HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 欧姆定律的实质

欧姆定律的实质

时间:2023-07-19 17:29:46

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇欧姆定律的实质,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

第1篇

在物理教学中物理定律的概念很多,物理定律是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表达式相同,就必须加以区别(如电阻的定义式与欧姆定律的表达式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

一、牛顿第一定律。采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的含义,引入了惯性的概念,是研究整个力学的出发点,不能把它当做第二定律的特例;惯性不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以......”教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

二、牛顿第二定律。在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应注意公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

三、万有引力定律。教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力常量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

四、机械能守恒定律。这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不做功或所做的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。

五、动量守恒定律。历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。

六、欧姆定律。中学物理课本中欧姆定律是通过实验得出的。公式为I=U/R或U=IR。教学时应注意:①“电流强度跟电压成正比”是对同一导体而言;“电流强度跟电阻成反比”是对不同导体说的。②I、U、R是同一电路的三个参量。③闭合电路的欧姆定律的教学难点和关键是电动势的概念,并用实验得到电源电动势等于内、外电压之和。然后用欧姆定律导出I=ε/(R+r)(也可以用能量转化和守恒定律推导)。④闭合电路的欧姆定律公式可变换成多种形式,要明确它们的物理意义。⑤教师应明确,普通物理学中的欧姆定律公式多数是R=U/I或I=(1/R)U,式中R是比例恒量。若R不是恒量,导体就不服从欧姆定律。但不论导体服从欧姆定律与否,R=U/I这个关系式都可以作为导体电阻的一般定义式。中学物理课本不把 R=U/R列入欧姆定律公式,是为了避免学生把欧姆定律公式跟电阻的定义式混淆。这样处理似乎欠妥。

七、楞次定律。可以采用探究教学法,让学生通过实验得到的结论归纳出定律。教学时应注意:①楞次定律是确定感生电流方向的规律,同时也确定感生电动势的方向。如果是断路,通常我们可以把它想象为闭合电路。②感生电流的磁场只能“阻碍”原磁通的变化,不能“阻止”它的变化,否则就不会继续产生感生电流。“阻碍”或者说“反抗”原磁通的变化,实质上是使其他形式能量转化为电能的一种表现,符合能量守恒定律。③要使学生熟练掌握应用楞次定律判定感生电流方向的3个步骤。④明确右手定则可看作是楞次定律的特殊情况,并能根据具体情况选用定则或定律来判断感生电流的方向。

(作者单位:河南省巩义市芝田镇第一初级中学)

第2篇

一、电磁学教材的整体结构

电磁运动是物质的一种基本运动形式。电磁学的研究范围是电磁现象的规律及其应用。其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等。为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的。透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学。对此,应从以下三个方面来认真分析教材。

1. 电磁学的两种研究方式。

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来。只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力。

场的方法是研究电磁学的一般方法。场是物质,是物质的相互作用的特殊方式。中学物理的电磁学部分完全可用场的概念统帅起来,静电场、恒定电场、恒定磁场、静磁场、电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容。

2. 物理知识规律。

物理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系。

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来。物理定律的形成,也是在物理概念的基础上进行的。但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性。

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律。欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的。欧姆定律的运用有对应关系。

电阻是电路的物理性质,适用于温度不变时的金属导体。

3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点。

电现象和磁现象总是紧密联系而不可分割的。大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着。电场的基本特性就是对位于场中的其它电荷有力的作用。运动电荷的周围除了电场外还存在着另一种场——磁场。磁体的周围也存在着磁场。磁场也是一种客观存在的物质。磁场的基本特性就是对处于其中的电流有磁场力的作用。现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态。

二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体

1. 场的客观存在及其物质性是电学教学中一个极为重要的问题。电场强度、电势、磁场磁感应强度是反映电、磁场是物质的实质性概念。电场线,磁感线是形象地描述场分布的一种手段。要进行比较,找出两种力线的共性和区别以加强对场的理解。

2. 电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用。在教学中要使学生认识场和受场作用这两类问题的联系与区别。

3. 认真做好演示实验和学生实验,使抽象的概念形象化,通过演示实验是非常重要的措施。把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练。安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力。从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上。

第3篇

根据物理学本身的特点,可把物理学科的学习方法概括为三要素:一是要科学地进行观察和实验,二是要重视对物理概念和规律的理解,三是要理论联系实际,下面给大家分享一些关于高一物理的学习小技巧,希望对大家有所帮助。

一、物理现象观察法物理学是以实验为基础的科学,初中物理要求学生具有的观察能力主要是:有目的地观察,明了观察对象的主要特征及其变化的条件。观察物理现象应该做到:

1.激发主动性

学生应激发自己对物理现象观察和学习物理知识的兴趣,主动性和自觉性,助力物理意识。

2.明确观察目的

要明确具体的观察目的,观察中心,观察条件和范围。

3.准确记录

观察时,要准确记录物理现象的发生、发展和终结全结论,写出观察报告。

二、物理实验法物理学是一门以实验为基础的科学。物理实验不仅要了解它提供的实验结果,更重要的是掌握实验的构思方法和研究物理问题的思路。物理实验可分为;观察实验、验证实验、探索性实验、模拟实验和思想实验等。实验学习应该注意:

1 .树立严谨的科学态度

要一丝不苟地进行实验,实事求是地记录,不放过任何一个现象变化和细节。

2.构思方法技巧

实验构思的主要方法有:(1)放大与扩展;(2)间接观察后再作推论;(3)模拟类比(4)思想实验(理想实验) 如:伽俐略的斜面实验中,在水平面上依次铺上毛巾、棉布、木板、玻璃板,测量其小车滑行的距离,再得出结论:平而越光滑,小车运动的距离越远;根据实验事实推理;若平面完全光滑,小车将运动到无穷远,即一直运动下去不会停下来,由此总结出“惯性定律”。

3.实验要求

进行物理实验时,要了解物理实验的目的,会正常使用仪器,会作必要的记录,会根据实验结果得出结论,会写简单的实验报告和进行简单的误差分析。

三、物理概念学习法一个物理概念,它是某类型物理现象的概括;是物理知识的核心内容之一。学习物理概念应该注意:

1.归纳概括

就是将物理进行分类比较,将同一类型的物理现象的共性找出来,概括并能说明这一类型的物理现象的本质特征。例如;“质量”概念,各个物体的物质组成不同,但“物体所含物质的多少”就是物体的共性,即质量,与物体的形状,所处的状态,地理位置和温度无关。

2.实例联系

抽象概念的理解是困难的,如果把“概念”放在实例中去记忆,去理解,就要简单得多,也就要容易区分相关因素和无关因素,找出共同特征。如“蒸发”概念,对应水在任何温度下都能蒸发,且需吸热,就能够很快地对“蒸发”概念理解透彻。

3.内涵与外延

不能将物理概念任意外推,如果这样就会导致概念与事实不相容的矛盾。例如:“惯性”这个概念,它说明一切物体都具有的保持其原来的运动状态性质,物质运动静止,不是因为物体是否受力,而是物体具有“惯性”。受力与否,是决定物体运动状态变化与否的必要条件。两千多年前,古希腊科学家亚里斯多德认为:“力是维持物体运动的原因”,他之所以错误,就是没有概括出物体运动的本质特征。

四、物理定律学习法物理概念和物理规律是物理知识的核心内容,是物理课中的基础知识,物理定律是通过归纳大量事实和实验中认识的客观规律后形成的科学结论。如牛顿第一定律、欧姆定律、焦耳定律、阿基米德原理等。学习物理定律应该注意:

1.准确理解物理定律的物理意义

知道物理定律的内容,理解其实质,能用准确的语言表述,能联想一个实例。

2.明确物理定律的适用条件

物理定律是客观规律的总结,但它并不一定在任何条件下都成立。因此,不能忽视物理定律所适用的范围和条件。如:热平衡方程“Q吸=Q放”的成立条件是:系统与外界无热交换。若系统与外界有热交换,则只能在不计一切热损失的条件下才能成立。

3.弄清各物理量间的相互联系

弄清各物理量间的相互联系,透彻理解各概念;知道定律的建立(或帐号)过程,重视各部分知识间的联系,把前后概念连贯起来,从而使知识系统化、条理化。

4.建立物理定律所对应的模型

对每一个物理定律,都应记住它所对应的模型或典型范例。要了解它的研究对象,研究对象的运动状态等。如:“反射定律”的典型范例是平面镜成像。

5.记住物理定律所对应的典型实验

物理定律的基础是物理实验,应将物理定律与相应的典型实验对应起来,有利于对物理定律的理解和深化。如:“阿基米德原理”所对应的典型实验就是“排液法”测浮力,“欧姆定律”所对应的典型实例就是研究“电压与电流强度的关系”实验。

五、物理公式学习法物理公式(含物理定律的数学表达式)是物理学成熟的重要标志.从定性到定量的研究,使物理现象从经验升华到科学。物理公式一般可分为三大类:

1.定义式

它是对一类问题的概括性表达式。表示某一物理概念的意义。使用这类公式,不能简单地从数学角度看,而应透过数学表达式这个现象,去领会它的物理实质。如密度p=m/V,绝不能认为密度与质量M成正比,与体积V成反比,密度是物质自身的特性,由物质的种类决定,与物体的质量和体积无关。同理,电阻的定义R=U/I也是如此,电阻R由组成电阻的材料、长度、横截面积来决定。

2.物理定律、规律、原理表达式

它揭示了这一类物理现象在运动变化过程中所遵循的法则,使用时,要特别注意这类表达式的运用范围和条件。例如:液体压强公式P=≥gh,它表达了液体在内部各处产生的压强所遵循的规律,它的适用范围是:静止液体,应特别注意的是,h是从液体上表面往卜测量的深度,而不是通常意义上所说的高度。

3.计算式

第4篇

一、电磁学教材的整体结构

电磁运动是物质的一种基本运动形式.电磁学的研究范围是电磁现象的规律及其应用.其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等.为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的.透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学.对此,应从以下三个方面来认真分析教材.

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.

场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电尝恒定电尝恒定磁尝静磁尝似稳电磁尝迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.

“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.

“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.

2.物理知识规律物

理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系.

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来.物理定律的形成,也是在物理概念的基础上进行的.但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性.

第二册第一章“电潮重要的物理规律是库仑定律.库仑定律的实验是在空气中做的,其结果跟在真空中相差很小.其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况.

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律.欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的.欧姆定律的运用有对应关系.电阻是电路的物理性质,适用于温度不变时的金属导体.

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念.

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律.在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线.本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础.电磁感应的重点和核心是感应电动势.运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的.

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步.麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步.

3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的.大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着.电场的基本特性就是对位于场中的其它电荷有力的作用.运动电荷的周围除了电场外还存在着另一种唱—磁场.磁体的周围也存在着磁场.磁场也是一种客观存在的物质.磁场的基本特性就是对处于其中的电流有磁场力的作用.现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态.

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用.所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的.麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场.按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场.电磁场由近及远的传播就形成电磁波.

从场的观点来阐述路.电荷的定向运动形成电流.产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场.导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷.当导体中电势差不存在时,电流也随之而终止.

二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体

1.场的客观存在及其物质性是电学教学中一个极为重要的问题.第一章“电潮是学好电磁学的基础和关键.电场强度、电势、磁尝磁感应强度是反映电、磁场是物质的实质性概念.电场线,磁感线是形象地描述场分布的一种手段.要进行比较,找出两种力线的共性和区别以加强对场的理解.

2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用.在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等.场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度.在电场中用电场力做功,说明场具有能量.通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了.

3.认真做好演示实验和学生实验,使“潮抽象的概念形象化,通过演示实验是非常重要的措施.把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练.安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力.从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上.

第5篇

一、伏安法测电阻

此法重在考查一些电学基础知识、学生对书本中“伏安法测电阻”实验的掌握情况以及在学习过程中的动手实验情况,题目具有一定的综合性。

例1(2010年镇江市)小明做“伏安法测电阻”的实验时,

(1)按1甲所示电路图,用笔画线代替导线将实物连接完整。电压表选用0~3 V量程。

(2)闭合开关后,发现电流表示数为零,电压表有明显偏转,则电路中发生断路的器件是。

(3)改正电路后开始实验。前两次的实验数据已填在下面的表格内,第三次实验时电流表的示数如图2所示。请将表格中的空白处填写完整。(计算结果保留一位小数)

实验次数电流/A电压/V电阻/Ω10。302。58。3 20。262。18。1 31。6测量结果

R=Ω解析(1)、(2)两问着重考查学生的电学综合知识、动手操作的能力以及故障分析的能力;第(3)问考查“伏安法测电阻”中测量三组数据的目的、求电阻的平均值、电流表的读数以及利用欧姆定律的公式进行计算等基础知识。

答案(1)略(2)定值电阻R

(3)0。2 A8。0Ω8。1 Ω

二、等效替代法测电阻

“等效替代法”是一种常用的物理研究方法。在苏科版九年级上册物理课本《欧姆定律》一章中,以习题的形式明确提出了用“等效替代法”测量电阻的方法。一般注重考查学生对“等效替代法”的理解,以及运用该方法测电阻的基本操作。

本题考查的知识点有两个。一是,平均速度等于时间中点的瞬时速度即v1=v2;二是,时间中点的瞬时速度小于位移中点瞬时速度即v2<v3。

实际上,学生只要把握了其中任意一个知识点,剩下的就会不攻自破。因为,符合v1=v2的只有一个选项C,符合v2<v3的也只有一个选项C.这样的试题对学生的考察效果,自然打了折扣。

当然,选择题的命题还有其它的原则,这里仅就一道中考题中出现的问题进行一点简单剖析,供大家命题时参考。

【作者单位:(236400)安徽省临泉第一中学】例2(2010年南京)小明设计了一种测量未知电阻Rx的实验方案,并选择合适的器材测量,电路如图3所示,电源电压恒定,滑动变阻器最大阻值未知,在A、B两点间接人的元件每次只能是电阻箱或未知电阻Rx。

(1)请你帮他完成相关实验内容。

①将接入A、B两点间;

②闭合开关,移动滑动变阻器滑片到某一合适位置时,记下;

③断开开关,取下A、B间的元件,将接在A、B两点间;

④闭合开关,调节,使;

⑤读出,即可知道Rx的阻值。

(2)小明测量电阻的方法在科学研究中经常用到,下面四个实例中,采用这种研究方法的是

A.力是看不见的,可以通过力的作用效果认识它

B.根据磁铁吸引大头针多少判定磁铁磁性的强弱

C.用总电阻表示同一段电路中串联的两个电阻

D.用磁感线的疏密程度表示磁场的强弱

解析此题把书本“等效替代法”测电阻的题目中的电流表改成了电压表,并把考查方式加以改变,重在考查学生对“等效替代法”的理解及操作。

答案(1)①Rx②电压表的示数③电阻箱④电阻箱电压表示数与原来相同⑤电阻箱的示数(2)C

三、特殊方法测电阻

所谓特殊方法测电阻是指在题目所给的器材不全的情况下所采用的测电阻的方法,常见的有以下几种情况。

1。缺少电流表的情况

例3(2010年南通)实验室中要测量一个阻值约为数百欧的电阻。提供的器材有:电源(电压约5 V)、学生用电压表(0~6 V)、电阻箱R(0~9999 Ω5 A)、开关S1和S2、导线若干。现要测量待测电阻Rx的阻值,设计了如图4甲所示的实验电路图。

(1)小虎进行的实验过程如下。

①根据实验电路图,连接成如图乙所示的实物电路,但存在连接错误,只需改动一根导线,即可使电路连接正确,请在接错的导线上打“×”,并用笔画线代替导线画出正确的接法。

②电路连接正确后,闭合S1,将S2拨到触点1时,电压表的读数为U1,则电源电压为。

③闭合S1,将S2拨到触点2,当电阻箱的阻值调为R0时,电压表的示数为U2,则待测电阻的阻值Rx=。

(2)如果实验器材中没有提供电压表,现再提供一只电流表(0~0。6 A),利用上述器材,你认为(选填“能”或“不能”)较准确测出该待测电阻的阻值,原因是。

解析本题的第(1)小题考查学生在缺少电流表的情况下,如何测量电阻。在缺少电流表但有已知电阻的情况下(电阻箱可当做已知电阻),可以利用串联电路电流相等的规律来测算电阻。第(2)小题主要考查学生的审题能力,电压约为5 V,但所测量的电阻阻值大约数百欧,其电流很小,电流表无法测量。大多数学生由于审题时没有注意到“阻值约为数百欧的电阻”这一信息,而无法解题。

答案(1)①略②U1③U2R0U1-U2

(2)不能原因:所测电阻阻值过大,电流过小,电流表无法测量

2。缺少电压表的情况

例4在实验室测量电阻的实验中,老师提供了下列器材:电压恒定的电源一个(电压未知),定值电阻R0一个(阻值已知),待测电阻Rx一个,滑动变阻器一个,量程合适的电流表一个,单刀开关两个,导线若干。请在给出的器材中选用一些进行组合,完成实验。

①画出实验电路图。

②写出实验的主要步骤。

③写出Rx的表达式。

解析本题最显著的特点是器材中缺少电压表,无法直接测量电压。可以利用并联电路各用电器两端电压相等的规律进行间接测量;也可以利用电源电压不变的特点,采用局部短路的方法测出电源电压后,再用串联电路的电压特点及欧姆定律进行计算。

解法1利用并联电路各用电器两端电压相等的规律进行间接测量

(1)实验电路见图5。

(2)主要实验步骤:①将电流表与R0串联,测出通过R0的电流,记为I1;

②将电流表换为与Rx串联,测出通过Rx的电流,记为I2。

(3)Rx的表达式:Rx=I1R0I2。

解法2利用电源电压不变的特点,采用局部短路的方法测量

(1)实验电路见图6。

(2)主要实验步骤:

①将S1、S2都闭合,测出通过R0的电流I1,则电源电压为I1R0;

②将开关S1闭合,断开开关S2,测出通过R0和Rx的电流I2;

(3)Rx的表达式:Rx=I1R0-I2R0I2。

例5某同学在做“伏安法测电阻”的实验时,连好电路后发现电压表坏了,如图7。你能在不增加器材,不拆开电路的情况下,利用原来的电路测出待测电阻的值吗?(滑动变阻器的最大电阻为R)写出主要实验步骤及Rx的表达式。

解析此题仍然是缺少电压表的题型。很明显,在这种情况下,滑动变阻器应当做定值电阻使用,以增加可利用的条件。

难点在于,不拆开电路,也不增加器材的情况下,如何解决电压测量的问题,唯一可以利用的是电源电压不变。

解法(1)实验步骤:

①将滑动变阻器的滑片移到变阻器的最左端,记下电流表示数I1,此时变阻器电阻R=0,电源电压可表示为U电源=I1Rx;

②将滑动变阻器的滑片移到变阻器的最右端,记下电流表示数I2,此时变阻器电阻阻值最大为R,电源电压可表示为U电源=I2(Rx+R);

③根据电源电压不变可得

I1Rx=I2(Rx+R);

(2)Rx的表达式为Rx=I2RI1-I2。

第6篇

一、物理概念的教学

所谓物理概念是对物理现象和过程的认识,是以精辟的思维形式表现知识的一种手段,是物理现象的特有属性在人脑里的反映。这里讲的物理概念特指无量度公式的物理概念(如:平动、质点、惯性、简谐振动、电场、光的干涉、光的衍射、汽化、蒸发等)。

1.物理概念的教学是物理教学的基础

首先,理论体系的基础都在物理概念,它们占据了物理教学的大半课时。

其次,物理基础知识中的公式、原理、定律都是用概念作为引线,对有关基础知识作有机串联,形成系统化的概念体系。

所以,要重视物理概念教学。学好、掌握并真正理解它们的含义有利于学生掌握基础知识,培养学生学习物理的兴趣。

2.物理概念的教学方法

(1)对物理现象、过程获得必要的感性认识。在教学中,要重视感性认识,为了在感性认识的基础上进行分析,教师必须从有关概念包含的大量事例中,精选那些包括主要类型的、本质联系明显的典型事例进行教学,获得感性认识。

(2)在科学抽象中,突出本质,找出事物的属性。在感性材料认识的基础上,进行分析、比较,找出它们的共同属性,引导学生归纳、总结得出概念。

(3)明确概念,灵活应用。对感性材料进行“科学的抽象”得出结论后,还要了解概念的外延,从概念出发,引导学生拓展,解决一些实际问题,加深对概念的理解和应用。

二、物理定律的教学

物理定律是反映物理量之间的本质联系,因果关系与严格的数量依存关系;凡有关教材中的众多公式,重要推论和原理都可以由它引导与推得。

1.物理定律的教学是物理教学的重点

首先,物理概念,物理量的学习只是一些支离破碎的物理知识,从结构体系上看,这些物理概念,物理量无主心骨,缺乏凝聚中心,所以只有以物理定律作组织的枢纽,物理教学才显得有起有合、能散、能收、内容丰富,形成一个完整的知识体系。

其次,学习的目的不是为了学习而学习,而是为了应用而学习,物理定律就是物理概念,物理量的具体应用。

此外,和物理量的教学一样,物理定律的教学同样能开发学习智力,培养学生思维能力,促进学生个性的发展。

2.物理定律的教学方法

(1)引入新课。在备课中思考,怎样循循善诱,巧妙而有效地向学生交代教学的目的,并转化为学生学习目的,引入新课。

(2)重视实验。物理教学的特点在于突出物理实验。在物理定律的教学上又有特殊性,就是突出定量的演示实验与学生实验,且要做好、做准。以提供学生发现物理规律的必要条件与学习环境。引导学生设计实验装置,学会运用物理实验方法来研究提出的新课题。

(3)弄清物理定律的物理意义与适用范围。学生认识物理定律后,首先要正面理解物理定律的语言表达;其次,要弄清物理定律的数学表达式的真正含义,把和它相邻的公式以及由它导出的公式从物理意义上划清界限,以免混淆不清。例如,就欧姆定律来说,它的数学表达式I=U/R要与电阻的量度公式R=U/I,电阻定律的表达式R=ρL/S和导出公式U=IR的含义都区别开来。此外,还要指明它的适用范围。任何一个物理定律,都是在一定条件下,运用物理的理想过程和理想实验的思想方法得到的。因此,每个定律都有它的适用范围。例如,机械能守恒定律(适用于只有重力和弹力做功的条件下);库仑定律(适用于真空中的点电荷)等。只有知道了它们的物理意义和适用范围,才有利于学生掌握和应用。

三、物理量的教学

物理概念建立量的观念,有量度公式(长度、质量、时间除外,它们是人为规定无量度公式的物理量)的物理概念叫物理量(如:加速度、电场强度、电动势、频率、功、发光强度、折射率等)。

1.物理量的教学是物理教学的关键

(1)物理量是联系关联的概念之间的关系,是物理概念与物理定律的桥梁,有承上启下的作用。

(2)物理量教学可以开发学生智力与培养学生思维能力。心理学讲:“人的思维活动是凭借概念与词汇开展的”。在物理教学中最要紧的是活跃学生头脑里的物理思维活动,无论是物理思维或运用物理思想方法进行研究,都离不开明确的物理里。例如在教电学时,只有学生理解电流强度、电阻、电压三个物理量的基础上,通过演示实验,才能引导学生判断这三个物理量的关系,导出欧姆定律。这样教会学生运用实验与数学相结合的物理科学方法,可以开发学生智力与培养学生思维能力。

(3)物理量教学在发展学生个性上有积极推动作用。历代物理学家的重大发现,都是由他们高度发展的抽象思维能力与兴趣、意志、信念等的智慧结晶。其中促使他们这种个性充分发展的因素,往往都是由于大量实验的物理现象中所形成的新的物理量作导航。例如牛顿的经典力学就是以力、质量、加速度等物理量为出发点,导出牛顿运动定律的结果;法拉第就是由于电动势,磁通量等物理量的提出而导致法拉第电磁感应定律的发现。所以就充分发展学生个性看,要使学生明确物理量。

2.物理量的教学方法

(1)物理量的引入。讲授物理量时,首先要介绍建立物理量的过程,搞清为什么要引入该物理量。新的物理量的引入,不管采取什么方式,为了获得最佳教学效果,所提出的问题必须满足三个条件:一要反映学习这个物理量的客观性与必要性;二要巧妙的把它的教学目的转化为学生的学习目的;三要激起学生的求知欲。例如讲加速度时可以这样引入:“人走路、马拉车、汽车跑、飞机飞,除了运动快慢程度不一样,还有什么不同(速度改变的快慢不同)。不同物体、速度的改变快慢不同,尽管是同一物体(汽车),在不同时间(起动、刹车)速度的改变快慢也不一样,为了描述速度改变的快慢程度而引入加速度这一物理量”。定性的分析引出物理量后,还要定量的研究它的定义式。

(2)建立量的观点,导出量度公式。物理量定量的研究,需要由演示实验、学生实验测出精确的物理量值,运用数学工具来研究它与有关物理量之间的严格数量依存关系,给物理量下定义。例如电场强度,通过实验测出检验电荷在电场中某一固定点所受的电场力跟它本身电量的比值始终是一恒量,不同的点,这一比值不同。

定义:电场中某点检验电荷在该点所受的电场力跟它本身电量的比值叫该点电场的电场强度、方向跟正电荷受力方向相同。(公式:E=F/q方向:跟正电荷受力方向相同,单位:牛顿/库仑)

物理学中的物理量用数学形式表达成物理公式后,显得特别简单、明确,便于运用它来进行分析、推理、论证。所以数学知识是研究物理问题的工具,用好数学对解决问题是很必要的,但是却不可以单纯从数学角度看待物理问题。物理量的学习,不能死记、强背、硬套。要理解性记忆,实质性掌握,灵活性应用。

第7篇

【关键词】:师范学校 教学探究 物理定律

一、 物理教学中物理量与物理定律之间的关系

物理定律是反映物理量之间的本质联系,因果关系与严格的数量依存关系;凡有关教材中的众多公式,重要推论和原理都可以由它引导与推得。物理概念建立量的观念,有量度公式(长度、质量、时间除外,它们是人为规定无量度公式的物理量)的物理概念叫物理量(如:加速度、电场强度、电动势、频率、功、发光强度、折射率等)。

物理量教学在发展学生个性上有积极推动作用。历代物理学家的重大发现,都是由他们高度发展的抽象思维能力与兴趣、意志、信念等的智慧结晶。其中促使他们这种个性充分发展的因素,往往都是由于大量实验的物理现象中所形成的新的物理量作导航。例如牛顿的经典力学就是以力、质量、加速度等物理量为出发点,导出牛顿运动定律的结果;法拉第就是由于电动势,磁通量等物理量的提出而导致法拉第电磁感应定律的发现。所以就充分发展学生个性看,要明确认识到物理量是师范物理教学的重要一环。此外,和物理量的教学一样,物理定律的教学同样能开发学习智力,培养学生物理思维能力,促进学生个性的发展。

二、 物理定律的教学探究

1、引入新课。物理量的学习只是一些支离破碎的物理知识,从结构体系上看,这些物理概念,物理量无主心骨,缺乏凝聚中心,所以只有以物理定律作组织的枢纽,物理教学才显得有起有合、能散能收、内容丰富,形成一个完整的知识体系。在备课中思考,怎样循循善诱,巧妙而有效地向学生交代教学的目的,并将物理定律的学习转化为学生学习目的,引入新课。

2、重视实验。物理教学的特点在于突出物理实验。在物理定律的教学上又有特殊性,就是突出定律的演示实验与学生实验,且要做好、做准。以提供学生发现物理规律的必要条件与学习环境。引导学生设计实验装置,学会运用物理实验方法来研究提出的新课题。

3、建立量的观念、会用数学公式表示。做定量的演示实验时,要提醒学生,哪个值不变,测哪两个物理量之间变化的对应值,作好实验记录,将其中准确的计算值列入设计好的表格中,运用数学方法,找出确切的数学表达式。一般以运用比例与研究比值的数学工具较多。例如,当m一定时,a∝F;F一定时,a∝1/m,a∝F/m改写成等式a=KF/m(当统一采用国际单位制时,K=1)所以a=F/m或F=ma,这就是牛顿定律的数学表达式。在教学中,应该把这种运用数学研究物理定律的方法交给学生,要求学生学会掌握。

4、弄清物理定律的物理意义与适用范围。学生认识物理定律后,首先要正面理解物理定律的语言表达;其次,要弄清物理定律的数学表达式的真正含义,把和它相邻的公式以及由它导出的公式从物理意义上划清界限,以免混淆不清。例如,就欧姆定律来说,它的数学表达式I=U/R要与电阻的量度公式R=U/I,电阻定律的表达式R=ρL/S和导出公式U=IR的含义都区别开来。此外,还要指明它的适用范围。任何一个物理定律,都是在一定条件下,运用物理的理想过程和理想实验的思想方法得到的,因此,每个定律都有它的适用范围。例如:库仑定律(适用于真空中的点电荷);机械能守恒定律(适用于只有重力和弹力做功的条件下)等。只有知道了它们的物理意义和适用范围,才有利于学生掌握和应用。

三、 物理量的教学方法探究

1、物理量的引入。讲授物理量时,首先要介绍建立物理量的过程,搞清为什么要引入该物理量。新的物理量的引入,不管采取什么方式,为了获得最佳教学效果,所提出的问题必须满足三个条件:一要反映学习这个物理量的客观性与必要性;二要巧妙把它的教学目的转化为学生的学习目的;三要激起学生的求知欲。例如讲加速度时可以这样引入:"人走路、马拉车、汽车跑、飞机飞,除了运动快慢程度不一样,还有什么不同(速度改变的快慢不同)。不同物体、速度的改变快慢不同,尽管是同一物体(汽车),在不同时间(起动、刹车)速度的改变快慢也不一样,为了描述速度改变的快慢程度而引入加速度这一物理量"。定性的分析引出物理量后,还要定量的研究它的定义式。

2、建立量的观点,导出量度公式。物理学中的物理量用数学形式表达成物理公式后,显得特别简单、明确,便于运用它来进行分析、推理、论证。所以数学知识是研究物理问题的工具,用好数学对解决问题是很必要的,但是却不可以单纯从数学角度看待物理问题。例如,根据场强定义式E=F/q,不能单纯从数学角度看,认为E跟分子成正比,跟分母成反比。类似的还有电容C=Q/U电势φ=EP/q电阻R=U/I等。又如,加速度a1= - 8m/a1,a2=5m/a1,不能单纯从数学角度判断a1小于a2。对于物理量,要掌握它的物理意义,理解物理量定义的物理过程与真实的含义。例如电学中电动势的定义式:ε=W/q和电压的表达式:U=W/q,数学符号相同,单位都是伏特,如果学生不理解它们的物理过程与物理含义,就会混淆不清,感到莫名其妙。总之,物理量的学习,不能死记、强背、硬套。要理解性记忆,实质性掌握,灵活性应用。

参考文献:

第8篇

自学能力是一个人获得知识和更新知识的重要能力,也是一个人的一种基本素质。中学教师必须充分重视并不断地培养和增强学生的自学能力,不但要向学生传授知识,而且要教给学生学习的方法,以及研究问题和解决问题的方法,增强学生自我获取知识的方法和能力。

九年义务教育初中物理教学大纲明确指出:“自学能力对每个人都是终身有用的,阅读是提高自学能力的重要途径。培养学生的自学能力,应从指导阅读教科书入手,使他们学会抓住课文中心,能提出问题并设法解决,还应鼓励学生进行课外阅读。”可是当前不少师生仍然不重视对课本的阅读,而是热衷于题海战术,不少学生往往只凭课堂上听老师所讲的定律、公式就忙于做题目,造成基础知识不牢,缺乏分析问题和解决问题的能力的不良后果。教师要培养学生独立思考、分析问题和解决问题的能力,就必须从指导学生阅读课本做起。从来人们都是说学生到学校读书,而从没有人说学生到学校“听书”,而教师在学校则是“教书”,而不是“讲书”。“教”就是引导学生怎样读书,怎样思考分析问题。下面我谈谈教师充分利用课本,指导学生阅读课文,培养学生自学能力的方法。

一、为学生阅读教材创造条件

一方面,要经常对学生进行自学能力重要性的教育,使学生充分认识到有了自学能力,才能不断地充实和更新自己的知识,才能适应迅速发展变化的社会,才能不断攀登科学的高峰。另一方面要多为学生阅读课本创造条件。学生自学必须有时间的保证。现在中学的科目繁多,各科作业也很重,学生每天平均自习的时间只有2―3小时,一些学生认为:做作业都来不及了,哪有时间去看书啊?这就要求教师一方面必须改革教学方法,改变填鸭式的“满堂灌”。一堂课如果一讲到底,学生便始终处于被动状态,连思考余地都没有,有些问题即使上课讲了,学生也做了练习了,但是考查起来还是不懂,这说明只有教师的讲是不行的,还必须有学生的独立思考,自己消化才行。另一方面,作业题应少而精。题目是永远做不完的,教师应精选典型习题,指导学生深入探讨,独立思考,在分析习题过程中探索其规律,在解题的实践中逐步地掌握其思路和方法。

总之,教师在教学中要尽量少灌输、多诱导,使教学过程成为学生在教师的指导下自己学习和钻研问题的过程。

例如在上《欧姆定律》这课时,教师只通过演示实验讲清电流跟电压的关系,至于电流跟电阻的关系,以及归纳得出定律,就可以让学生自己通过实验进行分析比较、归纳和阅读课文后得出结论,然后教师加以小结。这样既可在课堂上有时间让学生阅读课本,又可使学生自己实验、思考、讨论和研究问题,更可促使学生去认真钻研教材。

二、根据物理教材的特点,加强阅读指导

物理课本中既有对现象的描述,又有对现象的分析、概括;既有定量计算,又有动手实验;在表述方面,既有文学“语言”,又有数学“语言”(公式、图像),还有图画“语言”(插图、照片)。看这样的书,既要懂得文字表述的意思,又要理解数学的计算及其含义,有时还得画图,等等。学生刚开始时不容易读懂,也不习惯。因此,一开始教师就必须加以引导,要求学生从头到尾地看,并给予指导,必要时,在课堂上还得边读边讲;重要的句子、结论要求学生用笔划出来,对一些叙述较复杂的段落还要加以分析解释。

例如:《阿基米德原理》这一节课,学生阅读课文后,对课文提出的概念、定义和原理就有了一个初步的轮廓,对实验过程和现象也有所了解,并能作大致的分析,这时教师可通过提问和学生一起进行讨论研究,使之进一步理解。然后教师指出,并要求学生对阿基米德原理的理解,应特别明确:哪个是受力物体,浮力的大小、方向,以及在什么情况下才有浮力,等等,帮助学生理解“原理”的实质,而不去死记硬背条文。

第9篇

1、 定义:温度表示物体的冷热程度。

2、 单位:

① 国际单位制中采用热力学温度。

② 常用单位是摄氏度(℃) 规定:在一个标准大气压下冰水混合物的温度为0度,沸水的温度为100度,它们之间分成100等份,每一等份叫1摄氏度 某地气温-3℃读做:零下3摄氏度或负3摄氏度

③ 换算关系T=t + 273K

3、 测量——温度计(常用液体温度计)

温度计的原理:利用液体的热胀冷缩进行工作。

分类及比较:

分类 实验用温度计 寒暑表 体温计

用途 测物体温度 测室温 测体温

量程 -20℃~110℃ -30℃~50℃ 35℃~42℃

分度值 1℃ 1℃ 0.1℃

所 用液 体 水 银煤油(红) 酒精(红) 水银

特殊构造 玻璃泡上方有缩口

使用方法 使用时不能甩,测物体时不能离开物体读数 使用前甩可离开人体读数

常用温度计的使用方法:

使用前:观察它的量程,判断是否适合待测物体的温度;并认清温度计的分度值,以便准确读数。使用时:温度计的玻璃泡全部浸入被测液体中,不要碰到容器底或容器壁;温度计玻璃泡浸入被测液体中稍候一会儿,待温度计的示数稳定后再读数;读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。

二、物态变化

填物态变化的名称及吸热放热情况:

1、熔化和凝固

① 熔化:

定义:物体从固态变成液态叫熔化。

晶体物质:海波、冰、石英水晶、 非晶体物质:松香、石蜡玻璃、沥青、蜂蜡

食盐、明矾、奈、各种金属

熔化图象:

② 凝固 :

定义 :物质从液态变成固态 叫凝固。

凝固图象:

2、汽化和液化:

① 汽化:

定义:物质从液态变为气态叫汽化。

定义:液体在任何温度下都能发生的,并且只在液体表面发生的汽化现象 叫蒸发。

影响因素:⑴液体的温度;⑵液体的表面积 ⑶液体表面空气的流动。

作用:蒸发 吸 热(吸外界或自身的热量),具有制冷作用。

定义:在一定温度下,在液体内部和表面同时发生的剧烈的汽化现象。

沸 点: 液体沸腾时的温度。

沸腾条件:⑴达到沸点。⑵继续吸热

沸点与气压的关系:一切液体的沸点都是气压减小时降低,气压增大时升高

② 液化:定义:物质从气态变为液态 叫液化。

方法:⑴ 降低温度;⑵ 压缩体积。

3、升华和凝华:

①升华 定义:物质从固态直接变成气态的过程,吸 热,易升华的物质有:碘、冰、干冰、樟脑、钨。

②凝华 定义:物质从气态直接变成固态的过程,放 热

初三物理上册知识点:第五章 《电流和电路》复习提纲

一、电流

1、形成:电荷的定向移动形成电流

2、方向的规定:把正电荷移动的方向规定为电流的方向。

3、获得持续电流的条件:

电路中有电源 电路为通路

4、电流的三种效应。

(1) 、电流的热效应。(2)、电流的磁效应。(3)、电流的化学效应。

5、单位:(1)、国际单位: A (2)、常用单位:mA 、μA

(3)、换算关系:1A=1000mA 1mA=1000μA

6、测量:

(1)、仪器:电流表,

(2)、方法:

① 电流表要串联在电路中;

② 电流要从电流表的正接线柱流入,负接线柱流出,否则指针反偏。

③被测电流不要超过电流表的测量值。

④ 绝对不允许不经用电器直接把电流表连到电源两极上,原因电流表相当于一根导线。

三、导体和绝缘体:

1、导体:定义:容易导电的物体。

常见材料:金属、石墨、人体、大地、酸 碱 盐溶液

导电原因:导体中有大量的可自由移动的电荷

2、绝缘体:定义:不容易导电的物体。

常见材料:橡胶、玻璃、陶瓷、塑料、油等。

不易导电的原因:几乎没有自由移动的电荷。

3、导体和绝缘体之间并没有绝对的界限,在一定条件下可相互转化。一定条件下,绝缘体也可变为导体。

四、电路

1、 组成:

①电源②用电器 ③开关④导线

2、三种电路:

①通路:接通的电路。

②开路:断开的电路。

③短路:电源两端或用电器两端直接用导线连接起来。

3、电路图:用规定的符号表示电路连接的图叫做电路图。

4、连接方式:

串联 并联

定义 把元件逐个顺次连接起来的电路 把元件并列的连接起来的电路

特征 电路中只有一条电流路径,一处段开所有用电器都停止工作。 电路中的电流路径至少有两条,各支路中的元件独立工作,互不影响。

开关

作用 控制整个电路 干路中的开关控制整个电路。支路中的开关控制该支路。

电路图

实例 装饰小彩灯、开关和用电器 家庭中各用电器、各路灯

初三物理上册知识点:第七章 《电功率》复习提纲

一、电功:

1、定义:电流通过某段电路所做的功叫电功。

2、实质:电流做功的过程,实际就是电能转化为其他形式的能(消耗电能)的过程。

3、规定:电流在某段电路上所做的功,等于这段电路两端的电压,电路中的电流和通电时间的乘积。

4、计算公式:W=UIt =Pt(适用于所有电路)

对于纯电阻电路可推导出:W= I2Rt= U2t/R

5、单位:国际单位是焦耳(J)常用单位:度(kwh) 1度=1千瓦时=1 kwh=3.6×106J

6、测量电功:

⑴电能表:是测量用户用电器在某一段时间内所做电功(某一段时间内消耗电能)的仪器。

⑵ 电能表上“220V”“5A”“3000R/kwh”等字样,分别表示:电电能表额定电压220V;允许通过的电流是5A;每消耗一度电电能表转盘转3000转。

⑶读数:电能表前后两次读数之差,就是这段时间内用电的度数。

二、电功率:

1、定义:电流在单位时间内所做的功。

2、物理意义:表示电流做功快慢的物理量 灯泡的亮度取决于灯泡的实际功率大小。

3、电功率计算公式:P=UI=W/t(适用于所有电路)

对于纯电阻电路可推导出:P= I2R= U2/R

4、单位:国际单位 瓦特(W) 常用单位:千瓦(kw)

5、额定功率和实际功率:

⑴ 额定电压:用电器正常工作时的电压。

额定功率:用电器在额定电压下的功率。P额=U额I额=U2额/R

⑵ “1度”的规定:1kw的用电器工作1h消耗的电能。

P=W/ t 可使用两套单位:“W、J、s”、“kw、 kwh、h”

6、测量:伏安法测灯泡的额定功率:①原理:P=UI ②电路图:

三 电热

1、实验:目的:研究电流通过导体产生的热量跟那些因素有关。

2、焦耳定律:电流通过导体产生的热量跟电流的平方成正比,跟导体的电阻成正比,跟通电时间成正比。

3、计算公式:Q=I2Rt (适用于所有电路)对于纯电阻电路可推导出:Q =UIt= U2t/R=W=Pt

4、应用——电热器

四 生活用电

(一)、家庭电路:

1、家庭电路的组成部分:低压供电线(火线零线)、电能表、闸刀开关、保险丝、用电器、插座、灯座、开关。

2、家庭电路的连接:各种用电器是并联接入电路的,插座与灯座是并联的,控制各用电器工作的开关与电器是串联的。

3、家庭电路的各部分:

⑴ 低压供电线:

⑵ 电能表:

⑶ 闸刀(空气开关):

⑷ 保险盒:

⑸ 插座:

⑹ 用电器(电灯)、开关:

(二)、家庭电路电流过大的原因:

原因:发生短路、用电器总功率过大。

(三)、安全用电:

安全用电原则:不接触低压带电体 不靠近高压带电体

初三物理上册知识点:第六章 《欧姆定律》复习提纲

一、电压

(一)、电压的作用

1、电压是形成电流的原因:电压使电路中的自由电荷定向移动形成了电流。电源是提供电压的装置。

2、电路中获得持续电流的条件①电路中有电源(或电路两端有电压)②电路是连通的。

(二)、电压的单位

1、国际单位: V 常用单位:kV mV 、μV

换算关系:1Kv=1000V 1V=1000 mV 1 mV=1000μV

2、记住一些电压值: 一节干电池1.5V 一节蓄电池 2V 家庭电压220V 安全电压不高于36V

(三)、电压测量:

1、仪器:电压表 ,符号:

2、读数时,看清接线柱上标的量程,每大格、每小格电压值

3、使用规则:①电压表要并联在电路中。

②电流从电压表的“正接线柱”流入,“负接线柱”流出。否则指针会反偏。

③被测电压不要超过电压表的量程。

二、电阻

(一)定义及符号:

1、定义:电阻表示导体对电流阻碍作用的大小。

2、符号:R。

(二)单位:

1、国际单位:欧姆。规定:如果导体两端的电压是1V,通过导体的电流是1A,这段导体的电阻是1Ω。

2、常用单位:千欧、兆欧。

3、换算:1MΩ=1000KΩ 1 KΩ=1000Ω

4、了解一些电阻值:手电筒的小灯泡,灯丝的电阻为几欧到十几欧。日常用的白炽灯,灯丝的电阻为几百欧到几千欧。实验室用的铜线,电阻小于百分之几欧。电流表的内阻为零点几欧。电压表的内阻为几千欧左右。

(三)影响因素:

结论:导体的电阻是导体本身的一种性质,它的大小决定于导体的材料、长度和横截面积,还与温度有关。

(四)分类

1、定值电阻:电路符号: 。

2、可变电阻(变阻器):电路符号 。

⑴滑动变阻器:

构造:瓷筒、线圈、滑片、金属棒、接线柱

结构示意图:

变阻原理:通过改变接入电路中的电阻线的长度来改变电阻。

作用:①通过改变电路中的电阻,逐渐改变电路中的电流和部分电路两端的电压②保护电路

⑵电阻箱。

三、欧姆定律。

1、探究电流与电压、电阻的关系。

结论:在电阻一定的情况下,导体中的电流与加在导体两端的电压成正比;在电压不变的情况下,导体中的电流与导体的电阻成反比。

2、欧姆定律的内容:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。

3、数学表达式 I=U/R

四、伏安法测电阻

1、定义:用电压表和电流表分别测出电路中某一导体两端的电压和通过的电流就可以根据欧姆定律算出这个导体的电阻,这种用电压表电流表测电阻的方法叫伏安法。

2、原理:I=U/R

3、电路图: (右图)

五、串联电路的特点:

1、电流:文字:串联电路中各处电流都相等。

字母:I=I1=I2=I3=……In

2、电压:文字:串联电路中总电压等于各部分电路电压之和。

字母:U=U1+U2+U3+……Un

3、电阻:文字:串联电路中总电阻等于各部分电路电阻之和。

字母:R=R1+R2+R3+……Rn

六、并联电路的特点:

1、电流:文字:并联电路中总电流等于各支路中电流之和。

字母: I=I1+I2+I3+……In

2、电压:文字:并联电路中各支路两端的电压都相等。

字母:U=U1=U2=U3=……Un

3、电阻:文字:并联电路总电阻的倒数等于各支路电阻倒数之和。

字母:1/R=1/R1+1/R2+1/R3+……1/Rn

初三物理上册知识点: 第八章 《电与磁》复习提纲

一、磁现象:

1、磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性)

2、磁体: 定义:具有磁性的物质

分类:永磁体分为 天然磁体、人造磁体

3、磁极:定义:磁体上磁性的部分叫磁极。(磁体两端中间最弱)

种类:水平面自由转动的磁体,指南的磁极叫南极(S),指北的磁极叫北极(N)

作用规律:同名磁极相互排斥,异名磁极相互吸引。

4、磁化: ① 定义:使原来没有磁性的物体获得磁性的过程。

②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。钢被磁化后,磁性能长期保持,称为硬磁性材料。

二、磁场:

1、定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。

2、基本性质:磁场对放入其中的磁体产生力的作用。磁极间的相互作用是通过磁场而发生的。

3、方向规定:在磁场中的某一点,小磁针北极静止时所指的方向(小磁针北极所受磁力的方向)就是该点磁场的方向。

4、磁感应线:

①定义:在磁场中画一些有方向的曲线。任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。

②方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。

5、磁极受力:在磁场中的某点,北极所受磁力的方向跟该点的磁场方向一致,南极所受磁力的方向跟该点的磁场方向相反。

6、分类:

Ι、地磁场:

① 定义:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用。

② 磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近。

③ 磁偏角:首先由我国宋代的沈括发现。

Ⅱ、电流的磁场:

① 奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。该现象在1820年被丹麦的物理学家奥斯特发现。该现象说明:通电导线的周围存在磁场,且磁场与电流的方向有关。

② 通电螺线管的磁场:通电螺线管的磁场和条形磁铁的磁场一样。其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则来判断。

③应用:电磁铁

三、电磁感应:

1、学史: 英 国物理学家 法拉第 发现。

2、感应电流:

导体中感应电流的方向,跟 运动方向和 磁场方向 有关。

4、应用——交流发电机

5、交流电和直流电:

四、磁场对电流的作用:

1、通电导体在磁场里受力的方向,跟 电流方向 和 磁场方向 有关。

2、应用——直流电动机

初三物理上册知识点: 第十章《多彩的物质世界》复习提纲

一、宇宙和微观世界

1、宇宙由物质组成:

2、物质是由分子组成的

3、固态、液态、气态的微观模型:

第10篇

关键词 实效性 还原探究 合作学习

中图分类号:G424 文献标识码:A

Reflections on the Effectiveness of Physical Efficient Classroom

YIN Yuewang

(Shandong Linqing No.2 Middle School, Linqing, Shandong 252656)

Abstract Create efficient classroom should start from situation creation, restore the inquiry process, substantive cooperative learning three aspects to concern effectiveness.

Key words effectiveness; restore the inquiry; cooperation learning

自新课程改革以来,以学生为主体,教师为主导,教育教学理念带来了课堂教学行为与教学方式的变化,笔者参加了市高中物理优质课评选活动,观摩了优秀老师执教的摩擦力及光的折射教学,教师们精彩的课堂教学,让听课者受益匪浅。但是,大量多媒体课件和视频展示实验探究毫无悬念;执教的老师总想把自己知道的所有的好东西都教给学生,以展示自己高超的教学技艺和渊博的知识储备。因此“繁琐”拖堂相伴而生。高中物理课堂教学陷入低效的误区。笔者以自己长期的实践探索与研究,对课堂教学的实效性和高效性的思考整理如下,与广大物理同行交流。

1 合理选择教学资源,提高情境创设的实效性

合理地使用多媒体辅助教学手段能激发学生的学习兴趣,更能化解难点,疑点,起到很好的效果,但也不能设计和运用得过多,过犹不及,太多的设计会制约学生的思维发展,从而事倍功半,影响教学效果。笔者认为,一节好课首先应该是“简单”的。这里的“简单”,可以理解为形式上的简单:中图分类号:G424 文献标识码:A对教材的处理应该简约,设计思路应该简练,教学语言应该简洁,演示实验应尽可能的简便。课前备课时,老师们首先应该思考的是怎么使你的课以一种相对简单的形式呈现给学生,同时又能达到我们设定的教学目标。

像“摩擦力”这节课就可以创设情境,游戏引入。教师展示PVC管(其中一端被涂了洗衣液),请一名男生和女生分别握住PVC管两端用力拉,通过揭秘胜负原因而引出对“摩擦力”的相关问题的思考。如:(1)为什么男同学会输?(2)你有什么方法让男同学赢(设计探究摩擦力大小影响因素)。

2 还原探究过程――上好科学探究课

一节好的科学探究课应该将课堂还原到研究某一问题的原始状态。教学过程的高效一定处理好教材的知识序,学生的认知序以及教学过程的教学序三者的关系。三序合一,这样的课,学生上起来才会不累,收获才大。

像物理选修3-3第九章,固体、液体的物态变化第1节固体,能如何创设情景呢?我们可以尝试让学生用手掰断一块玻璃板,学生尝试后很难,没成功;教师再用玻璃刀切一下玻璃后,再让这名学生弄断;学生很容易就成功了,学生思考玻璃刀的硬度和玻璃相比,谁更硬?让学生进一步体验,石墨的,提出问题:金刚石和石墨及琉璃这些固体性质为什么会有如此大的差异呢?今天我们这节课来学习固体。通过学生体验,激发兴趣,为深入课堂做好准备。

像气体的等温变化这节课可以从生活问题引入新课,如:老师展示一个瘪了的乒乓球,问学生一个问题“用什么方法可以使我手中的乒乓球恢复原状啊?”学生从生活经验可以答出“用水烫一下”教师继续追问“为什么用水烫一下,乒乓球就能恢复原状,这样做的原理是什么?”学生思考后,可以得出气体受热膨胀,压强增大,老师可以继续引导学生回答“在刚才的描述中气体有什么量发生了变化”学生可以得出压强、体积、温度三个物理量,这样通过三个问题的设置引出气体及描述气体的三个参量,从生活走近物理。

像气体的等温变化这节课探究气体等温变化的规律,无论是沿用教材的实验方案,还是用传感器和计算机来探究,首先要学生明确实验目的:一定质量的气体在温度不变时,压强和体积的关系。在给学生实验器材后,先让学生讨论三个问题。(1)实验的研究对象是什么?(2)实验需要测量哪些物理量。(3)怎样保证实验过程温度不变。学生在回答第一个问题时往往会漏掉“连接管”内的气体,这样第二个问题测量气体体积时需要加上“连接管”内剖分气体,进一步通过讨论“完善你的实验方案”让学生说一说操作步骤。如①注射器活塞在适当位置,连接器材,②记下此时的压强和体积,③推或拉活塞,稳定后记下此时压强和体积,教师再强调一下注意事项和过程要“缓慢”手不要握注射器等,学生小组进行实验。在学生收集完实验数据后,通过问题引导学生进行数据处理,如:①怎样找寻压强和体积变化的关系。②你的猜想是什么?③如何通过图像来检验这个猜想。

这样以问题为中心,科学探究过程很充分,尊重学生指导学生学习就非常好。师生互动和生生互动相结合,让每个学生都成为学习活动的“设计者”和“表现者”,有自己明确的学习任务,有相互交流的机会,在互动的课堂上有思维碰撞,矛盾的激化,讨论的推进,进一步体验互动学习的欢乐。

像“弹力”这节课:可以给同学们桌子准备好尺子、钢片、橡皮泥、弹簧、小车等器材,自己设计并做一些与力有关的实验,通过观察、体验引出形变、弹性形变等概念。通过用弹簧撞推小车、得出弹力的定义、条件,通过学生分组实验得出胡克定律。

3 问题导向,引发认知冲突,提高教学效果

同样的知识点,同样一道题,教师刚讲过,在下次考试中,很多学生还是不能完成。其原因看似复杂,实则简单:学生根本上就没有真正理解教师所讲,仅是简单地记住了,背会了!一转眼就忘掉了。

例如“闭合电路欧姆定律”通过以下问题设置对学生分析物理过程,解决物理问题,进行了尝试。

问题1:电源在电路中起何作用?描述电源性能有哪些重要参数?有何物理意义?

通过第一个问题解决电源将其它形式的能变为电能,且保持导体两端有持续的电压,学业生已经从做功的角度认识了电动势的概念,因此,帮助学生理解电路中能量转化关系是基础和关键。

问题2:闭合电路的电势如何变化?

通过问题2清楚闭合电路各处的电势高低情况,在这个基础上指出哪个地方是电源的正极,哪个地方是负极,哪里是外电路,哪里是内电路。

问题3:假设闭合电路电流为I,时间T,外电路静电力做功吗?能量是如何转化的?转化了多少?

学生能够根据前面所学,得出外电路正电荷在恒定电场的作用下,从电势高处向电势低处运动,此过程静电力做正功,电势能转化为其它形式的能,若外电路为纯电阻电路,电阴为R,则电流做功产生热。

教师师可演示实验(条件允许,分组实验更好)分别测量电源有接通外电路和接通外电路两种情况电源两端电压。

引出问题4:从微观角度思考,电荷通过内电路有无阻碍作用?能量如何转化的?

通过实验,先让学生产生问题和探究的兴趣,进一步突破对内电路电阻,电势降落的理解。

问题5:电源电极间,非静力做了多少功,能量如何转化的?通过该问题,进一步从能量转化的角度认识电动势。

通过这五个问题分析闭合电路外电路,内电路及化学反映层三个地方能量转化完成对核心过程的推导。

在这以后,通过“路端电压与负载的关系”的分析,讨论“断路”和“短路”两种情况,理解闭合电路欧姆定律的线索不断延伸下去,并把规律应用推向两种特殊的情况。

问题的设置让学生突出了闭合电路欧姆定律核心的推导,同时提高了学生分析问题,解决问题的能力,进一步体现了课堂的高效性。让学生在在学中思。设计问题时,要注意层次与梯度,进行巧妙的组织与合理的分配,以适应学生的智力发展,可以使每个学生都能循序渐进,取得学习上的成功。

问题是教学实施的核心,一个好的问题能够打开学生思维的空间,促进学生思维的发展。一节物理课一般都需要重点设计几个问题,课堂一般都围绕这几个问题展开。因此问题设计对于上好一节物理课至关重要。

高效课堂至少在教学时间、教学任务量、教学效果三个要素方面突破,高效教学的核心关键是以学定教,一切以学生为中心,以学生的发展为核心。总之增强课堂教学的实效性是教学的基础,在务实的基础上提高教学的有效性为教学的基本目标,而高效课堂则是教师追求的最高目标。

参考文献

第11篇

一、片面性思维障碍

这种思维障碍是指学生不能全面地分析问题,满足于对事物的一知半解,只凭对事物的局部了解就草率得出结论而形成的一种心理障碍。例如让学生回答这样一个问题:“烧杯底部有一物体,然后向烧杯注满水,结果物体仍停留在底部,该物体的密度是否一定比水大?”许多学生做了肯定的回答,他们认为不上浮就意味着重力大于浮力,因而物体的密度一定大于水的密度。这些学生的思维只集中于“不上浮”,却不去进一步从本质上分析浮力产生的原因,因而忽略了物体底部没进去水的可能。 再比如:“一个小球能被丝绸摩擦过的玻璃棒吸引,那么小球带什么电呢?”学生往往会做出这样回答,小球带负电,因为异种电荷相互吸引,玻璃棒带正电所以小球带负电,忽略了带电体本身具有吸引轻小物体的性质,从而不能得出正确的答案。克服片面性思维就要学会全面地分析物理问题,辨证的分析研究问题,使学生在物理学习中逐步掌握全面地而不是片面地看问题,本质地而不是表面地看问题,发展地而不是静止地看问题;这是克服片面性思维障碍的有效途径。

二、一个规律的认知过程及形成的条件不清楚

物理学是一门实验科学。所以观察和实验非常重要,实验的过程、操作、现象、及结论的得出每一步都要让学生清楚明了,所得知识一定是学生感悟出来的,不是教师强加给他们的,否则学生就很难理解物理规律的来龙去脉,学生必然会感到物理规律有如空中楼阁难于接受,比如我们讲阿基米德原理、探究欧姆定律及力的合成等等如果不做演示实验或实验数据差别较大,结论学生就很难接受。另外很多物理规律是在一定条件下成立的,若离开了其成立的条件,这个规律就不会存在,比如机械能守恒定律,是只有在重力做功的条件下成立,例如:钟摆在摆动的过程中机械能是不守恒的,这是因为摆在摆动的过程中除了重力做功之外还要克服空气阻力做功所以机械能不再守恒,学生往往会乎略这一点,做出错误的判断,再比如牛顿第一定律的前提是物体不受外力,等等

三、学生习惯用错误的生活经验分析物理现象形成的思维障碍

中学生在日常生活中自然而然地会积累大量的生活经验。有的经验是正确的,是我们赖以建立正确的物理概念的基础,而错误的生活经验往往会导致他们的思维障碍。例如:“浮起的物体受到浮力,下沉的物体不受浮力”,“轻的物体受的浮力大,上浮;重的物体受的浮力小,下沉”;由于有了这种错误的生活经验,往往会对类似问题做出错误的判断,再比如物体受力就会运动,不受力就会静止,力是维持物体运动的原因这个错误的观念就根深蒂固的在大脑中形成了,再比如:“正随传送带一起运动的物体,受不受摩擦力的作用呢?”根据生活经验大部分学生认为受摩擦力作用,不然物体为什么会运动呢?其实他们根本就没有仔细分析研究对象,正确的运用物体处于平衡状态的条件来解决问题。从而形成思维障碍。因而适时地,有针对性地纠正学生长期以来形成的错误的生活经验,引导学生科学地分析物理现象,形成科学的思维方法是非常必要的。

四、以数学形式代替物理思维,把数学公式和物理公式等同起来形成 的思维障碍

数学的长期学习使学生在自己头脑中形成 了一套特定的解决问题的方式 方法,在分析物理问题时,如果用数学形式代替物理思维,就会影响学生对物理问题中,物理内容,意义与实质的思考,造成思维障碍,例如:将ρ=m/v理解为ρ与m成正比与v成反比,忽视其表达的物理意义,从而造成错误,类似的问题很多如电阻R=U/I,电容c=Q/u等等,因而要克服这种思维障碍,必须在平时学习中,强调从物理实质上,而不是从数学形式上去理解物理知识,一定要弄清楚公式的物理意义及适用条件,讲清楚物理公式和数公式的区别,使学生逐步形成科学的分析方法。

五、物理问题中隐蔽因素的忽视和干扰,形成的思维障碍,在这些因素中有些是显因素,有些是隐因素

第12篇

“比较”的方法,是物理学研究中一种常用的思维方法,也是我们经常运用的一种最基本的教学方法。这种方法的实质就是辨析物理现象,概念,规律的同中之异,异中之同,以把握其本质属性。正如黑格尔所指出的“假如一个人能看出显而易见的差异,例如,能区别一支笔与一个骆驼,则我们不会说这个人有什么了不起的聪明。同样另一方面,一个人能比较两个近似的东西,如橡树与槐树,或寺院与教学,而知其相似,我们也不能说他有很高的比较能力。我们所要求的是要看出异中之同或同中之异。”

比较法是根据一定的标准对某类现象在不同情况的不同表现进行比较的一种研究方法。比较的过程是使人在思想上确定事物(现象)之间异同关系的思维过程。凡是比较,都是在一定关系上根据一定的标准进行的。

由于比较法很适合于初中生学习物理知识,所以教材中很多概念,如速度、惯性、比热、密度、压强、等等,都是用比较法引出的,这种方法的作用应引起各位同仁的足够重视。本文就比较法在初中物理概念教学中的突出作用,谈一些粗浅的看法。

一、比较法为概念的引入提供了思维的支撑点

初中物理概念的引入往往用实验的方法,然后对实验的现象和结果加以比较进行的。比热概念的引入就是一个典型的例子。教材为了研究物体的吸热多少跟物质种类的关系,就将不同物质水和煤油的吸热现象进行比较;由于比较必需在同一标准下才能进行,就对实验的条件进行了控制,使水和煤油质量相等,初温相同,吸收的热量也相等,以实现“单因子”实验;这样,排除了质量和温度升高等方面的干扰,突出了吸热和物质种类的关系,通过水和煤油在同等条件下吸热情况的比较,为“比热”的引出提供了思维的支撑点。

又如:在“电磁感应”概念的教学中,教师先点明,在以下实验中,使用的灵敏电流计、导线、开关、磁场及磁场中运动的导体都是完全一样的,现在,按下述步骤进行演示:(1)电路闭和,当导体在磁场中不运动或平行于磁场线运动时,电流计指针不偏转,表明导体中不产生电流。(2)电路闭和,一部分导体在磁场中作切割磁场线运动,电流计指针偏转,表明导体中产生了电流。(3)在前步实验的基础上,分别取磁场线方向相同而改换导体运动方向,再取导体运动方向相同而改换磁场线方向,观察电流计指针偏转方向有何不同。(4)电路断开,导体在磁场中作切割磁感线运动,观察电流计指针是否偏转。在实验过程中,引导学生比较(1)、(2)两步的差同,就可以建立电磁感应这一现象的感性熟悉,比较(2)、(4)两步的差同,可以使这一感性熟悉深化,即明确感应电流产生的条件;比较(3)步实验的不同条件,不同现象,就可以理解决定感应电流方向的两个因素。最后,教师指出联系:左手定则。类似地,能否用什么方法来解决感应电流方向、磁场线方向、导体运动方向这三者的关系呢?于是引出右手定则,并通过例题让学生练习使用这一定则。这堂课,学生较牢固地把握了电磁感应这一重要物理现象,并能用定则分析具体问题,更重要的是,他们又一次体会到比较法在物理概念中的重要作用。物理教材中有很多重要的演示实验和学生实验都是按比较法来编写的,如欧姆定律、电功、凸透镜成像等等。这既符合发现物理定律的规律,也符合人们熟悉事物的规律。我们在教学时,要有意识地传授这一思维方法,并提醒学生注重:有些现象中,条件的改变,只使这一现象发生量的变化,如欧姆定律中,电压、电阻的变化,只是使电流发生数值的变化;而有些现象因为一个条件的改变,将发生质的改变,如交、直流发电机模型,就因为铜环和半径的差异,导致外电路得到的电流在本质上有很大的差异。

二、比较法可使学生对概念的理解和把握更加深刻

由于概念所反映的事物的本质特征往往隐蔽在非本质特征之中,概念和概念之间的联系和区别易使学生混淆,影响着学生对所学概念深刻、准确地把握。突出比较法,可使学生抓住概念的本质特征,对概念有更全面、更深刻的理解和把握。

例如,重力和压力,是学生极易混淆的概念,一些学生常将压力和重力间的某些非凡情况下的关系一般化,往往认为“压力的大小总等于重力的大小”甚至认为“压力就是重力”。为此,笔者在教学中,设置了能暴露和纠正学生这一错误的比较性例题如下,通过做题,将压力和重力进行比较,收到了明显效果。

例1:在下列各图中,物体A重15牛,力F=7牛,求物体对各接触面的压力各是多少?这样,通过该题中对各种情况下压力的求解,能够从定义、力的三要素角度对压力和重力进行比较,使它们间的区别和联系有一更深刻的揭示。可见,抓住概念的本质特征进行比较是使学生理解和把握概念的有效果方法。

三、比较法可使学生灵活运用概念,促使概念活化

一个物理概念的表达式中,包含了定义方式、物理意义、及单位等内涵。将表达式间进行横向比较,能促使学生记忆概念、活化概念和深化概念。例如,速度概念的表达式V=S/t和功率的表达式P=W/t相比较,它们都有反映了另一物理量变化快慢的共同特征;它们的单位都由另外两个物理量的单位复合而成。另外,象密度、电阻率、比热等概念,从公式上都可看出,对同一物质来说,它们的比值都一个“常数”,反映着物质本身的属性。这可消除诸如“电压为零时,导体的电阻为零”、“一杯水比热(密度)比半杯水的比热(密度)大”等之类的错误。

四、通过比较促进知识的正迁移

例如:把两只标有220V、40W和220V、100W字样的白炽电灯分别进行并联或串联后,接入220V的电路中,判定这两种情况哪个灯泡较亮?根据平时的经验都是100W的灯泡较亮一些,即使老师通过分析和讨论得出串联时40W较亮,并联时100W的较亮。但仍有一部分同学对分析感到不可靠,但假如我们通过可控实验来进行对比,学生就会信服了。

五、利用比较法可以防止知识的负迁移

在应用概念解决问题时,对物理现象不同方面的精细比较,为概念的正确应用提供了出发点,正确的概念应用建立在对不同物理现象比较的基础上。例如,用惯性概念解释图2所示,当忽然拉动小车时,木块向后倒的现象时,思维的起点和要害,就是要通过比较拉动前后,小车状态的不同之处,揭示小车拉动前后,木块上部和下部的相同点和相异点。

学生在应用概念解决问题时,就在头脑的记忆中搜寻以前经历过的相类似问题,通过某些同方面的比较,拟定解题方案,这是学生在物理练习中思维广泛采用的一种比较方法。

假如学生在应用概念解决问题时,对新旧问题不仔细地进行比较,既看到它们间的相同,又看到它们间的相异点,采用“拿来主义”的态度,盲目代换,就会出现概念僵化,形成知识的负迁移。如:许多学生在判定图3所示,当小车忽然向前移动时,瓶内液体中的气泡向什么方向移动的问题时,会照搬前面图2中小车忽然向前时,木块向后倒的结论,得出气泡向后移动的错误结果。可见,对概念的灵活应用离不开比较思维。

又如:在学习动滑轮之后,学生由于受“拉力是重物和动滑轮总重的一半”的影响,他们认为:只要用一个动滑轮,拉力一定是重物和动滑轮总重的一半。为了解决这个问题,可利用如图的练习进行比较,使学生懂得了结论的适用条件,有效的防止了知识的负迁移。

六、将物理概念与生活相比较

有些物理概念看似深奥难懂,若将其与一些生活常识相比较,则能起到化难为易的较果。如:由于“电压”和电场力做功的概念有关,一般初中课本中对电压都没有明确的定义,教材采用直接引入的方法,这对学生把握这一概念是不利的,有不少学生学了“电压”这一课后,仍然模模糊糊,说不出它是什么,更不了解它的物理意义。所以说电压的概念,是初中学生感到最抽象、最难理解的概念,在初中阶段还无法讲清,对初中学生来说,接受起来有一定难度。这样,也会影响学生的学习爱好。因此,我就采用这种方法。

用多媒体展示水流的形成,让学生观察实验,得出要使水能够流动必须要有水位差(水压),然后再设问:要使容器中的水长久地流动而不是瞬间流动应采取什么方法呢?这样一设问,学生纷纷讨论,气氛很活跃。最后,教师总结产生水流的条件是有水压,提供水压的装置是抽水机。这样,就为类比埋下了伏笔。

(1)元件的类比:把电流形成中的各个元件和水流形成的各个装置相类比。小灯泡如同小涡轮,开关如同阀门,电路如同水路

(2)形成过程的类比:从水流的形成过渡到电流的形成。

(3)作用的类比:从水压的作用过渡到电压的作用,从抽水机的作用过渡到电源的作用。

(4)大小的类比:从改变抽水机抽水的快慢产生水流的大小过渡到电压的大小产生电流的大小。