HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 高层建筑结构设计

高层建筑结构设计

时间:2023-07-21 17:28:18

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇高层建筑结构设计,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

高层建筑结构设计

第1篇

【摘要】高层建筑已成为我国楼房建筑中的主流,随着人们生活水平的提高,人们对楼房的要求也越来越高,高层建筑不仅要舒适,还要具有安全性、经济性等,本文就针对高层建筑结构设计进行简单的探讨。

【关键词】高层建筑;结构设计

随着社会的发展,我国城市的用地面积越来越少,城市的建筑也越来越趋于向高层建筑发展,现在大部分楼层都在十几层以上,三四十层高的楼也已经不少见。建筑的体型和功能越来越复杂,结构体系及结构材料也更为多样化,这样的高层建筑,其结构设计也就成为结构工程师的难点和重点。

1 高层建筑结构设计的概念及内容

高层建筑结构设计是指根据高层建筑特性的建筑结构设计,在满足适用、安全、经济、耐久和施工可行的前提下,按有关的设计标准规定,对建筑结构进行技术经济分析、总体布置、计算、构造及制图工作,并寻求优化的过程。简单来说,就是用结构语言表达出工程师们想表达的东西。在建筑结构设计中,就是把建筑物或者建筑结构体系中的墙、柱子、楼梯、梁等用图纸中的结构元素来表示出来,同时还要计算出它的抗力及承重等能力。在结构设计中主要包括结构方案、结构计算及施工图设计三个阶段,每个阶段对于结构设计来说都是很重要的。

2 高层建筑结构设计的特点

2.1 水平力成为结构设计的主要因素

当建筑物高度增加时,水平荷载(风荷载及地震作用)对结构起的作用将愈来愈大。除了结构内力将明显加大外,结构侧向位移增加更快。我们知道:建筑物楼面的使用荷载和自重在竖向构件产生的弯矩和轴力与其高度的一次方成正比,水平荷载产生的弯矩及轴力与建筑物高度的二次方成正比,水平荷载产生的结构侧向位移与建筑高度的四次方成正比。因此,在高层建筑中,结构要使用更多材料来抵抗水平力,另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化,所以结构的抗侧力设计成为高层建筑结构设计的主要因素。

2.2 高层建筑中的侧移控制

与低层建筑相比,高层建筑结构设计中的另一个关键因素就是侧移,当建筑越高时,结构的侧移变形就会越大。过大的结构侧移会造成显著的重力二阶效应,造成结构内力增大并影响结构稳定,过大的侧移也会造成建筑构件或设备的破坏以及使用者的不适。对于一定的水平作用,结构的抗侧刚度大,那么结构侧移就小。但过刚的结构也会造成结构地震作用不必要的增大,所以结构设计中要控制结构的合理刚度,把侧移控制在合理范围。

2.3 更高的抗震设计要求

抗震设防区的高层建筑必须具有良好的抗震性能,做到小震不坏,中震可修,大震不倒。相对与多层结构,高层结构在地震作用下,具有更大的水平作用及侧移,因此,高层建筑平立面也更讲究规则性,结构要求具有更高的抗震等级。对于一些较高的高层建筑或具有薄弱层的高层建筑,也要求进行弹塑性分析进行补充设计。

2.4 高层建筑竖向压缩变形不容忽视

高层建筑中,竖向构件的轴力往往较大,其产生的压缩变形量往往相当可观,因此结构设计中要考虑到竖向构件的压缩变形。

3 高层建筑结构设计需选择合适的结构体系

在结构设计当中,结构体系的选择是很重要的一步,合理的结构体系不但可满足结构的受力要求,更具有良好的经济性及更高的结构安全富余。常用的结构体系有框架结构体系,剪力墙结构体系,框架―剪力墙结构体系以及筒体结构体系。

3.1 框架结构体系

框架结构主要由梁柱等杆件单元形成空间的框架结构体系,可以承受竖向荷载及一定的水平力的作用。框架结构的优点是计算理论成熟,杆件受力明确,结构的布置灵活,一定高度内造价较低。缺点是抗侧刚度较弱,在水平力作用下会产生较大的侧移,且大部分侧移发生在内力较大的结构底部部位,破坏后易产生严重后果。因此框架结构常应用于层数较少,高度较低的建筑中。

3.2 剪力墙结构体系

剪力墙结构是空间盒子式结构,其水平作用和竖向荷载完全由剪力墙体承受,其刚度及空间整体性都比较好。剪力墙结构体系的优点是抗水平作用能力强、整体性好、用钢量较小,可以适用较高的建筑。缺点是因剪力墙布置的要求,不易布置成较大的房间。因此剪力墙结构常应用于住宅及宾馆类建筑中。

3.3 框架―剪力墙结构体系

在框架结构中布置一定数量的剪力墙,可以组成框架―剪力墙结构,这种结构既有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的抗水平作用的能力,因而广泛地应用于高层建筑中的办公楼和旅馆。

3.4 筒体结构体系

这种体系是在框架结构、剪力墙结构的体系上发展起来,当高层建筑不断地增加层数、高度越来越高时,原来的框架、剪力墙结构就变得不合理和不经济了,简体结构就相应地诞生了,它是将剪力墙围成箱型,构成了一个空间薄壁筒体,可以提供更大的侧向刚度,所以筒体结构可以适用与更高的建筑。

4 高层建筑结构中需要注意的几个问题

4.1 抗震设计中的注意事项

高层建筑结构设计中的抗震设计是非常重要的一部分,它应符合抗震概念设计的要求,选择规则的设计方案,规则结构其刚度、承载能力及变形能力更强,不规则结构一般会破坏整个结构承受风荷载、重力荷载及抗震能力,因此尽量选择设计对称、规则的结构方案。另外,在抗震设计中,还要注意到结构构件本身的刚度、延性、稳定性及承载力等方面性能,且要遵守强剪弱弯、强柱弱梁、强底层柱及弱构件强节点的原则。对于结构的薄弱环节,要采取措施加强其抗震的能力同时要重视整体结构中其他部位的刚度及承载能力,以免薄弱层发生转移。

4.2 高层建筑结构设计中的受力性能

在高层建筑结构的最初设计方案中,注重点不应该在它的具体结构上而是更多地关注它空间组成的特点,这是因为建筑物的空间形式包括水平方向和竖向的稳定性都是依靠建筑物的地面作为支撑的,建筑地面即地基对于建筑物来说是非常重要的,建筑物基本都是由大构件组成的,它们的重量及结构的荷载基本都是向下作用在地面上的,这就要求在建筑结构设计时,首先要搞清楚所选择的结构体系与地面间承载力的关系,然后对承重墙和承重柱的分布及数量作出总体的设想,这是建筑结构设计方案中很重要的一部分,影响着建筑结构设计的整体质量。

4.3 关于建筑结构设计中扭转问题的注意

在高层建筑结构中,建筑结构有个很重要的建筑三心即刚度中心、几何形心和结构重心,在建筑结构设计时要尽量做到三心合一,而建筑结构的扭转问题就是指在高层建筑结构设计时没有做到三心合一,并且在水平荷载的作用下发生结构扭转振动。因此,在建筑结构设计时应尽量选择合理的结构平面布局及形式,使建筑尽量的三心合一,以免因水平荷载的作用使建筑发生扭转破坏。在实际的高层建筑中我们也经常会看到一些不规则的平面形式如T形、L形及十字形等比较复杂的平面,这种结构设计,应该尽量让突出部分的宽度和厚度的比值在规定的范围之内,让它的结构尽量处于对称状态。

4.4 对结构计算阶段的单位面积重度、剪重比及位移限值要注意

在结构计算阶段,单位面积重度是衡量楼层何在数据是否正确及构建截面取值合不合理的重要指标之一,其公式为V=G/A(kN/m2)。在同种性质的建筑中,单位面积重度为层数较多的建筑要大于层数少的建筑,剪力墙多的大于剪力墙少的建筑。其剪重比的大小则反映了建筑在地震作用下抗震能力的大小,位移限值是衡量结构侧移的重要标准,其数值的大小从侧面反映了结构整体的刚度,刚度的过大或过小会给设计者对结构体系、竖向及平面布置的合理性进行再思考,对于结构计算当中的这些参考数值要给予重视,以便能制定出合理的结构设计。

总结:

建筑结构设计在高层建筑中起着非常重要的作用,同时它又是一项艰巨复杂的工作,需要结构工程师不仅拥有丰富的专业知识及其工作经验还要有很好的耐性,依据高层建筑的设计原理及设计原则,选择合适的结构体系,从而建设出具有世界水平的高层建筑。

参考文献

[1]顾明星.浅谈高层建筑的结构设计[J].大科技・科技天地,2011(4)

[2]傅慧华.浅谈高层建筑的结构设计[J].城市建设理论研究(电子版),2011(13)

第2篇

关键词:高层建筑;设计;对策

1.高层建筑结构设计的意义及依据

1.1 概念设计的意义

高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

1.2 概念设计的依据

高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。

2.高层建筑结构设计的特点

高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有;

2.1水平力是设计主要因素

在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

2.2侧移成为控制指标

与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

2.3抗震设计要求更高

有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

2.4轴向变形不容忽视

高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安垒的结果。

2.5结构延性是重要设计指标

相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。

3.高层建筑结构设计问题分析及对策

3.1提倡节约

我国是发展中国家,还是要尽量提倡节约,目前我国规范中的构造要求,并非都比国外低,有的已经超过。国外大企业在北京买了按我国规范设计的大楼,说明我国规范不是进不了国际市场。现在对安全度进行讨论,应注意不要引起误导,千万不要误解提高建筑结构安全度建筑物就安全了,造成不必要的浪费。实践已经证明,现行规范安全度是可以接受的。这是重要的经验,不能轻易放弃。但考虑到客观形势变化,国家经济实力增强和住宅制度改革现状,可以将现行设计可靠度水平适当提高一点。这样投入不大,却对国家总体和长远利益有利。

3.2高层建筑结构存在着超高的问题

基于高层建筑抗震的要求,我国的建筑规范对高层建筑的结构的高度有严格的规定,针对高层建筑的超高问题,在新规范中不但把原来限制的高度规定为 A级高度,并且增加了 B 级高度,使得高层建筑结构处理设计方法和措施都有了改进。实际工程设计中,对于建筑结构类型的改变对高层超高问题的忽略,在施工审图时将不予通过,应该重新进行设计或者进行专家会议的论证等。在这种情况下,整个建筑工程的造价和工期都会受到极大的影响。

3.3考虑受力性能

对于一个建筑物最初的方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的。由于建筑物是由一些大而重的构件所组成的,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量与分布作出总体设想。

3.4提倡使用概念设计

所谓的概念设计一般指不经数值计算,尤其在一些难以作出精确理性分析或在规范中难以规定的问题中,依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想。从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法,可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择,易于手算。所得方案往往概念清晰、定性正确,避免后期设计阶段一些不必要的繁琐运算,具有较好的经济可靠性能。同时,也是判断计算机内力分析输出数据可靠与否的主要依据。近十余年来我国的高层建筑建设可谓突飞猛进,其建设速度和建造数量在世界建筑史上都是少有的。但是,从设计质量方面来看却不容乐观,多数设计追赶流行时尚,因此在实际中应考虑长远因素。

3.5 高层建筑结构设计短肢剪力墙设置

我国建筑新规范中,短肢剪力墙是指墙肢的截面的高度和厚度比在 5~8 的墙,按照实际经验以及数据,高层建筑结构设计中增加了对短肢剪力墙的使用限制。所以,在高层建筑的结构设计中,必须尽可能的减少或者避免使用短肢剪力墙。

3.6 高层建筑结构设计嵌固端的设置

一般情况下,高层建筑配有两层或者两层以上的地下室或者人防。高层建筑的嵌固端一般设置在地下室的顶板或者人防的顶板等位置。因此,结构工程设计人员应该考虑嵌固端设置会可能带来的问题。考虑嵌固端的楼板的设计;综合分析嵌固端上层和下层的刚度比,并且要求嵌固端上层和下层的抗震的等级是一致的;高层建筑的整体计算时充分考虑嵌固端的设置,综合分析嵌固端位置和高层建筑结构抗震缝隙设置的协调。

3.7 高层建筑结构的规则性

在关于高层建筑的新规范中,对于高层建筑结构的规则性做出了很多限制,比如规定了结构嵌固端上层和下层的刚度比,平面规则性等等,并且硬性规定了“高层建筑不能采用严重不规则的设计方案。”因此,为了避免后期施工设计阶段的改动,高层建筑结构的设计必须严格遵循规范的限制条件。

第3篇

关键词:高层建筑、结构设计、结构特点

一、高层建筑结构设计的特点:

高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。

①、水平力是设计主要因素:

在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

②、 轴向变形不容忽视:

高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安垒的结果。

③、抗震设计要求更高:

有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

④、高层建筑结构设计中的侧移和振动周期:

建筑结构的建筑结构的振动周期问题包含两方面:合理控制结构的自振周期;控制结构的自振周期使其尽可能错开场地的特征周期。延性是指构件和结构屈服后,在承载能力不降低或基本不降低的情况下,具有足够塑性变形能力的一种性能,一般用延性比来表示。在这过程中,构件的承载能力没有多大变化,但其变形的大小却决定了破坏的性质。是钢筋砼受弯构件的M-Δ(Φ)曲线,Δy是屈服变形,Δu是极限变形。提高延性可以增加结构抗震潜力,增强结构抗倒塌能力。高层建筑相对低层结构而言,结构设计更柔一些,如果遇到地震,震动作用下的建筑结构变形更大一些。为了做好防震设计,避免倒塌,建筑在进入塑性变形阶段后仍具有较强的变形能力,特别需要在构造上采以适当的设计,确保建筑设计具有很好的延性

二、高层建筑结构设计的问题:

1、高层建筑结构受力性能

对于一个建筑物的最初的方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。

2、高层建筑结构设计中的扭转问题

建筑结构的几何形心、刚度中心、结构重心即为建筑三心,在结构设计时要求建筑三心尽可能汇于一点,即三心合一。结构的扭转问题就是指在结构设计过程中未做到三心合一,在水平荷载作用下结构发生扭转振动效应。为避免建筑物因水平荷载作用而发生的扭转破坏,应在结构设计时选择合理的结构形式和平面布局,尽可能地使建筑物做到三心合一。在某些情况下,由于城市规划对街道景观的要求以及建筑场地的限制,高层建筑不可能全部采用简面形式,当需要采用不规则L形、T形、十字形等比较复杂的平面形式时,应将凸出部分厚度与宽度的比值控制在规范允许的范围之内,同时,在结构平面布置时,应尽可能使结构处于对称状态。

(1)结构自振周期

高层建筑的自振周期(T 1)宜在下列范围内:

框架结构:T1=(0.1―0.15)N

框一剪、框筒结构:T1=(0.08-0.12)N

剪力墙、筒中筒结构:TI=(0.04―0.10)N

N为结构层数。

结构的第二周期和第三周期宜在下列范围内:

第二周期:T2=(1/3―1/5)T1;第三周期:T3=(1/5―1/7)T1。

(2)共振问题

当建筑场地发生地震时,如果建筑物的自振周期和场地的特征周期接近,建筑物和场地就会发生共振。因此在建筑方案设计时就应针对预估的建筑场地特征周期,通过调整结构的层数,选择合适的结构类别和结构体系,扩大建筑物的自振周期与建筑场地特征周期的差别,避免共振的发生。

(3)水平位移特征

水平位移满足高层规程的要求,并不能说明该结构是合理的设计。同时还需要考虑周期及地震力的大小等综合因素。因为结构周期长、地震力小并不安全。其次,位移曲线应连续变化,除沿竖向发生刚度突变外。不应有明显的拐点或折点。一般情况下剪力墙结构的位移曲线应为弯曲型。框架结构的位移曲线应为剪切型t框一剪结构和框一筒结构的位移曲线应为弯剪型。

4、位移限值、剪重比及单位面积重度

(1)位移限值在结构整体计算的输出结果中,结构的侧移(包括层间位移和顶点位移)是一个重要的衡量标准,其数值大小从一个侧面反映出结构的整体刚度是否合适,过大或过小都说明结构刚度过小或过大(或者体现结构两个主轴方向的刚度是否均衡),以致要引起设计者对其中的结构体系选择、结构的竖向及平面布置合理性的再思考。

(2)剪重比及单位面积重度结构的剪重比(也即水平地震剪力系数)λ=VEK/G是体现结构在地震作用下反应大小的一个指标.其大小主要与结构地震设防烈度有关,其次与结构体型有关,当设防烈度为7、8、9度时,剪重比分别为0.012,0.024,0.040;扭转效应明显或基本周期

三、建筑结构设计的发展方向:

(一)总体设计趋势比较大。总体设计讲的是合理运用可行性方案。合理的选择构件的组成材料以及微小部构成问题,以达到建筑的安全性。总体设计是基于安全理论因素而确定的,是结构设计发展的―个大的方向。

(二)使用科学的的计算理论。建筑的结构设计,需要非常多的计算。结构设计的计算有空间受力计算,非弹性变形计算等,这些计算都非常繁琐而写细致,引入先进的科学计算理论和方法已经势在必行。不仅可以节约成本,也能推动结构设计的有效进行。

(三)建筑材料的变革。建筑材料至于结构设计,一个实际运用的东西。另一个是理论层面的。这个路线不仅会带来建筑上的变革,另―个方面也会带来结构设计的变革,是最明显的―个发展方向。

(四)审美理念的变革。审美是影响结构设计的一个因素,在新的时期,审美将更多的影响结构设计的发展方向。由于物质水平的段提高,以及民众的精神水平也会这提高,那么结构设计的审美方面也会随之发展。审美是人的天性,结构设计在将来一定会遵循审美的理念进行设计。

第4篇

关键词:高层建筑;结构;设计;问题 探讨

前言:

高层建筑是近代经济发展和科学进步的产物。进入20世纪以来,高层建筑在全球迅猛发展。高层建筑,是指超过一定高度和层数的多层建筑。在美国,24.6m或7层以上视为高层建筑;在日本,31m或8层及以上视为高层建筑;在英国,把等于或大于24.3m得建筑视为高层建筑。中国自2005年起规定超过10层的住宅建筑和超过24米高的其他民用建筑为高层建筑。高层建筑可节约城市用地,缩短公用设施和市政管网的开发周期,从而减少市政投资,加快城市建设。

一. 高层建筑结构设计的意义及依据

1.概念设计的意义

高层建筑能做到结构功能与外部条件一致,充分展现先进的设计.发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

2概念设计的依据

高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验

二.高层建筑结构设计体系

.1 结构的规则性问题

新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案”。因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。

.2 结构的超高问题

在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A 级高度的建筑外,增加了B级高度的建筑,因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚或超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。

.3 嵌固端的设置问题

由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了自嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计 嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。

.4 短肢剪力墙的设置问题

在新规范中,对墙肢截面高厚比为5~8的墙定义为短肢剪力墙,且根据实验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。

三、结构设计计算与分析阶段存在的问题

在结构计算与分析阶段,如何准确,高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,因此,结构工程师也应该相当地对这一阶段比较常见的问题有一个清晰的认识。

1、结构整体计算的软件选择。目前比较通用的计算软件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件,并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的,哪个又是意义不大的,这将是结构工程师在设计工作中首要的工作。否则,如果选择了不合适的计算软件,不但会浪费大量的时间和精力,而且有可能使结构有不安全的隐患存在。

2、是否需要地震力放大,考虑建筑隔墙等对自振周期的影响。该部分内容实际上在新老规范中都有提及,只是,在新规范中根据大量工程的实测周期明确提出了各种结构体系下高层建筑结构计算自振周期折减系数。

3、振型数目是否足够。在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。由于在旧规范设计中,并未提出振型参与系数的概念,或即使有该概念,该参数的限值也未必一定符合新规范的要求,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。

4、多塔之间各地震周期的互相干扰,是否需要分开计算。一段时间以来,大底盘,多塔楼的高层建筑类型大量涌现,而在计算分析该类型高层建筑时,是将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算,是结构工程师必须注意的问题。如果多塔间刚度相差较大,就有可能出现即使振型参与系数满足要求,但是对某一座塔楼的地震力计算误差仍然有可能较大,从而便结构出现不安全的隐患。

5、非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大,因此,必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。

四、工程实例

1.工程简介

兰花广场兰花商厦位于辽宁省, 总建筑面积6.38万m2,工程由同济大学设计院设计,施工单位为中国二十二冶集团有限公司,地下1层,地上为29层,总建筑高度为102.38米,其中地下一层采用箱形基础,底板厚度800mm,地上29层,钢筋混凝土框架-剪力墙结构, 除地下一层顶板外露部分厚度为 600mm外,其余部分楼板为模壳密肋板结构,厚度为120mm,本高层建筑采用抗震性能好、功能合理的现浇钢骨混凝土框架-剪力墙结构,利用楼、电梯间设置钢筋混凝土剪力墙且连接成筒体作为主要的抗侧力构件。混凝土强度等级为C60,钢筋骨架采用HRB400,框架采用宽扁梁框架以增加楼层净高,宽扁梁截面为800×700,端部加腋为800×650,混凝土强度等级为C40;为抵抗高层建筑的外力影响,在混凝土内筒剪力墙转角处设置十字形钢骨,以改善剪力墙的受力性能、提高剪力墙的延性、减少剪力墙刚度退化,中心筒墙体厚度为600mm,混凝土强度等级为C40。

五.高层建筑结构发展趋势

随着城市人口的不断增加建设可用地的减少,高层建筑继续向着更高发展,结构所需承担的荷载和倾覆力矩将越来越大。在确保高层建筑物具有足够可靠度的前提下,为了进一步节约材料和降低造价,高层建筑结构够构件正在不断更新,设计理念也在不断发展。高层建筑结构也正朝着结构立体化,布置周边化,体型多样化,结构支撑化,体型多样化,材料高强化,建筑轻量化,组合结构化,结构耗能减震化等方向发展。

六、结论

近些年来,我国的高层建筑建设发展迅速。但从设计质量方面来看,并不理想。在高层建筑结构设计中,结构工程师不能仅仅重视结构计算的准确性而忽略结构方案的具体实际情况,应作出合理的结构方案选择。高层建筑结构设计人员应根据具体情况进行具体分析掌握的知识处理实际建筑设计中遇到了各种问题。

参考文献

[1]、《混凝土结构设计规范》.GB 50010―2010.

[2]、行业标准《高层建筑混凝土结构技术规程》(JGJ3― 2002)中国建筑工业出版社,2002。

[3]张维斌.多层及高层钢筋混凝土结构设计实例及工程实例「M].北京:中国建筑工业出版社,2005.

第5篇

关键词:高层建筑,结构性,结构设计,结构表现

 

建筑在诞生之初就被认为是技术与审美融合的产物。这就意味着一个好的建筑,它必须经得起适用性、经济性与美观性这三重考验。只有正确符合结构逻辑的建筑才能具有真实的表现力和实际的实践性,单纯追求艺术表现而忽视结构原理设计出来的只能是雕塑作品或虚假的造型而已。而伴随着高层建筑在我国的迅速发展和建筑高度的不断增加,其类型与功能也愈加复杂和多样化,高层建筑的建筑构思与结构设计也越来赳成为工程师们工作的重点之所在。

1、高层建筑的结构性

现代的高层建筑变得越来越纤细,产生更大侧移的可能性比以往大体积的多层高楼要大。建筑愈高,自然界所产生的重力荷载、风荷载和地震荷载的影响愈大。正因如此,抵消这些荷载的结构作用成为高层建筑设计的一个重要方面。高层建筑对侧向荷载的动力反应,可以通过改进结构系统以及选择有效建筑形状的措施加以控制。论文格式,结构表现。因此,高层建筑的形式在很大程度上和结构的有效性能有关,这也就决定了建筑的经济性。建筑的结构性能可以定义为建筑承受荷载以及抵抗侧移的能力,同时也决定着建筑各种体量的组成。

2、高层建筑结构设计特点

1)水平荷载成为决定因素。一方面,因为楼房自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。

2)轴向变形不容忽视。高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩减小,跨中正弯矩和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。

3)侧移成为控制指标。论文格式,结构表现。与较低楼房不同,结构侧移已成为高层建筑结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

4)结构延性是重要设计指标。相对于较低楼房而言,高层建筑结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。

3、高层建筑结构其他设计方法

1)选择有效房屋形式以控制侧移。由于水平荷载成为决定性因素,因而控制侧移成为必要 手段。过去的高层建筑形式多为矩形棱柱体,而从几何观点看,这种形式对侧移是颇为敏感的。倘若采用对侧向力不太敏感的房屋形式,比如外柱倾斜式、上窄下宽式、圆形或椭圆形、三角形和新月形的房屋形式,利用它的几何形状所具有的力学特点,就可使结构更加有效,造价也更低。

2)高层建筑地下室的设置。当今高层建筑的下面都设有地下室,这通常出于两种考虑及需要。一种出于使用要求。比如可将大面积停车场或仓库、机房、配电间等一系列附属用房和人防工程等设于地下,从而节约地上建筑面积。另一种,则是出自结构的考虑和需要,因为设置地下室可减轻地基压力,提高房屋层数,增加房屋抗倾覆力和改善房屋抗震性能和总体刚度。因此,如何减轻作用于地基上的总荷重具有很现实的意义。论文格式,结构表现。

3)高层建筑中转换层的应用。伴随着建筑多层次、多功能的发展,转换层结构应运而生。 转换层属水平结构,用它去改变下方楼层柱子的 排列,或过渡上下层剪力墙的不同布置,以此来 获得特别的楼层柱网即创造大空间并将上部荷载 传递到下面相对少而大的柱或墙上,也是现代高 层结构设计的重要内容。

4)高层建筑防火设计。高层建筑因其巨大的高度和复杂的功能,一旦发生火灾便将造成巨大的危害。因而高层建筑防火问题若不能妥善解决,高层建筑的存在和发展都将受到严重威胁。因此在进行高层建筑防火设计时,要首先考虑结构防火,比如火灾的因素、火灾的控制、消防通道、救护工作以及结构的防火方式等。其次,在明确结构防火目的的同时,还要对防火有效时间和防火程度及范围进行设计。论文格式,结构表现。最后,还要保证建筑的稳定性,即建筑的承重结构必须在防火墙经火灾烧毁后仍能残存下来。论文格式,结构表现。

4、高层建筑结构表现涵义及内容

结构是影响建筑设计的重要因素,当代结构设计已经突破了传统概念上的“结构支撑”,越来越多的重视结构形态的表现性。结构表现成为建筑创作中形态构思的重要方法,结构表现着重挖掘建筑结构中的艺术因素,寻找结构和艺术的结合,变抽象的结构概念为生动的建筑语言。结构的表现不仅因满足功能要求呈现出来,而且通过结构工程师和建筑师的合作,还能实现设计者的个人美好愿望。

建筑结构艺术体现是建立在对工程原理特别是结构的原理和性能理解的基础上,并包含三层含义:效能、经济和雅致。所谓效能就是指在充分发挥结构优势基础上,又充分利用天然资源,从而使其尽可能有效的承受施加在它们上面的荷载。经济也是衡量一个建筑好坏的标准之一,节约天然资源的要求要和节约社会资源的需要相平衡,要做到用最少的钱建造最多功能的建筑,也正是由于设计者们注重经济的理念,将建筑造型与结构造型更有机的结合,才创造了许多伟大的结构艺术品。另外,雅致的结构形式更能够打动人心,引起人们的审美情感。雅致的结构表现因素有很多,比如结构形态的节奏与韵律,张力和动感;结构形态刚与柔的对比;结构形态的简洁与明确,机理与变化;结构形态的精妙平衡等等。

5、高层建筑结构设计与建筑设计理念

从表象层面看,建筑表现为空间方面的概念和形式是表现总体环境的。论文格式,结构表现。对于某个建筑物的最初方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。但是,关于空间形式的整体设想,也要求建筑师必须考虑建筑形式中有关荷载与抗力之间关系的某些准则,即结构概念。这包括以下几方面:一是所设想的空间形式应当固定在地面上;二是所设想的空间形式应当具有质量并能承受竖向重力荷载;三是所设想的空间形式必须能抵抗水平风力作用和地震作用。所以,在进行高层建筑设计时,建筑师的基本任务是:一方面要与结构工程师及其他T程技术人员协调合作;另一方面要根据建筑功能要求、建筑立意、场地情况、外力特征、施工条件及效率等因素,寻找出最经济,合理,美观的建筑方案。

6、结语

高层建筑设计中,由于水平荷载起主要控制作用,为考虑水平荷载,结构上必须提供必要手段去应付。因此,有些人认为结构在建筑形式中似乎充当了主角地位,这种看法不够正确。如果说结构是建筑设计的唯一准则的话,那么,我们只能由矩形或圆形的高层建筑,建筑设计也只不过重复使用这种单调的建筑形式罢了。但前面的讨论已经给我们启示,现代高层建筑设计中,结构设计与结构表现必须相互配合,这也说明了建筑师与结构工程师充分合作的必要性。因此,我们可以说建筑不仅反映了建筑师对结构工程师的尊重,以结构的构成来表达建筑的完美形式;它更反映了结构工程师对建筑师的理解,以创造性的结构处理去适应建筑功能的需要。

参考文献:

1.陈天虹,林英舜,王鹏种.超高层建筑中结构概念设计的几个问题[J].建筑技术,2006,37(5):371-373.

2.崔昌禹,严慧.结构形态创构方法-改进进化论方法及其工程应用[J].土木工程学报,2006,10,39(10),42-47

第6篇

关键词:高层建筑;结构体系;剪力墙

我国改革开放之后,由于综合国力的不断提高,房地产业迅猛发展,建筑业已成为社会支柱产业之一。由于经济的发展,加之土地资源宝贵,所以高层建筑更是如雨后春笋般迅速发展,数量剧增。而目前的工程设计领域中,设计人员忙于应付大量的具体工作,往往不够重视结构经济性问题,导致同一工程不同人设计,其工程造价可能差别很大,造成不必要的浪费。这对于经济实力并不发达、尚处于第三世界发展中国家的中国来说是一个亟待解决的问题。

1 高层建筑结构的主要特点

(1)水平荷载对结构的影响大,侧移成为结构设计的主要控制目标之一。其根本原因就是高层建筑结构侧移和内力随高度的增加而急剧增加。例如,一竖向悬臂杆件在竖向荷载下产生的轴力仅与高度成正比,但在水平荷载下的弯矩和侧移却分别与高度呈二次方和四次方的曲线关系。所以,在高层建筑结构中,除了像多层或低层房屋一样进行强度计算外,还必须控制其侧移的大小,以保证高层建筑结构具有足够的刚度,避免因侧移过大而造成的结构开裂、破坏、倾覆以及一些次要构件和装饰的损坏。

(2)多种变形影响大。高层建筑结构由于层数多、高度高、轴力很大,沿高度引起的轴向变形很显著,中部构件与边部、角部构件的变形差别大,对结构的内力分配影响大,因而对构件中的轴向变形影响必须加以考虑;另外,在剪力墙结构体系中还应考虑整片墙或墙肢的剪切变形,在筒体结构中还应考虑剪变滞后的影响等。

(3)扭转效应大。当结构的质量分布、刚度分布不均匀时,高层建筑结构在水平荷载作用下容易产生较大的扭转作用,扭转作用会使抗侧力构件的侧移发生变化,从而影响各个抗侧力结构构件(柱、剪力墙或筒体)所受到的剪力,进而影响各个抗侧力构件及其他构件的内力与变形。既使在结构的质量和刚度分布均匀的高层建筑结构中,其在水平荷载作用下也仍然存在扭转效应。

(4)结构延性是度量结构抗震性能的重要指标。相对于较低楼房而言,高层建筑结构更柔一些,在地震作用下的变形更大一些。因此,必须运用概念设计方法,对引起结构不安全的各种因素做综合的、宏观的、定型的分析并采取相应的措施,以求在总体上降低结构破坏概率。

2 高层建筑结构分析

2.1高层建筑结构分析的基本假定

高层建筑结构是由竖向抗侧力构件(框架、剪力墙、筒体等)通过水平楼板连接构成的大型空间结构体系。要完全精确地按照三维空间结构进行分析是十分困难的。实际工程中,对结构分析都需要对计算模型进行不同程度的简化,其中常见的基本假定有:

(1)弹性假定。目前工程上实用的高层建筑结构分析方法均采用弹性的计算方法。在垂直荷载或一般水平荷载作用下,结构通常处于弹性工作阶段,这一假定基本符合结构的实际工作状况。但是,在遭受地震或强台风作用时,高层建筑结构往往会产生较大的位移而出现裂缝,并进入到弹塑性工作阶段。此时,仍按弹性方法计算内力和位移则不能反映结构的真实工作状态,应按弹塑性动力分析方法进行设计。

(2)小变形假定。小变形假定也是各种方法普遍采用的基本假定。据研究统计,当顶点水平位移Δ与建筑物高度H的比值Δ/H>1/500时,P-Δ效应的影响不能忽视。

(3)刚性楼板假定。很多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计。这一假定大大减少了结构位移的自由度,简化了计算方法,并为采用空间薄壁杆件理论计算筒体结构提供了条件。一般来说,对框架体系和剪力墙体系采用这一假定是完全可以的。但是,竖向刚度有突变的结构、主要抗侧力构件间距过大或是层数较少等三种情况均对楼板变形的影响较大,特别是对结构底部和顶部各层内力和位移的影响更为明显,此时,可将这些楼层的剪力作适当调整来考虑这种影响。

(4)计算图形的假定。高层建筑结构体系整体分析采用的计算图形有以下三种:即一维协同分析、二维协同分析和三维空间分析。其中一维协同分析各抗侧力构件只考虑一个位移自由度,计算简单,主要用于手算方法的计算简图;二维协同分析各抗侧力构件的位移由三个自由度确定,主要用于中小微型计算机上的杆系结构分析程序;三维空间分析在前两者的分析基础上既考虑了抗侧力构件的公共节点在楼面外的位移协调(竖向位移和转角的协调),又考虑了抗侧力构件平面外的刚度和扭转刚度对具有明显空间工作性能的筒体结构的影响。三维空间分析普通杆单元每一节点有6个自由度,按符拉索夫薄壁杆理论分析的杆端节点还应考虑截面翘曲,有7个自由度,较前两者的计算更为精确。

2.2高层建筑结构静力分析方法

(1)框架-剪力墙结构。

框架-剪力墙结构内力与位移计算的方法很多,大都采用连续化建立常微分方程的方法。框架-剪力墙结构的计算方法通常是将结构转化为等效壁式框架采用杆系结构矩阵位移法求解。

(2)剪力墙结构。剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。不同类型的剪力墙其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。剪力墙结构的计算方法为平面有限单元法,此法较为精确且对各类剪力墙都能适用。

(3)筒体结构。

筒体结构的分析方法按照对计算模型处理手法的不同可分为三类:等效连续化方法、等效离散化方法和三维空间分析。①等效连续化方法是将结构中的离散杆件作等效连续化处理。②等效离散化方法是将连续的墙体离散为等效的杆件,以便应用适合杆系结构的方法进行分析。③比等效连续化和等效离散化更为精确的计算模型是完全按三维空间结构分析筒体结构体系,其中应用最广的是空间杆-薄壁杆系矩阵位移法。该方法是将高层结构体系视为由空间梁元、空间柱元和薄壁柱元组合而成的空间杆系结构。空间梁柱每端节点有6个自由度。核心筒或剪力墙的墙肢采用符拉索夫薄壁杆件理论进行分析,每端节点有7个自由度,比空间杆增加一个翘曲自由度,对应的内力是双弯矩。三维空间分析精度较高,但其未知量较多,计算量较大,在不引入其它假定时,每一楼层的总自由度数为6Nc+7Nw(Nc、Nw为柱及墙肢数目)。通常均引入刚性楼板假定,并假定同一楼面上各薄壁柱的翘曲角相等,这样,每一楼层总自由度数即降为3(Nc+Nw)+4,这是目前工程上采用最多的计算模型。

第7篇

随着社会的不断进步和科技的快速发展,在城市建设中高层建筑物变得越来越普遍,发展速度也越来越快,为了进一步容纳更多的人口,减少建筑用地面积,建筑物的高度呈现出一种逐渐升高的趋势。高层建筑物的结构设计是建筑物稳定性与牢固性的有效保障,故高层建筑结构设计已然成为建筑工程设计的重要内容。因此,本文针对高层建筑结构设计方面存在的一些问题进行了分析,探讨如何提高高层建筑的结构设计水平,以期对今后从事相关高层建筑结构设计的工作人员有所帮助,减少由于建筑结构出现问题而导致的灾害。

关键词:

高层建筑;结构设计;问题;对策

随着我国国民经济地快速发展,城市化进程地不断加快,城市建设的步伐推动了高层建筑物的产生。与一般的建筑相比,高层建筑的施工过程往往更为复杂并且会面对更多的挑战。因此,需要设计人员在设计初期全面地考虑建设施工过程中有可能遇到的问题。特别是在结构设计方面,只有保证结构设计思路准确可靠,才能确保整个建设过程安全顺利地进行。结构设计职责在于确保高层建筑在长期使用过程中的安全性与舒适性,使其在自然灾害面前能够保护人民的人身和财产安全,进而体现高层建筑物的空间使用优势。但就目前情况来说,高层建筑物在结构设计方面存在不少问题,因此,进一步加强对高层建筑结构设计的研究,依然是当前一个核心问题的所在。

1高层建筑结构设计存在的问题

1.1短肢剪力墙设置过多钢筋混凝土剪力墙结构体系,由于其侧向刚度较大,并且可以结合建筑分隔墙灵活设置,在高层建筑结构设计中应用广泛,同时也存在比较普遍的问题。其中一个典型的问题是短肢剪力墙布置过多。剪力墙各肢的肢长与墙厚之比的最大值大于4且不大于8的墙体定义为短肢剪力墙。短肢剪力墙与一般剪力墙不同之处在于其受力特点与异形柱类似,同时承担较大的轴力和剪力。故短肢剪力墙的抗震性能弱于一般剪力墙。如果短肢剪力墙所占竖向抗侧力构件比例过高,则导致高层建筑物的抗震、防风性能降低,同时由于短肢剪力墙所承受的楼层面积过大,在地震作用影响下容易过早压坏从而引起楼层坍塌。此类不良影响在高层建筑中是致命的,不利于高层建筑物的长期安全使用,存在较大安全隐患。

1.2上部结构嵌固端选取不合理在高层建筑物结构设计中,嵌固端位置的选取是一个重要的计算指标。目前,很多工程师习惯性地将上部结构的嵌固部位选择在高层建筑物的地下室顶板,而没有考虑这种做法的必要条件。上部结构的嵌固部位,从理论上需具备两个基本条件:该部位的水平位移为零和该部位的转角为零。因此不难看出,嵌固部位的特点应满足:该楼层的整体性强、楼板连续无大开洞,且本楼层的侧向刚度相对于上一楼层的侧向刚度来说应足够大。只有满足以上特点的嵌固端才能够有效的传递水平地震剪力。如果地下室顶板无法满足嵌固端的要求而强行设置,则会导致计算模型失真,地震作用计算不合理,不利于建筑整体抗震性能的评估。

1.3双连梁处理连梁超筋问题的合理性剪力墙结构中连梁超筋现象较为常见,常见的处理方式是将连梁的梁截面高度中央设置100mm宽的水平缝,从而形成两个半高度的连梁。这种处理方式采用的是连梁计算截面的简单等效替换。但是由于截面选择和计算假定存在一定误差,实际连梁和等效连梁在计算模型上存在较大差异,在高烈度区或者大震情况下,无法保证连梁的强剪弱弯,容易造成连梁在地震作用下失效,更有可能使得剪力墙或者整个结构体系的破坏,因此双连梁的处理方式是有限制条件的,需要设计人员合理分析受力状况从而综合考虑。

1.4其他方面设计的不合理性建筑结构的抗震等级决定了抗震措施和抗震构造措施,而抗震等级的划分需要根据结构类型、抗震设防要求等等条件综合确定。现如今各式各样的高层建筑通常都会伴有裙房作为其配套建筑空间,故此时裙房和主楼的抗震等级需要根据两者结构是否分开,各自建筑高度等等条件进行判断,并非全部采用一种抗震等级,造成不必要的经济浪费。由于现如今计算机的广泛应用,高层建筑结构模型的抗震分析已经基本由分析程序进行计算。但是任何计算程序都存在其适用性和局限性,单一软件的计算结果均需要其他分析软件的对比和验证,同时也需要工程师的概念判断,面对每一个工程,挑出最合理的计算模型和软件才是正确的结构分析方法,切不可迷信单一软件或者计算结果。

2高层建筑结构设计存在问题的解决对策

2.1注重结构设计中的性能设计结构的性能设计是高层建筑设计中经常提到的一个问题,不难发现结构抗震设计的精髓便在于性能设计。由于城市的快速发展和人口的急剧增加,仅仅以保护生命安全为单一目标是不全面的,我们更应该考虑如何控制建筑物的地震破坏,保障地震时的建筑功能。要实现这些目标,需要我们分析各个地震水准下构件的变形、承载力和局部构造。单一提高变形能力,则导致结构在小震和中震下的破坏情况没有太多改变,但是抵抗大震倒塌的能力有所提高。单一提高承载力时,构件的安全性有所提高,但是变形不一定符合要求。所以要想满足性能设计,需要提高承载力,使得结构进入塑性工作阶段延迟,同时提高刚度以减小变形。故不难看出,只要找到结构构件的承载力和变形能力的平衡点,就能实现结构的性能设计。

2.2选择合理的结构方案对于高层建筑结构设计来说,最为关键的一点就是选取恰当的结构类型。结构方案的选择,需要综合考虑各方面的因素。首先结构选型要能够满足建筑功能的需求,例如为了良好的视觉和传音效果,则必须舍弃一部分竖向支撑构件,采用大跨度结构;其次,对于建筑造型复杂,平、立面不规则的建筑物,结构设计需要通过设置防震缝的方式来形成规则的结构单元。此外,还应该针对建筑所在地区的实际状况综合考虑,例如针对施工现场的地下水位情况、地质土层情况、周边已建成建筑物以及建筑用材供应难易程度、工程造价等等进行考虑,进而才能确定最佳的结构方案。

2.3结构的包络设计方法包络设计方法常常被用来解决工程结构设计中的难题。现如今的工程设计问题千变万化,影响结构效应的因素非常之多,有时问题会盘根错节非常复杂,采用现有的知识和软件难以准确分析。但是学术科研和工程问题的不同在于,后者不能长时间等待,因此就需要结构设计人员采用最简单有效且低代价的方式去解决工程复杂的问题。所以,包络设计方法就显得尤为重要,针对不同的工程条件,我们可以采用不同的包络设计原则,可以是对结构整体的包络设计,例如对于少量剪力墙的框架结构,对框架可以按框架与剪力墙协同工作以及纯框架结构分别计算,包络设计。也可以是对重要部位的包络设计,例如对转换结构的转换层、连体结构的连接体等等。其次对结构构件的包络设计,可以根据构件的受力情况,对构件进行补充分析验算,最后取不利值包络设计。

3总结

总而言之,随着经济水平的提高,高层建筑已经成为了当前大城市发展过程中的主流,并且其发展速度与我国经济的发展速度不相上下,因此,高层建筑的安全性与稳固性也应得到相应关注。高层建筑属于技术密集型建设项目,它具有一定的复杂性和挑战性,其中结构设计影响整个高层建筑的性能。但是在当前的高层建筑结构设计中仍然存在一些问题,短肢剪力墙、嵌固端位置、连梁处理等等问题较为常见,所以在设计阶段,则需要设计人员加强设计工作的准确性,针对这些问题选择最优的设计方案,采用科学合理的计算简图和设计方法。因此,想要居住在一个具有较高安全性和可靠性的高层建筑物中,需要我们全社会人员的共同监督和建筑设计工作者的努力!

参考文献

[1]孙凯.高层建筑结构设计的问题及对策探讨[J].价值工程,2010(6).

[2]林宇晗.高层建筑结构设计中常见问题与对策分析[J],城市建设理论研究,2012(01).

[3]郭怀祥.浅谈超高层建筑结构设计的关键性问题[J].中华民居,2014(9):357-358.

第8篇

关键字:高层建筑;结构设计;要点分析

1高层建筑结构设计的基本原则

1.1结构方案合理化原则。高层建筑结构方案的合理化是指高层建筑结构设计方案必须与结构体系和结构形式的要求保持一致,同时应满足经济性的要求,其中结构体系的具体要求为传力简单化、受力明确化。针对某些结构单元相同的高层建筑物,其结构体系应相同。1.2计算简图合理化原则。高层建筑结构设计的基础是计算简图,计算简图的合理性直接关乎高层建筑结构的安全,由此可见高层建筑结构设计必须坚持简图合理的原则。高层建筑结构构件及节点的简化可以有多种选择,但必须把计算结果的误差控制在合理的范围内,以免对建筑结构产生负面的影响,从而影响建筑结构的安全。1.3结果分析精准化原则。伴随着计算机技术的迅速发展,当前很多领域都开始应用计算机技术,并且发挥着至关重要的作用,而在建筑结构方案设计中,通过应用计算机技术能够对相关数据进行科学更加科学的分析,不仅能够有效的降低人工计算存在的失误,而且还能确保建筑结构方案的准确与合理。

2高层建筑结构设计特点

2.1水平荷载。建筑同时承受竖向荷载和地震及风产生的水平荷载,在多层建筑中,因水平荷载产生的内力和位移相对较小,对建筑建构设计的影响不大,主要是以重力为代表的竖向荷载着建筑结构的设计起控制作用。而在高层建筑中,很多时候是水平荷载对建筑结构设计起决定性作用,尽管竖向荷载对结构设计会产生重要的影响,但相对于水平荷载来说,影响相对较小。2.2轴向变形。对于多层建筑轴力项相对于弯矩项来说,对结构设计产生的影响不是很大,结构设计时可只考虑弯矩项而忽略轴力的影响。但是对高楼层建筑结构进行分析所要考虑的因素就不太一样了,需充分考虑到高层建筑的层数、高度对竖向构件轴力值的影响。随着高度的不断增加,竖向构件的轴力变形也会变得特别明显,当竖向构件轴向变形达到一定的程度,会使高层建筑的结构内力数值和分布产生变化。2.3建筑侧向位移。随着建筑楼层及高度的增加,在水平荷载的作用下产生的侧向位移也会不断的增大。高层建筑设计时,需要保证足够的结构强度,在应对风荷载及地震作用产生的内力作用时,才能有足够大的力量去抵御。为了能够将风荷载及地震作用下产生的侧移距离控制在一定的限度之内,就必须拥有足够的抗侧刚度能力,才能较好的保障结构安全及正常使用的舒适度。

3高层建筑结构设计存在的问题分析

3.1建筑短肢剪力墙设置存在问题。随着人们对住宅平面与空间的要求越来越高,高层住宅建筑中短肢剪力墙的运用越来越多。在一般情况下,建筑结构的短肢剪力墙是指墙肢的高度、厚度比例为5-8的墙体。短肢剪力墙与普通剪力墙相比承担较大轴力与剪力,抗震性能较差,从受力特性及构件的安全储备有别普通剪力墙,为安全起见,在高层住宅结构中短肢剪力墙布置不宜过多,不应采用全部为短肢剪力墙的结构,在某些情况下还要限制建筑高度。3.2抗震结构设计问题。高层建筑结构设计中很重要的内容是结构抗震设计。受高层建筑高度过高、荷载过大的影响,一旦出现了地震,就会诱发出各种不可估计的问题。现阶段我国建筑工程建设要求高层建筑最低要保证五十年的设计基准期,并对高层建筑的抗震设计进行了明确的规定。但是在实际结构设计中,存在设计人员对规范理解不透、概念设计模糊等问题。如果高层建筑结构设计人员没有充分认识到上述问题,就会给高层建筑留下安全隐患。3.3扭转问题。质量中心、刚度中心和几何中心是高层建筑结构设计中的“三心”,“三心合一”也是高层建筑结构设计过程中需要尽量达到的目标。但是在实际设计中存在“三心”偏离较大的问题。在三心偏离较大的情况下,受较大水平力的影响就会出现高层建筑扭转震动的问题,影响高层建筑的安全。

4高层建筑设计相关假定

4.1弹性假定。当建筑处于一般风力的、正常使用竖向荷载及低于设防烈度的地震的作用时,建筑结构构件一般处于弹性的工作阶段,这一假定与实际的工作情况存在的差异不大。但当遭遇强震作用或者强烈的台风天气时,建筑产生的位移会比较大,结构构件会转入弹塑性的工作阶段。在这个时候就应当按照弹塑性动力分析方法进行分析,而不能只按照弹性假定的方法计算,否则就不能将结构构件的真实工作状态反映出来,留下安全隐患。4.2小变形假定。小变形假定方法是除了弹性假定之外另一种比较常用的方法,但也有学者对几何非线性问题进行研究。除了弹性假定,小变形假定方法也常被采用。但有不少学者对几何非线性问题(P-Δ效应)做了一些研究。一般情况下,当顶点水平位移Δ与建筑物高度H的比值Δ/H>1/500时,P-Δ效应的影响就不能被忽视了。4.3刚性楼板假定。目前在我国对很多高层建筑结构进行分析时,都是将楼板的平面内刚度设定为无限大,而将楼板平面外的刚度予以忽略。在这种假定下,建筑结构体系的自由度在一定程度上减少,对计算方法进行了简化。此外通过这种假定,使得在使用薄壁杆件的理论在对筒体体系的结构进行计算时非常方便,但是一般情况下,因为受到计算方式以及其他因素的影响,使得这种假定通常比较适合对建筑的框架以及剪力墙体系的计算。4.4计算图形的假定。在高层建筑架构体系中,整体分析将采用的计算图形分为一维、二维协同分析和三维空间分析三种。其中,三维空间分析的普通杆单元,每一节点含有6个自由度,按符拉索夫薄壁杆理论分析的杆端节点还应该考虑截面翘曲,截面翘曲有7个自由度。

5高层建筑结构设计要点

5.1建筑的载荷设计。在高层建筑的建筑结构设计中,建筑的安全性以及稳定性是设计的重中之重,而建筑的荷载直接影响着建筑的安全以及稳定,因此在进行建设设计时一定要做好荷载的计算。相对于一般的建筑,高层建筑的荷载及其组合要复杂的多,相关的设计人员在进行建筑的荷载计算时需要考虑的内容也多得多。在进行高层建筑的荷载计算时,最主要的内容是以下两个方面:建筑的地震荷载以及风荷载。在实际的设计中,复杂的超限高层建筑还应当进行的风洞试验及振动台试验,以确保建筑的安全。5.2建筑抗震性能的设计。因为高层建筑的高度要比普通建筑高出很多,多以其对应力的承受能力也不一样,因此当地震时其产生的反应程度也不是一样的,因此对于高层建筑,在进行设计的时候必须要充分考虑抗震设计。而且抗震设计时,必须要对建筑所处的地形地质条件都进行充分的考虑,通常土地比较坚硬的其抗震强度会比较大,所以要尽量选择硬度比较大的土层,而避开那些土质疏松的地层,而对土层的变化进行有效的把握成为抗震设计中的一个困难点。5.3高层建筑结构的包络设计。包络设计是近年来比较常见的设计方式,可以有效解决工程项目结构设计中存在的各种问题。当前工程设计问题变化比较多,有许多因素都会影响到结构效应,各种问题盘根错节,使用目前已经掌握的只是或者软件很难对其进行准确的分析。学术科学和工程的不同点在于后者难以长时间等待。因此要通过优化结构设计的形式,利用最少的经济投入来获取最大的经济效益,并解决工程项目存在的问题。不同的工程条件可以用不同的网络设计原则来处理,在对待转换结构转换层或者连体结构时,也可以用网络设计,对构件进行分析验算,取不利值包络设计。

总之,高层建筑的复杂性不仅要求其设计人员必须具有较高的综合素质,而且还有掌握足够的理论知识以及相关的法律知识,而且在对其进行结构设计时也要对对建筑周围的环境进行综合的考虑,由此来提高设计的质量,同时降低建造的成本,促进高层建筑的健康发展。

作者:崔惠林 单位:保定市城乡建筑设计研究院

参考文献:

[1]刘军进,肖从真,王翠坤,徐自国,田春雨,陈凯.复杂高层与超高层建筑结构设计要点[J].建筑结构,2011,11:34-40.

[2]曹彬,李铭.高层建筑结构设计中剪力墙结构的要点分析[J].中国建筑金属结构,2013,22:65.

[3]杨留学.论高层建筑结构设计的注意事项和要点分析[J].门窗,2012,08:225-226.

[4]王慧君,徐勇.高层建筑结构设计的要点探析[J].科技与企业,2014,06:171.

[5]杨俊.高层建筑结构设计中的要点分析[J].江西建材,2014,13:35-36.

[6]邹喜财.高层建筑结构设计的要点分析[J].建材与装饰,2016,12:123-124.

第9篇

关键词 高层建筑 结构设计 问题

在国内市场经济改革不断推进的经济环境之下,物质文明已经达到了较高水准,由此人们对作为衣食住行四大生活要素重要载体的建筑也有了更高的标准。而就高层建筑来看,由于其规模较大,且结构力学设计较为复杂,由此在结构设计的过程中往往存在一定的困难。由此,为经验提高高层建筑结构的稳定性,必须从设计入手,针对现今高层建设结构设计所存在的问题,不断提升其可靠性指标。

一、高层建筑结构设计问题分析

(一)短肢剪力墙设计缺陷

就现实情况而言,当下高层建筑结构设计者在设计短肢剪力墙的过程中,大多会出现增设短肢剪力墙的问题。根据国内对结构设计的全新规范不难得出,现今短肢剪力墙其截面高厚比应该处于5~8的范围内。根据高层建筑结构设计经验与设计参数不难得出,在对其结构进行设计的过程中不应该设置过多的短肢剪力墙,以进一步提高结构的稳定性。

(二)抗震Y构设计规范问题

在进行高层建筑抗震结构设计时,由于其高度较高,所以必须考虑较多不确定性因素对结构抗震性能的影响,所以一直是高层建筑结构设置中的难点。现今国内对高层建筑设计年限的规定至少为50年,并且对其烈度与震级对应下的高层建筑抗震能力指标做出了明确规定。但由于国内生态问题的持续恶化,国内地震问题在近10年间已经多次发生,其震级与烈度都有了不同程度的要求,如果仍然按照原有的设计规范,一旦出现地震事故,高层建筑的抗震性能堪忧。

(三)超高设计问题

超高是现今高层建筑结构设计过程中普遍存在的现实问题,多由于建设方为谋取更多的经济效益,罔顾建设规范准则,过度增加建筑层高或加高建筑层高,这一问题将大幅度削减高层建筑的力学性能,对其抗震性与可靠性都有不同程度的降低。特别是在风荷载较大及地震烈度较高等极端恶劣条件时,建筑的稳定性很难得到保障,甚至将会严重威胁业主的生命财产安全。

(四)扭转设计缺陷

高层建筑设计必须要尽可能保证建设工程的质量重心、刚度中心与几何中心处于同一位置,以避免产生由于偏心弯矩过大所导致的结构扭转坡外。但就现实情况来看,现今大部分高层建筑的设计都难以保证其三心处于同一位置,偏心问题普遍存在,一旦受到水平荷载的作用,建筑结构将很容易产生扭转破坏,这也就给其投产埋下了不小的安全隐患。

二、高层建筑结构设计问题优化措施

(一)合理选用结构设计方案

为确保高层建筑结构的稳定性,必须合理选用适宜的结构设计方案。首先在设计过程中必须结合建筑设计师所提供图纸以及国内对高层建筑结构设计的相关规范系统的确定其整体结构,防止所选择设计方案与建筑设计标准的冲突。另外还需要结合项目建设地点的地质情况、气候因素以及近50年来地质变动与水文情况对其结构细节加以优化,尤其需要根据工程规模对结构设计整体方案加以优化,在提高其结构稳定性的同时,确保设计方案具有较高的可行性与经济效益。

(二)完善抗震结构设计

在进行抗震结构设计时,应当结合项目区域地震基本烈度等级,对其抗震等级加以详细认定。必须对其抵抗侧向荷载结构组件的位置加以详细认定,确保其节点受力平衡与结构受力的合理分布。另外还应该保证建筑结构设计具有连续稳定性,并在保证其结构组件刚度与强度的同时,确保其经济合理性。在初步设计时,应该尽量对高层建筑的结构片面加以简化处理,在保障其基础强度、刚度的同时,增加基础的荷载传递能力。也就是说,必须避免其结构整体性的破坏与地基沉降对建筑的损害,进一步提升其抗震能力。

(三)优化结构性能设计

高层建筑的结构设计需要尽量符合结构性能的各项标准,大体涵盖以下几大方面:其一,优化对高层建筑结构的延性设计,避免其由于层高问题而产生变形与坍塌。其二,结合其水平荷载作用(主要包括地震横波、面波与风荷载),通过结构设计提高其抵抗侧向变形的能力。也就是说必须根据计算结果对建筑结构组件的弯矩调幅、塑性内力分布原则,确保建筑结构能够满足于性能化设计的各项标准。

(四)完善扭转设计

为避免高层建筑受到地震、地质水文条件与气候因素影响而产生的扭转性损坏,在对其结构加以设计之时,必须对其结构模式与平面布局进行综合考量,尽量确保其质量重心、刚度中心与几何中心处于同一位置。在一些特定条件下,由于高程建筑需要满足预定的功能指标,因此在需要选择不规则平面结构时,必须将其长厚比与宽厚控制于允许范围中,并尽量确保建筑结构的对称,以提高其抗弯扭能力。

三、结语

高层建筑结构的设计是一项复杂的系统工程,具有较强的技术性与思辨性,能够为建筑的稳定性提供充分的保障。而就实际设计工作来看,由于其高层建筑设计需要较高标准,因此必须要综合考虑建筑设计规范与建筑工程实况,并选用优化的结构设计模式确保结构的力学性能,同时针对当下高层建筑结构设计问题,选用适宜的优化方案,以此在提高其结构设计可行性的同时,促进我国高层建筑的可持续发展。

(作者单位为四川大学锦城学院)

参考文献

[1] 岳文萍,茂,刘飞飞.高层建筑结构设计的问题及对策探讨[J].住宅与房地产,2016(03):90-91.

[2] 赵军.高层建筑结构设计的问题与对策研究[J].门窗,2016(01):137-138.

[3] 赵华琪.高层建筑结构设计的问题及对策探讨[J].江西建材,2015(17):18+

24.

[4] 王号.高层建筑结构设计相关问题及对策分析[J].低碳世界,2015(01):233

第10篇

关键字:高层建筑 结构设计 特点 要点

中图分类号:TU97 文献标识码:A

引言

近年来,高层建筑逐步成为建筑业的重要建筑模式,由此建筑结构变得越来越复杂,同时人们对建筑功用性的要求也越来越高,由此做好高层建筑结构设计不仅关系到建筑建设的效益和效能,同时是满足人们对建筑要求的途径。当下,建筑安全问题已成为人们普遍关注的问题,建筑事故的层出不穷,究其原因,建筑结构设计问题难辞其咎,由此,如何在满足建筑日益增长的要求的基础上完善高层建筑结构设计就变得尤为重要。

1 高层建筑结构设计原则

1.1 选择合理的结构方案

在高层建筑的结构设计中,要选择经济合理的结构方案,从而保证结构设计的合理和安全。在结构设计方案的选择中,要注意对材料的要求、施工环境的综合考虑,同时要考虑地震区高层建筑设计的特点,要力图遵循平面和竖向规则,规避结构方案的不适性。在结构设计方案的选择中,要与建筑施工单位和基础设施供应方进行协商,从而选择合适的高层结构设计方案,充分发挥结构设计的效用。1.2 选择合适的基础方案

对建筑进行结构设计,要充分考虑建筑所在地的周边环境,要对工程的地质条件以及周围建筑的施工及特点做好调研,充分保证后续建筑过程与周边环境的和谐统一。建筑结构设计中要选择合适的基础方案,基础方案要体现结构设计的方方面面,要尽量显示建筑的全貌,同时要考虑建筑的经济成本和效益,最大限度发挥建筑周边条件的作用,保证建筑的正常实施。

1.3 选择合适的计算简图

高层建筑的结构设计要选择适当的设计简图,由此可以防止由于计算简图选择不当导致的建筑安全隐患的发生概率。建筑结构计算是以计算简图为基础的,所以结构设计中要特别注重计算简图选取问题,从而可以保证后续结构计算的准确和建筑设计的安全。当然,建筑实际结构与选取的计算简图之间允许存在合理的误差,但是要尽量把工程实际控制在计算简图精度要求范围内。

1.4 分析所得到的计算结果

当下,信息技术飞速发展,由此也带动了建筑结构设计对计算机软件的应用。由于不同计算机软件会产生不同的计算结果,所以要对不同结果进行分析处理。由此,建筑结构设计人员就要具备专业的建筑结构设计理念和知识,更要对计算机软件有充分详细的了解,便于对计算机计算结果进行客观分析。由于操作人员自身的问题或者计算机软件具有的自身误差,使得计算结果与实际情况出现一定的差异,这时就要求结构设计人员客观判断并予以纠正。

2 高层建筑结构设计的特点

(1)结构延性是重要的设计指标

相对于低楼层而言,高楼层具有独特的特性,高楼层拥有更好的柔性,由此,高层楼房在遭受地震的时候更容易出现变形。所以在建造高层建筑的过程中,就要充分考虑如何保证高层建筑的延性,从而保证高层建筑进入塑性变形阶段之后仍然有较好的变形能力,防止坍塌现象的发生。由此就要在建筑结构设计阶段采取恰当的措施保证建筑结构的延性。

(2)水平载荷成为决定因素

高层建筑的设计和建造过程区别于低层建筑,不仅要考虑竖向载荷,同时要考虑水平载荷的影响。在建造高层楼房时,水平载荷的影响作用也非常重要。水平载荷之所以发挥如此重要的作用是因为在高层建筑设计中要充分考虑抗侧力,而水平载荷可以起到平衡作用。除此之外,对某高度的建筑来说,竖向载荷基本是一个定值,而作为水平载荷的风载荷和地震作用,则随着结构动力特性的不同而浮动。

(3)轴向变形不容忽视

在有外力作用的情况下,建筑结构会发生一定的位移,包括弯曲、轴向变形和剪切变形。对于低层建筑的结构,一般的结构构件轴向和剪切变形的影响相对小,由此不会涉及到轴向变形和剪切变形问题的考虑。但是高层建筑的轴力相对较大,由此产生的轴向变形就会比较显著,由此在建筑结构设计中就要把轴向变形考虑进去。

3 高层建筑结构设计的要点

3.1 结构的超高问题

抗震规范中对建筑结构的总高度进行了严格限制,新规范中增设了B级高度,这与原来设定的A级高度在处理办法方面有很大的改变。所以在工程实践中,就要充分考虑建筑的超高问题及处理措施,在结构设计过程中要充分根据工程的实际进行抗震设计,防止建筑物结构过高导致的不安全因素。一旦在工程实际过程中忽视建筑物的超高问题,在工程后续施工过程中就会出现一系列的问题,这就会对工程工期和效益造成严重的损害。

3.2 短肢剪力墙设置问题

短肢剪力墙在规范中是这样定义的:墙肢截面高厚比为5-8的墙。实践表明,短肢剪力墙在高层建筑中的运用有更多的因素加以限制。因此,高层建筑结构设计过程中,就应当根据情况尽可能少的使用就要尽量避短肢剪力墙,从而减少由于短肢剪力墙的使用造成了不必要的麻烦,所以,在高层建筑的设计过程中,要特别注重工程的细节问题,从而提高工程建设的进度。

3.3 嵌固端的设置问题

高层建筑通常都有地下室和人防,由此嵌固端的设置位置可能在地下室顶板,也有可能在人防的顶板。在进行高层建筑结构设计的过程中,结构设计人员要特别注意嵌固端的设置问题,防止由于嵌固端设置所造成的问题。比如说嵌固端上下抗震等级的一致性问题和抗震缝设计与嵌固端位置的协调问题等等,由此可能造成结构设计的不合理,导致安全隐患的产生。

4 结语

高层建筑是一种更为复杂的建筑模式,近年来,高层建筑发展迅速,然而建筑的结构设计效果并不理想,建筑安全问题发生的频率相对较高,由此在高层建筑结构设计过程中,建筑结构设计人员更应该根据建筑结构的特点,认真考察建筑具体实际,从而设计出合理的设计方案,保证建筑的安全性和稳定性,发挥建筑的效益,从而满足建筑使用群体的要求,同时为建筑业的更快更好发展做出贡献,使得建筑业可以有更长足的发展空间。

参考文献

[1]李红.关于高层建筑结构设计问题探析[J].民营科技,2013(3)

[2]宋金兰.浅谈高层建筑结构设计问题[J].中国新技术新产品,2012(10)

[3]张瀚.关于高层建筑结构设计问题探讨[J].中国新技术新产品,2012(23)

[4]王续晶.高层建筑结构设计问题探讨[J].价值工程,2011(9)

第11篇

1.1结构方案最优化原则

建筑结构设计是建筑施工的第一步,一个质量优良的建筑物离不开良好的结构设计方案。建筑结构设计环节是建筑施工中非常重要的一个环节,建筑施工离不开建筑结构设计方案的指导。在对建筑结构方案进行制定时,需要搜集建筑周边环境信息,针对建筑所在的位置,进行合理设计,另外在设计时,还要考虑到建筑的经济性,建筑技术以及施工方面的影响,从而设计出最佳的建筑施工方案。

1.2建筑材料与资源的节约性原则

建筑设计中一项重要的工作就是提高建筑材料的利用率,减少建材的使用。因此在建筑工程实际施工前,相关的设计人员必须仔细的研究工程图纸,提前做好建材的使用方案以及节约方案。在不影响工程整体施工季度以及质量的前提下,综合考量与建筑材料相关的各种因素,比如物流费用、加工费用、存储费用等等,尽可能的降低成本。另外,选用建材时,不能一味的注重价格,也要考虑建材的质量,比如钢筋的使用,尽量采用高强度的钢筋,其具有强度高,性能突出等优点,使用效果远远高于普通钢筋,相较而言,其性价比更高。

2高层建筑结构设计的特点

2.1控制指标

高层建筑由于楼层的高度问题,在施工方面和基层建筑的施工是有很大的不同的,因此在进行高层建筑结构方案制定时,设计的侧重点也不同。在高层建筑结构设计中,结构侧移是一项非常重要的设计因素,因此在制定建筑结构设计方案时,一定要注意将结构侧移控制在一定的范围内。

2.2轴向变形

在高层建筑结构设计中另外一个非常重要的元素就是轴向变形,在高层建筑施工中,竖向载荷数值一旦变大,竖向构架中就会出现非常大的轴向变形,从而对连续梁弯矩产生破坏,进而对建筑的整体结构产生影响。

2.3水平荷载

在建筑结构的设计中,水平荷载是一个非常重要的元素。建筑结构设计中的竖向荷载所造成的轴力与建筑物的整体高度的一次方成正比,水平荷载所造成的倾覆力和竖向的构件生成的轴力这两种利益与建筑物的整体高度的二次方也成正比。假如建筑物的高度增长的话,这个值也会变大,从而会对整个建筑结构产生很大的影响。

3高层建筑结构设计中存在的问题

3.1高层建筑结构设计随意无章

建筑工程的建设最重要的参照物就是建筑结构的设计图纸,也是建设过程中的具体指标,在建筑结构的设计以及实际工程施工中具有十分重要的作用。如果建筑结构设计图纸出现微小的问题,在实际施工中,都会被扩大数倍甚至数十倍的形式呈现在建筑结构中。因此,在建筑结构设计中,必须重视对设计图纸的使用以及标识。但是目前的建筑结构设计过程中,对于图纸的运用还存在一些问题,有些关键性的信息并没有在图纸中表明,比如建筑的防震设计,建筑的抗裂等级,或者建筑施工材料的质量标准等。如果后期的设计人员对于建筑结构设计的整体考虑不那么全面,稍有遗漏,就会严重影响建筑工程的施工质量。

3.2高层建筑结构设计不合规定

高层建筑结构设计的不合规性主要体现在建筑施工材料的选用上。随着我国经济水平的不断提高,建筑行业得到了极大的发展,而建筑行业繁荣的背后,也使得市场竞争更加激烈。这使得一部分企业,为了追求利润,扩大市场占有率,开始降低自身的建筑成本,而降低建筑成本的主要手段就是调整建筑施工材料等级,许多企业在进行建筑结构设计时,投机取巧,擅自调整建筑材料。例如使用低含钢量的建材来降低建筑成本,使用一些低质的施工材料。这不仅会对企业造成极大的负面影响,还严重威胁到了人们的生命财产安全,这也是我国不断出现“楼歪歪”“楼脆脆”等现象的原因。

4高层建筑结构设计的有效解决对策

4.1完善高层建筑结构的设计图纸,培养严谨的工作态度

在建筑结构设计中,要重视设计图纸的使用。相关设计人员在对高层建筑结构设计过程中,对于一些细小但是重要的数据,信息都要考虑到,并将其清晰的标注在设计图纸上,不要因为为了方便而将一些重要的信息省略掉。因为高层建筑在实际施工中,都是严格按照高层建筑结构设计的图纸来进行实行的,一旦图纸中出现不清楚或者不明确的数据信息,这对高层建筑的整个施工都会产生重大的影响。此外,设计人员在进行图纸设计时,要秉承严谨的工作态度,认真对待设计工作,切忌马虎大意,对于已经完成的设计图纸,也要反复检查,确保设计出来的图纸信息的准确性。同时设计人员还要对图纸中发现的问题或者丢失的数据,及时的修改或者弥补,以确保建筑工程的施工质量。

4.2加强高层建筑结构的刚度设计,适应建筑的实际需求

高层建筑结构的刚度取决于建筑材料的含钢量。因此,在高层建筑设计过程中,如果采用低含钢量的设计,会使得工程具有极大的安全隐患。所以建筑施工企业必须注意高层建筑的刚度设计,以保障高层建筑的工程质量。当然,建筑结构的刚度会随着不同的地质情况而不同,比如在平原地区,地质比较稳定,那么高层建筑结构对于刚度的要求就比较低,可以采用含钢量稍微低一些的建材;而如果在山地丘陵地区,地质情况复杂,那么就要对建筑结构的刚度要求严格一些,采用含钢量高的建材。综上所述,建筑企业不能一成不变,在高层建筑结构设计过程中,要因地制宜,不能仅考虑企业的利润,更多的是需要和实际情况相结合,设计出最符合要求的建筑结构刚度需求。

5结束语

高层建筑施工的基础就是高层建筑结构设计工作,也正因如此,高层建筑结构的设计质量问题会对高层建筑的后期施工质量产生直接的影响。同时随着我国社会的不断发展,人们对于建筑的需求也在朝多元化方向发展,也正是由于人们需求的变化,导致高层建筑设计的问题也日渐增多。因此,在目前激烈的竞争环境下,建筑企业要想长远的发展下去,就必须解决高层建筑结构中的问题,提高建筑工程的施工质量与水平。只有这样,才能更好的为社会做贡献,企业也才能更好地发展下去。

作者:张振新 单位:乌海市建设工程施工图审查中心

参考文献:

[1]岳文萍,茂,刘飞飞.高层建筑结构设计的问题及对策探讨[J].住宅与房地产,2016,(3):90-91.

第12篇

关键词:高层建筑,结构设计,分析,研究

中图分类号:[TU208.3] 文献标识码:A 文章编号:

1 引言

我国经济的快速发展加快了城市化进程的脚步,同时带动了建筑业的腾飞,建筑技术随之也有了质的飞跃。高层建筑的发展使有限的土地面积得到了最大化的使用,发展无限的空间,缓解了城市用地紧张和城市人口压力,并且高层建筑一跃成为建筑发展的主流导向,俨然成为城市高度发展的标志。高层建筑结构层数多、复杂难度大、施工困难、管理复杂、工序繁多、建设周期长、质量难以保证等诸多的特殊性,给设计施工带来了许多不便。高层建筑能够做到结构功能与外部条件的一致,设计理念先进,能够充分发挥结构的功能并保持经济性的协调,更好的解决构造问题。高层建筑结构总体系与各个分支体系设计和构造处理的原则、力学性质以及工作原理、力学模型和功能等这些高层建筑概念设计的依据都需要在实践中不断的积累经验。本文从高层建筑结构设计的角度出发,针对高层建筑结构的特点和设计问题,分析总结设计的要点,提出相对的控制措施,以期为相关的结构设计人员提供借鉴和参考。

2 高层建筑结构设计特点

相比低层、多层建筑结构,高层建筑结构中结构专业在各个专业中发挥着更为重要的作用,结构体系的选择直接关系到建筑的平面布置、楼层高度、施工技术、机电管道、施工工期、造价成本等,主要设计特点有以下几点:

1)高层建筑结构设计的主要因素是水平载荷,其也是高层建筑结构设计的决定因素,在低层和多层建筑结构中,一般是以重力为代表的竖向载荷对结构设计起着至关重要的作用。在高层建筑结构设计中,虽然竖向载荷对结构存在着重要的影响作用,但是水平载荷更为重要,之所以这样认为,是因为水平力对高层建筑结构安全稳定性的影响程度要远远超过竖向载荷对结构的影响。建筑结构设计中的竖向载荷包括建筑自重以及建筑楼面的使用载荷,它们在竖向构件中作用的轴力和弯矩的大小与建筑高度的一次方成正比关系,而水平载荷对建筑结构产生的倾覆力矩,和由此在竖向构件中产生的轴力,都与建筑高度的二次方成正比关系,因而,对于一定高度的建筑来说,竖向载荷是定值,而水平载荷主要是风载荷和地震水平分力,它们的数值大小是动态的,具有不确定性,对着结构动力学的不同随之产生较大的变化,而随着建筑高度的增加,较小的水平载荷也会产生较大的倾覆力矩和轴力,因此水平载荷是高层建筑安全性能的主要决定性因素之一。

2)建筑结构中,轴向变形对结构的影响主要表现在连续梁支座的安全和预测构件的下料长度方面。在高层建筑结构中,由于竖向载荷较大,柱中的挠度也较大,这样直接影响了连续梁弯矩,导致中间支座附近的负弯矩减小,而连续梁跨中正弯矩和端支座负弯矩增大,威胁到连续梁的稳定安全性能。同时较大的轴向变形也会对预测构件的下料长度产生影响,因此要根据轴向变形的计算值来调整预测构件的下料长度,避免出现安全隐患。结构构件的剪力值和侧移也会受到轴向变形的影响,考虑到结构构件竖向变形,得到的结果安全度不够。

3)与低层、多层建筑结构几何变形相比,高层建筑结构的侧向位移也成为控制目标,需要在结构设计中认真重视的关键所在。随着建筑高度的不断增加,侧向位移受水平荷载影响也越来越明显,水平荷载越大,侧向位移也就越大,对结构的安全影响就越大。因此,结构侧向位移要规定一个安全的容许范围,设计计算要将其控制在此范围之内,减少其高层建筑结构的安全影响。

4)结构延性是建筑结构的一项非常重要的设计指标,与低层建筑结构相比,高层建筑结构更具有柔韧性和延展性,建筑结构的整体变形相对来说也会更大一些。在风、地震等外力的水平作用下,高层建筑结构由处于弹性状态,在作用力超过弹性极限的前提下,结构就会进入塑性变形阶段,此时的变形无法恢复,如果作用力继续加大,就会达到破坏阶段,因此为保证结构在进入塑性变形阶段后仍然具有较强的变形能力和持久性,避免出现倒塌,就要采取恰当的措施,增加结构的延展性,避免结构损坏。

5)有抗震设防要求的高层建筑结构设计,在考虑竖向载荷、风载荷等的条件下,还要满足抗震设防的要求,保证结构具备良好的抗震性能,做到小震不坏、大震不倒。

3 高层建筑结构设计分析研究

3.1结构的高度

高层建筑结构的总体高度受制于规范标准,主要体现在抗震规范、高层混凝土技术规范中,对高度、超高等进行了严格的划分。高层建筑结构设计中,之前的一些处理方法和措施都有一定的改变,并且随着高度的增高,结构安全影响因素也增多,若忽视这些问题,就会产生非常大的风险。在实际工程中如果忽略这些问题,在施工图的审查过程将受到限制,导致返工重新设计的现象出现,若进行专家论证继而会影响工期、造价等一连串的规划设计施工,给项目造成很大的麻烦。当建筑高度达到一定的程度时,结构会发生质的变化,如安全指标、荷载、材料、力学模型选择等。

3.2 结构的体系

建筑结构体系有很多种,目前主流的结构形式主要有钢结构和钢筋混凝土结构。对结构体系的选择有直接影响的是结构转换层和加强层的设置,在结构体系之间或者柱间距发生变化时,就需要设计转换层,这时结构的刚度突变会直接影响到相邻的柱构件的受力情况,剪力增大导致很难实现转换层与体系连接处的强柱弱梁。因此,高层建筑在需要转换层或者加强层的结构设计中,结构体系的刚度要低,避免刚度出现太大变化,根据我国的建材市场产品性能和品种,可以适当的选择钢骨混结构、钢管混结构、钢结构等。

3.3 结构的细节问题

重视建筑结构细节的设计是为了保证结构的规则性、剪力墙和嵌固端的设置。采用平面规则的建筑结构方便了设计施工,并且规范要求建筑物采用规则的方案,同时在平面规则性做了严格的限制,就是为了避免在后期的施工图设计中造成不必要的麻烦。短肢剪力墙是设计中受到限制最多的,因此在设计中要避免出现短肢剪力墙,如无法避免,则要符合各种要求。嵌固端一般出现在地下室顶板、人防的顶板位置,它的设计也需要按照规范要求进行,如抗震等级一致的要求、嵌固端上下层的刚度比值的选取、嵌固端和抗震缝的相对位置要求,如不满足规范要求,则会对工程产生严重影响,因此也要重视嵌固端的设计。

3.4 结构的抗震性能

高层建筑结构极易出现扭转效应。当受到地震作用时,会加剧结构的破坏,继而影响到邻近建筑物的稳定。在高层建筑中结构抗震是设计中必不可少的环节。结构的应力集中现象会影响结构的安全性能,常出现在凹凸的拐角处,需要引起一定的重视,避免出现或者采取补救措施来减小这种应力集中现象。高层建筑结构在竖向还常出现刚度突变和薄弱层,因此在进行抗震设计时要注意防震缝的设置,同时它也是设计时容易忽视的问题。高层建筑结构要严格按照抗震设防规范的要求进行。

4 结束语

高层建筑结构设计随着建筑的高度变化越发复杂,相关设计人员要针对高层建筑的结构特点以及主要安全影响因素进行重点考虑,在严格遵守规范要求的基础上进行合理的结构体系的选择、高度的控制,重视结构细节的设计问题,按照抗震的安全标准设计,提高高层建筑在设计上的质量和安全性能。

参考文献: