新阵地,能满足农村农民日益增长的精神文化需求,使广大农民的生活观念、生活方式有了新的改变,克服过去农闲或茶余饭后个别农民爱好赌博、闲聊的不好习惯,现在大多数农民喜欢上信息化平台看新闻、了解农村科技生产信息。下一步,嘉兴市将按照“金农工程”的目标任务,在2―3年内消除农村宽带盲点,继续铺好“金农工程”信息高速公路,完善市、县、镇、村四级信息网络,通过建立公共农村远程宣教中心、完善农业生产服务系统、延伸公共服务系统、建立村级事务管理系统,加速信息化体系向农业、农村、农民的辐射和延伸,逐步构建起城乡一体化的“数字嘉兴”框架,努力消除城乡“数字鸿沟”,进一步普及农村信息化建设。
如今,“一亩田”已经形成了稳定的商业模式,为上海的几万户家庭配送蔬菜。对内,公司采用了数字化管理,用IT技术实现对农业的标准化操作;对外,会员与常客打开网页就能看到自己的“开心菜地”,了解当日的收成。顾客既可以零买,也可以签订一年期的合同。
“一亩田”只是有机农业当下在国内遍地开花的一个缩影。近年来,随着人们对食品安全与友好环境的日益重视,越来越多的商人开始投身到这个颇有前景的行业。
有机农业的推动者们希望,这场运动能一改过去大规模、机械化、高投入的种植方式,向可持续发展的农业模式转型,从而改善水土流失、食品污染、生态失衡等一系列问题。与此同时,蔬菜等农业产品能像一般消费品那样具有品牌,产销双方还能直接见面,避免各种中间环节。
坊间一直流传着这样一组数字:国内的有机农产品占总农产品的0.08%,而在美国,这一比例已达到了2.5%。这意味着,对于这种更健康、更安全的有机食品,中国市场还留有相当大的空间和机遇。
即便如此,“插上科技翅膀”的新农业在国内发展得并非想象的那么顺风顺水。
如何建立起有机蔬菜的品牌,是横亘在不少商家面前的问题。现实的情况是,许多公司培育出了品质上乘的有机产品,却苦于没有足够的销售网络去推广。一方面,普通商业超市的流通成本太高,且无法保证蔬菜的完好无损;而自有实体店的店租同样高昂,且只能辐射到门店周围一小片地区。上海的有机食品专卖店“欧食多”曾经红极一时,但就因为巨大的店面成本使其不得不关门大吉。
据一位曾从事该行业的人士称:“这些农场采取的大多是口碑营销的方式,比如在网上发帖,或在周末组织用户去农场参观,让他们亲自品尝并进行专业讲解等。”不过,仅依靠这种方式,并不能带来用户数的快速扩张。
除了销售渠道的不健全,有机农产品的价格还比普通产品贵5倍左右——消费者是否认为其“物有所值”,是制约人们选择有机农产品的另一个因素。如今,有机蔬菜的主要购买群体依然集中在中产或富裕阶层,而在品类众多的农产品中,要让消费者偏好有机农产品,显然还有漫长的市场教育过程。
在推动有机农业的过程中,法律标准的缺失也导致了生态农业领域的鱼龙混杂。目前,国内还没有制定严格的生态农业的行业标准、企业标准和产品标准,这一方面扰乱了产业的健康发展,另一方面也使消费者更加无所适从。
事实上,昂贵的有机蔬菜的种植成本并不低,首先,农场要租到符合要求的土地,这块土地必须已闲置3年以上,而且足够肥沃。土地的认证审批手续周期也较长。其次,农场要请到专业的农民进行种植,并使用纯天然的有机肥。而采用了有机肥后,农作物的产量也比用一般化肥要低不少,这些因素都导致了有机农场的生产成本居高不下,而且发展较为缓慢。
进一步说,企业需要进行农业与商业两头的探索。要将有机事业发展壮大,既要具备农业的管理经验,还要深谙营销之道。在有机产业刚刚兴起的中国,尚未完全形成促进行业健康成长的土壤,对“一亩田”这样的开拓者来说,这个朝阳产业显然还需要时间的积累。
“创意族”:设计类职业红红火火
“族群”成员:形象设计师、首饰设计制作员、景观设计师、建筑模型设计制作员等
“群体像”:在新职业“族群”中,与“设计”、“策划”等直接相关的数量最多,粗略统计有20多个,加上以设计、策划为主要工作职能的,“创意族”新职业有近30个,占了总量的三成多,且分布的行业领域十分广泛。这类岗位从业者将成为新一年乃至未来几年职业市场的弄潮儿。
市场前景:如今各行各业都更加强调自主知识产权,强调自主研发、设计。在传统的制造业领域,设计师是现代企业参与国际国内市场竞争的关键人物。而在新兴行业领域,如会展、景观设计等行业,设计师的价值早已得到认可。
“顾问族”:分析、评估类职业崭露头角
“族群”成员:职业信息分析师、黄金投资分析师、企业文化师、农业技术指导员、灾害信息员等
“群体像”:信息时代,信息就是价值。专门为个人、企业、社会提供各类信息分析、咨询、价值评估等专业顾问式服务的新职业数量引人注目。这类职业的从业者以收集、综合、分析各行业的信息为主要工作内容,为个人、企业和社会提供经过加工和提炼的有价值的信息,并从中获取收益。
市场前景:随着专业服务类产业的发展,这类新职业受到了人们前所未有的重视和追捧。一方面这是时代的发展,信息的讯达,以及对事物量化价值强烈的认识欲造成的;另一方面,这也体现了脑力劳动所能创造价值的进一步延伸。
“科技族”:IT、技术职业风华正茂
“族群”成员:数字视频(DV)策划制作师、智能楼宇管理师、计算机软件产品检验员、可编程控制系统设计师等
“群体像”:IT及其相关产业的快速发展催生了一大批新职业。这类新职业的从业者均具备了良好的计算机操作、编程及应用能力,活跃在IT产业或传统产业的数字技术部门,他们的“生产工具”是计算机、网络、软件等数字产品,以电脑和网络为伴。
市场前景:信息化已经成为全球范围内的发展趋势,一些新兴的行业人才紧缺,需要大批掌握先进技术的优秀人才。
“保健族”:营养、健康类职业异军突起
“族群”成员:健康管理师、公共营养师、医疗救护员、水产品质量检验员、芳香保健师、宠物健康护理员等
20世纪80年代,限于当时的条件,农广校的教学技术媒体主要是文字教材、广播、电视、录音磁带和幻灯片,学员主要通过收听广播电视教学节目和自学文字教材来学习,并由教学班组织辅导和听录音授课。
90年代初期,我国城乡影碟机逐渐普及,VCD和DVD成为我国农业远程教育的一个新的生长点,农广校开始大力推广VCD和DVD教学与培训方式。
到了90年代中后期,互联网、卫星网的迅猛发展引发了中国远程教育的新的变革,农广校系统添置了大批计算机、卫星地面接收站等设备设施,增强了利用互联网获取和传输信息的能力,不断探索应用数字技术开展网络远程教育教学的新途径。
进入21世纪以来,随着国家对“三农”的支持力度的加大,国家投资新建了国家级农业媒体教育资源管理中心——中央农业广播电视教育中心,搭建了以多种教育教学资源建设为核心内容,以媒体资源库系统建设开发为硬件支撑,以数字化、网络化传播渠道为主要途径,对农业教育培训进行高效管理,对基层办学提供便捷服务的运行平台,一个涵盖报纸、书本、杂志、录音录像带、光盘、互联网、卫星网等多种媒体的农业远程教育公共服务平台初步形成。
一、农业远程教育发展模式选择
中国幅员辽阔,农村人口众多,发展农业远程教育极有意义。远程教育的最大优势在于能使任何地方的农民学员方便快捷地获取最好的教育资源,极大地提高农村劳动力的科技文化素质,为推动各地农业农村经济做出积极贡献。中国农业远程教育有着广阔的发展前景,尽管中国农村基础薄弱,大多数基层农广校缺乏广播、电视等远程教育资源,在地方电台、电视台也没有教学节目播出时段,但从长远看,这都不会影响远程教育优势和效益的发挥[1]。
发展农业远程教育,存在一个发展模式选择的问题。考虑到中国东西部地区、城乡之间经济发展的不平衡,以及广大农村信息基础设施建设和农户家庭条件现状和发展趋势,中国农业远程教育应该采用数字技术与非数字技术恰当结合、优势互补、共同发展的道路,综合利用VCD光盘、有线电视、卫星网、互联网等手段,采取以下两种不同的教育发送和传输的模式[2]:
1.主流模式
卫星传输数字化教育发送技术,适用于中国广大农村、特别是中西部农村。采用主流模式的地区可以采取的扩展数字化教育应用的技术方案为:CD-ROM光盘刻录和发送方案;各类局域网应用方案;基于有线电视网的多媒体数据广播系统方案和电话拨号接入或其他公众电信网回传方案。
2.替代模式
计算机宽带网的地面接入技术,适用于东部沿海经济发达地区农村。
二、农业远程卫星教育系统建设
随着现代信息技术的发展,互联网和卫星网作为一种新的技术手段开始在远程教育领域广泛应用,但很多农村家庭由于家庭贫困买不起电脑,另外,受农村人口教育水平限制,很多人也不懂电脑和网络方面的知识。中国广大农村地理条件复杂,通信网络线路建设难度较大,架设网络线路成本相对较高,互联网普及率和使用率非常低,短时期内,在中国农村推广互联网教学还很难实现。
卫星教育网建设属于公共财政支持范畴,由政府投资建设,具备提供话音、视频、通信服务的综合能力,性价比高、技术先进、性能可靠,是提供农村远程教育简单经济、行之有效的手段。卫星远程教育不受时空限制,能为农村学员提供与发达地区质量相同的远程教育服务,能有效解决广大农村教育发展不均衡、优秀教育资源稀缺的局面。
目前,农广校在以色列政府的援助支持下,已经建设了拥有1个中心主站和360个双向远端站点,以中央农广校为演播和资源服务中心,各省、地、县级农广校以及乡镇教学班为卫星网络远端接收和教学服务点,能实现数据通信、远程教育培训和视频广播会议的远程卫星教育系统。通过卫星教育系统,中央农广校将农业教育培训、实用技术等音视频节目、多媒体课件、农业科技教育培训等方面的教学内容实时发送到网络各远端接收站,面向全国开展实时交互式的农业现代远程教育培训和科技推广,对各级农广校农业教育和科技培训工作进行远程指导和管理,实现信息互动交流,共享教育培训资源。
三、农业远程教育公共服务平台建设
近年来,农广校综合采用各类教学手段,整合应用各类教育资源,发挥独特的媒体资源优势,紧跟世界信息技术的发展,引进、吸收、应用各类远程教育技术的最新成果,加快建设具有中国特色的农业远程教育公共服务平台。平台以农广校体系多种教育教学资源建设为核心内容,以媒体资源库系统建设开发为硬件支撑,以数字化、网络化传播渠道为主要途径,对涉农教育培训工作进行高效管理,对涉农科教需求迅速反映,对基层办学机构提供便捷服务。平台运用现代信息技术,集信息采集、存储、编辑加工、传输多种功能于一体,具有运行机制公益性、媒体应用大众性、教学内容多样性和服务对象定向性的特点[4]。
中央农广校作为国家级的现代农业远程教育教学中枢和媒体制作传播中心,具有广播电视和网络教育节目的制作、播出和传送等多种功能,将具备自办1套广播和电视节目的能力,可以录制各种文艺节目、语言节目,对录制的文艺节目和语言节目素材可进行编辑、复制、加工、审听,可对外交换录制好的素材和成品节目。每年能制作电台节目、区域节目、少数民族节目和综合类等农业专题广播节目1500集,电视节目1270小时,网络教学节目2000小时,发送音频资料100万张,节目原始磁带数字化存储1910小时。
农广校将逐步实现媒体资源制作、存储、管理、应用的数字化和网络化,建成农业媒体资源数字化采集、加工、整理、存储和传播利用的数据中心、工作平台和传播共享网络,并具备以下功能:
1.资源规范化管理建立完善的数字化资源管理系统,对资源库中的各类资源进行科学的编目、查询和调用,实现规范化管理,提升媒体资源的利用能力。
2.资源传播和应用建立数字化资源中心以及完善的电视、广播、网络、文字等媒体数字化资源传播和共享体系,实现农业技术信息的广泛传播和农民培训的广泛开展。
3.资源数字化加工存储整合电视、广播、网络、报刊杂志、教材、光盘等多种媒体资源,统一集中存储管理数据,建立数字化媒体资源库,实现数字化存储。
4.业务工作网络化支撑资源中心网络平台、电视制作、广播制作、音像出版发行、教材出版发行、报刊编辑出版、网络教育培训、多媒体课件制
农牧业信息化是现代农业的重要标志,在驾驭农村市场经济中处于前置性的基础地位,是提高农业的综合生产力和经营管理效率的有力手段,是农业实现现代化的必经途径。随着信息社会和知识经济时代的到来,农业信息技术将在农业和农村经济的发展中发挥越来越大的作用。没有农牧业的信息化,就没有国民经济的信息化,也就没有整个社会的信息化。农牧业信息化应当成为中国这个农业大国一种必然和必须的发展趋势,深入研究农牧业信息化是一项亟待探讨而且具有重大意义的课题。
1农牧业信息化的概念
1.1信息化信息化概念包括信息和信息化两个最基本的概念。信息化是一个过程,与工业化和现代化一样,是一个动态变化的过程。在这个过程中包含3个层面和6大要素。所谓3个层面,一是信息技术的开发和应用过程,是信息化建设的基础;二是信息资源的开发和利用过程,是信息化建设的核心与关键;三是信息产品制造业不断发展的过程,是信息化建设的重要支撑。6大要素是指信息网络、信息资源、信息技术、信息产业、信息法规环境与信息人才。信息化就是在经济和社会活动中通过普遍采用信息技术和电子信息装备,更有效地开发和利用信息资源,推动经济发展和社会进步。
1.2农业信息化
农业信息化有狭义和广义之分:狭义的农业信息化是指农业的数字化和网络化;广义的农业信息化是指农业全过程的信息化,在农业领域全面地发展和应用现代信息技术,使之渗透到农业生产、流通、消费以及农村社会、经济和技术等各个具体环节的全过程,从而极大地提高农业效率和农业生产力水平。贾善刚指出:农村信息化的概念不仅包括计算机技术,还应包括微电子技术、通信技术、光电技术和遥感技术等多项信息技术在农业上普遍而系统的应用过程。
梅方权年认为,农村信息化是一个广义的概念,应是农业全过程的信息化,是用信息技术装备现代农业,依靠网络化和数字化支持农业经营管理,监测管理农业资源和环境,支持农业经济和农村社会信息化。
农业信息化可以从4个方面来加以描述和概括:一是农业劳动者的高度智能化;二是农业基础设施装备信息化;三是农业技术操作自动自控化;四是农业经营管理信息网络化。农业信息化不仅包括计算机技术,还应包括微电子技术、通信技术、光电技术和遥感技术等多项技术在农业上普遍而系统应用的过程。
农业中所应用的信息技术包括计算机、信息存储和处理、通讯、网格、多媒体、人工智能以及“3S”技术(即地理信息系统GIS、全球定位系统GPS和遥感技术RS)等。在发达国家,信息技术在农业上的应用大致有以下方面:农业生产经营管理、农业信息获取及处理、农业专家系统、农业系统模拟、农业决策支持系统和农业计算机网络等。数字化作为农业信息化的核心内容,就是按人类需要的目标,对农业所涉及的对象和全过程进行数字化和可视化的表达、设计、控制和管理。在数字水平上,对农业生产、管理、经营、流通、服务以及农业资源环境等领域进行数字化设计、可视化表达和智能化控制,使农业按照人类的需求目标发展。数字农业主要包括农业要素(生物要素、环境要素、技术要素和社会经济要素)的数字信息化、农业过程的数字信息化(数字化实施和数字化设计)以及农业管理的数字信息化。
农业信息化实质是充分利用信息技术的最新成果,全面实现农业生产、管理、农产品加工、营销以及农业科技信息和知识的获取、处理、传播与合理利用,加速传统农业的改造,大幅度地提高农业生产效率、管理和经营决策水平,促进农业持续、稳定、高效发展进程。农业信息技术就是实现农业各种信息采集、处理、传播和贮存等方面的技术。
根据信息技术在农业应用领域的不同,主要分为气象遥感技术、卫星定位技术、农业专家系统和农业自动化技术等。数字农业的本质是把信息技术作为农业生产力重要要素,将工业可控生产和计算机辅助设计的思想引入农业,通过计算机、地学空间、网络通讯和电子工程技术与农业的融合,在数字水平上对农业生产、管理、经营、流通、服务以及农业资源环境等领域进行数字化设计、可视化表达和智能化控制,使农业按照人类的需求目标发展。
笔者认为,农业信息化是指涉农领域(农、林、牧、副、渔)所有对象的数字信息化,具体体现在农业基础设施装备的数字信息化、农业生产过程的数字信息化、农业资源环境的数字信息化、农业生产管理的数字信息化、农业经营管理的数字信息化、农业市场流通的数字信息化、农业劳动者的高度智能化以及农民生活的数字信息化,应用计算机技术、微电子技术、人工智能技术、自动控制技术、“3S”技术、通信技术和网络技术等高新技术实现农业的数字信息化,并付诸实施于农田精耕细作、病虫害防治、林区规划管理、畜禽渔业的生产操作自动化和数字化管理以及农民生活消费的网络信息化等方面,集农业科学、计算机科学、地球科学、信息科学以及网络科学等高端科学于一体的综合性领域。
1.3畜牧业信息化
畜牧业信息就是对畜禽品种资源的遗传育种、饲养管理、饲料营养、疫病防制、器械设备、畜产品加工及其经济利用的有关理论和应用研究中表现出来的信息,主要包括各种畜禽遗传育种信息、饲料营养信息、畜禽经济信息、生产和经营管理信息、疾病防治信息以及专家人才信息等内容。根据畜牧业结构和研究内容,畜牧业信息可以划分为畜牧业自然资源信息、畜牧业生产信息、畜牧业科技信息、畜牧业经济信息、畜产品市场流通信息、畜产品加工信息、疫病防治信息、饲料营养信息、器械设备信息和单位属性信息等类别。畜牧业信息化指的是在畜牧业领域充分利用信息技术的方法手段和最新成果的过程。具体来说,就是在畜牧业生产、流通、消费以及农村经济、社会和技术等各个环节全面运用现代信息技术与智能工具,实现畜牧业的科学化与智能化过程。畜牧业信息化不仅包括计算机技术,还包括微电子技术、通信技术、光电技术和遥感技术等多种技术在农业上普遍而系统的应用。
畜牧业信息化的内涵至少包括以下领域:一是畜牧业生产管理信息化,包括畜禽疫病防治、畜禽饲养管理等各个方面;二是畜牧业经营管理信息化,包括与畜牧业经营有关的经济形势、畜禽供求、国民收入、固定资产投资、物资购销和物价变动等;三是畜牧业科学技术信息化,是利用信息技术快捷与方便的特点,改变传统的畜牧业技术推广方法和手段,加快科技成果的传播和转化,提高畜牧业的科技含量和竞争力;四是畜牧业市场流通信息化,指畜牧业生产资料供求信息、动物产品流通(需求量)及收益成本等方面的信息化。畜牧业信息化具有丰富的内涵,主要包括:畜牧业信息服务系统化和网络化;畜牧业生产设施装备信息化;畜牧业技术操作机械化和自动化;畜牧业管理决策信息化;畜牧业劳动者的信息化和知识化等。
笔者认为,畜牧业信息化是指畜牧业饲养设施的操作自动化及数字信息化、畜牧业生产管理的数字信息化、畜牧业经营管理的数字信息化、畜牧业市场流通的数字信息化和畜牧业劳动者的高度智能化等,运用计算机技术、人工智能技术、自动控制技术、无线射频识别技术、“3S”技术、通信以及网络技术,实现精细饲喂、科学育种、饲养环境的监控、疫情监测、疾病防治以及产品溯源等。
2农牧业信息化的发展状况
2.1国外发展状况世界农业信息化技术的发展大致经过3个阶段:第1阶段是20世纪五六十年代的广播、电话通讯信息化及科学计算阶段;第2个阶段是20世纪七八十年代的计算机数据处理和知识处理阶段;第3个阶段是20世纪90年代以来农业数据库开发、网络和多媒体技术应用、农业生产自动化控制等的新发展阶段。
农业自动化技术在美国、西欧和日本已广泛应用于工厂化养殖、工厂化蔬菜花卉生产、仓库管理、环境监测与控制以及农产品精深加工中,如配合饲料全部生产流程的自动控制、日光温室中温湿度控制、灌溉及采收自动化控制。通过研制和使用农业机器人,代替人从事一些繁重的农事操作,如苹果收获、挤奶、喷药、组织培养以及作物育种等方面。
美国自20世纪70年代以来将计算机应用逐步推广到农场范围。典型的农业信息化系统有:1975年,美国内布拉斯加大学创建了AGNET联机网络,现在已发展成为世界上最大的农业计算机网络系统;美国国家农业书馆和美国农业部共同开发的AGRICOLA;信息研究系统CRIS可提供美国农业所属各研究所、试验站和学府的研究摘要。
美国计算机在农牧业信息化中的应用已相当普遍。譬如:畜禽饲养的计算机化,有管理猪生产的计算机信息系统;管理农业机械化的计算机以及在在农副产品加工方面也有广泛的应用;其中,计算机在温室环境方面的应用最显其能。
早在20世纪80年代,日本农林水产省就“人工智能与农业”专门组织了一个调查委员会,列出了知识工程在农业中应用的一整套实施项目;日本已建立了一些农业生产自动化管理系统,如植物工厂的蔬菜生产管理系统(菠菜、番茄、黄瓜、茄子、西红柿和草莓等已进入批量生产)、陆田水田耕作、畜牧生产、家畜卫生系统、农业工程和机械管理系统等。
德国在农业科学研究中,已广泛使用电子、信息技术等监测和自动控制各种试验场所的温度、湿度、光照时间和强度、风向风速等各项要素,均自动监测和记录;德国还研究出许多用计算机编程控制的试验仪器和设备;在农业生产中,装有遥感地理定位系统的大型农业机械可以在室内计算机自动控制下完成各项农田作业。
荷兰在畜禽养殖基础设施以及温室种植方面的信息化工作水平处于世界前列。荷兰的科研人员在十多年前应用数字化技术,在奶牛自动饲养管理系统Porcod系统的基础上研发成功母猪自动饲养Velos管理系统。
目前,农业信息技术研究主要集中在以下各方面:农业信息网络技术、农业数据库系统、农业管理系统、农业专家系统、“3S”系统、农业自动化控制技术、多媒体技术、精准农业、生物信息技术以及数字化图书馆技术。
2.2国内发展状况
20世纪70年代中期,计算机应用技术开始进入我国农业领域,少数农业研究机构开展了计算机农业应用研究,从此农业信息化逐步在我国农业生产当中得以发展应用,具体发展阶段。
我国农业信息化发展阶段
阶段时间主要内容起步阶段1981-1985年科学计算、科学规划模型和统计方法应用普及发展阶段1986-1995年数据处理(EDP)、大型数据库的建立和MIS系统开发提高阶段1996-2000年国家在“攻关”和“863”项目中都分别设置农业信息技术重大专题和课题快速发展阶段2000至今农业信息化技术全面向农业生产实际渗透我国农业信息化进程起步较晚。20世纪80年代以来,将系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统和地理信息系统等技术应用于农业、资源、环境和灾害方面的研究,已取得一些重要成果,不少成果已得到应用,有些成果已达到国际先进水平。如中国农业科学院草原研究所应用现代遥感和地理信息技术建立了“中国北方草地、草畜平衡动态监测系统”。
中国国家科技部从1990年开始连续支持“农业智能应用系统”的研究与应用,“数字农业”渐成气候,已研制出棉花、水稻、芒果等多种作物的生育全程调控和农事管理专家系统,以及鱼病防治和苹果生产管理专家系统。“十五”期间,国家科技部等部门继续加大对以“数字农业”为主要内容的农业信息技术研究,以“精准农业”、“虚拟农业”、“智能农业”和“网络农业”等内容为切入点,组织实施“数字农业科技行动”。通过该行动的实施,突破一批“数字农业”的关键技术,建立数字农业技术平台,开发国家农业信息资源数据库,研究开发一批实用性强的农业信息服务系统,初步构建我国“数字农业”的技术框架,从而加速了我国农业信息化进程。
2003年,科技部“863计划”在生物与现代领域启动实施了“数字农业技术研究示范”重大专项。这些专项以突破一批关键技术、研制一批数字农业产品、开发数字农业技术平台、集成示范应用为目标,构建我国“数字农业”的科学技术体系及示范应用体系。在农田信息自动采集、农田植物生长模拟与数字化设计、稻麦品质遥感检测、数字化种植技术平台构建等方面取得了突破性进展。“863计划”智能计算机主题连续支持“农业智能应用系统”的研究与应用,已研制出棉花、水稻、芒果等多种作物的生育全程调控和农事管理专家系统,以及鱼病防治、苹果生产管理专家系统。由农软开发的农牧场管理系统、育种分析系统和目前尚待完善的实验室数据分析系统、专家系统、决策支持系统等已在部分科研管理部门和现代化农牧场推广使用。现在,国内研制的多媒体小麦管理系统(WMS)和棉花生产管理系统(COTMAS)都可以应用于生产。我国与世界各国一样,畜牧业信息建设与利用也是从单机到网络的一个发展过程。在单机应用方面,主要用于生产管理和决策应用。我国畜牧业充分利用以计算机为核心的信息资源优势,走畜牧业现代化和信息化的道路。
3我国农牧业信息化发展面临的问题
目前,我国农业信息化存在的问题有:农民素质不高、信息化意识和利用信息的能力不强;农业产业化程度不高,难以形成正常的信息需求;网络成本较高,阻碍了信息化的普及;农业信息化基础工作水平低;信息技术实用性差,农业信息服务体系还没有完成,农业信息网络人才缺乏。信息技术的进一步发展必须建立在网络化的基础上。我国的农牧业信息网络化的发展虽然对我国农牧业的发展起到了一定作用,但在建设过程中存在许多问题。我国畜牧业信息化水平与发达国家相比还有很大差距,主要表现在:畜牧业基础设施薄弱,畜牧信息资源缺乏,尤其是能提供给用户的有效资源严重不足;畜牧信息技术成果应用程度低,严重阻碍了畜牧业现代化的发展,这也正是当前实施畜牧业信息化迫切需要解决的问题。目前,在畜牧业生产部门及基层畜牧场,由于受地域的限制和传统畜牧业的束缚,信息技术的普及远远不能同其他行业相比,从事畜牧行业的人员平均素质也远低于其他行业部门,尤其是基层的管理人员及边远的农牧场,其受教育程度普遍较低。
笔者认为,我国农牧业信息化发展亟待解决的主要问题依然是农民科学素质的提高、信息化基础设施的建立与完善及完全解决“最后一公里”的难题。
4我国农牧业信息化的发展方向
1)网络化。信息技术发展是以微电子技术为基础、计算机技术和网络技术相互融合的高新技术。
2)智能化。信息技术的智能化发展进步很快,在农业上的应用也将得到长足的进展。农业专家系统、农业管理信息系统和农业决策支持系统的开发与应用是其中最突出的表现。
3)数字化。数字化内涵包含两层意思:一是随着数字技术的发展,原来的模拟信号被转换成数字信号,实现了在计算机网络上的高保真和快速传播,可以制成数字视频和音频信号在网络上传递,实现远程教育等;二是表现在科学计算可视化和虚拟现实技术上。
建立统一的技术标准和规范,突破一批数字农业关键技术,建立数字农业技术平台,开发国家农业信息资源数据库,建立数字农业应用服务系统,通过系统集成和应用示范,逐步建立我国数字农业的科学技术体系。在统一的技术标准下,对数字农业关键技术进行研究开发,通过系统集成构建数字农业技术平台,初步形成我国数字农业技术框架。在我国不同生态经济类型和不同农业生产管理类型地区,对数字农业技术进行集成应用示范,取得显著的社会经济效益,促进当地农业信息化的跨越发展,加速农业生产由传统、粗放、经验型向智能、精准和数字化方向的转变,提高农业生产力水平。通过该行动的实施,突破一批数字农业关键技术,建立数字农业技术平台,开发国家农业信息资源数据库,研究开发一批实用性强的农业信息服务系统,初步构建我国数字农业的技术框架,加速我国农业信息化进程,并逐步实现农业生产的精确化、远程化、自动化和虚拟化。
我国的畜牧业发展已经进入到了新的发展阶段,建设集约化、专业化和优质高效的现代畜牧业已经成为必然。在推进信息化的过程中,要通过计算机网络及通讯技术,把畜牧信息及时与准确地传达到用户手中,实现畜牧生产、管理和畜产品营销网络化,加速传统畜牧业的改造和升级,大幅度提高畜牧业生产效率、管理和经营决策水平;改变传统的畜牧业模式,使农民依靠信息引导进入市场、组织生产,走畜牧业现代化和信息化之路;加强对畜牧信息化工作的宣传,提高人们的信息意识和利用信息的能力积极促进畜牧业信息化的发展。当前,现代信息技术与农业融合所衍生的“精准农业\"、“虚拟农业\"、“智能农业\"和“网络农业\"等均是数字农业的不同侧面,成为农业信息化发展的方向。
笔者认为,我国农牧业信息化应逐步实现农牧业生产的操作的全面自动化以及完全智能化,并最终进入网络化农牧业。
5我国农牧业信息化的作用
农业信息化、智能化、精确化与数字化将是信息技术在农业中应用的结果,必将大大推动农业信息化,推动农业向高产、优质、高效及可持续方向发展。
作为21世纪农业的重要标志,发展数字农业及相关技术是我国发展现代农业必然选择的支撑技术,因此将数字农业确立为解决“三农”问题的平台,符合时展的需要。数字农业展现了美好的前景,它将极大解放农业生产力,改变农业作业方式,实现农业生产质的飞跃。先进的信息收集、处理和传递技术将有效地克服农业生产的分散化和小型化的行业弱势。
强大的计算能力、智能化技术和软件技术,使农业生产中极其复杂和多变的生产要素定量化、规范化和集成化,改善了时空变化大和经验性强的弱点。将信息技术与航空航天遥感技术(RS)、农业地理信息系统技术(AGIS)以及全球定位系统(GPS)等相结合,加强了对影响农业资源、生态环境、生产条件、气象、生物灾变和生产状况的宏观监测与预警预报,提高了农业生产的可控性、稳定性和精确性,并能对农业生产过程实行科学与有效的宏观管理。信息自动化技术使现代的养殖业有了根本性的改变,是形成统一标准化饲养的一种优化养殖方式。它有利于优化畜牧业区域布局;有利于解决人畜混居、相互交叉感染问题;有利于减少与外界接触,减少传染病的预防发生;有利于改善农民的生活环境,保护人们的身体健康;有利于改善畜禽养殖环境和生产性能的发挥;有利于提高畜禽的品质;有利于先进技术和设备的推广和生产效率的提高;有利于畜禽生产的宏观管理和相互之间的协调,从而促进畜禽业迅速发展,提高养殖者的经济效益。同时,利用计算机控制实现自动补料、补水和补光等作业,节约劳动力。另外,通过多媒体模拟,可以在最适宜时期扩大生产,在市场行情最佳时销售,从而获得最大利润。
广泛应用现代信息技术,促进农业和农村经济结构调整,增强农业的市场竞争力,发展农村经济,建设现代农业,增加农民收入,加速农村现代化进程,促进农业生产过程实现自动化和高效益化;通过计算机对来自于农业生产系统中的信息进行及时采集和处理,根据处理结果迅速地去控制系统中的某些设备、装置或环境,从而实现农业生产过程中的自动检测、记录、统计、监视、报警和自动启停等,实现农业自动化生产和对自然环境的实时监测。传统的农业生产方式得以改造,农业生产效率将大幅度提高,生产成本下降;加快新品种选育,提高病虫害预测、预报和防止水平,减少损失,增加产出,获得更大的效益,这将提高人类对自然的认知能力,最大限度地控制和利用水、土、气等自然资源,减少农业生产的不稳定性。科学指导农业生产管理,增加农副产品产量,提高农产品质量,降低农业生产成本,提高经济效益;实现科学化管理,提高对农业和农村经济发展的政策决策水平,最大限度避免自然灾害对农业造成的损失。
关键词:3S技术集成;精准农业;应用;研究进展
一、前言
“3S”技术是以遥感技术(RS)、地理信息系统(GlS)、全球定位系统(GPS)为基础,将RS、GlS、GPS三种独立技术领域中的有关部分与其它高技术领域(如网络技术、通讯技术等)有机地构成一个整体而形成的一项新的综合技术。它集信息获取、信息处理、信息应用于一身,突出表现在信息获取与处理的高速、实时与应用的高精度、可定量化方面。
在信息社会,精准农业代表着农业发展的方向,精准农业的诞生和发展受到3S单项技术的推动,目前国内外关于精准农业的研究,主要内容仍然集中在3S技术利用上。
近年来,随着电子计算机技术、无线电通讯技术、空间技术及地球科学的迅猛发展,3S技术已从各自独立发展进入相互融合、共同发展的阶段,并且在农业生命科学、交通网络、环境监测、资源调查、区域管理、城市规划等诸多领域里得到了迅速广泛的应用。3S技术的集成为精准农业的发展提供了科学而适用的技术方法和手段,它不仅可为精准农业工作提供及时、可靠的基础信息,而且还可对所获取的信息进行综合分析、处理,其应用前
景非常广阔。
二、3S技术及其集成
(一)遥感技术(RS)
遥感(Remote Sensing,RS)是指从远距离高空以及外层空间的各种平台上利用可见光、红外光、微波等电磁波探测仪器,通过摄影、扫描及信息感应、传输、处理,从而研究地面物体的形状、大小、位置及其环境的相互关系的现代科学技术。现代遥感技术将向集多种传感器、多级分辨率、多光谱段和多时相为一体的方向发展,并将与GPS、INS、CCD等技术结合,从而以更快的速度、更高的精度和更大的信息量来获取对地观测数据。
(二)全球定位系统(GPS)
全球定位系统(Global Positioning System,GPS)是美军自70年代初期开始研制的新一代卫星导航和定位系统。
其基本工作原理是通过GPS接收机接收GPS卫星发射的导航电文,获得必要的导航信息及观测量,再经数据处理,从而完成导航和定位工作。目前,GPS可满足高精度实时数据采集的精度要求。
(三)地理信息系统(GIS)
地理信息系统(Geographic Information System,GIS)是处理地理数据的输入、输出、管理、查询、分析和辅助决策的计算机系统。GIS有两个显著特征:一是它不仅可以像传统的数据库管理系统(DBMS)那样管理数字和文字信息(属性信息),而且可以管理空间信息(图形信息);二是它可以利用各种空间分析的方法,对多种不同的信息进行综合分析,寻求空间实体间的相互关系,分析和处理在一定区域内分布的现象和过程。
目前,GIS正向多功能、高精度、现势性强的时态GIS(TemporalGIS,TGIS)方向发展。
(四)RS、GPS、GIS技术集成
GPS提供适时而准确的定位信息,对于空间数据的确定有特殊的意义;RS技术利用某些仪器设备在不与被研究对象直接接触的情况下收集数据,通过处理分析最后提取和应用有关对象信息,是一种高效的信息采集手段,具有极高的空间、时间分辨率;GIS是利用现代计算机图形和数据库技术来输入、存储、编辑、查询、分析、决策和输出空间图形及属性数据的计算机系统,即RS发现变化、GPS测量变化区域、GIS统一管理数据,形成“一个大脑,两只眼睛”的框架。
以GIS为核心的3S技术集成,构成了对空间数据适时进行采集、更新、处理、分析及为各种实际应用提供科学决策的强大技术体系。
三、精准农业及其产生背景和国内外发展现状
(一)精准农业的概念
“精准农业”也被称为因地制宜农业(Site Specific Farming)、处方农业(Prescription Farming)。精准农业的含义是按照田间每一操作单元的环境条件和作物产量的时空间差异性(Temporal and Spatial Variability),精细准确地调整各种农艺措施,最大限度地优化各种投入(水、肥、种子、农药等)的量、质和时机,以期获得最高产量和最大经济效益,同时保护农业生态环境,保护土地等农业自然资源。
精准农业要求实时获取地块中每个小区(每1m2到每10Om2)土壤、水、农作物、光、热等信息,诊断作物长势和产量在空间上差异的原因,并按每一个小区做出决策,精确地在每一个小区进行施肥、灌溉、杀虫、除草、播种、耕作、收获等。
精准农业要求实现三个精确:一是定位的精确,精确确定灌溉、施肥、杀虫等的地点;二是定量的精确,精确确定水、肥、药、种子等的施用量:三是定时的精确,精确确定各种农艺措施实施的时间。
(二)精准农业的产生背景和国内外发展现状
1、产生背景。传统农业把耕地看作是具有作物均匀生长条件的对象进行管理,采用统一的耕作、播种、灌溉、施肥、喷药等农艺措施。传统农业一直忽视作物和资源环境的时空差异性,实行大田均匀施肥、均匀灌溉、均匀喷药等统一的农艺措施。为了从根本上解决传统农业存在的问题,随着信息技术、人工智能化技术、计算机网络技术和自动化技术的发展和应用普及,美国农业工作者于20世纪90年代初倡导并实施了精准农业。
2、国内外发展现状。精准农业目前在发达国家发展十分迅速,美国国家研究委员会1997年已建议将PA的研究与发展纳入国家发展战略。日本政府专门启动了“2l世纪农业机械开发课题”,也将PA的相关技术研究列入计划。我国精准农业的研究和应用尚处在起步阶段,但已引起各方面的重视。2O02年国家科技部批准在北京农业科学院成立了“国家农业信息化工程技术研究中心”,中国农业大学成立了“精确农业研究中心”。“十五”期间,现代农业信息技术与精准农业列入了国家高技术研究计划(“863”计划)。
四、3S技术集成与精准农业
精准农业是基于作物和资源环境的时空差异性,以最小投入、最大收益和最小环境危害为目标,以管理信息系统(MIS)、计算机技术、多媒体技术和大规模存储技术为基础,以3S技术为核心,以宽带网络为纽带,运用海量农业信息对农业生产实行处方作业的一种全新农业发展模式。
(一)作为精准农业的核心技术的GIS在精准农业中的具体应用表现
1、对GPS和传感器采集的各种离散性空间数据进行空间差值运算,形成田间状态图,如土壤养分分布图、土壤水分分布图、作物产量分布图等。
2、对点、线、面不同类型的空间数据进行复合叠置,为决策者提供数字化和可视化分析依据。例如,不同作物由于其不同的生物特性对土壤类型、土壤养分、耕作层深度、水分条件、光热条件、有效积温等均有不同的要求,在进行作物种植规划和布局时,只需将上述各专题图层利用GIS的叠加功能,就可以快速、准确地确定出各种作物的最佳生物布局,如果再将市场、运输等社会经济条件专题图与最佳生物布局图叠加,就可进一步规划出作物的最佳经济布局。
3、利用GIS的缓冲区分析功能,能直观地显示分析灌排系统的控制范围、水肥的有效渗透区域、病虫害的扩散范围以及周围环境对作物生长的影响范围等。
4、利用GIS的路径分析功能,能够快捷地确定出农道、水系、机井等各种农业基础设施的最佳空间布局和机械喷施农药、化肥以及收获作物的最佳作业路线。
5、与专家系统和决策支持系统相结合,生成作物不同生育阶段生长状况“诊断图”(Diagnosis Maps)和播种、施肥、除草、中耕、灌溉、收获等管理措施的“实施计划”(Action Plan)。
6、利用GIS的数字高程模型(DEM),计算作业区的面积、周长、坡度、坡向、通视性等空间属性数值。
(二)精准农业的关键技术需要GPS
精准农业的关键技术之一是实时动态地确定作业对象和作业机械的空间位置,并将此信息转变为地理信息系统能够贮存、管理和分析的数据格式,这就需要采用GPS。
GPS在精准农业中的主要作用有:精确定位水、肥、土等作物生长环境的空间分布;精确定位作物长势和病、虫、草害的空间分布;精确绘制作物产量分布图;自动导航田间作业机械,实现变量施肥、灌溉、喷药等作业。为实现上述功能,需要将GPS接收机和田间变量信息采集仪器、传感器以及农业机械有机的结合起来。安装有GPS接收机的农田机械及田间变量信息采集仪器,除能够不问断地获取土壤含水量、土壤养分、土壤压实、耕作层深度和作物病、虫、草害以及苗情等属性信息,与此同时还同步记录了与这些变量相伴而生的空间位置信息,从而为进一步生成GIS图层和专家决策提供了基础数据。
(三)卫星遥感是精准农业农田信息采集的主要数据源
卫星遥感具有覆盖面大、周期性强、波谱范围广、空间分辨率高等优点,是精准农业农田信息采集的主要数据源。
遥感技术在精准农业中的作用主要表现在以下几个方面:
1、农作物长势监测和产量估算。作物在生长发育的不同阶段,其内部成分、结构和外部形态特征等都会存在一系列的变化。叶面积指数(LAI)是综合反映作物长势的个体特征与群体特征的综合指数。遥感具有周期性获取目标电磁波谱的特点,因此通过建立遥感植被指数(VI)和叶面积指数(LAI)的数学模型,就能够监测作物长势和估测作物产量。
2、土壤水分含量和分布监测。在植被条件和非植被条件下,热红外波段都对水分反映非常敏感,所以利用热红外波段遥感监测土壤和植被水分十分有效。
3、作物水分亏缺监测。干旱时,作物供水不足,一方面作物的生长受到影响,植被指数降低,另一方面由于缺水,没有足够的水分供给植物蒸腾蒸发,迫使叶片关闭部分气孔,导致植物冠层温度升高,因此通过遥感植被指数和作物冠层间数学模型的建立,能够监测作物水分的亏缺。
4、作物养分监测。作物养分供给的盈亏对叶片叶绿素含量有明显的影响,通过遥感植被指数与不同营养素(N、P、K、Ca、Mg等)数学模型的建立,能估测作物营养素供给状态。研究表明,遥感监测作物氮素营养水平的精度比监测其他营养素的精度高。
5、农作物病虫害监测。应用遥感手段能够探测病虫害对作物生长的影响,跟踪其发生演变状况,分析估算灾情损失,同时还能监测虫源的分布和活动习性。
(四)3S技术集成优势
GPS的优势是精确定位,GIS的优势是管理与分析,RS的优势是快速提供各种作物生长与农业生态环境在地表的分布信息,它们可以做到优势互补,促进精准农业的发展。如GPS和GIS结合提供了科学种田需要的定位和定量进行田间操作与田间管理的技术手段。RS与GIS结合提供了多种数据源,为建立农田基础数据库奠定了基础。
五、结论
3S技术集成为精准农业的发展提供了科学适用的技术方法和手段,其应用前景非常广阔。与此同时,3S技术集成在精准农业应用中也存在许多亟待解决的问题,需要通过深入开展遥感机理和农业遥感图像解译机理研究、进一步提高农田作业定位精度、加强农田基础数据库自动更新研究、更加重视新型农田机械与3S技术集成的整合等方法与途径来解决。
参考文献:
1、邝朴生,蒋文科等.精确农业基础[M].中国农业大学出版社,1999.
2、承继成.精准农业技术与应用[M].科学出版社,2004.
3、刘金铜,谢高地等.精准农业概论[M].气象出版社,2002.
4、王长耀,牛铮等.对地观测技术与精细农业[M].科学出版社,2001.
5、王人潮,史舟等.农业信息科学与农业信息技术[M].中国农业出版社,2002.
6、张学俭.精准农业与3S技术[J].宁夏农林科技,2006(3).
7、郑可锋,祝利莉等.数字农业技术研究进展[J].浙江农业学报,2005(3).
[关键词]测控技术 发展 应用
中图分类号:G276 文献标识码:A 文章编号:1009-914X(2015)25-0258-01
1 引言
现代测控技术作为一门高新技术,是现代工业技术中的重要支柱,它以电子、测量、测控等学科为基础,涉及电子计算机技术、测试测量技术、信息处理技术、仪器仪表技术、信息网络技术及自动控制技术等领域。随着社会经济的发展和全球化水平的不断提高,以及现代科学技术的不断融入和发展,促进了现代测控技术在很大程度上的进步与发展,使其向着网络、微型、虚拟、远程、智能以及集成化方面上快速的发展。而现代测控技术在国防、工业和农行等领域的各个方面上都应用相当广泛,同时它在实践上也是一门很强的技术,尤其在广度和深度上的应用也得到相当发的扩充,影响力也随之逐渐增大,具有良好的发展前景,必将推动现代技术水平的改进,为加快现代社会进步和生产率上的提高做出了巨大的贡献。
2 现代测控技术的特点
现代测控技术作为现代信息技术的重要组成部分,涉及测试测量、信息处理、计算机网络、仪器仪表及自动控制等领域的技术。具有以下特点:网络、分布式、数字以及智能等。
2.1 智能化
在现代测控系统应用中的设备,主要是以微处理器最为基础,同时运用智能化的仪器仪表,凸显出功能多样化、灵巧快捷和使用方便等方面的特点。随着人工智能技术的引进和电子技术的不断发展,智能化仪器设备呈现出的更加高科技化,智能化仪器的计算方法和计算能力不断得到加强,使得现代测控技术得到很大的提高。
2.2 数字化
在现代测控技术领域中,数字化特点主要体现在以下方面:传感器的数字化控制,控制器到远程终端设备的数字化控制,通信、信号处理等过程的数字化控制等。
2.3 网络化
现代测控技术随着计算机网络技术的迅速发展,正朝着网络化、分布性和开放性的方向迈进。这种发展趋势推动了测控系统功能的扩展灵活性、性能高效性、使用简便性的不断深化。现代测控技术网络化的特点体现在测控技术、传感器技术、计算机网络技术的结合,可以方便快捷地组建网络化、分布式的测控系统。随着计算机信息网络技术的迅猛发展及相关技术的不断完善,网络信息系统的规模更加庞大,在通信、航空航天、国防和气象等领域应用现代测控技术越来越广泛、越来越深入。
2.4 分布式化
现代测控技术设备可以多地点布设,可以有效地检测出既符合要求又需要仪器设备的地方。这种分布式测控技术是以网络技术和微型计算机术为基础,将系统内所使用设备连接起来,组合成符合要求的分布式测控系统。分布式测试系统具有安全可靠、拓展便捷、运行快速、使用灵活等优点,从而大大降低了测控成本,提高了测控效率。
3 现代测控技术的发展
现代测控技术以计算机技术为核心,集控制和测量为一体,实现过程控制的自动化,已经在很多方面得到了广泛的应用。
3.1 发展现状
现代测控系统是一个综合系统,分为基本型、闭环控制型和标准通用接口型三大类型,主要包括控制器部分、程控设备和仪器、测控应用软件、总线与接口部分、被测对象等五个部分。随着科学技术的不断进步,现代测控技术飞速发展,并广泛应用于现代社会经济发展方方面面。然而,与世界发达国家相比,我国的现代测控技术水平还存在不少差距,主要表现在智能化、数字化、微型化等方面。尚未达到一个高水平的阶段。因此,我国必须在引进高科技的先进设施的同时,借鉴国外高科技的技术发展模式,积极开拓创新,推进我国测控市场的发展,提升我国高新技术含量产品在国际市场竞争中的竞争力。
3.2 发展趋势及前景
首先,日臻先进的科学技术为现代测控技术的迅速发展提供了技术保障,开放化、标准化已经成为现代测控技术发展的趋势。无论从技术角度,还是从市场角度来看,开放化测控技术都是现代测控技术的发展趋势,也将成为市场应用的主流。它可以让我们直接接触到开放标准下的先进测控技术,并融入到这种技术标准之中,标准化、开放化将减少新技术的重新开发,节省重复开发成本,因此,推进开放性测控技术的应用有着十分重要的意义。当前,我国正处于产业结构迅速转变的阶段,测控技术的开放化和标准化趋势给了国内测控行业一个极好发展机遇,为此,我们要清晰的看到这一点,把握现代测控技术走向开放化、标准化的趋势,推动我国现代测控技术的创新与发展。
其次,随着科学技术的不断创新与网络技术的进步,现代测控技术正朝着网络化的方向迈进。随着现场总线的迅猛发展与Jini软件技术的问世,现代测控系统不仅将现场的智能仪表和装置作为节点,通过网络将节点连同控制室内的仪器仪表和控制装置联成有机的测控系统,而且可使联网的任何仪器设备实现其自身功能的同时,还能为其他仪器设备加以利用。网络技术进步并全面介入,实现了微机化仪器的联网,高档测量仪器设备以及测量信息的地区性、全国性乃至全球性资源共享,远程数据采集与测控,远程设备故障诊断,各等级计量标准跨地域实施直接的数字化溯源比对,水、电等费用等的自动抄表等,具体到计量测试、测控技术及仪器仪表各领域,从而使得测控网络的功能显著增强,应用领域及范围明显扩大,测控系统的功能远远大于系统中各独立个体功能的总和。
4 现代测控技术的应用
21世纪以来,随着经济的全球化,测控技术的迅猛发展为军事国防、电子制造、自动化等行业的高速发展起到积极的推动作用,加快了社会技术进步和产业升级,越来越多的测控技术广泛应用于国民经济建设的宇航、电信、农业、石油、化工等领域。
4.1 现代测控技术在航天、农业等领域的应用现代测控技术在航天领域的应用主要表现在:跟踪测量航天器,获取其运动参数和内部的各种物理、宇航员生理等一些重要数据,并且监视航天器的飞行和内部工作状态,为指挥中心对航天飞行目标指挥、控制提供数据信息,通过对实测数据的处理、分析,为评价航天器的技术性能和改进设计提供依据。
在农业领域的应用集中在粮食存储过程中,如果测得粮食温度超过预置,报警数值主机就会发出指令,接通通风机控制电路,对粮仓进行通风。此外,在蚕种催青过程中,现代测控技术用来控制蚕种催青时的温、湿度,通过把采集到得温、湿度数据传入微机处理系统,即可根据实际需要在控制台屏幕上设定温、湿度数据,如果数据达到设定值时系统会自动断开电源,进入维护期。
4.2 新型传感器技术的应用
作为当今世界发展最迅速的高新技术之一,新型传感器已经融入了计算机技术、智能技术和网络技术等新技术,其结构更加完善,功能更加强大,广泛应用于社会生活工作的各个方面。智能化传感器主要应用于:火车机车的状态监测、心内压监控系统等;微型化气体传感器主要应用于化工、交通、国防、医学、机器人、防伪等领域;数字化传感器应用于:测量环境温度、银行监控、图像传感器等;集成化传感器主要用于视觉测量、压力测量、温度测量;新型网络化传感器则大量应用在国防、农业、医疗、工业、军事、抢险救灾、环境监测、城市管理等领域。
4.3 远程测控技术的应用
为了适应现代科学技术的发展,现代测控技术还可以进行远程测控,远程测控技术常见的有:专线远程测控术、电话网远程测控技术和无线通信等远程测控技术。远程测控技术主要应用于:在核电站和电网检测的远程监控、石油输送管道的远程监控、机器人的远程监控等。现代测控技术还可以对设备进行故障诊断,水、电、燃气以及热能等的自动抄表远程测控,与此同时,对于地理环境复杂的地区以及用户密度不高、不易布线、距离较远的情况,等等,都可以通过无线通信网络信息技术进行远程测控。
5 结语
随着现代科学技术的发展,测控技术正朝着系统化、智能化、标准化及系统功能的一体化的趋势迈进,社会经济各领域开始广泛采用以信息的获取与应用为中心的方式,实现仪器仪表、工业生产的全过程自动化控制,使之为人们工作生活做出更多的贡献。与此同时,计算机控制技术、数据处理技术、信号传感技术等先进技术的飞速发展,也在促使现代测控技术发生深刻的变化,更加开放化、标准化、全球化,有力地推动了现代技术水平的提高。所以,现代测控技术的迅猛发展,越来越多的创新、高科技测控自动化的成果的应用,为产业的升级和整个社会技术的进步起到了巨大的推动与提升作用,具有潜在的实用价值和重要的科研价值。
参考文献
[1] 刘志刚.现代测控技术的发展及其应用探析[J].机电信息,2012(12):
120-121
[关键词] Zigbee;cc2530;无线传感网络;低功耗;温室大棚
一、引言
我国是一个农业大国,农业是国家的经济命脉。提高单位面积的作物的产量、生产优质农产品是现阶段农业发展的迫切要求,而温室大棚是实现高产、优质农业的一个重要途径。目前国家提出要狠抓农业科技革命的新型农业道路,实施数字化精准农业温室大棚是现代农业革命改革的一大措施。数字化精准农业温室大棚技术是从生产理念、经营主体、农业装备、先进科技成果转化、提高农业生产力等方面进行农业的改革,应用先进的技术调控差异,科学利用资源,采用信息化经营管理和组织方式进行农业生产,实现农业生产的目标管理。
现有的大多数智能温室系统的数据采集是通过采用人工实地记录方式或者通过有线数据远距离检测记录方式。这两种方式都有明显的局限性,智能生态系统的环境温湿度参数对农作物有着重要的作用,为此采用新兴的zigbee网络技术设计智能温室大棚检测系统是很有必要的。
二、zigbee简介
ZigBee是基于IEEE802.15.4协议的短距离、低功耗、低成本的无线通信技术。zigbee这个名字来源于蜂群传递花粉信息所使用的通信方式,蜜蜂通过形状像zigbee的舞蹈来告诉别的同伴食物源的位置、方向和距离等信息。所以zigbee
这个名字也就产生了。目前由于zigbee技术低成本的特点显著,它的发展速度是非常快的,研究的人也越来越多了。远远超过了比它早出现的一些无线技术,比如说蓝牙等。它不仅在工业农业、军事、环境、医疗等传统领域具有较高的应用价值,而且在未来其应用更将扩展到涉及人类日常生活和社会生产活动的所有领域。
三、网络拓扑结构
在zigbee网络结构中,常见的拓扑结构有三种:星型、网状型、树形。星型网络是三种网络中结构最简单的一种网络,它是一个福射状的系统,当协调器建立网络后,其他的节点都要和协调器直接通信,便于管理。因为大棚的面积一般不会太大,所以星型拓扑结构特别适合温室大棚。
协调器:Coordinator,路由器:Router,终端设备:End Device
四、zigbee节点设计
Zigbee节点负责采集温室大棚的温湿度信息。本文采用以cc2530芯片为核心的zigbee系统为大家介绍zigbee技术在温室大棚中的应用。cc2530芯片有四种电源模式,其中当节点不工作时,就可以处于休眠模式,保持低功耗。它是CC2430的升级版,结合了领先的RF收发器的优良性能,系统内可编程闪存8kb RAM,增强型的8051CPU和很多强大的功能。CC2530具有不同的运行模式,使得它尤其适应超低功耗要求的系统。运行模式之间的转换时间短进一步确保了低能源消耗。CC2530F256结合了德州仪器的业界领先的黄金单元ZigBee协议栈(Z-Stack),提供了一个强大和完整的ZigBee解决方案。CC2530有四种不同的闪存版本分别为:CC2530F32,CC2530F64,CC2530F128,CC2530F256,分别具有32KB,64KB,128KB,256KB的闪存,而本电路用的是CC2530F256。它具有极高的接受灵敏度和抗干扰性能,可编程的输出功率高达4.5dbm,只需要极少的外接元件,即可满足很多系统的要求。比如说只需一个晶振,即可满足网状网洛系统的需求。
该节点电路的工作流程为:ZigBee网络节点的温湿度传感器模块采集温室大各个采集点的温度和湿度数据,然后通过SgBee协议无线传输到CC2530单片机上,然后该节点电路把数据传到路由器或者协调器。
五、总结
本文中充分利用zigbee的特点,结合温室大棚实际情况,组成了无线温湿度传感网络。此方案解决了现场布线带来的各种问题,对传感器节点的管理也比较方便,同时又可以满足低功耗,低成本和数据传输速率不高等要求。对实现大规模温室温湿度监控的信息化、自动化及提高工作效率都有很高的实际应用性。
参考文献:
[1]雷纯,何小阳,苏生辉.基于zigBee的多点温度采集系统设计与实现[J].自动化技术与应用,2010,(2).
[2]薛艳亮,胡建萍,王江柱.基于分布式编址机制的ZigBee组网技术研究[J].杭州电子科技大学学报,2008,(2).
[3]李媛.基于ZigBee无线环境监测系统的设计研究[D].长沙:湖南大学,2009.
关键词:物联网;智慧农业;系统设计
中图分类号:TP391.44 文献标识码:A
随着农业产业规模的不断提高和土地集中化耕种的推行,越来越多的农产品在大棚中培育,传统的人工控制模式已不能满足现代精准农业的要求[1]。
物联网技术在农业中的应用是当今世界农业发展的新潮流[2],引领现代农业发展,它既能提高农业精细化水平,又能节约资源、增产增效,确保农产品质量安全。
1 系统设计
1.1 系统目标
基于物联网的智慧农业大棚系统通过传感器实时采集室内温度和土壤温度、湿度、二氧化碳浓度、光照等环境参数,经由无线信号收发模块传输数据,根据用户需求,实现对大棚的远程智能控制[3]。
该系统还可推广到园林园艺、畜牧养殖等相关农业领域,为实现对环境进行自动控制、智能管理,对农业综合生态信息自动监测提供科学依据[4]。
1.2 系统架构
系统通过环境参数传感器和高清视频摄像头等组建了一个可以远程感知的数字大棚,采集的数据通过3G移动网络传输到控制中心进行数据关联、数据分析,实现智慧农业大棚一体化解决方案。
系统的总体架构分为传感信息采集、无线传输、远程控制和数据分析处理四部分[5]。
图1 系统总体架构图
传感信息采集系统:主要负责大棚内环境参数的采集与控制;采用高清网络摄像机,实时拍摄大棚内视频信息。
无线传输系统:将采集的环境参数和视频信息,通过3G移动网络传送到控制中心。
远程控制系统:通过控制设备和继电器电路可以自由操控各种农业生产设备。
数据分析处理系统:用户可随时随地通过电脑或移动终端进行数据查询与分析,为用户提供决策依据。
图2 系统组成图
2 系统功能特点
基于物联网的智慧农业大棚系统,内置先进的无线感应器,不用布线,可实时监测温室大棚中的温、湿度等信息,通过无线ZigBee技术,与相关设备连接,当室内温、湿度、光照等信息超过或低于系统设定范围时,可自动打开或关闭相关设备进行调控,营造作物适宜生长环境。
图3 系统管理示意图
主要系统功能特点如下:
(1)系统可实时、连续的采集各项环境参数,以数字、图形、图像等多种方式进行记录和显示。
(2)系统可对传感器采集的温湿度、光照等数据在后台实现自动处理,与设定阈值比对,并根据结果自动调节大棚内温湿度、光照控制设备,实现大棚的全自动化管理。
(3)系统可设定各监控点的报警阀值,当出现数据异常时自动发出报警信号。
(4)无线网关设备具备丰富的硬件接口,可以提供有线、无线等多种方式的通讯手段。
3 结语
相关资料表明,在智慧农业大棚中,每平方米一季可产番茄30kg-50kg,黄瓜40kg,相当于露地栽培产量10倍以上,其他各类作物在这种环境下的产量也将得到明显的提升。另外,由于温、光、水、肥、气等诸多因素综合直接协调到最佳状态,据计算,可有效节水、节肥和节药,使整体能耗降低15%—50%。
基于物联网的智慧农业大棚系统将互联网从桌面延伸到田野,让温室实时在线,从而实现农业大棚与数据世界的完美融合。
图4 产量比较图
图5 能耗比较图
参考文献
[1] 施连敏,陈志峰,盖之华.物联网在智慧农业中的应用[J].农机
化研究,2013(06):250-253.
[2] 刘琪.物联网技术的研究现状及发展趋势的展望[J].科技风,
2013(04):225.
[3] 刘明.国内外温室产业发展现状与研究进展[J].安徽农业科
学,2008,21(2):26-28.
[4] 卢闯,等.物联网在设施农业中的应用研究[J].农业网络信息,
2011(09):10-13.
[5] 郭阳雪,等.农业大棚温度远程实时监控系统设计[J].安徽农
业科学,2013(03):1308-1310.
作者简介:
2010高校就业趋势预测最近国家教育部公布了2006年全国普通高等院校毕业生人数,数据呈现为413万,比本年又增加了78万,预计我国高校毕业生人数还将逐年递增,到2010年将达到700万前后。将如何解决这些技术劳动力的就业?未来几年里,还有哪些缺口专业?热门专业有哪些?高等院校作为精英输出机构,未来专业设置应该如何筹划呢?女性精英就业状况前景如何呢?每日商报结合劳动社会保障部科研所和浙江大学就业与服务指导中心提供的相关材料,独家2010高校就业趋势预测。总劳动力富余专业技术精英缺口不小农业缺218万工业缺1220万第三产业缺口325万根据劳动社会保障部科研所的数据呈现:我国在“十一五”期间计划年均新增劳动力需[]求总量为1800万,但是“十一五”期间每年新增劳动力供给为2000万,每年将出现200万富余劳动力,供给和需求之间存在差距,预计我国在未来几年内在劳动力总量上将出现供大于求,劳动力大部份闲置现象。但根据中国人事科学研究院《2005中国精英报告》预计,到2010年我国专业技术精英供应总量为4000万,而需求总量为6000万。此项数据呈现我国劳动力总体有富余,但专业技术精英仍将出现供不应求的局面。第一产业:2010年农业科技精英需求可能达到几百万人,但是相关精英供给有限,根据国务院颁布的《农业科技成长纲要(2001-2010)》数据,我国共有涉农院校43所,在校学生大约为9万,教学和科研人员为3.5万人,130万大中专毕业生中已有80万离开了农业。预计到2010年精英缺口将达到218万人。新晨
第二产业:我国大学生中38%为工科类学生,但是毕业生人课件下载[]数还是不够,振兴我国工业还需大部份的工程师,主要集中在IT、微电子、汽车、环保、系统集成、新材料、新能源与节能技术开发、条码技术、铁路高速客运技术等领域。预计到2010年,精英缺口数字最大,将达1220万人。第三产业:该产业将是扩大就业岗位最多的部门。一些高端涉外精英需求很大,比如:涉外会计、涉外律师、涉外金融服务、同声传译、电子商务、数字媒体、物流、精算和心理咨询,精英缺口预计在325万。我国专业技术精英总量还处于供不应求的局面,大学生就业难问题仅仅为一种表象。之所以看到困难和大学生个体表现差别有关。首先,作为一名大学生是否学有专长,知识和能力结构能否达到技术精英的评判标准,能否符合社会需求;其次,个人就业意愿和社会意愿存在差别。我国的基层和中西部地区需要大部份的科技精英,大学生能否重视这些就业机遇。学好一门外语让你受益匪浅著名的麦肯锡(Mckinsey)企业预测:在未来五年内,既有技术背景又有良好课件下载[]的语言能力的精英将有很大需求。我国将大部份需求善用外语沟通的高端技术精英是不争的事实。目前在职的中年技术人员缺乏语言优势,在校大学生虽然能通过
四、六级考试,但是通通缺乏流利的外语会话能力,这也是高端精英缺乏国际竞争力的薄弱环节。
综观国外,美国的挑战者(Challenger)企业预测美国将来就业状况也提到了外语的重要性。他们认为美国国际型大企业今后都需要会外国语言的精英,这样才能派往世界其他各国工作,才能实现企业国际化运作。其首席行政官预计只会说英语的人将无法申请更不可能得到类似工作机遇。因此,鼓励高校开展双语教育势在必行,外语教学不能停留在应试教育取得书面高分上。特别是研究型高校要加强外语教学,把培养目标放在让学生能流利说好一门外语,外语语种并不限定为英语,但要达到流利对话程度。