HI,欢迎来到学术之家,期刊咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 建筑外墙设计规范

建筑外墙设计规范

时间:2023-07-14 17:35:50

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇建筑外墙设计规范,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

建筑外墙设计规范

第1篇

关键词:高层建筑;防侧击雷;滚球法;GB50057-2010

中图分类号: TU208 文献标识码: A

1 绪言

随着国内经济的飞速增长,各地高层建筑日益增多,高层建筑采取合适的侧击雷防护也显得尤为重要和迫切。下文将对《建筑物防雷设计规范》的现行版本GB50057-2010在建筑物的侧击雷防护方面进行较为详细的分析。

2 GB50057-2010关于防侧击的规定及其与其他相关规范的异同

对于第一类防雷建筑物的侧击雷防护,相比GB50057-94(2000年版),GB50057-2010在4.2.4条中增加了“当建筑物高度超过30m时,首先应沿屋顶周边敷设接闪带,接闪带应设在外墙外表面或屋檐边垂面上,也可设在外墙外表面或屋檐边垂面外”的要求。此外,GB50057-2010在本条第7款沿用了GB50057-94(2000年版)第3.2.4条第七款的内容:“当建筑物高于30m时,尚应采取下列防侧击的措施:1)应从30m起每隔不大于6m沿建筑物四周设水平接闪带并应与引下线相连。2)30m及以上外墙上的栏杆、门窗等较大的金属物应与防雷装置连接。”

对第二类防雷建筑物而言,GB50057-2010在4.3.1条中也增加了“当建筑物高度超过45m时,首先应沿屋顶周边敷设接闪带,接闪带应设在外墙外表面或屋檐边垂面上,也可设在外墙外表面或屋檐边垂面外”的规定。与第一类防雷建筑物不同的是,GB50057-2010在规定侧击雷防护的4.3.9条中引用了IEC62305-3:2010 Protection against lightning - Part 3: Physical damage to structure and life hazard的相关内容并做了本地化修改,从而与GB50057-94(2000年版)的第3.3.10条有了较大的区别。本条第1款规定:“对水平突出外墙的物体,当滚球半径45m球体丛屋顶周边接闪带外向地面垂直下降接触到突出外墙的物体时,应采取相应的防雷措施”。第2款又规定:“高于60m的建筑物,其上部占高度20%并超过60m的部位应防侧击,防侧击应符合下列规定:1)在建筑物上部占高度20%并超过60m的部位,各表面上的尖物、墙角、边缘、设备以及显著突出的物体,应按屋顶上的保护措施处理。2)在建筑物上部占高度20%并超过60m的部位,布置接闪器应符合对本类防雷建筑物的要求,接闪器应重点布置在墙角、边缘和显著突出的物体上。3)外部金属物,当其最小尺寸符合本规范第5.2.7条第2款的规定时,可利用其作为接闪器,还可利用布置在建筑物垂直边缘处的外部引下线作为接闪器。4)符合本规范第4.3.5条规定的钢筋混凝土内钢筋和符合本规范第5.3.5条规定的建筑物金属框架,当作为引下线或与引下线连接时,均可利用其作为接闪器。”第3款 的内容“外墙内、外竖直敷设的金属管道及金属物的顶端和底端,应与防雷装置等电位连接”,与GB50057-94(2000年版)第3.3.10条第四款大致相同。GB50057-2010删去了GB50057-94(2000年版)第3.3.10条前三款的内容。而国家建筑标准设计图集02D501-2《等电位联结安装》第43页和44页依据其中第三款“应将45m及以上外墙上的栏杆、门窗等较大的金属物与防雷装置连接。”对金属门窗的等电位联结的具体做法做了规定:外墙外侧的栏杆、门窗等较大的金属物通过材料规格合适的连接导体与上、下圈梁或柱内的预埋件作等电位联结。

至于第三类防雷建筑,GB50057-2010在4.4.1条及4.4.8条中,将滚球半径由45m改为60m,其余内容基本与4.3.1条及4.3.9条相同。

3 以图示法来分析GB50057-2010防侧击的规定

图1 空旷地区某孤立高层建筑侧击雷防护的滚球法示意图

图1所示即为一个简单的范例。图中左侧建筑为第二类防雷建筑物,高度120m。依据GB GB50057-2010的说明,半径为45m的球体从空中沿接闪器A外侧下降,会接触到B处,故该处应设相应的接闪器;但不会接触到C、D处,故该两处无需设接闪器。然而,因B、C、D处均位于滚球半径以上,根据滚球法的原理,B处设置如图示的接闪器后,只能降低该接闪器附近的建筑结构遭雷击的可能性,并不能完全保护B处露台的外墙面,更不能保护C处与D处。因而,B、C、D处在任何时候都存在遭受雷电侧击的可能性。而若根据废止的GB50057-94(2000年版)第3.3.10条第三款的要求,按图集02D501-2的做法将45m以上的金属门窗与上、下圈梁或柱内的预埋件作等电位联结,将会降低侧击雷的危害。另外,位于45m到60m之间的G处,若按照4.3.9条第1款的规定,半径为45m的球体从空中沿接闪器A外侧下降,接触到B处后继续下降,将会接触G处,故该处应设相应的接闪器;但若根据4.3.9条第2款及其第1项、第2项的规定,因此处高度低于60m且在建筑物上部其高度的20%(96m)以下,并未要求布置接闪器以防侧击。此时,针对该建筑的情况,45m以上的突出外墙的物体,在未处于已设置于其他突出物上的接闪器保护范围内时,均需采取合适的措施以防侧击。

图2距离较近的两座高层建筑侧击雷防护的滚球法示意图

图2即为另一个简单范例。图中左右两侧各有一座高120m的相似建筑,均为第二类防雷建筑物,两建筑间隔为60m,建筑顶部周边均已敷设接闪带。根据4.3.9条第1款的规定,半径为45m的球体从空中沿接闪器A外侧下降,不会接触到B处,故该处无需设接闪器;而若按照4.3.9条第2款及其第1项、第2项的规定,因此处位于建筑物上部占其高度的20%并超过60m的部位,故应防侧击,并应将各表面上的尖物、墙角、边缘、设备以及显著突出的物体,按屋顶上的保护措施处理;布置接闪器应符合对本类防雷建筑物的要求,接闪器应重点布置在墙角、边缘和显著突出的物体上。此时,B处究竟应不应该设置接闪器以防侧击呢?从滚球法来判断,B处位于两座建筑构成的直击雷保护范围内,但笔者认为B处宜设置接闪器。目前国内外通行的防雷技术规范普遍采用相对科学的滚球法,而滚球法的滚球半径是根据雷电流的大小人为规定的。这就存在一个绕击问题,即比所规定的雷电流小的电流仍有可能穿越接闪器的保护范围而击在物体上的可能性。B处设置接闪器后,能更大程度的保护B处的露台及下方的C、D等处。至于C、D等处需不需要装设接闪器,则应综合平衡损害的容忍值和防雷投入的经济性而定。

4 结束语

《建筑物防雷设计规范》现行版本GB50057-2010在建筑物防侧击雷的规定中引用了IEC62305-3:2010《雷电防护.第3部分:建筑物的物理损害和生命危险》的条文,这体现了国家鼓励采用国际标准和国外先进标准的原则。然而,由于现行标准的配套图集尚未编制完成,项目具体情况的多样性和国外标准可能存在的局限性,对高层建筑的侧击雷防护,应该本着具体问题具体分析的原则,采用作图等方法进行处理,得出科学合理的结论。

参考文献

[1]《建筑物防雷设计规范》GB50057-2010

[2] 国家建筑标准设计图集02D501-2《等电位联结安装》

第2篇

1石油化工控制室设计规范

(1)操作室和机柜室应留有20%的扩展空间(定量要求)。(2)操作室面积每增加一个操作站,面积增加5~8m2。(老规范为6~10m2)。(3)成排机柜之间间距为1.6~2.0m(老规范为1.5~2.0m),机柜距墙(柱)间距为1.6~2.5m(老规范为1.5~2.0m),最小间距要求增大。(4)控制室建筑物耐火等级应为一级(老规范为二级)。(5)活动地板设计均布荷载不应小于23000N/m2(老规范为5000N/m2),活动地板荷载增大很多,更安全了。(6)操作室、工程师室净高不宜小于3.0m,机柜室不宜小于2.8m(老规范全部要求为2.8~3.3m),新规范没有对上限进行规定,设计灵活性更大了。(7)电缆穿墙入口宜采用专用的电缆穿墙密封模块,并满足抗爆、防火、防水、防尘要求。当条件受限,采用电缆沟进线方式时,电缆入口处洞底标高应高于沟底标高0.3m以上,应采取防水密封措施,室外沟底应有排水设施,并且电缆穿墙入口处的室外地面区域宜设置保护围堰(基础墙体洞口采用防火材料密封,沟内冲砂。不得在室内地面以上的外墙上开设电缆进线洞口)。(8)控制室的空调引风口、室外门的门斗处、电缆沟和电缆桥架进入建筑物的洞口处,需要时宜设置可燃气体和有毒气体检测器。(9)抗爆结构的控制室设置无线通信系统时,应设置无线信号增强设施,以保证与外界的正常通信。

2石油化工控制室抗爆设计规范

(1)抗爆控制室宜布置在工艺装置的一侧,四周不应同时布置甲、乙类装置,且布置控制室的场地不应低于相邻装置区的地坪。(2)抗爆控制室应独立设置,不得与非抗爆建筑物合并建造。(3)抗爆控制室应至少在两个方向设置人员的安全出口,且不得直接面向甲、乙类工艺装置。(4)抗爆控制室建筑平面宜为矩形布置,层数宜为一层(不应超过两层)。(5)抗爆控制室宜采用现浇钢筋混凝土结构。(6)在人员通道外门的室内侧,应设置隔离前室。(7)活动地板下地面以上(即活动地板与室内基础地面之间)的外墙上不得开设电缆进线洞口。基础墙体洞口应采取封堵措施,并应满足抗爆要求。(8)抗爆控制室的重要房间、一般房间的空调系统宜分开设置。(9)重要房间空调设备的启停及故障报警信号应引至DCS。

3石油化工仪表系统防雷设计规范

(1)控制室建筑物应按GB50057第一类防雷建筑物的规定,采取防雷措施。老规范要求为二级。(2)仪表系统设备的安装位置距建筑物外墙的内壁距离应大于1.5m。对于抗爆结构建筑物,仪表系统设备的安装位置距建筑物外墙的内壁距离应大于1.0m。

4结束语

控制室的设计是个系统工程,涉及到多个专业,需要各专业间的紧密配合,本专业必须了解规范中对其它专业的要求和规定,只有充分了解,相互配合,才能做好控制室的设计。由于控制室的相关设计规范已经很久没有更新,此次更新时间间隔较长,还需各设计人员对新规范认真仔细研读。

作者:邱学 孙来宝 李胜利 单位:中国石油工程建设公司

第3篇

[关键词] 地下室 ; 抗震 ; 荷载 ; 设计;裂缝控制

Abstract: the earthquake problem; load value andcombinatorial problems; wall calculation model selection problem; groundwater and anti floating; crack and controlmethod of the protective layer and the thickness of cushion.

Basement; seismic design; crack control; load;

中图分类号: [TU832.5+7] 文献标识码:A文章编号:2095-2104(2013)

抗震问题

地下室如果设计不当,对整体抗震性能会产生较大影响,根据丹东市施工图审查要点,对于砖混底框结构地下室是否作为一层计入层数和总高度判断,全地下及地下室外露小于1/3地下室层高时可不作为一层计算,否则影响到底部框墙结构的层数(可能变成底部三层框墙结构)。地下室的墙柱与上部结构的墙柱要协调统一。地下室顶板室内外板面标高变化处,当标高变化超过梁高范围时则形成错层,未采取措施不应作为上部结构的嵌固部位,规范明确规定作为上部结构嵌固部位的地下室楼层的顶楼盖应采用梁板结构,地下室顶板为无梁楼盖时不应作为上部结构嵌固部位。结构计算应往下算至满足嵌固端要求的地下室楼层或底板,但剪力墙底部加强区层数应从地面往上算,并应包括地下室。

荷载取值与组合问题

地下室外墙受弯及受剪计算时,土压力引起的效应为永久荷载效应,可变荷载效应控制的组合时,土压力的荷载分项系数取1.2;永久荷载效应控制的组合时,其荷载分项系数取1.35。对于地面活荷载,同样应乘侧压力系数,许多设计中计算不对。地下室底板的强度计算时,根据《建筑结构荷载规范》(GB50009-2001)第3.2.5条板、覆土的自重的荷载分项系数取1.0。抗浮计算时,板、覆土的自重的荷载分项系数应取为0.9。地下室外墙的土压力应为静止土压力,根据土性的不同分别采用不同的计算方法,粘性土采用水土合算,砂性土采用水土分算。

如果地下室顶部没有房屋,是空旷场地,其荷载是否考虑平时消防车荷载或大于消防车的可能荷载,实际中比较取起控制作用的荷载作为设计依据。

外墙计算模型选择问题

地下室外墙配筋计算:有的工程外墙配筋计算中,凡外墙带扶壁柱的,不区别扶壁柱尺寸大小,一律按双向板计算配筋,而扶壁柱按地下室结构整体计算分析结果配筋,又未按外墙双向板传递荷载验算扶壁柱配筋。按外墙与扶壁柱变形与协调原理,其外墙竖向受力筋配筋不足、扶壁柱配筋偏少、外墙的水平分布筋有富余量。建议:除了垂直于外墙方向有钢筋混凝土内隔墙相连的外墙板块或外墙扶壁柱截面尺寸较大(如高层建筑外框架柱之间)外墙板块按双向板计算配筋外,其余的外墙宜按竖向单向板计算配筋为妥。竖向荷载(轴力)较小的外墙扶壁柱,其内外侧主筋也应予以适当加强。外墙的水平分布筋要根据扶壁柱截面尺寸大小,可适当另配外侧附加短水平负筋予以加强,外墙转角处也同此予以适当加强。

地下室外墙计算时底部为固定支座(即底板作为外墙的嵌固端),侧壁底部弯矩与相邻的底板弯矩大小一样,底板的抗弯能力不应小于侧壁,其厚度和配筋量应匹配,这方面问题在地下车道中最为典型,车道侧壁为悬臂构件,底板的抗弯能力不应小于侧壁底部。地下室底板标高变化处也经常发现类似问题:标高变化处仅设一梁,梁宽甚至小于底板厚度,梁内仅靠两侧箍筋传递板的支座弯矩难以满足要求。地面层开洞位置(如楼梯间)外墙顶部无楼板支撑,计算模型和配筋构造均应与实际相符。车道紧靠地下室外墙时,车道底板位于外墙中部,应注意外墙承受车道底板传来的水平集中力作用,该荷载经常遗漏。

地下水与抗浮

地下水位及其变幅是地下室抗浮设计重要依据,实际地下室抗浮设计中往往只考虑正常使用极限状态,对施工过程和洪水期重视不足,因而会造成施工过程中由于抗浮不够出现局部破坏。另外,实际中在同一整体大面积地下室上建有多栋高层和低层建筑,而地下室面积大,形状又不规则,加之局部上方没有建筑,此类抗浮问题也相对比较难以处理,需做细致分析处理。

常见设计问题如:地下水位未按勘察报告确定,或勘察报告未提供计算浮力的地下水位及其变幅,违反了GB50007-2002第3.0.2条;斜坡道未进行抗浮验算,斜坡道与主体分缝处未作处理;抗浮验算不满足要求,GB50009-2001第3.2.5条等。

裂缝及控制方法

地下室外墙混凝土易出现收缩,受到结构本身和基坑边壁等的约束,产生较大的拉应力,直至出现收缩裂缝,地下室外墙裂缝控制在0.2mm之内,其配筋量往往由裂缝宽度验算控制。

工程中许多设计将地下室防水结构构件的计算弯矩调幅有的下端按铰接、有的未考虑荷载分项系数、多层时未按多跨连续计算,地下室外墙在计算中抗裂性验算违反GB50108-2001第4.1.6条,地下室外墙与底板连接构造不合理,建筑物超长未设缝或留置后浇带详图未交代,室外出入口与主体结构相连处未设沉降缝等,导致违反设计规范,产生渗漏现象。某工程地下室设计成一个大底盘,而该大底盘下的基础形式同时有天然地基、桩基、刚性桩复合地基(违反GB50011-2001第3.3.4条),此类基础即使设置后浇带也仅适合施工阶段。

地下室整体超长,应采取相应措施,防止裂缝开展,采取的主要措施:(1)补偿收缩混凝土,即在混凝土中掺入UEA、HEA等微膨胀剂。以混凝土的膨胀值减去混凝土的最终收缩值的差值大于或等于混凝土的极限拉伸即可控制裂缝。(2)膨胀带,由于混凝土中膨胀剂的膨胀变形不会与混凝土的早期收缩变形完全补偿,为了实现混凝土连续浇筑无缝施工而设置的补偿收缩混凝土带,根据一些工程实践,一般超过60m设置膨胀加强带。(3)后浇带,作为混凝土早期短时期释放约束力的一种技术措施,较长久性变形缝已有很大的改进并广泛应用。(4)提高钢筋混凝土抗拉能力,混凝土应考虑增加抗变形钢筋,对于侧壁,增加水平温度筋,在混凝土面层起强化作用。侧壁受底板和顶板的约束,混凝土胀缩不一致,可在墙体中部设一道水平暗梁抵抗拉力。

保护层和垫层厚度

《地下工程防水技术规范》(GB50108-2001)对防水混凝土结构规定:结构厚度不应小于250mm;裂缝宽度不得大于0.2mm,并不得贯通;迎水面钢筋保护层厚度不应小于50mm。防水混凝土结构底板混凝土垫层,强度等级不应小于C15,厚度不小于100mm,在软弱土层中不应小于150mm。工程实践表明如果结构厚度或迎水面钢筋保护层厚度小于规范限值常常是引起渗漏水现象的常见原因,因此规范修订以后对限值作了相应的提高,应引起注意。

地下室顶板钢筋应加强,保护层和混凝土垫层及强度等级应按规范加注(GB50108-2001第4.1.6条)。否则就会产生如下类似问题:地下室外墙、底板等迎水面保护层厚40mm,底板与土接触处钢筋保护层厚35mm,不适合GB50108-2001第4.1.6条;柱保护层25mm,违反GB50010-2002第9.2.1条;地下室垫层采用C10混凝土,或底板下未做混凝土垫层,违反GB50108-2001第4.1.5条;未见地下混凝土构件环境类别划分与对应的钢筋混凝土构件保护层厚度,不符合GB50010-2202第9.2.1条等。

参考文献:

全国民用建筑工程设计技术措施—结构 北京 中国建筑标准设计所2003版

钢筋混凝土及砌体结构 北京 中国建筑工业出版社第二版

混凝土结构设计规范(GB50010-2010)北京 中国建筑工业出版社

建筑抗震设计规范(GB50011-2001) 北京 中国建筑工业出版社

第4篇

关键词:住宅建筑;安全防护;设计

前 言:笔者简述了住宅建筑安全防护设计的分类,并结合相关设计规范中的强制性条文和实际经验,对不同类别的防护设计措施进行简要分析,以供借鉴与参考。

1住宅建筑安全防护设计分类

住宅建筑的安全防护设计可以分为一般防护设计、防火防爆设计和防盗设计3种类别:1)一般防护设计:避免因设计考虑不周全而产生人身安全隐患、从人体科学出发、兼顾居民生活习惯,从而制定和采取的相关措施。2)防火防爆设计:避免因设计不合理产生火灾、爆炸隐患,或火灾、爆炸发生时尽量减小火势蔓延区域及如何将居民尽快疏散到安全地方的措施。3)防盗设计:防止盗窃发生、盗窃发生时能及时报警以阻止盗窃的进一步实施、留下盗窃证据等措施。

2住宅建筑安全防护设计详述

2.1一般防护设计

2.1.1外窗

外窗发生危险的主要因素有2种:1)框料的强度不够,遇到瞬间强大外力可能造成窗户破损、坠落,从而伤人;2)窗台的防护高度不够,在风大或者其他因素干扰下,有可能使人跌出窗外。关于框料的材质,设计中有明确要求,不同等级的建筑对抗风压强度、侧向压力等都有指标控制,无需赘述。

对于窗台高度的规定:住宅窗台低于0.90m时,应采取防护措施。低窗台、凸窗等下部有能上人站立的宽窗台面时,贴窗护栏或固定窗的防护高度应从窗台面起计算;窗台高度低于或等于0.45m时,防护高度从窗台面起计算;可开启窗扇窗洞口底距窗台面净高低于0.90m时,窗洞口处应有防护措施,防护高度从窗台面起算不应低于0.90m。目前采用低窗台或落地窗的住宅越来越多,尽管有些设计者认为采用安全玻璃固定窗的方式进行防护满足规范要求,但依然存在安全隐患,务必采取切实可行的安全防护措施。

另外还要加强对净高的控制。住户装修后地砖的高度,或者榻榻米装修的高度等方面都会影响到实际的窗台尺寸。部分展示样板房为了追求展示效果,在封闭阳台、房间临窗部位设计了榻榻米、固定靠椅等个性化的构件,给后期业主装修及空间利用作了展示引导,但此时的防护并未根据装修完成面进行抬高,也未张贴风险提示牌,如业主在后期按样板房进行装修,并造成安全事故,将会产生纠纷。因此,无论从设计角度还是后期销售上都要多方面去考虑可能存在的安全隐患,设计中能避免的坚决杜绝,后期住户装修产生的安全隐患需要物业公司对其进行提醒整改,同时更重要的是每个人都应该更加提高安全意识,避免悲剧的发生。

2.1.2阳台

封闭阳台的栏杆,不可采用普通窗台的高度。GB 50096-2011《住宅设计规范》规定:封闭阳台栏板或栏杆也应满足阳台栏板或栏杆净高要求。阳台栏板或栏杆净高,6层及6层以下不应低于1.05m, 7层及7层以上不应低于1.l m。因此,封闭阳台的栏杆或栏板需要高于窗台护栏要求的0.9m。规范编制的初衷是,阳台往往三面临空,是全家向外眺望活动比较集中的地方,对栏杆的防护要求应该高些。

2.1.3楼梯

楼梯的危险隐患主要存在2处地方,一处是防护栏杆高度,GB 50096-2011《住宅设计规范》规定:室内楼梯扶手高度自踏步前缘线量起不应小于0.90m ,梯段水平段栏杆长度大于O.5Om时,其高度不应小于1.O5m。另一处是梯井宽度、栏杆间距等缝隙尺寸,GB 50096-2011《住宅设计规范》规定:楼梯栏杆垂直杆件间净空不应大于O.llm;楼梯井净宽大于0.11m时,必须采取防止儿童攀滑的措施。以往的设计中常常出现大梯井,也并未对大梯井采取防护设计,现在都在采取补救措施。

近年来,儿童自行玩耍出现安全事故的案例越来越多,楼梯间的窗户也成为其中一大隐患。很多儿童玩耍时会站在楼梯踏步的第一级台阶上倾斜身体至窗台,这种行为很有可能酿成悲剧,因此楼梯间处应尽量避免开启扇开在楼梯踏步一侧,同时尽可能做好防护设施。

2.2防火防爆设计

2.2.1楼梯间外窗与住宅套房外窗的间距要求

楼梯间作为人员疏散的途径,保证其免受住户火灾烟气的影响十分重要。为防止楼梯间受到住户火灾烟气的影响,GB 50368-2005《住宅建筑规范》规定:楼梯间窗口与套房窗口最近边缘之间的水平间距不应小于1.Om。

2.2.2住宅建筑相邻套房开口部位防火要求

适当的窗槛墙或防火挑檐是防止火灾发生竖向蔓延的有效措施。于2015年5月1日开始执行的GB 50016-2014《建筑防火设计规范》中做了更为严格的规定,建筑外墙上下层开口之间应设置高度不小于1.2m的实体墙或挑出宽度不小于1.0m、长度不小于开口宽度的防火挑檐。住宅建筑外墙上相邻户开口之间的墙体宽度不应小于1.0m,小于1.0m时应在开口之间设置突出外墙不小于0.6m的隔板。

2.2.3燃气

燃气发生泄漏从而引发爆炸,是危害住宅建筑安全的巨大隐患。因此,设有燃气炉及燃气热水器的厨房,必须保证直接的自然通风。这里容易忽略的一个情况是起居厅或者卧室与厨房共用阳台,这种情形下厨房的燃气很容易通过阳台进人起居厅或卧室,尤其当夜里外窗关闭时很容易发生中毒或爆炸,危害很大,必须在设计中避免。

2.2.4出入口

当住宅建筑地下室或首层有其他使用功能时,各个功能用房必须设置独立的疏散出口,不仅要满足在火灾等极端情况下逃生的要求,也避免人流交叉给住宅带来不安全因素。

2.3防盗设计

防盗设计的重点部位就是对外开口部位,小区围墙、单元门、户门、阳台门和各个窗户等部位。“建设部、公安部关于在住宅建筑设计中加强安全防范措施的暂行规定”中规定:1)居民住宅的分户门应设置钢质或铁质等抗破坏性能高的安全门,并于门上安装双面“三保险”锁具;2)未设置院子的住宅底层的外墙窗、阳台,通往外廓公共走道的窗以及外墙窗窗口下缘距相连屋面高差小于2m时必须设置钢条直径不小于0.012m、钢条间距不大于O.llm的防护栅栏;3)住宅底层院子的围墙高度应不低于2m;阳台和雨篷的设计应采取防止攀登或邻户跨越的措施;4)与楼通高的竖向管道不宜露出户外;5)户外电闸箱设计要考虑加锁的可能;6)通向阳台的门、窗及楼道的分户门的周边墙体设计要考虑用户自行装设防护装置的可能;7)屋面和管道沟的检修口不得设置在室内或底层院内;8)在单幢高层住宅楼或楼群院落设计中要考虑至公寓式管理的需要,根据条件在住宅底层或院落内设置治安执勤、报警监控值班室。在符合城市规划要求前提下,楼群院落可考虑设置不低于2米的围墙。

3小结

综上所述,安全防护设计对住宅建筑安全是非常重要的,在住宅建筑的设计中,起到了一定的指导性作用。所以只有不断完善住宅建筑的安全设计,才会保证整个建筑的质量。安全因素在这里是最基本的一个因素,同时也是最重要的因素,为此,希望在以后的施工设计中,住宅质量能得到很大提升。

参考文献

第5篇

[关键词] 承压桩;抗拔桩;沉降;基础底板;地下室外墙;裂缝

1 工程概况

曹安国际商城北靠曹安公路,东靠定边路。商城地下为一层,地下室层高4.1米,东西长约390 m,南北宽约90m,地上分九层区、三层区、四层区,九层区建筑总高47.9m。

2 工程地质条件介绍

本工程地貌属于上海地区四大地貌单元中的滨海平原类型,场地基本平坦。场地内最大勘察深度65.30m,在此深度范围内揭遇的地基土主要由粘性土、粉性土和砂性土构成。按土性不同和物理力学性质上的差异可分为7个主要层次和分属不同层次的亚层,即①1、①2、②1、②3、④、⑤1、⑤3、⑤4、⑥、⑦、⑧1、⑧2。但由于所处场地大部分受第四纪全新世早期古河道切割影响,第④、⑥、⑦层土均出现了缺失或变薄。该区域定义为“古河道区”。场地浅部土层中的地下水属于潜水类型,实测取土孔内的地下水静止水位埋深在0.34~1.20m之间,相应标高为2.63~3.42m。

3 地基基础方案分析

本工程地下一层地上三层到九层,荷载差异较大,建筑物大部分处于“古河道区”。地下室按整体设计,采用梁板式筏基承台+桩基础的基础形式。考虑到需解决高低建筑因荷载差异引起的沉降差异问题,桩基采取了长短桩布置方案,高层建筑布长桩(PHC500管桩),低层建筑布短桩(PHC400管桩)。

4 桩基设计

4.1 承压桩设计

《高层建筑混凝土结构技术规程》【1】JGJ3-2002(以下简称《高规》)12.4.2第4条规定应选择较硬土层作为桩端持力层,桩径为d的桩端全截面进入持力层的深度,对于粘性土、粉土不宜小于2d。根据本工程的地质资料,⑤3层PS平均值为1.37,可作为短桩持力层,⑦层PS平均值为6.45,可作为长桩持力层。对照土层剖面图,找出最不利孔号,参照上述规范要求,确定桩底标高;结合地下室埋深及承台高度确定出桩顶标高。最终确定短桩长度24m,长桩长度40m。对位于古河道区域的桩,侧摩阻力按正常值的1/3取用。根据上海市工程建设规范《地基基础设计规范》【2】DGJ08-11-1999(以下简称《规范》),第6.2.4条来计算单桩竖向承载力设计值。公式:

过 值经查表6.2.4-2查得分项系数 ,

则由 ﹑ ﹑ 通过公式6.2.4-1求得

长桩 为1662KN,短桩 为506KN,位于古河道区域的短桩 为412KN。

由《先张法预应力混凝土管桩》【3】壁厚100的Ф500PHC(AB)管桩桩身抗压强度设计值为2560KN,壁厚80的Ф400PHC(AB)管桩桩身抗压强度设计值为1640KN,最终确定长桩单桩抗压承载力设计值 1650KN,短桩为500KN,位于古河道区域的短桩为400KN。

通过《规范》DGJ08-11-1999第6.2.1条的公式:

《规范》表4.3.6规定了建筑物沉降量和沉降差的限值,利用大致的桩位布置、准永久荷载组合下的单桩受力,结合地质报告中的土体物理力学性能,通过程序CFSS计算沉降,计算时按长短桩分类,将整个桩群分块进行计算。计算结果显示:三层区中心沉降为11.16cm,最大绝对沉降量为11.92m,最大沉降差3.08cm,差异沉降为2.5/1000;九层区中心沉降为10.29cm,最大绝对沉降量为12.78cm,最大沉降差为2.91cm,差异沉降为3.2/1000。均满足《规范》表4.3.6的要求。

桩基偏心按e/B≦1~1.5%来控制,计算偏心距时,将上部高低建筑分开验算。在JCCAD中输入桩位,计算结果显示三层区荷载中心为:X: 44362,Y: 43682;群桩中心为X: 45642,Y: 44872。ex=45642-44362=1280mm,三层区X方向宽度98m,1.28/98=1.3% 满足要求。ey=44872-43682=1190mm, 三层区Y方向宽度90m,1.19/90=1.32% 满足要求。同法可以求得九层区X向桩基偏心为1.46%,Y向为1.41%,均满足要求。通过承载力、沉降量、沉降差及偏心距验算,确定最终的承压桩桩位布置。

4.2 抗拔桩设计

本工程抗拔桩选用与承压桩相同的桩型和桩长。根据《规范》DGJ08-11-1999,第6.2.7条计算单桩竖向抗拔承载力设计值。公式:

按上式计算得到R’d=315KN,本工程采用PHC400 AB型桩做为抗拔桩,查《先张法预应力混凝土管桩》图集可知400管桩预压应力5.3MP,预压力为240KN。连接节点抗拉承载力为422KN,最终确定单桩抗拔承载力设计值为240KN。可先计算出每平米建筑物永久荷载及水浮力,本工程建筑物永久荷载包括1150厚覆土,200厚顶板及500厚底板,水浮力为3.95m的水压力。根据《规范》DGJ08-11-1999,第5.7.9条,在验算抗浮时,基础及上覆土的自重分项系数及地下水对基础的浮力作用分项系数均取1.0;则每根柱下所需的抗拔桩根数为:

(A×水浮力-永久荷载)/

求得桩数后,将抗拔桩均匀的布置在抗浮区域中。

5 筏基设计

《高规》12.3.3条规定基础顶板、底板及墙体的厚度,应根据受力情况、整体刚度和防水要求确定。可用合理的简化方法计算箱体基础的承载力。本工程顶底板厚500,外墙厚300,顶板厚200,均满足上述要求,基础各构件分别采用以下简化方法计算:

1)、承台按常规的桩基承台设计,柱底荷载取值由SATWE结构计算软件得出,承台高度先按每10KN轴力对应1mm有效高度进行估算,再由程序TSSD进行精确计算。

2)、地下室底板按倒楼盖法进行计算,底板为梁板式,在PMCAD中建单层模型,板面荷载按经验公式:

板面荷载=25%×上部荷载设计值/底板面积+每平米水浮力-1.0×每平米底板自重,然后由SATWE分析计算。

3)、地下室外墙分两种情况计算,一种是上部没有顶板的外墙,这种情况采用底部嵌固的悬臂板计算模型,另一种是上部有顶板的的外墙,由于顶板比底板薄很多,故这种情况采用底部嵌固上部铰接的板计算模型。两种情况计算时均采用一米长板段,荷载包括土体自重,地面荷载,地下水压力,地下水位以下取土体浮重度,按静止土压力系数折算竖向荷载。

4、地下室顶板和上部结构一起在PMCAD中建整体模型,参照建筑使用功能和《荷载规范》要求输入各楼层荷载,然后由SATWE分析计算。

箱体各构件配筋时既要满足强度要求,也要满足裂缝要求,与土壤接触的一侧裂缝宽度不大于0.2mm,不接触的一侧裂缝宽度不大于0.3mm。

6 基础构造措施

地下室整体超长,为防止裂缝开展,采取的主要措施有:(1)在混凝土中渗入适量微膨胀剂,以混凝土的膨胀值来抵消混凝土凝结时的收缩值。(2)按间距约55m的原则设置后浇带,东西向一条,南北向六条,来释放混凝土出初凝期的短时期约束力。(3)增加地下室顶板、底板及外墙水平温度筋,以提高钢筋混凝土的抗拉能力。(4)地下室外墙扶壁柱与墙板处增加配筋。(5)加大外墙迎水面一侧的保护层厚度,并配置钢筋网片。(6)地下室外墙中部设一道水平暗梁抵抗拉力。(7)适当加强高低建筑交界处的地基梁及底板的配筋,以抵抗差异沉降所引起的应力。

7 结论

高低建筑之间的沉降差控制以及超长地下室的裂缝控制是本工程设计的难点和重点。从施工期间实际沉降监测数据来看,实际沉降量都在3cm左右,尽管在建筑物投入使用后,随着荷载的逐步增加,沉降量会缓慢增加,但一般初期的沉降量会至少占到最终沉降量的50%,照此推测,最终沉降量和沉降差基本不会超过计算值,故而可以认为采用长短桩的桩基设计方案是切实有效的;对于裂缝控制则是采取了多项常规措施,实际使用中并未出现明显裂缝。

参考文献:

[1] 《高层建筑混凝土结构技术规程》(JGJ3-2002). 中国建筑工业出版社.2002.

[2] 《地基基础设计规范》(GJ08-11-1999).上海现代建筑设计(集团)有限公司主编.1999.

第6篇

关键词:地下室结构设计;抗浮分析;地下室结构超长;沉降不均匀

Abstract: this paper attempts by the town zhongshan city people a residential area of the basement of structure design project, this paper discusses the basement design difficulties in this problem, and puts forward the specific design optimization measures.

Key words: the basement structure design; Anti-uplift analysis; The basement structure long; Uneven subsidence

中图分类号:S611文献标识码:A文章编号:

前言

近年来,随着我国经济的高速发展及城市用地资源越发紧张,地下空间的利用价值变得越来越大。地下工程无论从设计周期、工程造价及施工工期来讲所占的比例越来越大。但地下室工程涉及建筑、结构、设备、人防等专业,在设计地下室过程中需要各个专业的互相配合。另外,由于场地土的力学性质的多样性、地下工程施工环境的复杂性、隐蔽性、特殊性,因些对地下室工程的设计及施工有一定要求。本文以中山某住宅小区的地下室结构设计为例,笔者结合具体的工程实例,简要分析并提出一些解决措施。本人水平有限,如有不正确之处请指点修正。

1.项目概况

本住宅小区是位于中山市民众镇中心区域,地上13栋11~18层高层建筑并带一层地下室,七度设防,场地土类别为三类,框架-剪力墙结构。本工程占地约42亩,其中地下车库建筑面积约11742 m2。地下室尺寸长约123m,宽约93m,地下室底板相对室外标高为-2.5m,底板厚350mm,混凝土强度等级为C30,外墙厚300mm,混凝土强度等级为C30,地下室顶板覆土70cm。由于建设单位及建筑的要求,整个地下室不设永久变形缝。地下室结构布置平面图见图一。本文结合该工程实例,分析实际工作过程中遇到的问题,并通过分析给出实际工程措施。希望对以后类似工程的设计提供一些参考。

图一 地下室结构布置平面图

2.地下室抗浮与防水分析

对于大底盘带地下室的高层建筑群体而言,主楼部分不会存在整体抗浮问题。但裙房部分尤其是纯地下室部分,往往由于设计人员认识不足,在地下室抗浮设计中只考虑了正常使用极限状态时,未对地下室进行整体和局部抗浮分析,因而可能造成施工过程中由于抗浮不够而出现局部破坏,甚至在洪水期地下水位的上升造成整个地下室上浮的工程设计事故。因此,要做好地下室抗浮设计,一般要做好以下几个方面:

(1)确定科学合理的抗浮设防水位。地下水位及其变幅是地下室抗浮设计的重要依据。地下室设防水位对地下室整体工程造价有着重要影响。由于珠三角地区夏季可能出现暴雨、洪涝等自然灾害,故按《广东省建筑地基基础设计规范》中的规定,以室外地道路最低点作为地下室抗浮设计水位。对本工程而言,即设防水头高度为2.2m;

(2)采用措施降低建筑层高。在建筑及设备安装允许的条件下,尽可能提高基坑坑底的设计标高,间接降低抗浮设防水位高度。具体措施可采用无梁楼盖和筏板基础。对本工程而言,由于荷载及柱网都比较大,采用无梁楼盖可能造成工程造价增加较多;珠三角地区由于是冲积平原,淤泥层较厚,不适宜采用筏板基础。

(3)设置抗浮桩或抗浮锚杆。一般而言,设置抗浮桩或抗浮锚杆能有效的抵抗地下水位的作用,对本工程而言,由于地下室深度不高以及地下室顶板进行70cm覆土,地下室整体抗浮满足规范规定,只需要对地下室底板进行局部抗浮措施。

3.地下室外墙的设计

地下室外墙所承受的荷载分为水平和竖向荷载。竖向荷载包括上部及地下室结构的楼盖所承受的荷载和自重;水平荷载包括地面活载、侧向土压力和地下水作用。风荷载或水平地震作用对地下室外墙平面内产生的内力较小。在实际工程设计中,竖向荷载及风荷载或地震作用产生的内力一般不起控制作用,墙体配筋

主要由垂直墙面的水平荷载产生的弯矩确定,而且通常不考虑与竖向荷载组合的压弯作用,仅按墙板弯曲计算弯曲的配筋。除了计算外墙承载能力极限状态还应作正常使用极限状态下裂缝验算。在设计中应注意以下要求:

3.1 荷载取值。竖向荷载有上部及各层地下室顶板传来的荷载和外墙自重;水平竖向荷载有地坪活荷载、侧向土压力、地下水压力、人防等效静荷载。

(1)室外地坪活荷载:一般民用建筑的室外地面(包括可能停放消防车的室外地面),按《全国民用工程建筑技术措施》中规定,室外地坪活荷载一般可取10kN/m2。地面活荷载对外墙产生的压力为沿墙高度方向的均布荷载可按室外地坪活荷载乘以静止土压力系数。

(2)水压力:可按地下室设防水位。

(3)土压力:地下室外墙的土压力应为静止土压力,根据土性的不同分别采用不同的计算方法,粘性土采用水土合算,砂性土采用水土分算。

3.2. 外墙计算模型。有的工程外墙配筋计算中,凡外墙带扶壁柱的,不区别扶壁柱尺寸大小,一律按双向板计算配筋,而扶壁柱按地下室结构整体电算分析结果配筋,又未按外墙双向板传递荷载验算扶壁柱配筋。按外墙与扶壁柱变形协调的原理,其外墙竖向受力筋配筋不足、扶壁柱配筋偏少、外墙的水平分布筋有富余量。本工程中,柱距是层高两倍以上,故外墙宜按竖向单向板计算配筋。地下室外墙计算时一般底部为固定支座,外墙底部弯矩与相邻的底板弯矩大小一样,故底板的抗弯能力不应小于侧壁,其厚度和配筋量应匹配。但在计算车道的外墙时尚应按实际支承条件计算。

4.裂缝及地下室超长控制措施

地下室外墙混凝土易出现收缩,受到结构本身和基坑边壁等的约束,产生较大的拉应力,直至出现收缩裂缝,地下室外墙裂缝宽度控制在0.2mm之内,其配筋量往往由裂缝宽度验算控制。由于本工程的长度和宽度均已超过《混凝土结构设计规范》的规定,按以前的实际工程经验,地下室整体超长,应采取相应措施,防止裂缝开展,采取的主要措施:

(1)补偿收缩混凝土。在混凝土中掺入UEA、HEA等微膨胀剂。以混凝土的膨胀值大于混凝土的最终收缩值,即可控制裂缝的产生。但由于混凝土中膨胀剂的膨胀变形不会与混凝土的早期收缩变形完全补偿,所以此方法仅适用于较不规模地下室,故不适用本工程实际情况。

(2)加强带。为了实现混凝土连续浇注无缝施工而设置的补偿收缩混凝土带,根据一些工程实践,一般超过60m设置膨胀加强带。

(3)后浇带。作为混凝土早期短时期释放约束力的一种技术措施,较长久性变形缝已有很大的改进并广泛应用。根据以前工程实践,故本工程采取本方法。

5.总结

地下室的结构设计是一个综合性很强的问题。笔者希望能够在工作中不断学结,更深入地研究地下室结构设计的技术问题,提高设计水平,真正做到技术与经济同步、安全与适用协调。

参考文献:

1.GB5011-2010,建筑抗震设计规范

2.曹继勇,张尚根,等.人民防空地下室结构设计 北京:中国计划出版社,2006

第7篇

关键词:建筑地下室底板;防空地下室;外墙;结构设计

1普通地下室底板结构设计

1.1作用在地下室底板上的荷载

(1)作用在底板顶面向下的均布荷载包括板自重、装修层重量、固定设备(可换算成等效均布荷载)等,用qd表示;(2)作用在底板顶面向下的等效均布活荷载ql;(3)作用在底板底面向上的等效均布荷载主要为地下水浮力qw。

1.2荷载组合

按(1),(2)组合计算底板及梁(底板采用梁板式时)的配筋,荷载设计值为q=1.2qd+1.4ql。宁波地区地下水位埋深较浅,水位较稳定,水浮力较大。此项与水浮力相比很小,一般不起控制作用,在工程中一般不计算。根据《建筑结构荷载规范》(GB50009-2001),按1),(3)组合计算底板及梁(底板采用梁板式时)的配筋,荷载设计值为q=1.35qw-1.0qd,此时qd不考虑固定设备的有利作用,仅包括底板自重及装修层重量。

1.3底板结构计算

当底板结构采用梁板式结构时,可采用SATWE等程序按一层框架结构进行计算。计算时程序要求输入恒、活荷载标准值,可将按(1),(3)组合计算的q除以恒荷载分项系数1.2作为恒荷载标准值输入,活荷载标准值为0。框架柱输入承台尺寸,并考虑梁、柱重叠部分作为刚域计算,可减小梁断面及配筋。为减小地下室埋深,底板可采用平板式,按无梁楼盖进行计算,此时桩承台作为无梁楼盖的柱帽。

2甲类防空地下室底板结构设计

根据《人民防空地下室设计规范》(GB50038-2005)(简称人防规范),甲类防空地下室设计必须满足其预定的战时对核武器、常规武器和生化武器的各项防护要求,乙类防空地下室设计必须满足其预定的战时对常规武器和生化武器的各项防护要求。

根据人防规范的有关条文规定,乙类防空地下室底板设计可不考虑常规武器地面爆炸作用,但应符合人防规范规定的构造要求。所以对乙类防空地下室底板结构的计算与普通地下室底板相同。本节主要给出甲类防空地下室底板结构的设计计算方法。

2.1作用在防空地下室底板上的荷载

前(1)~(3)项与普通地下室的相同;(4)作用在底板底面向上的核武器爆炸产生的人防等效静荷载qe3。

2.2荷载组合

平时荷载组合与普通地下室的荷载组合相同。战时荷载组合:按(1),(3),(4)组合计算底板及梁(底板采用梁板式时)的配筋,荷载设计值为q=1.2qw-1.0qd+1.0qe3,qd取值同普通地下室的。考虑到材料在快速加载作用下的动力强度会提高,人防规范规定在动荷载和静荷载同时作用或动荷载单独作用下,材料强度设计值可按fd=γdf进行计算,式中各符号意义详见人防规范,动荷载作用下材料强度综合调整系数γd详见人防规范第4.2.3条表4.2.3。

2.3底板结构计算

2.3.1平时荷载组合

平时荷载组合下地下室底板的计算与普通地下室底板的计算相同。

2.3.2战时荷载组合

可参照普通地下室底板的计算方法,将按战时组合(1),(3),(4)组合计算的q除以恒荷载分项系数1.2作为恒荷载标准值输入,活荷载标准值为0。

计算时要注意:(1)材料强度设计值应按动力荷载作用下的材料强度设计值输入;(2)根据人防规范第4.10.6条规定,在进行梁、柱斜截面承载力验算时混凝土的动力强度设计值应乘以折减系数0.8。所以应计算两次,先按动荷载作用下的材料强度设计值计算得到梁正截面及底板的内力计算结果,进行梁的纵向钢筋配置及底板钢筋配置;再将混凝土的动力强度设计值乘以折减系数0.8后重新输入计算,得到梁斜截面的计算结果,进行梁的箍筋配置。

底板结构的最终配筋结果取平时荷载组合和战时荷载组合计算结果两者中的较大值。

3普通地下室外墙结构设计

在工程实践中,地下室外墙截面设计由作用于外墙外表面的水平荷载控制。外墙可近似按受弯钢筋混凝土构件设计。

3.1作用在普通地下室外墙上的荷载

(1)周围填土产生的土侧压力;(2)地下水浮力产生的水侧压力;(3)作用在室外地面活荷载(如有)产生的侧压力。

由于建筑物的整体作用,地下室外墙一般不会发生变形和位移,土侧压力可按静止土压力计算。根据土力学原理,静止土压力系数k0可按下式计算

式中μ为土的泊松比。根据土质情况,在工程设计中静止土压力系数k0可取0.5~0.55,如考虑基坑支护桩的作用,静止土压力系数还可以根据支护桩的实际情况进行折减。

3.2外墙计算简图及荷载计算简图

地下室外墙应为地下室楼面边框架梁和框架柱支承的双向板,如对每块双向板分别进行计算比较麻烦,在工程中也没有必要。可将地下室底板作为嵌固端,地下室各层楼板作为支点,根据地下室层数,取1m宽的外墙按竖向单跨板或多跨连续板计算,外墙计算简图见图1,外墙水平荷载简图见图2。图中土侧压力标准值qt1及qt2、水侧压力标准值qw分别计算如下:

式中:γ,γw分别为土及水的重度。

根据《建筑结构荷载规范》(GB50009-2010),土侧压力及水浮力产生的侧压力荷载分项系数取1.35。

由于土压力、水压力产生的荷载为三角形或梯形,可分别计算土压力、水压力作用产生的弯矩,然后将同一截面在土压力及水压力作用下产生的弯矩叠加进行截面配筋设计。

4防空地下室外墙结构设计

4.1作用在防空地下室外墙上的荷载

前(1)~(3)项与普通地下室的相同;(4)作用在外墙外表面由武器爆炸产生的水平方向人防等效静荷载标准值qe2(核武器爆炸)或qce2(常规武器爆炸)。

4.2外墙计算简图及荷载计算简图

4.2.1平时荷载作用

平时荷载作用下的外墙计算与普通地下室的外墙计算相同。

4.2.2考虑战时荷载作用

考虑战时荷载作用的外墙计算简图同普通地下室的外墙计算简图(图1)。外墙水平荷载增加了武器爆炸产生的水平方向人防等效静荷载作用,见图3。图中土侧压力标准值qt1及qt2、水侧压力标准值qw分别计算如下:

根据人防规范,土侧压力荷载分项系数取1.2,水浮力产生的侧压力荷载分项系数取1.2。

对乙类防空地下室,取qce2计算人防等效静荷载产生的弯矩;对甲类防空地下室,取qe2及qce2两者中的较大者计算人防等效静荷载产生的弯矩。qe2,qce2分别为核武器爆炸、常规武器爆炸产生的地下室外墙人防等效静荷载标准值,按人防规范第4.7及4.8节规定取值。根据人防规范,人防等效静荷载分项系数取1.0。(红字另起一段)

分别计算土压力作用、水压力作用、人防等效静荷载作用产生的弯矩,然后将同一截面在土压力、水压力及人防等效静荷载作用下产生的弯矩叠加进行截面配筋设计。

考虑战时荷载作用下,在计算土压力作用、水压力作用、人防等效静荷载作用产生的弯矩时要注意:(1)材料强度设计值应取动荷载作用下的材料强度设计值;(2)由于外墙近似按受弯钢筋混凝土构件设计,所以不必按人防规范第4.10.5条规定将混凝土轴心抗压动力强度设计值乘以折减系数0.8。

外墙结构的最终配筋取平时荷载作用和考虑战时荷载作用两者计算结果中的较大值。

5地下室底板及外墙的裂缝宽度验算

根据规范规定,结构不仅要满足承载能力的要求,同时要满足正常使用的要求。为保证地下室正常使用,应对其构件的裂缝宽度进行限制。根据《混凝土结构设计规范》(GB50010-2010)(简称混凝土规范)及《地下工程防水技术规范》(GB50108-2008)(简称防水规范)规定,地下室底板及外墙的裂缝宽度限值为0.2mm。对于普通地下室,应对其正常使用极限状态下的裂缝宽度进行验算。

人防规范第4.1.6条规定,防空地下室在常规武器爆炸动荷载或核武器爆炸动荷载作用下,对其结构变形、裂缝开展可不进行验算。所以对防空地下室的裂缝宽度验算只需考虑平时荷载作用下的裂缝宽度验算,计算方法与普通地下室的相同。

6地下室底板及外墙的构造

6.1普通地下室底板及外墙的构造规定

底板及外墙构造应同时满足混凝土规范及防水规范的要求:厚度不宜小于250mm;迎水面纵向受力钢筋的混凝土保护层厚度不应小于50mm;混凝土强度等级不应小于C15(此条一般均能满足);最小配筋率应满足混凝土规范的要求;防水等级应满足防水规范的要求。

6.2防空地下室底板及外墙的构造规定

底板及外墙的构造除满足普通地下室的构造要求外,尚应满足人防规范的构造要求。人防规范第4.11.7条给出了不同混凝土强度等级范围时钢筋混凝土构件纵向受力钢筋最小配筋率的具体数值。

值得注意的是,混凝土规范、人防规范和防水规范对于地下室结构迎水面的纵向受力钢筋的混凝土保护层厚度的规定有所不同。混凝土规范规定基础(底板)为40mm(有垫层)、70mm(无垫层),二a类环境下外墙最小为25mm(设防水层);人防规范规定外墙外侧为30mm(设防水层)或40mm(直接防水),基础(底板)为40mm(有垫层)、70mm(无垫层);防水规范规定迎水面纵向受力钢筋的混凝土保护层厚度不应小于50mm,底板下均应设厚度不小于100mm的垫层,要求更为严格。

7结束语

根据设计实践,给出建筑地下室底板及外墙结构的设计计算方法、步骤,可供设计时参考。按此方法及步骤对地下室底板、外墙进行结构设计,可以满足工程设计的要求。

参考文献

[1]GB50009-2001建筑结构荷载规范(2006年版)[S].中国建筑工业出版社.

[2]GB50010-2010混凝土结构设计规范[S].中国建筑工业出版社.

[3]GB50038-2005人民防空地下室设计规范[S].限内部发行.

第8篇

建筑的规划设计是建筑节能设计的重要内容,总图方案、单体方案、施工图阶段均需进行节能审查,只不过侧重点有所不同,并应具有一定的延续性。根据相关规范,总图阶段以日照分析为主,居住、托幼、医院等建筑需有日照分析图,其他一般的公共建筑可不考虑。

1)未提供总平面图。在总平面图上要简要说明项目地理位置、气候条件、项目类型、周边情况等。DBJ52-49-2008贵州省居住建筑节能设计标准第5.1.2条规定:建筑物的朝向宜采用南北向或接近南北向。GB50189-2005公共建筑节能设计标准第4.1.1条规定:建筑总平面的布置和设计,宜利用冬至日照并避开冬季主导风向,利用夏季自然通风。建筑的主朝向宜选择本地区最佳朝向或接近最佳朝向。

2)无日照分析图或日照标准不满足相关规范的规定。有日照要求的住宅、医院、中小学、托儿所、幼儿园、养老院、宿舍等建设项目,应当进行日照分析并满足国家日照标准规范要求。日照分析图要注明所用软件、日照标准日、日照时数、有效日照时间带、日照时间计算点(公共建筑可不用)。按不同类型的建筑有不同的日照要求及日照间距,贵阳地区住宅日照间距系数为1.1,旧城改造项目新建住宅日照间距系数为1.0,且不应低于大寒日日照1h的要求。

2建筑施工图设计中的主要问题

目前仍然有些工程送审的建筑施工图设计文件无《建筑节能设计》独立篇章,售楼部、汽车销售店或4S店、值班室等建筑均应严格执行节能设计标准。而有些工程虽然有《建筑节能设计》独立篇章,但也存在设计内容不全、指标不全或指标超限值未做权衡判断、编制深度达不到要求等问题。

根据《建筑工程设计文件编制深度规定》(2008年版)及《贵州省建筑节能设计审查要点》,建筑节能设计说明应该包含以下内容:a.建筑节能设计依据:GB50189-2005公共建筑节能设计标准(居住建筑不列此条)、DBJ52-49-2008贵州省居住建筑节能设计标准(公共建筑不列此条)、GB50176-93民用建筑热工设计规范;b.项目所在地的气候分区及围护结构的热工性能限值;c.建筑的节能设计概况、围护结构的屋面(包括天窗)、外墙(非透明幕墙)、外窗(透明幕墙)、架空或外挑楼板、分户墙和户间楼板(居住建筑)等构造组成和节能技术措施,明确外窗和透明幕墙的气密性等级;d.建筑体形系数计算、窗墙面积比(包括天窗屋面比)计算和围护结构热工性能计算,确定设计值。

3《建筑节能设计》专篇内容与节能计算书内容不一致

1)保温材料名称、厚度等不一致。这种情况会导致部分节能设计指标不能满足规范的要求,同时也会在施工时造成混乱,给建设单位的工作带来不少麻烦。

2)设计指标不一致。常体现为节能计算书中窗墙面积比、体形系数、材料的导热系数的取值、围护结构传热系数等指标的计算值与《建筑节能设计》专篇内容中的相应指标不一致。

3)引用的设计参数不正确。计算书中某些材料的导热系数、窗户的传热系数等取值错误或提供的数据来源不明,会造成部分设计指标不满足要求,影响节能效果。例如普通钢铝合金单框中空白玻璃6+9A+6窗的传热系数为K=3.9W/(m2•K),设计中却标为2.8W/(m2•K),有的甚至更低。

4)某些保温部位做法与构造表做法不符。

4容易忽略的问题

1)同一栋建筑既有公共建筑部分又有居住建筑部分,应分别进行节能设计。

2)居住空间楼板、分户墙未做节能设计。不少建设单位、设计单位反映,若建筑物已经是满足节能标准的节能建筑,居住空间楼板、分户墙若不做保温设计,也不会影响到该建筑物的节能效果。节能体系以一栋楼来考虑,南方地区为非集中采暖区则以一户来考虑,计算书是对整栋建筑进行整体耗能量计算,楼板、分户墙不参与计算,其数值大小对整栋建筑耗能量结果没有影响。居住空间楼板、分户墙不做保温,户与户之间会存在传热量损失,由于温度梯度的影响,室内温度一般底部比较低,顶部较高,上下楼所对应的房间温度往往会存在较大的差异。而在分户墙、楼板上采取一定的保温措施,所增加的造价并不大。《贵州省居住建筑节能设计标准》第5.2.1条表5.2.1-2温和地区围护结构限值中对居住空间楼板、居住空间分户墙的传热系数均要求不应大于2.0W/(m2•K)。计算表明,一般的楼地面的传热系数均大于2.0W/(m2•K)的要求,故设计单位在编制设计文件时要设计具体做法措施,不应标注如“用户自理”等这类不规范的说明。应该根据不同地区的气候特点加以区分。

5)屋面采用聚苯板保温材料,屋面与外墙交接处、屋面开口部位四周应设置宽度不小于500的A级保温材料隔离带。

6)应有节能设计平面示意图,标明节能设计位置、范围、做法、材料传热系数的出处。

7)要防止冷(热)桥部位发生结露。节能设计在满足地方标准的同时,更应该满足国家标准的要求,《民用建筑热工设计规范》和《贵州省居住建筑节能设计标准》都有相关条文规定,在保证达到室内温度要求的同时,要保证外墙内表面不结露,因而短肢剪力墙和厚度小于500mm的混凝土外墙必须做保温,方能保证内表面温度大于室内空气的露点温度。混凝土框架梁的内表面温度相应校核计算。一般情况下,厚度不小于200mm厚混凝土、保温材料厚度不小于20mm(保温材料导热系数不大于0.07W/(m•K))即可满足保温墙体内表面不结露的要求。

8)导热系数可以不加修正系数。GB50176-93民用建筑热工设计规范表中有建筑材料的导热系数修正系数附表3.2,且该表的修正系数也有使用条件,该系数是为了解决工程中一些不可避免的现象采取的修正值,如没有外粉刷的清水墙面,由于下雨和冷冻气候,材料容易吸水致使材料的导热系数加大,采用的砌筑砂浆和墙体材料的不一致性等影响。但是随着经济和技术的进步,这些“不可避免的现象”已经不再现有建筑体系中出现,外墙都有外粉刷层且具有一定的防水功能,主体墙体受水侵蚀的可能性已经减少,加上贵州省《居住建筑节能设计标准》中附表3.1中的传热系数计算值中,均按复合墙体的传热系数计算法计算,已经把灰缝的传热系数计入,并和实际热工检测结果基本相符。在实际工程中如果仍采用导热系数修正系数修正得到的传热系数只会比贵州省标准提出的传热系数更好,本着对节能有利的精神,用也没问题,但本着节约的精神,应该执行贵州省节能标准中的数据为好。

9)无架空楼板保温做法。

10)居住空间外门应有保温措施,应计算空调冷负荷、采暖热负荷。

5结语

第9篇

关键词:剪力墙高厚比位移比和周期比质心和刚心墙体稳定性

短肢剪力墙 地下室外墙

随着社会经济的发展和国家关于土地方面政策的下达,提高建筑容积率、节约土地是摆在我们面前的主要问题。所以高层民用建筑越来越受到人们的重视,并已得到普遍应用。这使得我们设计人员都有机会参与高层建筑的设计。高层建筑不仅房屋高度越来越高,建筑功能越来越复杂,而且立面造型也越来越要求完美。现在的建筑行业几乎都存在一个问题,只要方案一确定,向开发商提交施工图的时间已接近后期. 最终结构工程师怎样才能更快更好的完成结构设计呢?

众所周知,结构设计只有在方案阶段主动与建筑专业合作,用自身拥有的结构受力,变形的整体概念去构思结构方案。通过概念来确定结构设计方案的可行性。这样,在施工图设计阶段就不会引起较大的变更和反复,从而提高设计效率。

因为剪力墙在建筑上有布置灵活,室内无结构突出棱角,便于装修等优点。结构上有刚度大,在水平荷载作用下,侧位移少,能够抵抗较多的水平力等优点,因此在高层建筑结构中广泛被采用。

高层建筑剪力墙结构初步设计时总会遇到下面一些问题:位移比,周期比不满足规范要求;剪力墙之间连梁容易超筋,连梁截面高度加大更超筋;第一,第二振型出现结构扭转超标。这就需要结构工程师调整结构方案,建立合理计算模型,使得上述问题得到完美解决,并满足规范要求。

高层建筑剪力墙结构设计中,首先方案应合理布置,结构工程师应同项目建筑师共同分析建筑图,找出计算中可能存在的薄弱部位,扭转部位等。抓住主要矛盾,注意关键几步,那么在后来的模型计算或施工图审查中较容易过关。现把个人设计中的几点体会作简单总结,和设计同行们交流探讨。

1. 剪力墙布置原则。剪力墙布置要分散,双向,对称及沿建筑物周边等,以减少结构扭转效应。剪力墙截面形式一般采用L形,T形,十字形,应避免一字形截面。当房屋纵向长度超出规范限值时,剪力墙不宜集中布置在房屋两端。否则应在平面中适当部位设置温度缝或施工后浇带以减少混凝土硬化过程中的收缩应力影响。结构尽量布置一般剪力墙(墙肢截面高厚比大于8),局部布置短肢剪力墙(截面高度不大于300,墙肢截面高厚比在4~8之间)。当墙肢截面高厚比不大于4时,宜按框架柱设计,见《高层建筑混凝土结构技术规程》JGJ3-2010第7.1.7条。

2. 由于短肢剪力墙受力不利,规范要求较严且明确规定不应全部采用。结构还应布置一定数量的一般剪力墙, 见《高层建筑混凝土结构技术规程》JGJ3-2010第7.1.8条。当结构存在部分短肢剪力墙时,应在结构计算后看结果显示:1.底层短肢剪力墙所承担的地震倾覆力矩不宜超过结构总地震倾覆力矩的50%。2.底层短肢剪力墙所承担的地震倾覆力矩与结构总地震倾覆力矩的比值在30%~50%之间,按短肢剪力墙结构处理,从严采取措施,并满足规范关于短肢剪力墙的各项要求。2.底层短肢剪力墙所承担的地震倾覆力矩与结构总地震倾覆力矩的比值小于30%时,为一般剪力墙结构。

3. 剪力墙厚度。剪力墙厚度除一方面需满足建筑功能及节能要求,结构满足承载力,稳定性要求外,还需遵守相关规范的规定。规范有些条文看似简单,但真正实施却容易疏忽。《建筑抗震设计规范》GB50011-2010第6.4.1条明确规定剪力墙厚度按层高或无支长度的比例取值。

a. 抗震墙的厚度,一,二级不应小于160mm且不宜小于层高或无支长度的1/20,三,四级不应小于140mm且不宜小于层高或无支长度的1/25;无端柱或翼墙时,一,二级不宜小于层高或无支长度的1/16,三,四级不宜小于层高或无支长度的1/20;

b. 底部加强部位的墙厚,一,二级不应小于200mm且不宜小于层高或无支长度的1/16,三,四级不应小于160mm且不宜小于层高或无支长度的1/20;无端柱或翼墙时,一,二级不宜小于层高或无支长度的1/12,三,四级不宜小于层高或无支长度的1/16;

一般上部结构剪力墙厚度都注意按规范规定取值,却容易忽略地下室墙体厚度。结构建模中地下室部分一般是从上部一层复制。结构试算后,计算结果无异常。若此时地下室层高较大时,就会隐藏隐患。地下室外墙由于承受周边侧压力,墙体厚度一般取值较大。不会出现墙体厚度不满足规范要求。那么地下室内墙墙体厚度不满足规范规定问题,就会在校核阶段或施工图审查时暴露。《高层建筑混凝土结构技术规程》JGJ3-2010第7.2.1条规定,当墙体厚度不满足要求时,应按《高层建筑混凝土结构技术规程》附录D计算墙体的稳定。若墙体的稳定不足,结构施工图纸必然返工。

4. 剪力墙平面外楼面梁锚固。剪力墙在其平面内刚度及承载力很大,但平面外刚度及承载力却相对较小。当剪力墙与平面外的楼面梁连接时,会引起剪力墙平面外的弯矩,而一般情况并不验算平面外刚度及承载力。因此,当剪力墙平面外连接有楼面梁时,为了减少楼面梁端部弯矩对剪力墙的不利影响,《高层建筑混凝土结构技术规程》JGJ3-2010第7.1.6条采取如下措施。

a. 沿楼面梁轴线方向设置与其相连的剪力墙。

b. 当不能设置与楼面梁轴线方向相连的剪力墙时,宜在墙与梁相交处设置扶壁柱。扶壁柱宜按计算确定截面及配筋。

c. 当不能设置扶壁柱时,应在墙与梁相交处设置暗柱,并宜按计算确定配筋。

d. 必要时,剪力墙内可设置型钢。

e. 楼面梁水平锚固长度不足时,将楼面梁伸出墙面形成梁头,梁纵筋伸入梁头后弯折锚固。

对于以上措施,如果建筑平面布置允许,我们就按其中较合适的一项处理即可。但大多数情况以上措施不能执行。例如沿楼面梁轴线方向设置与其相连的剪力墙或扶壁柱时,作为剪力墙翼缘或端柱应满足《高层建筑混凝土结构技术规程》JGJ3-2010第7.2.15条表注第2条要求:翼墙长度小于其厚度3倍或端柱截面边长小于墙厚的2倍时,视为无翼墙或无端柱。

剪力墙与平面外的楼面梁连接部位一般情况下出现在下面部位:外墙转角处,分户墙处窗洞处,采光井处及建筑立面要求造型处等空间较小的位置处。如果按剪力墙翼缘或端柱取值规定,建筑平立面就会受到影响。碰到这种情况,个人一般处理如下:

a. 剪力墙厚度不满足楼面梁纵筋的锚固长度时。按钢筋受拉承载力设计值相等的原则将大直径纵筋换算成小直径,以减少锚固长度。

b. 剪力墙平面外增加短墙,以增加楼面梁纵筋的锚固长度。短墙可在施工图中直接编辑。也可输入模型中参与计算,不过在计算过程中会提示短墙警告,根据SATWE使用说明书,可以不作理会。

c. 采取机械锚固,在梁端增加短筋或钢板与纵筋焊接。

关于《高层建筑混凝土结构技术规程》JGJ3-2010第7.1.6第c点设置暗柱,结构模型通过PKPM程序计算后,混凝土剪力墙生成施工图时,如果梁端剪力较大时,在墙与梁相交处会自动设置暗柱,否则按以上几点处理即可。

5. 扭转振型位置不合理。由于开发商对建筑平面功能布置要求完美,及建筑立面造型的需要。建筑物很难做到完全对称。这样整栋建筑物质心和刚心位置必然存在差异,在地震作用或风荷载作用下产生结构扭转。如果结构方案布置不合理,扭转振型位置会出现异常。

一般结构方案布置合理,扭转振型会出现在第三振型以后。《抗震设计规范》GB50011-2010第3.5.3条也要求“结构在两个主轴方向的动力特性(周期和位移)宜相近”。但是结构方案布置后在最初的试算时扭转振型往往会出现在第二振型,甚至在第一振型。根据这几年的设计经验,扭转振型如果出现在第一,二振型时,通过人为调整,提高抗扭刚度。利用结构周期与刚度反比关系,提高需要减少周期方向的刚度或减少需要增大周期方向的刚度,可获得较好的效果。那么试试作以下处理:

a. 扭转振型出现在第一振型时,首先看看第一振型的结构自振周期数值。一般剪力墙结构自振周期按0.06n(n为层数),如果计算后结构自振周期远远小于0.06n,说明结构布置过刚,需减少结构内部刚度(如减少剪力墙数量,降低混凝土强度等级等)以达到减少平动周期,增加周边扭转周期的目的。扭转振型出现在第一振型,结构周期比(结构扭转为主的第一自振周期与平动为主的第一自振周期之比。《高层建筑混凝土结构技术规程》JGJ3-2010第3.4.5条:A级高度高层建筑不应大于0.9,B级高度高层建筑不应大于0.85)肯定不满足规范要求。

b. 扭转振型出现在第二振型时,且地震不利方向不超过15度时。说明结构沿两个主轴方向的抗侧移刚度相差较大,结构的抗侧移刚度相对其中一主轴的抗侧移刚度合理,但相对于另一主轴的抗侧移刚度过小,此时适当减少结构内部刚度较大的一主轴,并相应加强这主轴结构的刚度(如增加剪力墙长度或厚度,增加框架梁高度等),出现这种情况,结构周期比较难满足规范要求。

c. 扭转振型出现在第二振型时,且地震不利方向超过15度时。结构位移比(楼层的最大弹性水平位移或层间位移与该楼层两端弹性水平位移或层间位移的平均值之比,《高层建筑混凝土结构技术规程》JGJ3-2010第3.4.5条:A级高度高层建筑不宜大于1.2,不应大于1.5;B级高度高层建筑不宜大于1.2,不应大于1.4)较难满足规范要求。对于建筑平面特别复杂的时侯,容易出现这种情况。

首先查看平面质心和刚性位置图,根据两者偏移位置,合理调整结构构件布置,即加大质心一侧楼层抗侧力构件的刚度,如增加剪力墙长度或厚度;加大框架柱截面;增加框架梁高度等这样反复调整后,直到质心和刚性位置接近。两者位置很接近时,查看振型,周期计算结果WZQ.OUT,扭转振型已转移到第三振型,地震不利方向也不超过15度,结构周期比也满足规范要求。查看平面配筋图,会发现原来结构内部中跨高比很小的连梁有原来的超筋转变为正常的配筋。

6. 无上部建筑的地下室顶梁的裂缝控制。当地下室范围大于上部建筑时,有无上部建筑地下室顶梁是作为一个整体参与计算,所以在作施工图设计时很容易忽略一个问题,那就是无上部建筑的地下室顶梁的裂缝控制问题。这部分梁上部一般都有很厚的覆土,又处于露天环境。根据《混凝土结构设计规范》GB50010-2010第3.5.2条规定,环境类别应取为二a类。再根据第3.4.5条,环境类别为二类时,钢筋混凝土结构裂缝控制等级应为三级,最大裂缝宽度限制应为0.2。所以在作施工图设计时应对地下室顶梁按有无上部建筑分别对待。

7. 地下室外墙垂直分布筋放置位置。地下室外墙厚度一般远小于基础底板,地下室内墙间距又大小不等,有的相距较远。因此在工程设计中一般把地下室顶板和地下室基础底板作为地下室外墙的支点按单向板(单跨,两跨或多跨,具体看地下室层数)计算。计算时地下室基础底板处按固定端,地下室顶板处按铰支座处理。由于地下室外墙底部承受很大的负弯矩。为了增加地下室外墙截面有效高度,地下室外墙垂直分布筋应放在水平分布筋外侧。另外,考虑到混凝土硬化过程及受温度应力影响,地下室外墙与内墙交接处负弯矩效应等影响,可能产生竖向收缩裂缝,因此地下室外墙水平分布筋也宜适当增大。此时施工图中对于地下室外墙应加节点大样或说明其与上部剪力墙配筋形式的不同。

以上是个人在高层剪力墙结构设计中的几点体会,并已在工程实践中得以验证。作为结构工程师在结构设计中都会遇到各种各样的问题,我们应认真分析问题产生的原因,从中找到解决问题的办法,最终能更快更好的完成项目结构设计。

参 考文献

1)GB50010-2010《混凝土结构设计规范》中国建筑工业出版社 2010北京

第10篇

关键词:给排水设计师 项目设计

中图分类号:S611 文献标识码:A 文章编号:

对于给排水设计师而言,对于给排水专业的设计规范的熟悉和掌握应该不会有大的问题。但是笔者认为:对于一个好的给排水设计师而言,仅仅掌握专业的设计规范还不够,还需要掌握很多的“社会规范”;另外,在进行建筑给排水设计时,有些看似无关紧要而被忽视的问题,往往对一个项目起着至关重要的作用。笔者就自己所经历的一些工程,对于涉及到的给排水专业的“社会规范”以及容易被设计师所忽视的问题,略作阐述,和大家一起探讨,同时也希望能够对给排水设计师有所帮助。

一、要熟悉和掌握项目所在地政府部门的相关规定和具体要求

可能有些设计师会对此不以为然,然而根据自身的经历,笔者认为对于一个给排水设计师和房产开发的专业的管理工程师而言,熟悉和掌握项目所在地当地政府部门的相关规定,是十分必要的。笔者曾经经历过的四川成都的一个住宅小区的项目。成都市的住宅白坯房验收和交付的标准是:分户给水管(冷热水管)要全部安装到位,另外消防验收的标准是户外要设置消防取水口,取水口内的取水管要与室内地下室的消防水池相连通。而相比而言,笔者所在的宁波市的住宅白坯房的验收和交付标准是:分户给水就近的卫生间或厨房间安装一个水龙头即可,且给水管道明敷即可;另外消防室外取水口也不必要设。现在回想起来,成都的项目的设计单位多亏是当地的设计院,因而项目报批和验收备案等还算顺利;否则若是外地的设计单位,不了解成都当地的相关规定的话,那么后果可想而知。我们暂不去讨论成都和宁波两地政府的地方规定谁的更合理更科学,但对于给排水专业的设计师和房产开发专业工程师而言,只有深入了解项目当地的相关的规定和要求,才能使设计更合理更科学,顺利地通过审图备案和验收。

二、地下室的公变配电房内不要设置集水坑、潜水泵及其控制箱

这个问题我认为对于给排水设计师和房产开发专业工程师而言,也很重要。虽然有人会认为并无设计规范的相关规定,并且配电房内设置集水坑、潜水泵及其控制箱,在技术上是可行的,当然可能对于不太熟悉房地产开发程序的年轻的设计师和房产开发专业工程师而言,考虑这个问题只会从专业技术的角度出发可以理解。在此笔者在此解释一下,笔者之所以不建议在公变配电房内设置集水坑、潜水泵及其控制箱,是因为在今后项目的移交和维护管理上是不利和难以实现的,因为公变配电房的产权在项目交付后是归当地供电局的,平时配电房的门钥匙也是由供电局专门保管,而且供电局平时又无专人值班。如果在公变配电房内不要设置集水坑、潜水泵及其控制箱,那么潜水泵及其控制箱的日常的维护保养就无法实现。故而笔者认为应该将用于公变配电房的电缆沟的应急排水的集水坑、潜水泵及其控制箱设置于公变配电房外,将配电房电缆沟内的泄水管接至的配电房外的集水坑内,这样集水坑的潜水泵及其配电箱的日常的维护和保养才能实现。另外要补充的是:目前笔者所在的宁波市供电局内部文件已经明确要求房产开发单位,在公变配电房内不得设置集水坑、潜水泵及其控制箱。对于其它的城市,笔者认为也应按此执行。

三、社区用房的卫生间用水应该和物业分开,单独设表计量

对于这个问题,有些设计师可能会不以为然,当然,这种问题确实算不上是个技术问题,这样就会导致在房产项目开发过程中容易被忽视。在此笔者提出这个问题的初衷是想在设计阶段就把这个问题给解决好,免得在项目验收和交付时引起社区居委会和和物业的不满。目前就笔者经历和了解的一些住宅小区项目,社区用房和物业用房都或多或少存在用水混杂在一起,未分开单独计量的问题。最后导致的结果有三:一是在项目验收阶段,社区提出单独设置水表计量计费的要求,开发商为了验收没办法就要整改,导致延迟验收和项目交付;二是项目验收时未发现,而在交付后由物业公司负责施工,双方管道重新分开明敷,各自设表分开计量;三是物业和社区双方采取按照办公人员的多少按比例分摊水费的妥协策略。开发商会把社区用房和物业管理用房的公共厕所合并在一起,这就为今后二者的水费的分摊留下了不必要的隐患。笔者经历过宁波的一个住宅项目就曾遇到过这样的经历。在此笔者认为,若要避免双方用水混杂的话,物业用房和社区办公用房共用一个公共卫生间的情况应该尽量予以避免,应该卫生间分开设置,各自单独装表计量;若是由于面积的限制,各自单独设置卫生间无法实现的话,可以考虑将洗手盆改在各自办公室内,卫生间内仅设置大小便器的解决方案。

四、室内消火栓箱的选型要合理

在《建筑设计防火规范》和《高层民用建筑设计防火规范》中,并无消火栓箱的选择的具体明确的规定,而笔者认为:一个项目的室内消火栓箱选型的成功与否与给排水设计师和房产开发专业工程师的经验密切相关。目前,随着人们生活水平的提高,对于建筑的美观性要求也越来越高,对于房建项目而言,现在差不多都要对一些室内电梯前室等公共部位进行二次装修。而为了满足美观的要求,对于消火栓箱而言,就必须要选择暗敷形式安装。在此背景和共识的基础上,对于建筑室内暗敷消火栓而言,笔者认为应该采用160mm厚薄型的消火栓箱。笔者曾经经历过宁波的一个住宅小区项目,设计院设计的室内消火栓为240mm厚暗敷的消防箱,而众所周知,室内的分隔墙多数都是240mm厚的墙体,这样消火栓箱暗敷的结果就是墙体被全部敲穿了。虽然箱子的后面为管道井,背后美观上没什么大的影响,但是当消防验收时却因为满足不了耐火极限的要求而被迫进行在箱后重新砌筑墙体的整改处理。结果是不但进一步减小了管道井内的检修空间,而且因整改而导致项目的验收和交付都推迟了20天。故此笔者建议:今后室内公共部位暗敷的消防箱要采用160mm厚的薄型箱,这样既可满足消防验收的要求,同时又可满足二次装修美观的需要。

五、电梯前室等处暗敷的消防箱位置要尽量靠近管道井设置

笔者提出的问题设计规范和标准图集上没有相关的规定,但是这并不代表对于消防箱的位置的设置就随心所欲。笔者曾经经历过宁波的一个住宅小区项目,消防箱和管道井的位置如图所示:

这样的位置设计,致使消火栓支管施工时与土建之间的配合非常麻烦,程序非常繁琐:土建专业先砌好墙体同时粉刷硬化后,安装单位进行墙面开槽后,再敷设管道,而且墙体管槽部分的粉刷修补还要等到消防管道试压合格后才能进行。更严重的是安装消火栓支管(垂直部分)时,由于暗敷的要求,240mm厚的墙体被割穿了一多半,土建单位不得不又对被割的墙体进行加固处理,同时防止管槽部分今后粉刷后开裂,又对该处进行钉钢丝网后再粉刷的处理方法。鉴于以上经验教训,笔者认为:消防箱的设置位置是很重要的环节,在今后的给排水设计中,类似于电梯前室等处的消防箱的设置位置应该靠近管道井设置,这样消火栓支管只要垂直穿墙便可入箱,可避免像上图的消防管沿墙长距离暗敷情况的出现。

六、地下室的物业清洁卫生用水应该考虑设计

从目前的情况看,地下室物业清洁卫生用水几乎每个小区都实实在在地在使用,然而目前据笔者了解:在房产开发阶段,由于无设计规范的要求,房产开发单位也未对设计单位进行详细的设计交底,致使在房产开发的设计阶段多数的项目地下室物业清洁卫生用水都未曾考虑,至少笔者曾经经历过的几个项目,设计阶段大都没有考虑。而若在设计阶段没有考虑的话,在项目交付后只能由物业公司自己解决,或者从生活二次供水给水总管上接支管,或者就近在预留的人防给水总管上接水。但是若在项目交付后从二次给水总管上接支管,就要涉及到接管停水,还可能由于距离配水点可能比较远,敷设管道后甚至还会破坏到综合管线排位的整体美观效果;若从消防预留的给水总管上接水的话,就必须要征得当地的供水企业的同意,而据笔者了解到笔者所在的宁波市供水企业原则上是不允许人防给水改作其它用途的。对于目前上述比较常见的情况,笔者认为,应该在设计阶段预留出地下室的物业清洁卫生用水,比较可行的具体方案是:配水点分段设置在集水坑旁边,给水水源由室外的绿化或景观给水管就近由室外接入,而不应该采用生活二次给水总管上接。因为若从二次供水总管上接支管,一是二次加压不节能,另外地下室物业清洁用水的性质是商业用水,与居民用水性质不同,供水企业是不允许的。笔者所经历的宁波市的一个住宅小区项目,原来设计阶段时没有考虑地下室物业清洁用水,后根据建筑施工图布局,笔者自行设计考虑:将配水点考虑在靠近地下室外墙的集水坑处,由室外景观绿化给水管网就近引入。

七、地下室汽车库集水池的有效容积与污水泵的设计流量应该匹配

《建筑给水排水设计规范》GB50015-2003(2009版)第4.7.8.1条:集水池有效容积不宜小于最大一台污水泵5min的出水量,且污水泵每小时启动次数不宜超过6次。虽然规范的解释说明中未对该条进行解释,但笔者认为:之所以要配比集水池容积和污水泵流量之间的关系,目的就是要保证污水泵不能频繁启动,否则会影响水泵的使用寿命。另外,集水池的有效容积,笔者理解集水池的有效容积应该为集水池的满足污水泵正常吸水以及不致高位溢水的浮球控制的高低水位之间的水体积。然而,根据笔者所经历过的几个项目,大多数的地下室汽车库的集水坑的容积和污水泵的设计流量都不能合理的匹配。具体数据如下表所示:

由图中数据可以看出,按照规范要求的污水泵5min 出水量计算的集水池的有效容积和实际设计的集水池的有效容积之间相差较大。之所以会产生以上情况,笔者认为有以下两个原因:一、规范规定的第4.7.8.1条不是强制性条文,所以容易被给排水设计师所忽视;二、地下室车库的集水池的污水泵平时使用的频率小,除非在下雨、地面和水池水箱清洗或者事故漏水需要排水的时候才会启动使用,不像生活给水水泵或空调循环水泵那样长期使用,容易暴露出设计的缺陷。据笔者与一些物业公司接触了解到的是,地下室集水池的潜水泵的维修率比较高。据此,笔者认为:给排水设计师应该克服麻痹大意的思想,在设计阶段对建筑专业提出要求,在建筑条件允许的条件下,应该尽量保证集水池的有效容积和潜水泵设计流量的合理匹配,特别是对于多雨地区的地下室汽车库坡道下的集水池。

八、一层的排水横干管出外墙方案需要优化,出墙标高需要配合建筑专业进行复核

这个问题必须要引起给排水设计师的足够重视。据笔者多年的项目管理经验,几乎每个项目的一层排水出墙管或多或少都存在问题:主要有以下几种:

1、坡度无法满足设计规范要求

这主要是因为排水管的立管距离外墙太远,这主要在一些平面面积比较大的综合性的建筑,或者是一些底层是商铺,上部为住宅的商住楼项目中比较常见。解决的办法是:在方案设计阶段与建筑专业配合,合理布置卫生间和厨房间的位置,尽量靠近外墙布置;合理布置排水横干管的位置,例如对于酒店、写字楼或商住楼项目可以将常见的布置于地下室一层的排水横干管改为在一层的吊顶内布置,在靠近外墙的墙角或柱边弯下,穿入地下一层后再出外墙。

2、出墙后的标高太低,使得室外污水管坡度和标高无法满足

产生的原因:(1)布置排水管道的位置所经过的结构梁高比较高,排水管沿梁底敷设;(2)结构设计不合理,即排水管出外墙处的地下室顶板标高设计不合理。解决办法:(1)在设计阶段,和结构专业密切配合,除对排水管所经过的结构梁的标高进行复核外,还可以对结构专业提出修改梁高的要求,或者增加梁高使排水管穿梁,或者保证梁截面积的基础上加宽梁,减小梁高;(2)在设计阶段,给排水设计师必须要首先复核排水管出外墙处的地下室顶板的建筑标高(非结构标高),若不合理要对其提出修改意见。根据笔者多年的经验,对于高层或者超高层建筑来说,结构梁高应该有1000mm左右,室内排水管按照DN200考虑,室外市政排水波纹管按照最小DN250考虑的话,那么,排水管出墙处的地下室的顶板建筑标高应该在-1.600左右合适。

3、出墙管“误入”配电房或环网站等“”

这个问题的出现有可能的情况是:(1)地下室一层的配电房直接上方不是卫生间或厨房间,是商铺,但该区域商铺以上部分是住宅的卫生间或厨房间,住宅卫生间的排水管直接到底进入了地下室的配电房后再从侧墙出地下室;(2)给排水设计师的疏忽或是建筑专业提供的底图上“配电房”或“环网站房”未标注清楚;(3)建筑专业的失误,在配电房上面布置卫生间。解决的方案:配合建筑专业复核建筑图纸的正确与否;若是第一种情况的话,在商铺内将排水立管位置移位避开配电房或环网站敷设。

参考文献:

[1]《建筑给水排水设计规范》GB50015-2003(2009版)

第11篇

【关键词】暖通空调;设计;节能:安全

随着我国市场经济的不断发展,暖通空调逐渐从理论概念来到现实之中。如今,许多高层公共建筑都集中采用暖通空调系统。但是。随着暖通空调的广泛使用,也暴露出了现有暖通空调工程中的种种不足,尤其是在暖通空调的设计中存在的一些问题,影响到暖通空调的正常使用。造成暖通空调设计问题的原因有很多,既有设计人员实际工作经验不足,导致对规范不熟悉的原因,也有设计人员责任心不强,对工作敷衍了事的原因。要避免设计工作中出现失误,设计人员要加强自身的专业技能的学习,而且要深入到安装现场,与一线施工人员进行交流,丰富实践工作经验。在此基础上,要详细了解工程的使用情况,了解业主单位的反馈意见,使设计中出现的问题能够及时得以纠正,从而提高设计工作的质量。

1 违反设计规范和标准

1.1 室内外空气计算参数不符合规范要求

《设计规范》规定,冬季室内空气计算参数,盥洗室、厕所不应低于 12 ℃,浴室不应低于 25 ℃。然而,有的公共建筑的厕所、盥洗间(设有外窗、外墙)、住宅建筑的卫生间(冬季有洗澡热水供应,应视作浴室)未设散热器,很难达到室温不低于 12 ℃和 25 ℃的要求。还有的住宅建筑的厨房不设散热器,笔者以为不妥,住宅厨房室内温度亦应按不低于 12 ℃的要求设置散热器。

1.2 供暖热负荷计算有漏项和错项

《设计规范》规定,冬季供暖系统的热负荷应包括加热由门窗缝隙渗入室内的冷空气的耗热量。但有的工程在计算供暖热负荷时却未计算这部分耗热量,致使供暖热负荷出入较大;《设计规范》对围护结构耗热量计算各朝向修正率做了明确规定,北 0~10%,东、西- 5%,南- 15%~30%,而有的工程却将各朝向修正率变为北 20%,东、西 15%,南 - 5%,有悖于规范要求。

1.3 卫生间散热器型式选择不妥

《设计规范》规定,相对湿度较大的房间宜采用铸铁散热器。然而,不少工程的卫生间采用钢制散热器,亦未加强防腐措施,这是不妥当的。笔者曾看到有些办公楼的厕所采用钢制闭式散热器,但没使用几年,散热器的串片就被腐蚀了,剩下的两根光管也锈蚀严重。实践证明,此类场所最好采用铸铁散热器或铝制散热器。

1.4 楼梯间散热器立、支管未单独配置

《设计规范》规定,楼梯间或其它有冻结危险的场所,其散热器应由单独的立、支管供热,且不得装设调节阀。然而,有的工程将楼梯间散热器与邻室供暖房间散热器共用一根立管,采用双侧连接,一侧连接楼梯间散热器,另一侧连接邻室房间散热器,而且散热器支管上设置了阀门。这样,由于楼梯间难以保证密闭性,一旦供暖发生故障,可能影响邻室的供暖效果,甚至冻裂散热器。

1.5 供暖管道敷设坡度不符合规范要求

《设计规范》规定,供暖管道的敷设应有一定的坡度,对于热水管坡度宜采用0.003,不得小于0.002。然而,有的工程供暖供回水管坡度只有0.001~0.001 5。当然,如确因条件限制,热水管道甚至可无坡度敷设,但此时应保证管中的水流速不得小于0.25 m/s。

1.6 厨房操作间通风存在问题

《饮食建筑设计规范》(JGJ 64- 89) 对厨房操作间通风作了明确规定:(1)计算排风量的 65%通过排气罩排至室外,而由房间的全面换气排出 35%;(2)排气罩口吸气速度一般不应小于0.5 m/s,排风管内速度不应小于10 m/s;(3) 热加工间补风量宜为排风量的 70%左右,房间负压值不应大于5 Pa。然而,有的工程的厨房未设排气罩,仅在外墙上设几台排气扇;有的虽然设置了排气罩,但罩口吸气速度远小于0.5 m/s,选配的排风机风量不足。大多工程未设置全面换气装置,亦未考虑补风装置,难以保证室内卫生环境要求及负压值要求。

2 在工程设计中存在的问题

2.1 供暖入口设置过多

设置供暖入口时,既要考虑室内供暖系统的合理性,又要考虑与室外管线衔接的合理性,不能只图室内系统设计方便、省事,而不顾及室外管网系统。然而,有的工程供暖入口设置过多。如某 7 层综合楼,室内供暖系统分为 10 个环路(1~2 层 4 个,3~7 层 6 个),供暖入口设置亦达 10 个之多,同外线衔接点过多,几个方向均有,不仅给外线施工造成麻烦,也给将来室内系统调节带来不便。

2.2 供暖系统设计不合理

供暖系统设计存在不合理之处:①有的供暖系统由 1 条主立(干)管引进,分几个环路,分环上不设阀门,给系统运行调节、维修管理造成不便。②有的供暖管道布置不合理,与建筑专业不易协调,或供暖立管直接立在窗子上,既影响使用,又不雅观;或者供暖水平管道敷设在通道的地面上,既影响行走,又不便物品放置。③有的供、回水干管高点漏设排气装置,一旦集气,难以排除,影响系统使用。④有的供暖系统为同程式,一个环路单程长 300 m,致使供、回水干管坡度很难达到规范规定的不小于 0.002 的要求。⑤有的供暖系统为双侧连接,两侧热负荷及散热器数量相差悬殊,而两则散热器供、回水支管却取用相同管径,两侧水力不平衡,难以按设计流量进行分配。

2.3 排风系统设计不合理

如某工程地下室的暗厕(卫生间)等若干个生活用房和设备用房设一排风系统,水平风管长60 m,断面只有200 mm×200 mm,风阻较大;选用屋顶风机排风,却将风机安装在外墙上,显得很不协调。还有的工程的地下室设若干个包间(均为暗房),各包间均采用吊顶排气扇,排风经数十 m 长的水平风管排出室外,风管断面仅有150 mm×150 mm,阻力大,排风效果差。

2.4 厕所采用风机盘管时未加新风

厕所内既要满足温度要求,又要排除臭味,保证卫生要求。然而,有的工程的厕所既无排风,又无新风补给,单纯采用卧式暗装风机盘管供冷、供热,造成臭气自身循环,这是不妥当的。

2.5 锅炉房设计过于简化

《设计深度规定》对锅炉房施工图设计作了详尽的规定。然而,有的锅炉房设计,仅画了一个平面图,无任何剖面图和系统图,许多应该交代的内容未交代,距设计深度要求相差甚远。

3 问题原因及克服方法

对现行设计规范、规定、标准学习不够,贯彻执行不够,因此应加强对现行设计规范、规定、标准的学习,提高贯彻执行设计规范的自觉性。

设计过程中缺乏多方案技术经济比较,随意性较大。应像建筑方案设计一样,进行多方案比较,作出合理的设计。图纸审查不严甚至流于形式。应坚持三审(自审、审核、审定)制,确保设计(含图纸、计算书)质量,杜绝出现差错。

第12篇

1前言

因填筑地固结压密而产生地基沉降导致燃气管线受损,这种灾害的大部分都集中在管线与建筑物的连接处,地基产生不均匀沉降处及接头部位。汕头市华新城燃气管线因地基沉降而导致多处泄漏。

2华新城概况

汕头市华新城为住宅小区,已建住宅30栋住户1500余户,1994年开工,分多期开发建设,其建设用地为月埔镇的水稻田,回填土高度约3m,大部分用地回填半年左右即开工建设,田地淤泥层深度约0.8m。其配套的燃气工程为汕头市燃气建设公司承建并经营,气源为液化石油气,两级调压入户,中压庭院管压力为0.08MPa,低压管压力为0.003MPa,燃气表和用户调压器分别集中安装于一楼外墙或室外地坪的表箱内,见图la、b。

3沉降损害

根据现场调查,其沉降损害相当严重,两座多层房屋之间的单层建筑未作桩基处理,现已下沉20—30cm不等,从散水坡与房屋连接处测量其沉降量为15cm左右,散水坡与房屋水平位移2—3cm,部分出地立管接头松开后下沉10cm左右,因这种上下和水平方向的位移变化导致燃气表箱部位管线严重变形弯曲,80%的表箱部位管线螺纹接头多处泄漏,其泄漏率的分布大致为:弯头占9.62%,活接头占52.72%,三通占7.2%,其余为丝扣连结阀门、丝堵等。

4损害特征

华新城燃气表箱部分布管工艺多种多样,其损害情况复杂,大体分两类。

4.1表箱固定在外墙上

因表箱固定在外墙上,地基沉降发生的位移主要损害进口端出地立管、管架、阀门、表箱等。因沉降较大,管线的塑性变形无法满足沉降发生的位移。首先将出地立管固定支架拉脱离墙且立管在此处弯曲变型,继而将进口管往下拉,因表箱进口的限制导致进口管将表箱侧板压坏变形,分配管和箱内水平管发生倾斜。在此过程中对丝口部位施加拉应力削弱了丝口连接的预紧力可导致丝口松动而泄漏。虽然螺纹接口处的断裂荷载可大于钢管本身的6%,螺纹接口本应更可靠,然而,螺纹接头的变形能力与钢管本身相比较低,当地基沉降产生很大的相对变形集中于螺纹接头时,有时将破坏接头。

4.2表箱固定在室外地坪上

表箱固定在地坪上,室外地坪与建筑物的相对位移的增加主要影响表箱出口端管道,进口端管道损害相对较轻。因地面亮起,表箱不能与地下管发生同步位移,那么表箱进口端管道同样受到拉应力作用而可导致损害。出口端DN镀锌管因截面刚度小,弯曲变形严重。

5对策

(1)在房屋散水坡施工完毕,出地立管的固定管架应拆除或采用套管式固定支架,见图2,即可避免管道在此处应力集中,阻碍管线的下沉,又可保持立管在施工时的垂直度。

(2)表箱立于室外地坪,其进出口管线应考虑采用柔性连接,挂于建筑物外墙上的表箱只采用进口管柔性连接。柔性连接的可拉伸量应满足沉降的最大位移。

(3)垂直于建筑物的地下管线支管应因地制宜分级抬高埋设深度靠近建筑物见图3,这有利于提高支管的挠性,吸收地基的沉降位移,减少管沟开挖对建筑物基础的影响。

(4)出地立管穿过混凝土地面时须设置出地套管见图4,防止混凝土与管道固结,阻碍管线位移。

(5)采用塑性较好的材料。这是根据材料的屈服极限来考虑,对于钢管和PE管来说主要的破坏最集中在接点和端部固定端,但是钢管和PE管其接头都有较好的延伸性和较好的接头偏转角,基本可以根据其材料的屈服极限来确定。

(6)采用浅埋,减轻地基对管的压力。

(7)庭院管采用树技状连接,尽量缩减庭院管的长度,减少接点。

(8)利用管线自身弯曲,增大弯曲半径,减少弯头的使用量。

(9)采用不锈钢金属软管替代伸缩器。目前伸缩器的使用主要考虑温差对管线的影响,不能解决两端管线上下方向上的位移变化,地基的不均匀沉降将导致管线在伸缩器部位产生破坏,当拆除伸缩器后,两端管线无法对中,更换困难。

(10)减少与建筑物垂直靠近的上升立管数量,利用建筑物外墙绕行。

GB50028—93《城镇燃气设计规范》表5.3.2—1要求:埋地燃气管中压B级离建筑物基础水平净距为1.5m。外墙到基础距离约为0.6m,那么管线离外墙的距离应不少于2.1m,对于垂直靠近外墙的地下管出地立管是很难做到。

另外,对垂直于建筑物外墙的地下各支管也难保证与其它地下管线的安全距离。按照GB50180-93《城镇居住区规划设计规范》第8.0.2条要求:在非采暖区六种基本管线的最小水平间距,它们在建筑线的最小极限宽度约为10m,见图5。住宅的厨房厕所大都连在一起,在相应的室外地坪部位必然有给水、排水等地下管线和排水井、化粪池等设施,如果厨房位置在楼梯间旁,那么地下必然还有电力、电信管线和电力、电信井,各种地下管线在弹丸之地都要集中靠近建筑物,实际上是很难满足GB50028—93《城镇燃气设计规范》和GB50180—93《城镇居住区规划设计规范》的相关条款的安全距离要求。再加之地下管线各专业设计缺乏沟通,开发商协调不力以及施工的不规范,造成地下管线在集中部位相当混乱,很难保障燃气管线的安全距离。所以应减少垂直靠近建筑物的上升立管的数量,减少地下管与建筑物的连接点。

(11)应根据地质条件对地下管线进行抗震和抗沉降设计。

①汕头市地质地震环境

汕头市处于中国东部,北东一北北东走向的巨型新华厦构造第一沉降带,第二复式隆起带和东西走向的南岭构造跨越的地段,这三大构造单元交汇复合的附近,在地质历史上曾发生过多次构造运动,最强烈的是燕山运动,其构造变动以断裂作用最为显著。对汕头市区未来地震影响最大的断裂构造是北东向断裂构造的滨海断裂带和泉汕断裂带还有北西断裂带的河源断裂带。

②相关标准及法规的要求

根据GB-89《建筑抗震设计规范》第3.3.1条要求:对液化沉陷敏感的乙类建筑可按7度考虑,7-9度时,乙类建筑(国家重点抗震城市的生命线工程)可按原来裂度考虑。汕头为国家重点抗震城市,属8度抗震区。

③地震对地下管线的损害特征

a、烈度(地震影响强度或地面位移量)和场地土的影响:管道的震害率随烈度影响强度而增加,但烈度影响与场地土的影响比较居第二位。

b、地形地貌的影响:地形地貌的影响对管道震害也是很重要的,主要在地震时岸坡明显位移,回填土与原状土间震陷显著。

④地基沉降与地震的关系

这里说的地墓沉降是指一个长时间的地基固结压密过程,而由地震引起地基沉降是一个短时间团结压密过程,其作用结果都会导致地基的塌陷,地下及地面设施的损坏。地震波的作用会加剧现有的地基沉降量,而进一步损害燃气管线,造成难以估计的后果。

⑤地震对地下燃气管线的损害

现代燃气管线主要是钢制管道,国内聚乙稀塑料管也处在发展阶段,地下管线的三大大敌:腐蚀、地基的不均匀沉降与地震,其中最大的天敌是地震,地震不仅直接破坏地下管线的正常功能,而且可产生次生灾害(火灾,爆炸等),给国计民生带来重大损失和人员伤亡。地下管线如果遭到损害,必须逐段查找,只有当整个系统确认正常后才能恢复供气,恢复时间长,抢修困难。华新城地基的沉降为研究回填土对燃气管线的破坏提供了一个例证,同时也提醒我们应采取措施防止或减轻地基沉降和地震对地下燃气管线的损害,以保证地下管线的安全正常运行。

6结束语

(1)对于直埋管线基础的夯实,因为夯实只是表层的,所以场地土意义不大,且当多个专业同时在小区施工时,夯实很难达到其目的,而采用其它的地基处理方式,造价太高,所以,在允许沉降的基础上,采取上述措施。