HI,欢迎来到学术之家,期刊咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 航空航天材料的特点

航空航天材料的特点

时间:2023-07-25 17:16:06

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇航空航天材料的特点,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

航空航天材料的特点

第1篇

关键词:计算力学;多物理场耦合;先进复合材料;有限元技术(FEM)

中图分类号:V211 文献标识码:A 文章编号:1671-2064(2017)12-0252-02

1 力学在航空航天领域的支柱地位

作为与材料科学、能源科学并肩的航空航天领域三大基础学科之一,力学在航空航天领域拥有无可辩驳的支柱地位。航空航天技术的发展与力学学科的发展有着举足轻重的关系。同样,力学学科的发展也推动了航空航天技术的发展。从航空航天的历史开端,力学便扮演着开天辟地的角色:莱特兄弟发明飞机前的时代,人类的航空器长期停留在热气球与飞艇的水平,人们普遍认为任何总密度比空气重的航空器是无法上天的;而随着流体力学的发展,越来越多总密度大于空气的航空器被发明出来进行试验,而莱特兄弟的飞机即为第一个成功的尝试,莱特兄弟的L洞也成为一个经典(图1)。从此,航空器的发展步入了快车道,各种结构的飞机翱翔于蓝天,从不到一吨的轻型飞机到上百吨的运输机,直至今天我们对机已经习以为常。

时至今日,航空航天的总体设计已由庞大的力学各分支支撑起来,从最基本的方面分类,可包括:飞行器整体气动外形归属于空气动力学;整体支承结构归属于结构力学以及材料力学;复合材料归属于复合材料力学;材料疲劳性能归属于疲劳分析;结构动力特性归属于振动力学;缺陷结构分析归属于损伤力学以及断裂力学。而对于具体的问题细分,则还有如:针对超高速飞行器的高超空气动力学;针对紊流等大气不稳定情况的非定常空气动力学;针对流固耦合问题的气动弹性力学;以及针对非金属材料的粘弹性力学等。此外,还有众多与力学相关的技术被发展起来,如有限元技术(FEM)等。

展望未来,力学发展的源动力在于航空航天综合多学科的交叉与技术。被誉为“工业之花”的航空航天工业,其研发生产涵盖了目前已知的所有工科门类,如此多的学科交叉下,力学的发展势必会与其他学科进行技术交流,这会带来问题的进一步复杂化,同时也丰富了力学的研究内容。

2 航空航天领域力学发展新挑战

航空航天的发展,给力学带来了新的挑战。结构的日趋复杂,给力学计算带来困难;繁琐的理论公式,需根据工程需要进行必须的简化;新材料的应用在航空航天领域最为敏感,在为飞行器降低结构重量的同时,也带来诸多的不利因素如耐热性能差、环境敏感度高等;而在某些关键部件的多物理场耦合问题也将成为重要的研究方向。

2.1 程序化

航空航天器和大型空间柔性结构的分析规模往往高达数万个结点、近十万个自由度的计算量级,这些问题包括但不限于:飞行器的高速碰撞间题,如飞机的鸟撞, 坠撞,包容发动机的叶片与机匣设计,装甲的设计与分析,载人飞船在着陆或溅落时的撞击等。为了解决这种计算量庞大的问题,上世纪50年代初,力学便发展出一门崭新的分支学科――计算力学。伴随着电子计算机以及有限元技术的发展,计算力学取得辉煌的成绩,这也说明了其本身发展潜力巨大。

力学分析技术的发展,特别是对于各种非线性问题(几何非线性、材料非线性、接触问题等)分析能力,是长期存在的。然而在很长一段时间内,受到计算机能力的制约,以及模型建立本身的局限性,力学分析求解停留在解析方法和小规模数值算法中。这对于工程人员的设计工作是一个极大的限制,对于航空航天领域而言则尤甚如此。计算力学的发展,带来的效益是巨大的。首先其可以用计算机数值模拟一些常规的验证性试验和小部分研究型试验,这可以节省很大一笔试验费用。其次,其可以求解某些逆问题,逆问题的理论解往往无法通过非数值的手段得到。最后,从工程管理角度考虑,数值模拟方法大大节省了产品研发的周期,由此单位时间内产生了更多的经济收益。有限无技术分析机翼见图2。

上述计算力学给工程设计方面带来的种种好处,都基于一个很重要的前提。那就是力学问题程序化。如何将力学问题转化为一个计算机可以求解的程序,一直是计算力学研究的重点,比如有限元技术就是其中一个典型代表。目前,有限元技术已经涵盖了大部分力学问题,包括:静力学求解,动力学求解,各种非线性问题,以及多物理场耦合等。但值得注意的是,除了静力学以及相对简单的问题外,其余问题所用的算法目前精度仍然有限,相较于工程运用而言仍存在诸多壁垒。对于这些问题算法的更新,是力学问题程序化必须面对的挑战,仍需研究人员不断探索。

2.2 工程化

力学工程化依然是基于计算力学而讨论的。所不同的是,程序化是针对一项力学问题能不能解决,工程化关注的问题是如何使得力学问题的解决过程更符合工程需求。

21世纪的航空航天,已经越来越趋向于商业化,美国已有数家私有航天企业成立,我国的航天科技集团也在进行着一些商业卫星发射。而商业化的工程问题,所追求的目标永远是效益。因此,力学工程化发展也应基于这一要求。航空航天工程的研发工作,一直给人周期长的印象,动辄10年以上的研究周期,对于目前商业化的运营是不适用的。如何快速的给出解决方案,是今后力学工程化的重要考量。随着软件技术的发展,越来越多的数值计算可以通过可视化、图表化等快捷的交互式设计方法呈现出结果,这可以直观地给予工程师设计反馈,从而达到加快设计进程的目的。同时,直观的结果反馈,也能避免数据分析过程出现人为失误,起到规避风险的作用。

2.3 非均质化

新材料往往首先出现在航空航天领域,其中典型代表便是先进复合材料。先进复合材料具有高比强度、高比模量、耐腐蚀、耐疲劳、阻尼减震性好、破损安全性好以及性能可设计等优点。由于上述优点,先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。

复合材料的运用给力学提出了新要求,相比于传统各向同性的金属材料,其各向异性的力学特性使得非均质力学应运而生,代表便是复合材料力学的诞生。非均质化力学需要将材料的承力主方向设计为结构中的主承力方向,而非主承力方向则需要保证一定强度,不至于破坏,这是其主要的设计特点。相比各向同性材料,其理论模型更为复杂,相应的数值求解方法也没有那么完善。同时,实际中复合材料的性能分散性和环境依赖性相当复杂, 设计准则和结构设计值的确定还很保守,导致最终设计结果并没有理论中那么完美,很大程度上制约了工程领域大规模使用复合材料。对于国内而言,复合材料研究工作相比国外则更为落后,无论是设计经验还是试验数据积累都有不小差距。

建立完备的非均质化力学模型,积累足够的原始参数,大胆尝试提高复合材料的设计水平以及用量是今后力学非均质化的主要任务,需要研究人员付出更多的努力。

2.4 多物理场耦合

2.4.1 电磁与力学耦合

新时代下的航空航天材料,已不仅仅局限于提供简单的支承作用,功能化是航空航天器新材料发展的重点和热点,其最终目的是为了未来航空航天器发展智能化目标。

目前,越来越多的具有电-力耦合功能的新型材料正成为航空航天器结构材料的选择。因为在对飞行器的自我检测技术方面,具有电-力耦合功能的材料的受力状态与电磁性能存在特定的函数关系,由此系统能通过检测电磁性能达到检测受力状态的效果,这大大方便了对飞行器的健康监测,也有效保证了飞行器的安全。这其中耦合函数的准确性便成为关键,电-力耦合的发展能促进这些技术的健全,具有十分积极意义。

2.4.2 温度与力学耦合

温度场与力场的耦合主要体现在发动机上,对于发动机内部涵道的设计最优化一直是热力学着力解决的问题。

目前大部分飞机均采用喷气式发动机,包括:涡喷发动机、涡扇发动机以及涡桨发动机。上世纪40年代末,涡喷发动机出现,飞机飞行速度第一次能超过音速,带来了一场飞机发动机的技术革命。由此,包括进气道以及发动机涵道的设计成为发动机研发的一个关键点,早期的涡喷发动机,由于涵道上的设计缺陷,导致燃料燃烧产生热能转化为推进力的转化比很低,同时伴随着燃烧不充分,因此发动机耗油量很高且推力较小。经过几十年的发展,目前无论军用还是民用飞机发动机,大部分均采用涡扇发动机,通过优化得到的涵道形状最大化了单位燃油所提供的推力。图3为民用客机发动机涵道。

我国的飞机发动机工业水平距离世界领先水平仍有较大距离,特别是在大涵道比的商用发动机研发上。发展热力学,对热-力耦合问题进行更深入的研究,是发展我国飞机发动机事业的奠基石。

2.4.3 流固耦合

流固耦合是飞行器研制最基本的问题之一。几十年的发展历程中,基于流固耦合研究的飞机外形设计取得了诸多进展,包括整体机身外形的优化,翼梢小翼的出现等。随着飞机飞行速度的不断提高,特别是军用飞机机动性的要求,出现了许许多多新的流固耦合问题。比如针对飞机在大攻角飞行时(一般出现在军机上),传统小攻角气动表示法、稳定理论等均不再适用。因此,解决大攻角非定常问题,需要从飞行器运动以及流动方程同时出发,建立多自由度分析和数值模拟模型。这是典型的流固耦合问题。

同时,以往旧的流固耦合理论,在先进复合材料大量运用的今天,显然已经不再使用。对旧有理论进行必要的修正,也将成为流固耦合问题亟需完成的工作。

3 结语

当前,国家大力发展航空航天事业,作为高精尖产业,其所运用的理论与技术绝不能落后。力学作为一门古老而又应用广泛的学科,其对航空航天事业的发展起着举足轻重的作用。为符合未来航空航天领域发展,航空航天领域的力学应着力向着程序化、工程化、非均质化、以及多物理场耦合化综合发展。

参考文献

[1]杜善义.先进复合材料与航空航天[J].复合材料学报,2007(2):1-11.

[2]尧南.计算固体力学的发展及其在航空航天工程中的应用[J].计算结构力学及其应用,1993(3):199-209.

第2篇

关键词: 电子束焊;激光焊;搅拌摩擦焊;线性摩擦焊;扩散焊

中图分类号: V26 文献标识码:A

焊接是通过加热、加压,或两者并用,使同性或异性两工件产生原子间结合的加工工艺和联接方式。焊接既可用于金属,也可用于非金属。在航空航天装备和材料加工过程中,焊接技术有着举足轻重的地位。

1电子束焊

电子束焊( EBW)是在真空环境下利用会聚的高速电子流轰击工件接缝,将电子动能转变为热能,使被焊金属熔合的一种焊接方法。作为高能束流加工技术的重要组成部分,电子束焊具有能量密度高、焊接深宽比大、焊接变形小、可控精度高、焊接质量稳定和易实现自动控制等突出优点,也正是山于这些特点,电子焊接技术在航空、航天、兵器、电子、核工业等领域已得到广泛的应用。在航空制造业中,电子束焊接技术的应用,大大提高了飞机发动机的制造水平,使发动机中的许多减重设计及异种材料的焊接成为现实,同时为许多整体加工难以实现的零件制造提供了一种加工途径;另外,电子束焊接本身所具有的特点成功地解决了航空、航天业要求各种焊接结构具有高强度、低重量和极高可靠性的关键技术问题。所以在国内外的航空和航大工业中,电子束焊接已成为最可靠的连接方法之一。

2激光焊

激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,如果焦点靠近工件,工件就会在几毫秒内熔化和蒸发,这一效应可用于焊接工艺。激光焊具有焊接设备装置简单、能量密度高、变形小、精度高、焊缝深宽比大、能在室温或特殊条件下进行焊接、可焊接难熔材料等优点。激光焊接主要用机大蒙皮的拼接和机身附件的装配。美国在20世纪70年代初的航空航天工业中,已利用15kW的CO2仿激光焊机弧光器针对飞机制造业中的各种材料、零部件进行了激光焊接试验、评估及工艺的标准化。空中客车公司A340飞机的全部铝合金内隔板均采用激光焊接,减轻了机身重量,降低了制造成本。

3搅拌摩擦焊

搅拌摩擦焊技术是英国焊接研究所(简称TWI)在1991年发明的新型固相连接技术,是世界焊接技术发展史上自发明到工业应用时间跨度最短和发展最快的一项固相连接新技术。它是利用一种非耗损的搅拌头,高速旋转着压入待焊界面,摩擦加热被焊金属界面使其产生热塑性,在压力、推力和挤压力的综合作用下实现材料扩散连接,形成致密的金属间固相连接。它具有无飞溅,无需焊接材料,不需要保护气体,被焊材料损伤小,焊缝热影响区小,焊缝强度高等特点,被誉为“当代最具革命性的焊接技术。美国 Eclipse公司在Eclipse N500型商务飞机制造中首次大规模成功运用了FSW技术, 包括飞机蒙皮、翼肋、弦状支撑、飞机地板以及结构件的装配等基本上全部利用搅拌摩擦焊技术制造,70%的铆接被焊缝替代,不仅极大地提高了连接质量,而且使生产效率提高了近10倍,生产成本大大降低。波音公司将搅拌摩擦焊技术用于C-17和C-130运输机地板的制造,利用搅拌摩擦焊代替紧固件连接,简化了地板结构设计并提高了构件的生产效率,生产成本降低了20%。总之,FSW技术正处于深入研究和推广应用阶段,存在着巨大的应用发展潜力。

4线性摩擦焊

线性摩擦焊是一种在焊接压力作用下,利用被焊工件相对做线性往复摩擦运动产生热量,从而实现焊接的固态连接方法。它具有优质、高效、节能、环保的优点。20世纪80年代后期,MTU公司与罗罗公司合作,成功的将线性摩擦焊用于发动机整体钛合金叶盘的制造。目前,线性摩擦焊已经广泛应用于塑料工程和航空发动机叶盘式转子的制造。

5扩散焊

扩散焊又称扩散连接,是把两个或两个以上的固相材料紧压在一起,置于真空或保护气氛中加热至母材熔点以下温度,对其施加压力使连接界面微观塑性变形达到紧密接触,再经保温、原子相互扩散而形成牢固结合的一种连接方法。它具有接头质量好,焊后无需机加工,焊件变形量小,一次可焊多个接头等优点。扩散焊已在直升飞机上钛合金旋翼桨毂、飞机大梁、发动机机匣以及整体涡轮等方面试用,涡轮叶片、钛合金宽叶弦蜂窝夹层风扇叶片等的扩散焊已应用于生产。

焊接技术是航空航天领域的重要连接技术,它在促进航空航天制造技术的发展、实现飞行器的减重、高效中发挥着越来越重要的作用。可以预见,我国航空航天工业在突飞猛进的焊接技术的推动下定将取得快速发展。

参考文献

[1]黄刚.电子束焊接技术在航空产品中的应用[J]. 四川兵工学报,2010,31(5):73-76.

[2]毛智勇.电子束焊接技术在大飞机中的应用分析[J].航空制造技术,2009,(2):92-94.

[3]张益坤,成志富.电子束焊接技术在航天产品中的应用[J].航空制造技术,2008,(21):52-53.

[4]康文军,梁养民.电子束焊接在航空发动机制造中的应用[J].航空制造技术,2008,(21):54-56.

[5]王亚军,卢志军. 焊接技术在航空航天工业中的应用和发展建议[J].航空制造技术,2008,(16):26-31.

[6]沈以赴,顾冬冬,陈文华.航空航天焊接及成形典型技术[J]. 航空制造技术,2008,(21):40-44.

[7]丁丽丽,何旭斌,胡进.搅拌摩擦焊技术在军用飞机航空修理中的应用[J].电焊机,2004, 130-134.

[8]岩石. 航空航天先进特种焊接技术应用调查报告[J]. 航空制造技术,2010,(9):58-59.

第3篇

关键词:飞行器设计与工程;专业课程;通识课程;航空概论

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)47-0144-03

一、航空类专业课程体系简介

在教育部本科专业目录中,航空航天类专业有飞行器设计与工程、飞行器动力工程、飞行器制造工程、飞行器质量与可靠性、飞行器环境与生命保障工程、飞行器适航技术和航空航天工程等7个。目前,郑州航空工业管理学院开设了前3个专业,均归属于航空工程学院。以飞行器设计与工程为例,在第1学期设置了“飞行器设计与工程专业导论”课程(16学时)、第2学期设置了“航空航天技术基础”专业必修课(32学时)作为专业学习的前导课。第1―5学期,学校设置了“高等数学”、“大学物理”、“理论力学”和“材料力学”等公共基础课和学科基础课;第4―7学期则按照飞机设计的各个子学科,设置了“通用航空技术”、“空气动力学”、“飞行器总体设计”、“无人机系统导论”、“飞行器专业英语阅读”和“飞行器专业技术讲座”等专业课程。

从课程设置上可以看出,“飞行器设计与工程专业导论”和“航空航天技术基础”课程主要培养学生对专业基本情况和学科领域的整体性把握,属于专业通识性课程。而在专业课中渗透通识意识,对教师也提出了更高的要求[1,2]。经过这两门课程的前期引领和必要的数理、力学知识的学习之后,学生再按照飞机种类和飞机设计各分支学科的特点进行专业课学习。可以说,“航空航天技术基础”的各个章节基本上对应了后续专业课的主要范围,具有非常重要的地位。

在教学实践中,我们也发现,激波、升力、机翼结构、飞机稳定性和操纵性等概念尽管在“航空航天技术基础”课程中已讲授,但在相应的专业课学习中,学生仍觉吃力。调查发现,原因主要有两点:第一,专业课程数学公式较多,而数学、物理等公共基础课的学习效果一般,有畏难心理;第二,不知所学知识的应用情况,知其然而不知其所以然。针对航空类专业的课程体系,探索研究专业通识课程与后续专业课程的联系,对于增强学生学习积极性、提高人才培养质量具有重要意义。

二、“航空概论”通识类课程的建设情况

航空概论是学校面向非航空专业学生开设的一门通识课程(24学时),内容主要包括航空航天基本概念、航空发展概况及未来发展趋势、我国航空工业、空气动力学基础、飞行原理、航空发动机等[3],考核方式为期末半开半闭考试。此外,针对国际本科学术互认课程(International Scholarly Exchange Curriculum Undergraduate,ISEC)项目的双语版航空概论(32学时),内容较普通版更为丰富,更强调课堂参与和团队协作,考核方式为平时作业、表现和期末设计报告。

航空概论被列入学校的特色课程组合中,除航空专业外,其余专业的学生均须从特色课程组合中选修一门。学校每年的本科生招生人数近7000人,日常教学任务较为饱满,考虑到学校招生专业包括财经类、管理类和艺术类等,学生数理基础参差不齐,在讲授时一般避免进行复杂公式的推导,多采用类比法和案例法讲解。

此外,学校的人才培养目标和发展定位与传统的三所航空重点高校(北京航空航天大学、西北工业大学和南京航空航天大学)以及其他高职高专类院校存在明显区别,市场上已有的航空概论教材并不能完全满足我们的教学需求。经过多年的建设,学校主编并出版了《航空概论》教材,并将“航空概论”课作为学校慕课平台课程体系的第一批建设项目立项,通过网上课堂与实际课堂相结合的形式,探索“翻转课堂”教学理念在航空类通识课程中的应用效果。现在,此项工作正在稳步开展中。

三、航空类专业课程与“航空概论”课程贯通建设

为了尽可能利用现有资源,我们对航空类专业课程和“航空概论”课程进行了统筹处理,并尝试进行贯通建设,主要包括如下措施。

1.教具的开发和使用。“飞行器设计与工程专业导论”开设于第1学期,是飞行器设计与工程专业学生的一门必修课,其中理论课为8个学时,主要介绍专业课程特点、发展现况和就业方向;实践课为8个学时,要求学生以小组形式设计制作飞机模型,主要培养学生对飞机的认识以及团队协作能力。“专业综合性设计与制作”开设于第7学期,为专业必修实践类课程,为期两周,要求学生按照总体设计指标完成飞机的总体概念设计,制作出模型。

第4篇

数字化技术已经广泛应用于模具制造中,尤其是在高精尖的航空航天领域。航空航天类模具一般采用5轴加工,且具有结构复杂、精密、种类多、单件生产、使用寿命长、工期长、材料价格昂贵等特点,所以此类模具加工起来较复杂,精度难控制,易出现尺寸超差。航空航天类的模具虽然不是终端产品,但很多复杂的零件需依托其成型,其加工精度会影响零件的质量,交付情况也会影响航空航天产品的生产成本与制造周期[1]。

2模具超差原因分析

模具加工超差问题严重影响模具交付,是拒收模具的最主要原因之一。模具加工最常见的质量缺陷问题是工件尺寸超差,进而影响模具生产的交付。因此,及时分析尺寸超差原因就显得尤为重要,并据此提出相应改进措施,才能避免以后类似问题的出现,进而提高生产效率,保证加工质量。图1为模具超差原因的鱼刺图,从影响产品质量方面分析,模具超差原因包括人、机、料、法、环五个主要因素,具体分为人为因素与非人为因素两大类。结合模具生产实践,超差原因具体包括:①依据错误;②技术水平低;③操作失误;④工艺方法问题;⑤文件理解错误;⑥设备问题;⑦材料、环境;⑧管理问题;⑨磨损、损坏;⑩其它等。对生产模具过程中出现的故障,具体问题应该具体分析,找出原因所在,争取在后面的工序中改进。

2.1人为因素

人是导致模具加工超差的主观因素。其人为因素包含在模具设计、工艺、制造、检测和使用过程中,所有参与到模具生产中的人和事。(1)设计因素:模具工装图纸或数模设计不合理、多次变更造成混乱。(2)工艺人员加工方法、加工参数有误:切削工具选用不当、加工条件选用不当、余量预留不对、加工步骤不合理。(3)操作人员粗心大意:未做好加工前确认(包括图面、工件、加工工具、加工条件)、数据输入错误(数值输入、程序混淆)、装夹问题(装夹错误、夹伤、倾斜)。(4)操作人员装夹经验不足:多次装夹产生误差、装夹方式或方法不对、装夹力不足。(5)检验人员测量方法不对:工件未仔细测量、未清除干净就测量、测量基准有误、测量探头测不到位。

2.2非人为因素

相对人为因素来说,非人为因素为客观因素。导致模具加工超差的非人为因素涉及设备、材料和环境的各个方面。(1)设备因素:机床加工设备出现故障,精度不够、测量设备误差大、辅助工具不合格。(2)原材料:无料、材料尺寸错误、材质错误、材料叠加、运输过程中被碰伤、原材料有缺陷,热处理不当或加工引起材料变形[2]。(3)环境因素:周转过程与测量环境温度差、突然停电、气压不足、噪音大、干扰多等。

3措施

综上所述,模具生产中的各个环节疏漏都会导致加工超差[3]。要避免模具加工超差,不仅单位要加强职工的质量意识和责任心教育、加强工作质量考核,而且需要参与模具设计、工艺、加工制造、检测环节,以及使用过程中的职员认真仔细,做好本职工作。针对上述导致模具加工超差的因素,本文提出以下几点措施:(1)模具设计是制造的核心要素,设计员不仅要考虑模具设计的合理性,还要考虑模具设计之后的加工工艺和使用方法,要规范绘制图纸,避免发出多次变更造成混乱。(2)工艺贯穿模具制造的中间环节,开展工艺化标准工作,完善工艺规程是工艺人员首先要做的一项工作。其次,工艺人员要增强在编程方面的安全性理论检查,要善于利用仿真软件进行干涉过切检查、刀长计算、线框刀路模拟、实体刀路模拟以及机床仿真等,将可能暴露出的问题解决在施工之前。(3)加工是模具制造的重要环节,公司须对数控操作工人进行数控铣床、加工中心理论知识培训。操作人员务必做到认真仔细,要从错误和失败中总结教训,从日常工作中积累经验,要严格按照操作规程实施,保证零件加工精度。(4)测量是模具制造的最后环节,为质量把好最后一道关。检验人员的测量方法要与时俱进,针对不同特点的工装要采用不同的检测方法,而且测量结果能经得起时间的考验。(5)在模具使用过程中需要定期检查型面、线、孔是否符合使用要求,并做好维护保养,提高模具的使用寿命,若模具磨损严重或零件更改影响使用,则须尽快返修。

4结束语

本文分析了模具加工过程中尺寸超差的原因,提出了减少加工超差的相关措施,能提高模具加工的合格率、减小模具的加工成本、缩短模具的生产周期。随着航空航天产品的飞速发展,模具制造将朝着数字化、柔性化的方向发展,模具设计和制造在未来亦将发挥越来越重要的作用。

参考文献

[1]张玉峰.航天航空制造业模具应用研究[J].金属加工:冷加工,2010,(09):22~24

[2]冯玉昌.模具热处理变形及其控制方法的探讨[J].地质装备,2007,(06):36~38

第5篇

飞机刹车副潜力无限

新材料享受政策红利

当前股价:

今日投资个股安全诊断星级:

公司简介

博云新材是国内领先的先进复合材料制品生产企业,公司军用、民用飞机刹车副(粉末冶金飞机刹车副、炭/炭复合材料飞机刹车副)、航天用炭/炭复合材料、环保型高性能汽车刹车片、高性能模具材料等四大产品类具有自主知识产权,技术领先。公司在先进复合材料领域“基础研究-应用研究-产业化”链条较为完善、竞争力强,自主开发的炭/炭复合材料性能达到甚至超过国际先进水平。

主营收入。公司营业收入和营业毛利主要来自四大类产品。2009年前三季度,公司实现主营业务收入和归属于母公司的净利润分别为15753.97万元、1971.46万元,分别比2009年同期增长27.22%、13.83%。

经营情况:国外企业在先进复合材料领域具有绝对的优势,国内市场份额主要由外资把持。公司产品的价格仅仅约为国外同类产品价格的60%,具有较高的性价比优势和巨大的进口替代需求。随着国内军用、民用航空的快速发展和汽车工业(尤其是国产品牌)的高速增长,市场对公司产品需求旺盛,公司主要的产品供不应求。从盈利能力来看,公司销售毛利率和销售净利率比较稳定,即使在金融危机期间也没有明显的下滑趋势。公司稳定的期间费用率展示了良好的三费控制能力,近年来销售费用率、管理费用率比较稳定,财务费用率在公司募集资金到位后大幅下降。

核心竞争力:博云新材核心竞争力来自在粉末冶金复合材料领域强大的研发实力,其炭/炭复合材料是具有全球竞争力的产品。公司成功开发的飞机刹车副、航天用炭/炭复合材料等产品技术含量高,打破了国外竞争对手长期垄断的格局,确保了国家航空战略安全,在国防上具有重要的战略意义。由于航空航天产品对材料的安全和性能有极高的要求,各国政府均实施许可证(PMA)式生产方式,公司拥有俄罗斯图波列夫设计局颁发的生产许可证,还是国内企业取得波音系列飞机刹车副PMA证书数量最多的企业,而且空客部分机型飞机刹车副PMA项目已批准立项且取得部分PMA证书,这些资源也是公司的核心竞争力。

产品技术先进 潜在市场巨大

粉末冶金复合材料是以传统的粉末冶金技术为基础,结合先进复合材料技术制备的材料,产品广泛应用于航空、航天、交通运输、工程机械和能源等领域,在国际上仅有少量的国家拥有核心生产技术。博云新材的产品包括军用、民用飞机刹车副(粉末冶金飞机刹车副、炭/炭复合材料飞机刹车副)、航天用炭/炭复合材料、环保型高性能汽车刹车片、高性能模具材料四大类。

飞机刹车副:飞机刹车副在重要性上是和发动机媲美的A类消耗性部件,是飞机安全运行的重要保证。博云新材是南方航空、厦门航空、上海航空、海南航空等公司和军用刹车副合格供应商,其中,图-154飞机刹车副全面出口前苏联各国,空客320系列飞机刹车副已成功试飞并取得PMA证书。在国内民用飞机刹车副市场上,国外厂商在粉末冶金刹车副和炭/炭复合材料刹车副的市场份额都超过80%。公司生产的炭/炭复合材料刹车副的部分性能已经超过国外同类产品,又具有绝对的价格优势,已经发展成为最大的国产供应商,目前在两个领域的市场份额分别为10%和6%。国内民用航空的快速发展,公司产品性价比优势将使公司产品有更多的进口替代需求。我们预计未来随着我国航空业高速增长,公司产品的市场空间逐渐扩大、市场份额将不断上升。目前,公司拥有2500套粉末冶金材料飞机刹车副和2000套炭/炭复合材料飞机刹车副产能,募投项目产能为4000套炭/炭复合材料飞机刹车副,增长200%,我们预计该项目2011年将开始贡献业绩。

航天用炭/炭复合材料:在航空航天领域,炭/炭复合材料广泛应用于航天飞机的机翼前缘、火箭发动机尾喷管等超高温部位,是火箭发动机的关键技术之一。国内航天火箭发动机喷管均采用炭/炭复合材料,公司已有多个型号的产品定型批产。我国将大力发展航空航天技术,公司将是我国航天产品做大做强的最大受益者之一。目前公司拥有2000公斤的产能,募投项目2000公斤产能将于2011年达产,产能增长幅度为100%。

环保型高性能汽车刹车片:汽车刹车片是汽车安全行驶的可靠保证,在汽车零部件名录上被列为A类关键性安全部件,具有易损耗、更换快的特点。目前,无石棉环保型刹车片是市场的主体,其中陶瓷基摩擦材料和非金属(无钢纤维)摩擦材料占据了高端汽车刹车片市场。公司的汽车刹车片技术已经达到国际顶尖水平,完全掌握陶瓷基刹车片的关键技术和生产工艺、具有非金属刹车片的技术和生产能力、全陶瓷刹车片、炭/陶刹车片和炭/炭刹车片也已进入开发验证阶段。公司产品已成为中国一汽集团、东风汽车、上汽通用五菱、长丰捷报等汽车主机厂的主要配套厂家,公司还积极介入国外汽车主机企业采购链,为美国通用汽车(GM)、德国博世(BOSCH)、美国德尔福(DELPHI)、澳大利亚泛太集团(PBR)和全俄汽车制造股份有限公司等国外汽车主机厂开发的汽车刹车片项目进展顺利,与美国H.M.公司合作开发的高性能刹车片已批量供货。

高性能模具材料:模具材料是模具工业生产的基础工艺材料,高性能模具材料产品主要应用于级进冲压模等高端模具领域。我国在高性能模具材料制备技术和模具加工技术等方面与发达国家存在较大的差距,国内市场主要由外国品牌控制。公司的高性能模具材料制备技术达到了国际先进水平,而产品价格仅为国外产品的55%左右。凭借卓越的性价比优势,公司目前已经打入国内高性能模具材料市场,向国内电机定转子级进冲模模具前两位企业宁波震欲和慈溪鸿达批量供货,产品销量逐渐扩大。公司目前拥有80吨高性能模具材料产能,募投的120吨已基本建设完毕,产能增长幅度为150%,预计今年开始贡献业绩。

公司正在大力开发纳米晶粒高性能模具材料、风电机组用刹车片、高铁刹车材料、磁悬浮列车磨耗材料和工程机械摩擦材料等。公司产品在航空航天、汽车、高端冲压模具三个领域的成功应用,为公司拓展高性能粉末冶金复合材料其他应用领域提供了良好的示范效应。未来公司产品将有潜力应用于高铁、风电、工程机械等领域,这些项目是我国“十二五”规划重点建设的领域,产品的潜在市场空间广阔。

第6篇

【关键词】 碳纤维 复合材料低温力学性能

1 碳纤维复合材料超低温环境力学性能研究背景

如何降低空间飞行器在发射时的成本,使空间飞行器的发射效率提高,一直以来都是各国进行研究的关键领域之一。20世纪90年代中期,美国国家航空航天局(NASA)开始了对亚轨道可重复使用飞行器(RLV)的研发试验。

针对这一新形势,我国在“十五”计划初期,即开展了可重复使用飞行器技术的跟踪、探索和研究。为了避免在全球竞争中出现装备跨代落后的不利局面,而加大了对可重复使用飞行器的研发力度。

由液氢(-253℃)、液氧(-183℃)、液氮(-196℃)、液氦(-269℃)及其蒸发气体共同组成了主要的超低温流体介质。其中,液态氢和液态氧是液体火箭发动机发射过程中,一种具备比推力大的燃料,并且不产生污染物质;液He是作为空间装置、超导装置中广泛应用的低温密封介质;液态氮具有惰性特质、价格低廉并且介于液氢和液氧之间的热力学特点,常应用于低温试验和作为预冷介质[2]。

在以液态燃料作为飞行器动力系统燃料供应的设计中,液氧(LO2)燃贮箱及工作系统使用温度为-183℃,液氢燃料贮箱及工作系统使用温度为-253℃,液氢燃料贮箱及供给管系统和液氧燃贮箱及供给管系统工作于低温环境。当飞行器返回时,可重复使用运载器贮箱及供给管要承受170℃的高温考验,燃料贮箱工作温度范围很大,因此在设计时必须综合考虑在此温度范围内应用复合材料贮箱的可靠性[3]。

上世纪80至90年代,研发复合材料液氢贮箱的课题在美国国家航天飞机(NASP)计划以及DCX计划都涉及,并取得了一些成就。X-33计划则直接计划使用复合材料液氢贮箱,但由于在实验中,热应力引起微裂纹导致液氢渗漏以及其他技术方面问题,最终决定用铝制贮箱将出问题的复合材料贮箱代替下来。相比其国外研究机构对飞行器贮箱材料方面的尝试,国内对超低温用树脂基增强复合材料的研究还处于起步阶段,出于保险考虑,贮箱一直采用金属材料,在超低温复合材料方面技术性的突破成为国内研究的重点课题。

2 国内外对碳纤维复合材料超低温力学性能的研究现状

目前,在工程中有着非常广泛应用的树脂基复合材料主要包括:连续纤维增强环氧、双马和聚酰亚胺复合材料。他们具有较高的比强度和比模量,能够有效的抗疲劳、耐腐蚀,并且可设计性较强,便于大面积整体成型,并且,他们还具有特殊电磁性能等特点。先进树脂基复合材料已经成为继铝合金、钛合金和钢之后的最重要航空结构材料之一。

先进树脂基复合材料在飞行器材料应用上表现出色,目前已经在部分机型上实现减重效益,这是使用其它材料所不能比拟的。因此,先进树脂基复合材料的用量比例已经成为航空结构先进性的重要标志之一。

2.1 超低温复合材料用基体

据了解,应用在超低温环境下的树脂基体主要有:

(1)热固性树脂包括:环氧树脂,氰酸酯树脂,聚酰亚胺等;

(2)热塑性树脂包括:聚醚酰亚胺,聚醚醚酮,聚四氟乙烯,聚醚砜,聚苯硫醚,聚砜,液晶聚合物等。

配方的设计对于树脂基体制备非常重要。对于环氧树脂材料,经常会碰到脆性过高、容易开裂的问题。解决这一问题行之有效的方法是使环氧树脂柔性化,或是使整个配方体系柔性化。而这也是我们在该试验中在选取材料方面提前做好的准备。经过柔化的环氧树脂脆性降低,不易开裂,在工程应用中表现更加出色。

可重复加工的特点是高性能热塑性树脂具备的特点之一,在低温复合材料中的具有很大的潜在应用价值。比如说,碳纤维增强聚醚醚酮复合材料力学性能,虽然在超低温破坏强度方面表现良好,但由于成型困难以及巨大的加工成本,限制了热塑性基体在低温领域下的应用。

在本次试验中所应用到的便是改性后的环氧树脂,改性后使其在常温和低温下均具备稳定的力学性能。

2.2 超低温复合材料用增强材料

纤维增强复合材料是由增强纤维,如玻璃纤维、芳纶纤维、碳纤维等材料与基体经过模压、缠绕或拉挤等工艺而形成的复合材料。

在一些低温工程中,由于纤维增强复合材料具有如下特点:

(1)比模量大,比强度高;(2)材料具有可设计性;(3)抗腐蚀性和耐久性能良好;(4)热膨胀系数与混凝土材料形似。根据他们特性及制备加工工艺方面的综合考虑,应用最广泛的增强纤维是碳纤维和玻璃纤维。

对于玻璃纤维,研究表明,低温下纤维的拉伸强度和拉伸模量均有不同程度的增加,玻璃纤维Weibull分布尺度参数有很大的提升。玻璃纤维,E-glass从室温到4K,它的杨氏模量提高15%,S-g lass从295K到4K其杨氏模量提高10%。

碳纤维增强树脂基复合材料,由于它在航空航天军事等领域应用较多,因而也成为科研工作者研究的热点。试验发现,将模高强碳纤维作为超低温复合材料的增强材料,强度和模量与室温时相比变化很小,是比较理想的超低温增强材料。

2.3 树脂基复合材料制造工艺

依据不同类型的复合材料、不同形状的构件以及对构件质量和性能的不同要求,先进树脂基复合材料可采用不同的成型工艺。目前航空航天领域先进树脂基复合材料主要成型工艺包括:热压罐成型工艺、RTM成形工艺、缠绕成型工艺、拉挤成型工艺、热压成型工艺、自动铺放工艺等。

通过对上世纪六十年代至九十年代不同组织及个人对各类常用纤维复合材料常、低温力学性能测试的结果做出总结与比较。R.P.Reed、M.Golda、J.B.Schutz等人发现:低温状态下,芳族聚酰胺纤维复合材料的低温拉伸强度与常温时比较变化较小,而其他各类纤维复合材料的低温拉伸强度均比常温状态时有所提高。

参考文献:

[1]王嵘,郝春功,杨娇萍,张雄军,付绍云,王继辉.超低温复合材料的研究进展.化工新型材料,2007.

第7篇

关键词:增材制造;航空航天领域;发展现状

1 金属增材制造的种类和原理

金属增材制造(Additive Manufacturing,简称AM)技术区别于传统的铸、锻、焊等热加工“等材成形”技术及车、铣、磨等冷加工“减材成形”技术的一种全新的制造方法,是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除-切削加工技术,是一种自下而上的制造方法[2]。它是融合了计算机软件、材料、机械、控制等多学科知识的系统性、综合性的技术。增材制造按照不同的加工方法可分为激光增材制造、电子束增材制造、电弧增材制造等,有的加工方法仍可细化成两种或多种不同的具体方式。下面将对各种不同增材制造方法的原理和特点进行阐述,并对各自的国内外研究现状进行介绍。

2 激光增材制造

激光增材制造分为激光选区熔化技术和激光直接沉积技术,激光选区熔化成形技术原理:它是以激光作为热源,一层一层熔化金属粉末,直接制造出近形的金属零件。

激光快速成形技术打破了传统材料去除或变形加工成形方法的限制,利用“离散+堆积”的材成形思想,通过同步送粉(送丝)或激光熔覆数字化成形一步实现工件的精确成形;属近净成形制造技术。激光直接沉积技术是在快速原型技术和激光熔覆技术的基础上发展起来的一种先进制造技术。该技术是基于离散/堆积原理,通过对零件的三维CAD模型进行分层处理,获得各层截面的二维轮廓信息并生成加工路径,在惰性气体保护环境中,以高能量密度的激光作为热源,按照预定的加工路径,将同步送进的粉末或丝材逐层熔化堆积,从而实现金属零件的直接制造与修复。

约翰霍普金斯大学、宾州大学和MTS 公司开发出一项大功率CO2激光 “钛合金的柔性制造”技术,并成立AeroMet公司。该公司的目标就是实现具有高性能、大体积钛合金零件的制造,尤其是大型整体加强筋结构钛合金零件的快速成形。公司的主要研究方向为军事领域的航空航天用钛合金部件的激光增材制造。该公司制造的钛合金零部件已实现装机使用。已使用零件分别为F-22战斗机的某接头、F-18战斗机的翼跟加强板的连接吊环和起落架连接杆。其中,F-22的接头件能够达到要求疲劳寿命的两倍以上,翼根加强筋达到要求疲劳寿命的四倍以上,起落架连杆疲劳寿命超过原件的30%。

美国Sandia国家实验室的Griffith研究组提出以激光熔覆沉积成形为基础的激光净成形(Laser Engineered Net Shaping)技术,并将此技术用于修复涡轮发动机的零部件。研究的材料种类包括不锈钢、钛合金、高温合金等,成型件的强度和塑性均比锻造件得到显著地提高。研究小组还通过对控制软件的研究和改进,将加工精度提升了一个等级。其水平方向加工精度达到0.05mm,垂直方向加工精度达到0.4mm,加工后零件的表面光洁度达到6.25μm。但是成型精度的提高会影响到成形效率。特别值得一提的是,研究组通过改变金属粉末的成分,实现了材料成分在一个零件上的梯度变化,从而使得零件的不同部位具有了不同的力学性能,这就为零件的设计优化提供了一种新的方法。

国内的增材制造相关研究虽然起步较晚,但是一些相关的大学和研究机构已有异军突起之势,在某些方面甚至达到国内外领先的地步。西北工业大学的黄卫东教授的团队在快速原型制造技术的基础上提出了激光增材制造技术的研究思路,进行了相关的研究探索。并成功运用激光立体成形技术制造出了大型飞机的钛合金翼梁缘条和飞机发动机的高温合金空心叶片,综合力学性能优于同等条件下的锻件。北京航空航天大学的王华明教授采用激光增材技术制造出大尺寸金属零件,并应用于新型飞机的研制过程中,不但提高了飞机的结构强度,而且大大缩短了飞机的研制周期,并于2012年获得国家科学技术进步一等奖。

但是激光增材制造也存在一些问题[3]。比如:球化现象、裂纹敏感性、残余应力等,而且设备较昂贵、能量利用率低、低熔点金属材料的受热变形、速度与精度之间的矛盾等问题也尤为突出。尤其对铝合金而言,由于液态铝的光反射率很高,激光照射在液体表面大部分反射掉,导致其能量损失严重;而且铝合金熔点较低,激光的能量密度很高,对大型薄壁零件或者壳体增材时,翘曲变形较严重。

3 电子束增材制造

电子束增材制造分为熔丝沉积成形和电子束选区熔化成形,电子束熔丝沉积技术又称为电子束自由成形制造技术(Electron Beam Freeform Fabrication,EBF)。在真空环境中,电子束轰击金属表面形成熔池,金属丝材通过送丝装置送入熔池并熔化,同时熔池按照预先规划的路径运动,熔池金属逐层凝固堆叠,达到致密的冶金结合,从而制造出金属毛坯件,最后进行表面精加工和热处理。特点:沉积效率高、真空环境有利于零件的保护、内部质量好、可实现多功能加工。电子束选区熔化成形技术[4](Electron beam selective melting, EBSM)的工艺原理。先在铺粉平面上铺展一层粉末并压实;然后,电子束在计算机的控制下按照断面轮廓的信息进行有选择的熔化,层层堆积,直至整个零件全部熔化完成;最后,去除多余的粉末得到所需的三维零件。特点:成形精度高,成形件表面质量较好,光洁度较好,可用于近成型增材制造。

Calcam公司[5]采用电子束熔丝沉积增材制造技术,通过对工艺参数和控制系统的把控,制造出了综合力学性能优于锻件的TC4钛合金叶轮部件,并成功应用于某型飞机上。

2001年瑞典的Arcam公司成立以来,以电子束增材制造技术在粉末近净成形精度、效率、成本和力学性能等方面具有的优势,针对它的研究很快成为了国外科学前沿的研究热点。德国纽伦堡大学、英国华威大学、美国北卡罗莱纳大学以及美国波音公司、Synergeering集团、德国FAruth公司、瑞典VOLVO公司等都陆续开展了相关的研究。美国Sciaky公司联合Lockheed Martin、Boeing公司等也在同时期合作开展了研究,成形钛合金时,最大成形速度可达18kg/h,力学性能满足适航要求。意大利AVIO公司[8]采用其自行制造设备开发出航空发动机复杂TiAl基合金构件,并成功应用在新一代航空发动机上。

2006年北京航空制造工程研究所开始对电子束熔丝沉积成形技术进行深入研究。设计并制造了国内首台电子束熔丝沉积成形设备,对TC4、TC18、TA15、等钛合金以及A100超高强度钢的力学性能进行了系统的研究。研制了大量钛合金零件和试验件。2012年,采用电子束熔丝成形制造的钛合金零件在国内飞机结构上率先实现了装机应用。

目前电子束增材制造仍面临着一系列技术问题,吹粉、球化现象、变形及残余应力控制、表面粗糙度等。而且,电子束增材设备十分昂贵,设备维护成本较高。因为电子束加工需要真空保护,所以其制造周期较长。对轻合金薄壁件的增材制造而言,同样存在着变形严重的难题。

4 其他增材制造方法

4.1 电弧增材制造

电弧增材制造又叫做形状金属沉积(shaped metal deposition SMD)技术。它采用的是钨级气体保护焊技术和高密度丝材。工件在保护气环境下被层层叠加制造,同时焊接机器人直接由电脑CAD模型控制。通常情况下,精度和表面质量都不如激光或电子束增材制造。但是,它可以制造大到1m3的工件并且沉积速率可以达到1kg/h。因此,高速的电弧增材制造大型高密度部件的能力在这方面使得它比其他方法具有巨大优势。

英国谢菲尔德大学的贝恩等人用六轴联动的机器人在两轴的平台上对铜丝材进行电弧增材制造,获得了厚度为20mm的箱体坯件。组织性能接近同等条件下激光增材的性能。

天津大学的尹玉环等人使用TIG电弧作为热源对5356铝合金零件的增材成形进行了研究。研究结果表明:同一层成形时通过对道次间冷却时间的控制可以获得较好的增材成形效果,而对整个成形件而言不同层之间冷却时间的合理控制对获得良好的增材成形效果也起着至关重要的作用。还发现在后续焊接中采用不同的焊接速度虽然可以有效的控制热输入量,但是如果焊接速度的差异过大将导致增材成形过程的稳定性变差。

华中科技大学的王桂兰[7]等研究了电磁场对电弧熔积快速成形温度场及参与应力的影响,研究结果表明:添加磁场之后,成形件表面温度场各温度区域范围增大,熔积层表面热循环峰值温度升高,冷却速度降低,成形件表面的纵向和横向残余应力均减小。

电弧增材制造也存在一些不可回避的难题[8]:吹粉和球化现象严重造成成形稳定性差、成形材料种类的局限性、成型零件易发生开裂和变形综合力学性能较差、组织差异大和需要较多的后期精加工等。

4.2 超声增材制造

超声增材制造Ultrasonic additive manufacturing(UAM)作为一种固态金属成形加工方式,它是运用超声波焊接方法,通过周期性的机械操作,将多层金属带加工成三维形状,最后成形为精确的金属部件。下面是滚轴式超声焊接系统,它是由两个超声传感器和一个焊接触角组成,传感器的振动传递到磁盘型的焊接触角上,能够在金属带与基板之间进行周期性的超声固态焊接,进而触角的连续滚动将金属带焊在基板上。这种技术能够使铝合金、铜、不锈钢和钛合金达到高密度的冶金结合。若将它与切削加工做比较,UAM可以做出深缝、空穴、格架和蜂巢式内部结构,以及其他的传统的切削加工无法加工的复杂结构。

5 展望

增材制造技术经过二三十年的探索发展,目前正处于蒸蒸日上的时期,一方面期待在技术上有新的突破,提高增材制造在材料、精度和效率上的要求;另一方面是基于现有技术的新应用,拓宽增材制造的应用领域和范围。相信在不久的将来,一定能看到增材制造技术在航空航天领域的更大范围的应用。

参考文献:

[1]田宗军,顾冬冬,沈理达,等.激光增材制造技术在航空航天领域的应用于发展[J].航空制造技术,2015(11):38-42.

[2]李涤尘,田小永,王永信,等.增材制造技术的发展[A].地14届全国特种加工学术会议论文集[C].2011.

[3]宋建丽,邓绮林,葛志军,等.镍基合金激光快速成形裂纹控制技术[J].上海交通大学学报,2006,3.

[4]颜永年,齐海波,林峰,等.三维零件的电子束选区熔化快速成形[J].机械工程学报,2007,43(6):87-92.

[5]杨鑫,奚正平,刘咏,等.TiAl基合金电子束快速成形研究进展[J].稀有金属材料与工程,2011,40(12):2252-2256.

[6]锁洪波.解开电子束快速成型的神秘面纱[N].中国航空报,2013-2-7(T2).

[7]王桂兰,孙怡峰,柏兴旺,等.电磁场对电弧熔积快速成形温度场及残余应力的影响[J].焊接技术,2013,42(3):6-8.

第8篇

关键词:焊接;技术;应用;发展

中图分类号:P755文献标识码: A

引言

一、我国焊接技术的发展现状

1、较长焊缝和厚板焊缝的焊接技术落后

在对钢板进行焊接的过程中,长焊缝和厚板的焊接是不可避免的。焊接技术水平的高低、焊接的效率以及焊接质量深深影响着产品的质量以及产品的成本。除此之外,厚板的对缝焊接、箱形零构件的整体焊接以及T型焊缝的焊接等的工作量是非常巨大的,对焊接技术要求十分严格。在焊接的过程中,焊缝第一层采用的是埋弧焊(SAW)焊接技术。这种方法产生的垃圾废渣不易清理。所以,焊缝的第一层通常采用埋弧焊(SAW)盖面和熔化极气体保护焊(GMAW)打底相互结合的工艺来进行处理。使用这种方法的一个缺憾是焊接效率提高受限。在T型焊接和厚板相互对接的焊接过程中通常采用的是碳弧气刨清根工艺技术。这种技术能够使焊缝进行全熔透的焊接,但是增加了加工成本,也对焊接工艺人员的身体和焊缝质量造成影响。

2、焊接技术自动化水平不高

一个国家要想发展强盛,必须依托于工业现代化、加工自动化。只有这样生产的产品才能节约加工成本,给社会创造出更多的福利。通过调查显示国外的焊接自动化水平已经达到80%,而我国的焊接自动化水平最多只占30%。绝大多数的焊接依旧是采用手工焊接来实现的。若想取得工业的迅速发展,自动化的焊接发展方向是必然的选择。

3、焊接构件易产生冷热裂纹

冷裂纹指的是焊缝在冷却的过程中,如果温度下降到马氏体转变温度范围以下,焊缝就会在焊接后立即出现。这种焊缝通常也叫做延迟裂纹。这种冷焊缝形成的必要条件是:焊缝接头处存在扩散氢、具备淬硬组织、拉伸应力较大并且密集。而热焊缝是在高温状态下产生的,又称之为结晶裂纹或高温裂纹。这些裂缝容易出现在裂缝的内部,也易出现热影响区。热裂纹的形状主要有横向裂纹、弧坑裂纹、纵向裂纹、根部裂纹等等。热裂纹是由力学和冶金制造过程中的因素一起作用才产生的。它形成的主要原因是由于焊接池中的低熔点共晶和杂质共存致使晶体偏析。这样裂纹的强度就非常低,极易产生裂纹。

4、焊接人员的专业技术水平不足

焊缝技术直接影响产品的质量以及整体钢结构的业务流程。钢结构产品被应用到了几乎所有领域,了解焊接的相关技术是对技术操作人员的基本规定。要求操作人员熟练掌握自身业务水平是对其的最起码的要求。而我国的焊接技术人员对业务水平了解的太少,与对行业需求存在非常大的距离。

二、我国焊接技术主要应用领域

1、航空航天工业中的应用:焊接技术依其可靠的性能,被广泛应用于航空航天工业,焊接的工作量占全部工时的百分之十,焊接连接的部件在航空航天领域内占百分之五十以上。由于航空航天工业中对金属材料要求的特殊性,促成了特种焊接技术的应运而生。目前主要使用的是固态焊接技术和高能束流焊接技术。其中的激光焊、电子束焊、搅拌摩擦焊是在我国航空航天领域中最常用的三种先进焊接技术。

2、汽车制造领域中的应用:电子束焊接主要用于发动机增压器涡轮、后桥、行星齿轮框架、离合器、汽缸、变速箱齿轮等部件的焊接;激光焊技术主要用于框架结构、零部件的焊件和车身拼焊;搅拌摩擦焊主要用于发动机引擎、汽车轮毂、汽车地方车身支架、汽车车门预成型件和液压成型管附件。

3、船舶工业中的应用:高效焊接技术在船舶制造中占有重要的地位,是一项技术性、专业性很强的系统工程,尤其是CO2气体保护半自动焊接技术应用率达到60%-65%,成为我国现代造船模式中的关键技术之一。先进的造船高效焊接技术,在提高船舶的建造效率、降低船舶建造成本、缩短造船周期,提高船舶建造质量,推动船舶建造焊接机械化、自动化发展上的作用是不可小视的,也是企业提高经济效益的有效途径。

4、核电建造中的应用:焊接技术作为一种关键的特殊工艺,在中国核电建造中产生非常重要的作用,核电作为一种“高风险”的清洁领域,对焊接质量的要求非常严格。对于组成核电站的每条焊缝都要求100%的合格,并对每条焊缝实行可追朔性管理,对焊接技术的要求非常高,它直接关系着核电站核安全的状态。因此,不断提高我国焊接技术,可以有效推进核能行业的发展,确保核电站运行的安全可控,同时也为实现核电领域十二五规划的完成奠定基础。

三、我国焊接技术的发展前景

为了积极促进我国焊接技术的发展,使其满足我国市场发展的需求,通过分析我国焊接技术的发展现状,能够推断出我国焊接技术主要会从以下几个发展方向进行。

1、磁控焊接技术

磁控焊接技术属于新兴的焊接技术。它主要是通过磁场来实现焊接。它的投入成本非常低、装置也比较简单、耗能非常少、效益比较好。通过常年对磁控焊接技术的研究发现了磁控对电弧焊电弧状态的影响。外加磁场对焊接母材的熔化与焊缝的成形有非常大的影响。利用电磁搅拌技术能够改变金属结晶过程中的热量传递过程,进而使结晶方向发生变化。通过组织的细化作用,能够使焊缝的一些力学特点提升的更加明显。除此之外还能降低焊接过程中缺陷的敏感性。鉴于磁控焊接技术的优点,这必定是其中的发展方向之一。

2、低温焊接技术

由于我国地理环境的特殊位置,冬季寒冷时节持续时间相对较长,这就考验着低温环境下焊接技术的性能。近些年来,各个相关学术组织都在积极的解决应对冬季低温焊接的问题以及施工的临界温度的取值问题。

例如,我国在冬季完成了“鸟巢”万吨级以上的刚结构件的焊接工作。冬季进行焊接作业时影响焊接的因素主要有操作员的工艺水平、焊机的效率、材料的性能、焊法的熟练程度以及环境的作用。仅仅考虑这些因素中的某一项或某两项是不全面的,是无法做出正确评价的。综合考虑这些因素的影响“,鸟巢”在低温作业环境下取得了显著成果,并以此确定了低温焊接的临界温度为150°C。低温焊接能够缩短工期,为企业带来巨大的经济效益。由“鸟巢”焊接任务中获得的低温焊接经验技术必将应用于实践。

3、电子焊接技术将被激光焊接取代

激光束经过聚焦后,激光焦点处的能量密度高达10-100W/cm并且加热的范围甚至小于1mm。如果将此技术应用于焊接方面,那将会给焊接工业带来巨大的变革。一方面可以提高焊接的速度,另一方面还可以减小接头处的变形以及减小应力集中。激光焊接术达到的焊接精度比较高,是比较理想的焊接技术。激光焊接的一个显著特点是可以进行长距离的焊接,因为激光具有直线传播的特点。除此之外与电子束相比较而言,激光束的优势显而易见。第一,激光焊接不需要真空环境,节约了设备上的成本投入;第二,激光束不会产生X射线,对人体不会造成伤害,不需要专门的防护用具;第三,激光焊接的生产效率比较高。因此,激光束在不久的将来应该会取代电子束成为焊接主流技术。

结束语

我国焊接技术水平同国外发达国家相比差距仍然比较巨大。这就要求我国焊接技术人员积极探索、总结经验,积极加强焊接技术的学习与创新。一方面要提高焊接的质量,另一方面更要加强焊接自动化水平技术的提高。只有这样我国的焊接技术才能领超世界强国,排于前列。在新时期我们要坦然面对我们自身的不足,寻找自身的发展特点和方向。我们要积极沿着磁控焊接、高温焊接等先进焊接工艺的目标发展。争取焊接技术的更大进步,为我国的现代化建设贡献力量。

参考文献

[1]李亚江,吴娜.先进焊接技术在航空航天领域中的应用[J].航空制造技术,2010(9).

第9篇

【关键词】:航空,难加工材料,加工技术,探析

【引言】:航空航天事业一直是各个大国抢占的制高点,也是促进和带动全球经济技术进步的关键。近年来,随着各国在航空航天领域的扩展和实施,航空产品的技术水平和标准不断升级优化,尤其是对各种难加工材料的使用,例如,对金属切削刀具和技术提出了更高的要。难加工材料在很多领域都有非常广泛的应用,由于机械零部件设计在负重减小和体积紧凑上有较高要求,使得很多零部件结构出现形状复杂、结构怪异、型面多样的情况,导致很多高科技新型难加工材料不断涌现,虽然符合机械零部件的高强度、高刚性和高密度以及体积小、重量轻的设计要求,但是给后期的机械制造的可加工性和产品性能带来很大的影响。为了应对这种情况的出现,各国技术研究部门都在探究如何让难加工材料的加工技术得到改进和优化,满足高精尖行业的需求,尤其是在迫切需要此类材料的航空航天业中。

1.航空难加工材料及加工技术关键

航空难加工材料包含钛合金、高温合金、复合材料和超高强度钢等,在航空产品结构中几乎没有普通的工程材料,都是超高强度和高性能的高精尖材料,因此也都是比较难加工的材料。在航空难加工材料中,加工过程中最容易出现的问题为刀具磨损,它直接导致加工成本增加和加工效率降低,另外,加工质量也是目前遇到的较大困难和挑战,影响到产品的使用性能和安全系数。

2.航空难加工材料的具体加工技术分析

2.1钛合金及其加工技术

钛合金的导热系数较低,它的切削温度能够超出切削45号钢的时候大约数百度以上,而且钛合金的弹性模量比较低,加工的时候容易出现变形,导致加工表面出现回弹。另外,钛合金切削和前刀面的接触长度比较短,它的化学活性大,能够和刀具产生较大的亲和力,和大气中的多种元素产生化学反应,从而形成硬且脆的外皮。

钛合金材料的加工刀具材料选择及加工条件选择:如果是低速加工,则可采用高钒高速钢和高钴高速钢;如果是中速加工,则要注意在加工细晶粒硬质合金时,粘结磨损较严重,就不宜使用含钛的刀具,可以使用三氧化二铝的涂层刀具;如果是高速加工,可以选用涂层硬质合金刀具、含钛涂层硬质合金刀具和基体含钛硬质合金刀具。

加工刀具要确保后角较大,最少要大于15°,并且保证前角不能够过大,从而保证前・后角平衡,确保刃口强度的稳定性。在刀具的考虑上,最好选用大螺旋角铣刀。切削液的选择,应该选用含极压添加剂的油基切削液,但是,其中不可以含氯;采用高压喷射冷却液能够使刀具耐用度得到成倍的提高,从而提升加工的质量。

2.2高温合金及其加工技术

高温合金的切削加工特点包含以下几个方面:导热系数非常低,小于45号钢的1/3;高温下强度比较高,在600-900℃下能够保持中碳钢的室温强度;高温合金中含有大量的组织较为致密的固溶体,导致切削时容易出现晶格扭曲,并且扭曲很严重,也容易导致冷却严重的现象;高温合金中含有大量的金属碳化物、氧化物、硼化物和金属间化物这些硬质点。在加工时,高温合金材料的切削力是切削一般钢材的2至3倍,它的切削功耗较大,产生了大量的切削热量,导致切削温度非常高。

高温合金材料的刀具材料及其使用条件如下:拉刀和丝锥等材料的条件为:钴高速钢,速度是10m/min;超细晶粒硬质合金或者涂层硬质合金刀具,使用速度为30-70m/min,此时硬度提升而速度降低;如果是陶瓷材质刀具,如Sialon陶瓷、Si3N4陶瓷,则使用速度要大于200m/min,因为低速条件下刀具磨损会比较严重,所以速度要有较高的标准,且陶瓷刀具主要用在半精加工过程中。

高温合金的加工刀具加工时的技术参数为:车刀前角小于10°,后角保持在15°左右;铣刀的前角保持在10°左右、后角15°左右,螺旋角在30-45°范围内;陶瓷刀具或者CBN刀具要使用负前角。高温合金材料的切削液使用条件为:如果是高速钢刀具则使用水基切削液,并以冷却方式为主,从而避免刀具热塑变形的出现;如果是硬质合金刀具加工,那么最好使用极化切削油,可以达到抑制粘结和扩散磨损的效果;如果是陶瓷或者CBN刀具加工,那么切削液的使用最好严格而谨慎,可先通过工件热软化处理,让材料更容易切削,然后要注意刀具的韧性,避免热疲劳以及激冷裂纹的出现。

2.3高强度钢的切削加工特点和加工技术

高强度钢的切削加工特点包含以下特点:切削力度大,因为高强度钢的强度非常高,能达到1960MPa,并具有一定的韧性和硬度,有非常好的综合机械性能,所以高强度钢的切削力较大。例如,在同等条件下,它的切削力可比45号钢的单位切削力高出1.17-1.49倍;切削温度较高,高强度钢材料的导热系数很低,只是45号钢的60%,因为它的切削功耗比较大,切削温度也就比45号钢高出100℃,使得加工刀具的磨p速度比较快;断削较为困难,高强度钢的韧性和可塑性非常好,因此,切削时不容易折断,导致在切削时经常缠绕在刀具和工件上,影响了切削的进度和效果。

那么,对高强度钢的加工刀具选择上,要遵守以下几点原则:如果是高速钢刀具,则可以选用Al高速钢、涂层高速钢、粉末冶金高速钢或者Co高速钢刀具;如果是硬质合金刀具,则可以选用添加了铌、稀土元素的P类合金或者P类涂层合金、TiC基、Ti(C、N)基合金材料刀具;如果选用CBN刀具,那么要选用低含量且高强度的材质。

加工刀具的基本参数要遵循以下几点要求:刀具刃部强度要比较高,如果是硬质合金刀,其前角要在-2°至-4°范围内;如果是陶瓷刀具或者CBN刀具,则前角要在10°左右;刀尖的圆弧半径在精加工的时候在0.5-0.8mm范围内,在粗加工时在1-2mm范围内。

高强度钢的切削用量技术要求为:切削速度保持在45号钢加工的30%左右,钢强度高则速度要低;高速钢加工速度小于10m/min、硬质合金加工速度30-80m/min、陶瓷和CBN加工速度为高于100-150m/min。高强度钢的断屑技术注意选择合适的断屑台和断屑槽,并根据断屑的目标设定而进行且削用量的优化,可采用振动断屑这些强制断屑技术来提高断屑质量和技术水平。

结语

航空难加工材料是航空产品加工和生产中较为关键的核心的技术攻坚方向,对加工工艺、加工方法及加工刀具的技术提升和优化是重点。难加工材料的切削刀具和加工技术,在刀片基体、几何角度、涂层技术以及难加工材料的加工方法上都应该不断突破和创新,根据不同难加工材料性能选择不同的刀具和加工条件及参数,提高航空产品的性能,确保航空事业的发展。

【参考文献】:

[1]杨金发,张军. 航空难加工材料加工技术研究[J]. 金属加工(冷加工),2012,21:11-13.

[2]谷雨,良辰. 航空难加工材料加工技术[J]. 航空制造技术,2016,03:34-35.

第10篇

复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。

随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。

从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。

另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。

树脂基复合材料的增强材料

树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。

1、玻璃纤维

目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。

2、碳纤维

碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。据预测,土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。1997~2000年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。我国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。国产碳纤维的主要问题是性能不太稳定且离散系数大、无高性能碳纤维、品种单一、规格不全、连续长度不够、未经表面处理、价格偏高等。

3、芳纶纤维

20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。

4、超高分子量聚乙烯纤维

超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。

5、热固性树脂基复合材料

热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。环氧树脂的特点是具有优良的化学稳定性、电绝缘性、耐腐蚀性、良好的粘接性能和较高的机械强度,广泛应用于化工、轻工、机械、电子、水利、交通、汽车、家电和宇航等各个领域。1993年世界环氧树脂生产能力为130万吨,1996年递增到143万吨,1997年为148万吨,1999年150万吨,2003年达到180万吨左右。我国从1975年开始研究环氧树脂,据不完全统计,目前我国环氧树脂生产企业约有170多家,总生产能力为50多万吨,设备利用率为80%左右。酚醛树脂具有耐热性、耐磨擦性、机械强度高、电绝缘性优异、低发烟性和耐酸性优异等特点,因而在复合材料产业的各个领域得到广泛的应用。1997年全球酚醛树脂的产量为300万吨,其中美国为164万吨。我国的产量为18万吨,进口4万吨。乙烯基酯树脂是20世纪60年展起来的一类新型热固性树脂,其特点是耐腐蚀性好,耐溶剂性好,机械强度高,延伸率大,与金属、塑料、混凝土等材料的粘结性能好,耐疲劳性能好,电性能佳,耐热老化,固化收缩率低,可常温固化也可加热固化。南京金陵帝斯曼树脂有限公司引进荷兰Atlac系列强耐腐蚀性乙烯基酯树脂,已广泛用于贮罐、容器、管道等,有的品种还能用于防水和热压成型。南京聚隆复合材料有限公司、上海新华树脂厂、南通明佳聚合物有限公司等厂家也生产乙烯基酯树脂。

1971年以前我国的热固性树脂基复合材料工业主要是军工产品,70年代后开始转向民用。从1987年起,各地大量引进国外先进技术如池窑拉丝、短切毡、表面毡生产线及各种牌号的聚酯树脂(美、德、荷、英、意、日)和环氧树脂(日、德)生产技术;在成型工艺方面,引进了缠绕管、罐生产线、拉挤工艺生产线、SMC生产线、连续制板机组、树脂传递模塑(RTM)成型机、喷射成型技术、树脂注射成型技术及渔竿生产线等,形成了从研究、设计、生产及原材料配套的完整的工业体系,截止2000年底,我国热固性树脂基复合材料生产企业达3000多家,已有51家通过ISO9000质量体系认证,产品品种3000多种,总产量达73万吨/年,居世界第二位。产品主要用于建筑、防腐、轻工、交通运输、造船等工业领域。在建筑方面,有内外墙板、透明瓦、冷却塔、空调罩、风机、玻璃钢水箱、卫生洁具、净化槽等;在石油化工方面,主要用于管道及贮罐;在交通运输方面,汽车上主要有车身、引擎盖、保险杠等配件,火车上有车厢板、门窗、座椅等,船艇方面主要有气垫船、救生艇、侦察艇、渔船等;在机械及电器领域如屋顶风机、轴流风机、电缆桥架、绝缘棒、集成电路板等产品都具有相当的规模;在航空航天及军事领域,轻型飞机、尾翼、卫星天线、火箭喷管、防弹板、防弹衣、鱼雷等都取得了重大突破。

热塑性树脂基复合材料

热塑性树脂基复合材料是20世纪80年展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。随着热塑性树脂基复合材料技术的不断成熟以及可回收利用的优势,该品种的复合材料发展较快,欧美发达国家热塑性树脂基复合材料已经占到树脂基复合材料总量的30%以上。

高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型管道、GMT模压制品(如吉普车座椅支架)、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。

滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强PP在车内装饰方面有着重要的应用,如用作通风系统零部件,仪表盘和自动刹车控制杠等,例如美国HPM公司用20%滑石粉填充PP制成的蜂窝状结构的吸音天花板和轿车的摇窗升降器卷绳筒外壳。

云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。

我国的热塑性树脂基复合材料的研究开始于20世纪80年代末期,近十年来取得了快速发展,2000年产量达到12万吨,约占树脂基复合材料总产量的17%,,所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合材料方面未能有重大突破,与发达国家尚有差距。

我国复合材料的发展潜力和热点

我国复合材料发展潜力很大,但须处理好以下热点问题。

1、复合材料创新

复合材料创新包括复合材料的技术发展、复合材料的工艺发展、复合材料的产品发展和复合材料的应用,具体要抓住树脂基体发展创新、增强材料发展创新、生产工艺发展创新和产品应用发展创新。到2007年,亚洲占世界复合材料总销售量的比例将从18%增加到25%,目前亚洲人均消费量仅为0.29kg,而美国为6.8kg,亚洲地区具有极大的增长潜力。

2、聚丙烯腈基纤维发展

我国碳纤维工业发展缓慢,从CF发展回顾、特点、国内碳纤维发展过程、中国PAN基CF市场概况、特点、“十五”科技攻关情况看,发展聚丙烯腈基纤维既有需要也有可能。

3、玻璃纤维结构调整

我国玻璃纤维70%以上用于增强基材,在国际市场上具有成本优势,但在品种规格和质量上与先进国家尚有差距,必须改进和发展纱类、机织物、无纺毡、编织物、缝编织物、复合毡,推进玻纤与玻钢两行业密切合作,促进玻璃纤维增强材料的新发展。

4、开发能源、交通用复合材料市场

一是清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器;二是汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等;三是民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。我国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套;四是船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于我国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。

5、纤维复合材料基础设施应用

国内外复合材料在桥梁、房屋、道路中的基础应用广泛,与传统材料相比有很多优点,特别是在桥梁上和在房屋补强、隧道工程以及大型储仓修补和加固中市场广阔。

6、复合材料综合处理与再生

第11篇

关键词:镁合金;应用

镁合金作为一种新型的金属结构材料,具有比强度和比刚度高,阻尼、抗震性能好,电子屏蔽能力强,易加工等一系列优点,成为减重节能和保护环境的首选材料,被誉为新世纪的"绿色工程材料",在航空航天、交通运载和武器装备的轻量化等方面显示出广泛的应用前景,中国是镁合金储存量、生产及出国的大国,这使得我国对镁合金新材料、新工艺的研发及应用的推广尤其迫切。基于此,本文介绍了镁合金在各个领域的应用。

1 镁合金的特点

镁合金具有一系列的优异性能:密度小、比强度、比刚度高;减震、吸震性能好;热传导性好、成型零件尺寸稳定、易于切削加工;回收再利用率高,同时还是上等的储氢材料。

2 镁合金的应用

(一)镁合金在航天航空的应用

航天航空工业作为一个高科技领域,而该领域中所工作的航天航空产品对其使用的材料提出了4点非常苛刻的性能要求:密度小、刚度大、减震能力强和热导率高。

镁合金自身一系列优点使得其在航天航空领域中得到巨大的发展空间。世界各国将不断的开发研究镁合金在航天航空中的应用。法国的塞德航空公司直升飞机的齿轮箱铸件是由Mg-Zn-Re-Zr镁合金铸成,在镁合金中加少量Ag,使时效强化的稀土镁合金的拉伸性能得到显著提高,如民航机的着落机轮和直升飞机旋转机翼附件等。美国已经在战斗机上应用了镁合金,稳定的提升了战斗机的作战性能。美国还最早将镁合金板材应用于火箭、螺旋桨、导弹尾翼等航天航空重要部位,这些由镁合金制造的部件的综合性能最终替代了传统使用铝合金构造件,且整体性能得到显著提升。我国近年来也将镁合金构件应用于战斗机、直升飞机、军用运输机、民航机、人造卫星、运载火箭等。变形镁合金比铸造镁合金具有更高的强度和延伸性能,比传统的变形铝合金更轻,因此在已在导弹、军用雷达、卫星和航天飞机上大量利用了各种牌号的变形镁合金。

(二)镁合金在汽车工业的应用

二十世纪以来,全球的能源危机和社会环境污染日趋严重,汽车工业作为国民经济支柱产业之一同样面临着节能减排的挑战,节能减排已成为当务之急。汽车的整体重量对其能源消耗有着至关重要的作用,汽车的自身重量与燃料的使用成正比,汽车重量的减轻就能够减少燃料的燃烧及减低废气的排放量,最终实现节能减排的效果。因此镁合金将作为汽车产业的首选新材料。目前镁合金在汽车上的应用零部件主要归纳为2类。(1)壳体类。如门框、座椅架、发动机机罩、车顶板曲轴箱、变速箱体、离合器壳体、仪表板、气缸盖等。(2)支架类。如方向盘、座椅框架、转向支架、刹车支架、分配支架等。镁合金在汽车上应用潜力最大的是整体部件,例如发动机机罩、后备行李箱盖、车顶板、车体加强板、仪表盘、保险杠、内侧车门框架和后部车厢隔板,甚至是油底盘、发动机气缸体和气缸盖等。其中有许多镁合金汽车部件已经在开发甚至开始应用。

20世纪20年代,日本就已经开始将镁合金应用于汽车产业。1930年,德国Alder公司开始将73.8kg镁合金应用于汽车零部件,1936年德国大众在"甲壳虫"汽车上的传动箱和曲轴箱已完全用镁合金取代传统材料。图1.1为镁合金在汽车各部件的应用。二十世纪八十年代后,镁合金产量的增加和价格的下跌,压铸镁合金工艺的完善,铸件镁合金在汽车产业的应用进入成熟阶段。

(三)镁合金在3C电子产品中的应用

3C电子产品是现今全球发展和更新最快的产业,数字化技术的掌握使得各类不同功能的大、小数字化产品的涌现,改变了人们的生活。传统的3C电子产品器材所用的材料是以工程塑料和铝材为主,由于这两种材料自身物理性能的局限性,使得传统材料难以满足人们对器材产品轻、巧和环保等的要求。

镁合金产品最早出现于日本电子产品中,1998年日本电子器材公司最先成功的将镁合金应用于各式各样的可携式电子商品。日本将镁合金应用于笔记本电脑的外壳,使得尺寸精确、外观显得薄而巧,同时其刚度及散热性能得到极大的提高;同时还将镁合金应用于移动手机外壳,在通话过程中增加了散热和减少了电磁波的散失和电磁波对人体的辐射,从而提高了通话质量,得到广大消费群众所满意及认可。近年来,国内外在3C产品中镁合金的使用持续增长,从原先笔记本电脑和手机外壳迅速扩张至数码相机,投影仪等3C产品。

参考文献:

[1]刘正,张奎,曾小勤. 镁基轻质合金理论基础及其应用[M]. 北京:机械工业出版社,2002.

第12篇

关键词:陶瓷材料;轴承制造;发展趋势

1引 言

滚动轴承是现代机械中的重要部件,它主要用于支承轴及轴上的零件,对整台机器的精度、效率和使用寿命有直接的影响(图1)。滚动轴承较之滑动轴承具有摩擦系数小、消耗功率少、效率高的优点。据调查统计,世界上约有1/3的能源消耗在不同形式的摩擦上,其中轴承约占1/10左右。工作母机向高精度、长寿命和高速自动化方向发展,对机械工业基础件的要求愈来愈苛刻,生产实践证明,传统轴承单靠改善轴承的结构或条件,已经满足不了现代科学技术和工业生产发展的要求。

世界上第一套陶瓷轴承是由美国航空航天局(NASA)1972年研制成功的。经过30多年的研究和发展,产品从极端保密到公开销售,取得了引人瞩目的成就。国外已成功开发出在高温条件下采用固体剂的陶瓷滚动轴承,也有利用液体或油脂的特种钢与陶瓷组合而成的滚动轴承或全陶瓷滚动轴承。

2氮化硅陶瓷的物理性能

近几年来,随着科学技术的高速发展,轴承的使用环境和条件越来越多样化,对轴承的结构、材质和性能的要求也越来越高,一些高科技领域和某些特殊环境下工作的机械,如在航空航天、核能、冶金、化工、石油等工业,需要在高温、高速、高精度、真空、无磁性、无油、强酸、强碱等特殊环境下工作。这些新的要求仅仅依靠对传统的金属轴承改进结构或改善条件已经远远不能满足,必须开发新型材料,从根本上进行突破和创新。

采用陶瓷材料制造轴承,是对传统轴承的一次革命。由于陶瓷材料具有优异的性能,可以承受金属材料和高分子材料难以胜任的严酷的工作环境,并且又具有轴承材料所要求的全部重要特性,因此将陶瓷材料应用于轴承制造,已成为世界高新技术开发与应用的热点,成为机械材料技术革命的标志。

用于制造陶瓷滚动轴承的材料,主要采用Si3N4陶瓷。Si3N4的密度是轴承钢的4O%,硬度是轴承钢硬度的2~3倍,高硬度提高了其抗磨损、抗黏结、抗剥蚀损坏能力;Si3N4的热膨胀系数大约为轴承钢的1/4,低的热膨胀系数可以使轴承在高温工作条件下变形减小;Si3N4陶瓷的高温性使其更适合于高温工矿,在能使轴承钢丧失原有硬度和强度的温度下,Si3N4陶瓷的硬度和强度依然不会降低,高温强度好。此外,Si3N4陶瓷在极高温度下具有良好的尺寸稳定性,而轴承钢只有在进行特殊热处理后才能保证其高温下的尺寸稳定性。Si3N4陶瓷的耐腐蚀性能强,适用于在水、酸和碱介质的应用领域,因而比塑料、玻璃或不锈钢滚动体组成的轴承应用范围广。因此,从以上性能分析可知,Si3N4陶瓷的综合性能优良,是制作轴承的理想材料。

3氮化硅陶瓷轴承的优点

氮化硅陶瓷轴承(见图2)主要用于四个方面:高速轴承、高温轴承、真空用轴承、腐蚀用轴承。氮化硅陶瓷轴承具有以下优点。

(1) 高速。陶瓷材料的重量仅为同等钢材重量的40%,密度小这一特点,可实现轴承的轻量化和高速化,使得陶瓷轴承在高速旋转时,能够抑制因离心力作用引起的滚动体载荷的增加和打滑,陶瓷轴承的转速是钢制轴承的1.3~1.5倍,其DN值可达300万。例如角接触球轴承,由于具有一定的接触角,其滚动体与滚道面之间会产生旋转滑动,当采用密度小的陶瓷滚动体时,不仅旋转滑动小,而且对轴承发热和表面损伤均起到有益的作用,对于航空航天飞行器也是非常有益的。

(2) 高刚性。氮化硅陶瓷的弹性模量比金属高得多,是金属的1.5倍,因而受力后的弹性变形小,相对载荷的刚性高,大约可提高刚度1.5%~20%,从而减轻了机床的振动。在高精密系统中获得了良好的应用,如超精密机床的主轴、高精度的航天轴承等。

(3) 耐磨性。由于陶瓷材料位错少、迁移率低,且具有高硬度,一般较金属的硬度要高1倍多,能够减少磨损,使得陶瓷轴承具有良好的耐磨性。

(4) 机械强度高。氮化硅陶瓷的抗拉强度和抗弯强度与金属相当;而抗压强度极高,大约是金属材料的5~7倍,尤其是在高温条件下,仍能保持高的强度和硬度,即使在1200℃时强度也基本保持不变,在有异物混入的情况下,陶瓷球很少产生剥落失效。

(5) 低发热。由于氮化硅陶瓷材料的摩擦系数较小,大约是标准轴承钢的30%,所以与金属材料相比,氮化硅陶瓷的导热性能较差,因此陶瓷轴承工作时产生的热量较小,可延长脂的寿命。

(6) 低热膨胀。氮化硅陶瓷的热膨胀系数大约是轴承钢的20%,因此陶瓷轴承随温度变化的尺寸变化量小,且产生的热预载较低,从而避免了过多的热量聚集而引起疲劳剥落失效,有益于在温度变化较大的环境中使用。

(7) 耐蚀性。陶瓷材料不活泼的化学特性,使陶瓷轴承具有一定的耐腐蚀性能,因此,陶瓷轴承可用于钢制轴承由于缺乏耐化学性而提前失效的所有应用场合,如在化工机械设备、食品、海洋等部门使用的机械以及原子能设备中的应用。

(8) 无磁性。在强磁环境中,使用钢制轴承时,从轴承本身磨损下来的微粉被吸附在滚动体和滚道面之间,成为轴承提前剥落损坏、噪声增大的主要原因,由于陶瓷轴承是完全非磁性,且具有正常的承载能力,可用于需要完全非磁性轴承的场合。

(9) 绝缘性。陶瓷材料的电阻率比较高,可作为较好的绝缘材料,使轴承免遭电弧损伤。

4陶瓷轴承的类别

按滚动体的形状分为陶瓷球轴承和陶瓷滚珠轴承两个系列。按陶瓷材料在轴承零件上的应用情况,陶瓷滚动轴承可分为三类:第一类为滚动体用陶瓷材料制成,而内外圈仍用轴承钢制造;第二类为滚动体和内圈用陶瓷材料,而外圈用轴承钢;第三类为滚动体和内外圈都用陶瓷材料制成。第一类和第二类叫做混合陶瓷轴承,第三类叫做全陶瓷轴承。

4.1 混合陶瓷轴承

混合陶瓷轴承最常见的形式是装有氮化硅球的角接触球轴承,这种轴承可以在既有径向也有轴向负荷时有效地高速运转。但是轴向负荷只能从一个方向施加,因此这些轴承通常成对安装并施加预负荷以保证正确的接触角。角接触球轴承和深沟球轴承相比,一端开口较大,所以通常用加强型酚醛树脂保持架。有的混合轴承产品在材料方面虽然只是把钢球变成了氮化硅球,但是另一方面,沟道的几何尺寸也作了改进以优化轴承性能。

现代工业上应用的混合陶瓷轴承多为滚动体,即陶瓷球内外圈为轴承钢的结构(如图3所示)。混合陶瓷轴承的破坏与钢轴承相似,表现为钢套圈的破坏和陶瓷滚动体的疲劳剥落。陶瓷滚动体的破坏原因为材料本身的缺陷,如密度不均匀、气孔、杂质以及加工表面形成的微裂纹等。当滚动体和套圈沟道之间的接触应力相同时,混合陶瓷轴承可以达到甚至超过相同规格钢轴承的寿命。在高速条件下,陶瓷球轴承则比钢轴承的寿命长3~6倍。混合陶瓷轴承的转速比高速钢轴承转速提高60%,轴承温升降低35%~60%,刚度提高11%。另外,由于陶瓷与钢分子亲和力很小,摩擦系数小,而且有一定的自性能,运转性能好,因此混合陶瓷轴承可有效防止因油膜破坏引起的烧黏。

由于球在高速旋转时会产生很大的离心力,离心力造成球与外圈滚道之间产生压力,这种压力有时甚至超过外载荷的作用,加重轴承的负荷。这种离心力与滚动体材料的密度成正比,而用于制造轴承滚动体的Si3N4陶瓷的密度只有钢的40%,因而有利于实现高速。

4.2 全陶瓷轴承

所谓全陶瓷轴承,就是滚动体与内外套圈均为陶瓷材料制造(如图4所示),同钢轴承相比,全陶瓷轴承更耐腐蚀、耐高温、耐磨以及具有高刚度等性能。在航空航天工业中,陶瓷滚动轴承有极其优良的高速性能。在高温环境下,全陶瓷轴承能在800~1000℃条件下可靠工作;在腐蚀性介质中,全陶瓷轴承更能显示出其独特的优越性,化学工业用的各种耐酸泵、真空泵、离心泵和涡轮分子泵都应用了全陶瓷轴承。此外,电机工业和电力机车用全陶瓷轴承作绝缘轴承,航空航天飞行器采用全陶瓷轴承可减轻重量和提高飞行速度。

氮化硅全陶瓷轴承套圈及滚动体采用氮化硅陶瓷材料,保持器使用聚四氟乙烯作为标准配置,一般也可使用RPA66-25、PEEK、PI以及酚醛夹布胶木管等。陶瓷质保持架具有耐磨损、高强度、耐腐蚀及自的优点,采用陶瓷保持架的全陶瓷轴承可使用于高腐蚀、超高低温及高真空等苛刻环境,其常用陶瓷材料为ZrO2和Si3N4,Si3N4制全陶瓷轴承相比ZrO2材料可适用于更高转速及负荷能力,以及适用于更高的环境温度,同时可提供用于高速高精度高刚性主轴的精密陶瓷轴承。

满装球型全陶瓷轴承一面带添球缺口,因采用无保持架结构设计,可以比标准结构的轴承装入更多的陶瓷球,从而提高其负荷能力,另外还可避免保持架材料的限制,可达到陶瓷保持架型全陶瓷轴承耐腐蚀及耐温效果。该系列轴承不适宜较高转速,安装时应注意将缺口面装于不承受轴向负荷的一端。

5陶瓷轴承的发展趋势

陶瓷轴承的发展方兴未艾,纳米材料、复合材料的实用化为陶瓷轴承的发展带来了更大的生机。据统计,按特种轴承占轴承市场需求总量的10%计算,国内轴承的年需求总量约21亿套,陶瓷轴承如能占到特种轴承市场份额的10%,每年尚需生产2100万套;如果按投资1.5~2亿元人民币,建成年产量达到40万套生产能力的陶瓷轴承厂来计算,尚需建成52个同等规模的陶瓷轴承厂,才能满足国内市场的需求量,由此可见,产品市场缺口很大,依照我国国内目前的生产现状远远满足不了市场需求,因而市场前景十分看好。

在实际应用中,陶瓷轴承的使用寿命是耐热钢轴承的5~10倍;而且同等规格的产品,价格明显低于国外。据悉,以外径32mm为例,美国的陶瓷球轴承售价为80美元,而国内的陶瓷球轴承售价仅为110元人民币(约12美元),在相同质量的产品中具有很强的国际市场竞争力。

采用陶瓷材料制造轴承,可极大地扩展滚动轴承在各个领域的应用范围。目前世界各国研究、生产、销售陶瓷轴承的公司很多,但大多为混合轴承,即轴承滚动体为陶瓷材料,内外圈为钢制材料。国外大型轴承企业的不断涌入,将给我国轴承市场带来更大的冲击,因此,用新材料、新技术改造传统轴承产业,提高国内轴承产品的技术含量和附加值,尤其是拉动陶瓷轴承的市场竞争和生存能力,已成为一个重要课题。

我国在陶瓷轴承研究方面起步较晚,国家于1985年开始将陶瓷球轴承研究与开发列入科技攻关项目,并投入了大量资金,一些科研院所和企业也做出了有益的探索,取得了可喜的成果,但目前仍处于试验研究阶段。影响陶瓷材料在球轴承中广泛应用的主要原因,是其难加工性和过高的制造成本。陶瓷轴承的研究还需要在以下几方面进一步探索:一是研究适应范围更宽、条件更恶劣条件下陶瓷轴承的滚动接触性能;二是研究陶瓷轴承相关部件的结构配合设计,以及加工的可靠性和经济性;三是陶瓷轴承相关部件无损检测方法和破坏预测的技术;四是制定陶瓷轴承的检验标准等。相信陶瓷轴承进入实用化阶段已为时不远,其应用前景十分广阔。

参考文献

[1] 刘译九.滚动轴承应用手册[M].北京:机械工业出版社,1996.