HI,欢迎来到学术之家,期刊咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 航空航天的技术领域

航空航天的技术领域

时间:2023-07-31 17:25:25

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇航空航天的技术领域,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

航空航天的技术领域

第1篇

英文名称:Acta Aeronautica Et Astronautica Sinica

主管单位:中国科学技术协会

主办单位:中国航空学会

出版周期:月刊

出版地址:北京市

种:中文

本:大16开

国际刊号:1000-6893

国内刊号:11-1929/V

邮发代号:82-148

发行范围:国内外统一发行

创刊时间:1965

期刊收录:

CA 化学文摘(美)(2009)

CBST 科学技术文献速报(日)(2009)

Pж(AJ) 文摘杂志(俄)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

Caj-cd规范获奖期刊

第二届全国优秀科技期刊

联系方式

期刊简介

第2篇

关键词:航空航天产业;技术效率;SFA;影响因素

一、 引言

目前测度产业生产率的方法主要是总量生产函数、随机前沿生产函数(Stochastic Frontier Production Function Method,SFA)和数据包络分析(Data Envelopment Analysis,DEA),适用于不同的条件,其中DEA法要求较高的数据准确性,SFA法考虑了随机误差对经济增长的影响,也允许存在无效率,能较好的模拟经济状况。由于航空航天产业在发展中存在随机扰动和不可观测因素,采用SFA法应该更为适用。

技术创新要素是产业创新要素的核心,创新组织要素和创新环境要素围绕着技术创新要素发挥作用。因此,文章采用SFA的方法对我国航空航天产业1995年~2011年的技术效率进行了测度,并分析了时间、地区特征、人力资本素质、研发投入、企业规模及制度等对技术效率的影响,为航空航天产业的发展和技术提升提供借鉴。

二、 模型与数据来源

1. 航空航天产业生产效率基础模型。文章采用Battese&Coelli(1995)提出的SFA模型 ,假定我国航空航天产业生产函数为CD生产函数,则随机前沿生产函数模型为:

Yit=A(t)K?琢itL?茁itevit-uit i=1,…,I;t=1,…,17(1)

两边取对数,(1)式变为:

lnYit=?子+?仔?子+?琢lnKit+?茁Lit+vit-uit (2)

其中,Yit、Kit、Lit分别是i省t年产业总产出、资本投入和劳动投入,?琢、?茁是资本、劳动的产出弹性;A(t)=e?子+?子?仔为t年各省市前沿技术进步水平,其中e?子是基年即1995年产业初始技术水平,?仔是前沿技术水平进步速度;vit-uit是随机扰动项:vit是经济系统自身存在的随机误差,服从对称正态分布,即vit~N(0,?啄2v);uit是技术无效率项,服从单侧正态分布,即uit~N+(mit,?啄2u),mit是技术无效函数。

影响uit的因素很多,制度是重要的影响因素,此外还有企业规模、人力资本素质、研发投入、能源消耗状况、产业生命周期及产业密集度等。限于数据的可得性,将uit设定为人力资本素质、研发投入、企业规模和制度的函数,并考虑时间和地区因素:

mit=?渍+?兹t+?准1Locit+?准2Humit+?准3RDit+?准4Scaleit+?准5Systemit+wit i=1,…,I;t=1,…,17(3)

其中,?渍i(i=1,…,5)是技术无效率函数中第i个因素的截距项;t为时间趋势,系数?兹为正表明技术效率随时间的推移递减,反之亦然;Loc、Hum、RD、Scale和ystem是地区特征、人力资本素质、研发投入、企业规模和制度,系数?准i为正表明第i个因素对技术效率的作用是消极的,反之亦然。各个变量含义见表1。

(4)

式中?酌是指式(2)随机扰动项占技术无效率项的比重,?酌越趋近于1,前沿生产函数和技术无效函数的设定就越合理,采用随机前沿模型就更合适。

2. 数据来源与处理。文章主要数据来自《中国高技术产业统计年鉴》,航空航天产业的统计数据最早可至1995年,所以研究期间为1995年~2011年,样本是去除数据缺失较多的、海南、新疆、宁夏、云南、浙江、内蒙古以外的其他22个省市。此外,价格指数来自各年《中国统计年鉴》。

各指标数据选择及处理如下:

(1)总产出(Y)选取了能大体反映产业发展的当年价总产值,并采用以1995年为基期的各省市第二产业价格指数进行缩减以消除价格干扰。

(2)劳动(L)选取从业人员平均数,即年初就业人数与年末就业人数的均值。

(3)资本(K)的选取,1995~2005年为年末固定资产额,2006~2011年根据(5)式永续盘存法计算,即在上年折旧后加当年固定资产投资额。航空航天产业是高技术产业,资产提前报废、更新、淘汰的可能性较大,设备的技术损耗也会导致固定资产价值骤减,在借鉴会计上飞机、电子设备等折旧处理方式将折旧率取值15%。之后,用各省市固定资产投资价格指数将固定资产值统一折算到1995年不变价,其中广东缺乏的1995~2000年价格指数数据用地理和经济水平接近的福建替代。

Kit=Kit-1(1-)+Iit(5)

其中,Kit、Kit-1、、Iit分别是i省t年固定资本存量、i省 t-1年固定资本存量、固定资产折旧率和i省t年固定资产投资额。

(4)无效率因素:①地区特征,将22个省市分为东中西3个地区,分别取值1、2、3。②人力资本素质,是科学家和工程师占从业人员的比重。科学家和工程师知识水平高且实践经验丰富,是技术创新的主要贡献者,这一指标能大致反映产业人力资本水平。③研发投入,是R&D经费内部支出占主营业务收入的比重,涵盖了企业内部开展R&D活动的实际支出,能准确反映产业的R&D水平。其中,总产值以1995年为基期的第二产业价格指数进行了缩减。④企业规模,是产业总产值与企业数量的比值。产业内企业的数量是衡量市场结构和容量的重要指标,也能反映行业进入和退出的难度。⑤制度,用樊纲等(2011)的市场化进程指标来刻画,他从政府与市场关系、非国有经济发展、产品市场发育程度、要素市场发育程度、市场中介组织发育与法律制度环境5个方面综合测度了市场化进程,此外,用趋势外推法估算缺失的1995年、1996年、2010年及2011年的数据。

三、 实证结果及分析

利用Frontier4.1软件得出模型的参数估计值和检验结果,并得出各省市航空航天产业1995年~2011年的技术效率水平(见表2及表3)。

1. 航空航天产业生产函数分析。据表2的结果,LR统计检验值的显著性水平为1%,表明(1)式中误差项vit-uit复合结构明显, SFA法比OLS法更恰当;估计量?酌=0.612统计结果显著,表明技术无效率中随机误差项的影响高达61.2%、统计误差等不可控因素比例低,模型设定合理可靠,有必要分析技术效率未能充分发挥的原因。截距和时间趋势项系数为1.662和-0.061,表明1995年产业前沿技术进步水平为5.270(e1.662),之后以年均6.1%的速度下降。这可能的原因是:航空航天产业是国防科技工业中相对封闭、开放度小的行业,尽管十五大以来进行了改革,但科研、生产两张皮现象依旧存在,科技成果难以实现产业化;国防科技工业改革是渐进式的,这也有可能是改革过程中出现的无序状况。资本、劳动的弹性系数分别为0.350和0.712,表明劳动贡献度是资本的2倍。这也说明航空航天产业是知识密集型产业,科技人员在技术设备投入基础上进行产品的发明、实用新型和外观设计研发;重大技术R&D中需要大量科技人员长期持续的共同开发,劳动力及高科技人才作为稀缺要素发挥重要作用。此外,资本与劳动弹性系数之和大于1,表明产业具有容易形成规模报酬递增的特征。

技术无效函数中,时间趋势项系数值为-0.002,表明产业技术效率年均增加0.2%,但统计结果不显著。前沿技术下降伴随技术效率提高的原因可能是:①我国尚未形成自主创新的技术创新体制,还处于依赖国外先进技术的状态,如我国不具备生产涡轮风扇发动机或先进火控系统的能力;②产业部分是国防科技工业,具有公共产品的特征,会造成技术前沿下降的错觉。例如某些航空产品或军用航天器只是国防建设的需要,不参与市场流通,统计数据上无法显示。地区变量系数值为0.079,统计结果略微显著,表明东中西部地区产业技术效率呈现递减状态。

人力资本素质系数值为-0.010且统计结果较为显著,表明人力资本能积极提升产业技术效率,提高雇员中科学家和工程师人员的比重可以有效提高劳动生产率。Vandenbussche等(2006)的研究表明教育水平会使劳动力会对技术效率产生不同的影响,文章研究结果与其一致,表明科学家和工程师比重上升1%会提高1%技术效率水平,因为科学家和工程师具有较高的知识水平和丰富的实践经验。可见,航空航天产业吸收的劳动力具有较高的素质水平,对产业技术效率的提高做出了一定的贡献。

研发投入系数值为0.022且统计结果显著,表明研发投入对产业技术效率具有消极影响。研究期内各省市及全国水平的研发投入总体上涨,但研发绩效不高,这与钟卫等(2011)的研究结果一致,他认为在经济发展初期加大R&D投入能有效提高技术创新效率,但随着企业深入发展应重点调整经费投入结构。此外,航空航天产业企业大多由国家或国有控股,近年虽有下降但国有比例仍高达50%。虽然国有企业有规模、政府特许等优势,但激励却不充分。十五大以来中央对国防工业做出的多次部属是对改革的进一步延伸。

企业规模系数值为-0.134且统计结果显著,表明企业规模是积极的影响因素。产业具有高投入、高技术和高风险等特点,进入的企业都有一定的规模。研究期内各省市企业规模变化起伏:相对来说,黑龙江、江西、辽宁的企业规模曾较高(≥6亿元/企业)但变化急剧;大多数省市都在0~2之间。产业中大型企业比重不到20%,大中型企业比重在50%左右,并未形成良好的企业规模;此外,《2012年财富世界500强》排行榜中有12家航空公司,其中我国虽然有2家但上榜的中国航空工业集团公司在排名、主营业务收入和利润方面都与排名第一的波音公司差距较大。

制度系数值为-0.148且统计结果显著,是影响最大的因素。研究期内各省市市场化程度逐年提高,东部优于中部优于西部;位于沿海的广东、江苏、福建、上海等省市的市场化程度最高,而西部陕西、甘肃等省市只有发达地区的一半。1964年推行的三线建设将44项中的21项国防工业企业投放在西部,可见产业半数左右企业在西部地区;2001年实施的西部大开发政策一定程度上提高了西部省市的市场化程度,为产业发展提供良好的市场环境。

2. 航空航天产业技术效率分析。根据计算结果(见表3-1及表3-2)对产业技术效率从区域角度进行分析。

(1)航空航天产业技术效率总体分析。依据测算结果(表3),表明研究期内技术效率均值离效率前沿面较远,仅为0.472,即实际产出水平只占最优随机产出水平的47.2%(表明既定产出水平下能节约52.8%的投入)。可见,产业未能发掘现有科技资源和技术潜力,资源使用效率、管理水平及产业技术实际利用率低。尽管产业平均技术效率不高,但总体是逐年增长的。

(2)航空航天产业技术效率区域分析。由于地域禀赋、国家政策不同造成我国东中西部经济发展呈现东强西弱。产业区域技术效率的具体情况(见表4):各个区域技术效率存在显著差异;东西部增长较快,中部略微增长,所以2000年前原本领先的中部被东部赶超。各省市技术效率排行中,中部的黑龙江和江西排在第一和第三,技术效率值分别为0.85和0.75;大部分东部省市排名都很靠前;西部省市排名全部靠后,甘肃和山西技术效率值最低只有0.23。

航空航天产业区域技术效率差异显著,最高省市和最低省市相差高达0.62。黑龙江、广东、江西高效利用了现有技术,效率值都在0.75以上;吉林、甘肃和山西效率最低;9省市技术效率不足0.4。从各省市的变动趋势来看:高效率省市(≥0.60)除辽宁2003年前增长快速外的变化起伏;陕西、四川、甘肃、贵州、河北等低效率省市(≤0.3)正逐步释放内部潜力保持低速持续增长。

黑龙江研发投入处于中等且逐年增长、企业规模领先,产出水平很高,因而技术效率最高。黑龙江是工业发展的摇篮,产业全国影响大,其中哈尔滨民航产业发展也很突出。广东位于沿海地区,能吸引众多外资和高技术人才,企业规模虽然递减但处于全国领先,即使研发投入不高但产出规模大。尽管广东没有被纳入军事航空制造业布局,但在航空关联制造业相关领域国内市场占有率名列前茅,并在2010年推行《广东省航空产业发展规划(2010~2025年)》促进产业发展。

山西、甘肃位于内陆或经济不发达地区,产业发展相对较为缓慢,技术效率值偏低。山西技术效率值总体下降;吉林技术效率大致维持在同一水平;甘肃的技术效率逐年缓慢提高;这些变化一部分是由于受当地经济发展的影响,一部分也与国家政策支持力度和国防科技工业布局有关。

四、 结论和建议

航空航天产业发展过程应重点关注技术效率问题。文章用SFA法实证测度了1995年~2011年航空航天产业的技术效率,并对时间、地区特征、人力资本素质、研发投入、企业规模和制度等技术无效率因素进行了分析,得出如下结果:

1. 我国航空航天产业技术效率水平较低,研究期内均值只有0.472。技术效率各年均值波动增长,虽然从0.374上升到0.539,但仍有46%的上升空间。从无效率因素来看,时间趋势不是很显著;人力资本素质、企业规模、制度因素对技术效率具有积极的影响,应适当加大或提高这部分的水平;研发投入作用消极,应对投入结构进行调整。

2. 航空航天产业技术效率存在区域差异,区域效率均值排序为东部>中部>西部,黑龙江、广东、江西技术效率值排名前三,吉林、甘肃和山西排名最末。值得注意的是,研究期间内西部技术效率持续稳定的增长,中部是早期处于领先的情况下后期被东部赶超。

综上所述,人力资本素质、企业规模和制度等因素对航空航天产业技术效率具有积极影响,研发投入的作用是消极的。为了加快我国航空航天产业的增长,不仅需要完善教育、培训和人力资源开发体系,也应当扩大企业规模、使之形成规模效应,并推进市场化改革,保证所需人才、基础设施和制度支撑条件,此外也应改革国防科研体系,在改革研发投入结构的基础上提高研发投入,最终促进产业发展。

参考文献:

1. 丁兆浩.中国地区经济发展差异性.东方企业文化,2011,(14):82-83.

2. 栾春娟,王贤文,梁永霞.世界航空航天技术领域专利竞争.科技管理研究,2008,(12):429-433.

3. 霞飞.与三线建设.党史纵览,2004,(11):10-15.

4. 徐杰,杨建龙.全要素生产率研究方法述评.现代管理科学,2010,(10):3-5.

5. 张政治,谢毅梅,张文强.我国航空航天产业创新能力提升路径分析.科技管理研究,2011,(5):7-10.

6. 诺思.制度、制度变迁与经济绩效.上海:上海三联书店,1994:3.

7.钟卫.中国区域R&D投入绩效的统计评价.统计与决策,2011,(7):91-93.

8. 赵富洋.我国国防科技工业军民结合创新体系研究.哈尔滨工程大学,2010:33.

第3篇

[关键词] 高技术产品;国际分工;贸易模式

[中图分类号] F752 [文献标识码] A [文章编号]

一、引言

我国自实施“科技兴贸”战略以来,相继制定了一系列鼓励高新技术产业发展的贸易政策和产业政策,这些政策极大地促进了我国高技术产品国际贸易的开展。我国科技部《中国高技术产业数据(2012)》显示,2011年中国高技术产品进出口总额突破万亿美元,贸易顺差达856亿美元;中国香港、美国和欧盟是我国高技术产品的前三大出口市场,共占据61.4%的出口份额,而香港地区多为转口贸易,最终消费地则主要以美国和欧盟为主;我国高技术产品的进口主要来自于亚洲的韩国、中国台湾和日本,三者之和占据我国高技术产品进口市场45.1%的份额,而欧盟和美国则位居其后。

金融危机爆发后,美国推出创新战略,提出“再工业化”之路和清洁能源计划,重振美国经济;我国一直将高技术产业列为重点发展和扶持的产业之一,金融危机后我国制定了《电子信息产业调整和振兴规划》,并将加快培育和发展战略性新兴产业作为应对金融危机的重要举措。鉴于美国在全球高技术领域的重要地位,以及我国与美国经贸关系的相对重要性,分析我国与美国高技术产品贸易,具有重要意义。

二、数据来源与分析指标

(一)数据来源

我国科技部和商务部参照美国先进技术产品(Advanced Technology Product, ATP)进出口目录,确定了中国高技术产品进出口统计目录。该目录包括生物技术、生命科学技术、光电技术、计算机与通信技术、电子技术、计算机集成制造技术、材料技术、航空航天技术和其他技术共九大技术领域,突出了高、精、尖的技术特点。按照国际可比性原则,本文依据海关合作理事会《商品名称及编码协调制度(HS)》,选取六位数《HS2002》版本的上述九大领域高技术产品年度进出口统计数据作为研究对象,样本区间为2002-2011年,数据来源于联合国商品贸易数据库(UN COMTRADE),其中报告国选择中国,伙伴国选择美国,贸易流向包括进口和出口。

(二)分析指标

1.GL指数

Grubel和Lloyd(1975)年提出GL指数,作为衡量产业内贸易(Intra-Industry Trade, IIT)水平的重要指标:

其中Xi与Mi分别表示i产业的出口额和进口额,GLi∈[0,1],0表示完全产业间贸易,1表示完全产业内贸易。若i产业中包含n种产品,则以每种产品的进出口额占i产业进出口总额的比重为权数计算的i产业内贸易指数:

当产品分类不够精细时计算出的GL指数,容易产生产业汇总偏误,虚高产业内贸易水平,影响实证研究的解释力,因此学者建议至少采用SITC三位数层次或HS四位数层次的贸易数据,衡量产业内贸易水平;由于UN COMTRADE数据库中对于商品成交数量单位的统计,HS统计数据要比SITC统计数据记录得详细,例如对于不同的商品采用升、千克、件数等具体单位,计算进出口单位价值时相对科学。所以,本文选取HS六位数编码统计数据作为研究样本。

2.贸易特化系数

GL指数只是衡量了产业内贸易的水平,不区分国际贸易流向,因此可以借助贸易特化系数(Trade Specialization Coefficient, TSC)加以补充。i产业的TSC表示为:

一般而言,TSCi∈[-1,1]。TSC越接近于1,说明该产业出口额远超过进口额,该产业的国际竞争力就越强;反之,若TSC越接近于-1,则说明该产业出口额远小于进口额,该产业在国际市场上的竞争力就越弱。

3.FF份额指数

Fontagné和Freudenberg(1997)将贸易类型划分为产业间贸易、水平产业内贸易和垂直产业内贸易,进而可以计算不同类型贸易所占的份额。

一般而言,各国出口统计以FOB价格计值,进口以CIF价格计值,考虑到运费、保险和利润等因素,在FOB价格基础上加成25%是合理的,即质量相当的同种产品的出口单价和进口单价之比( )应位于合理的区间内,此时双方开展的贸易类型为水平型贸易;若 超出该区间,则双方进行的贸易为垂直型贸易。表1体现了这种思路。

4. FF份额指数扩展

尽管FF份额指数能够显示出产业间贸易、水平产业内贸易和垂直产业内贸易的份额,但不能衡量出贸易国出口产品的价格水平和竞争力水平,从而无法判断在垂直产业内分工中所处的位置。鉴于中美高技术产品产业内贸易以垂直型为主,因此可以在FF份额指数的基础上,进一步将垂直产业内贸易划分为两种类型:低端垂直产业内贸易(VIITL)和高端垂直产业内贸易(VIITH)。若 1.25,则贸易类型为VIITH。从事VIITL的国家以生产和出口低质低价产品为主,在高技术产业链国际分工中处于加工制造环节;而从事VIITH的国家则以生产和出口优质高价产品为主,在高技术产业链分工中处于研发设计和品牌营销环节。

三、中美高技术产品分工与贸易模式分析

(一)产业内贸易水平

九大技术领域中,生物技术和其他技术的产业内贸易水平偏低,样本区间内GL指数均低于0.1,年度均值分别为0.06和0.04,标准差分别为0.01和0.03;生命科学技术和材料技术的产业内贸易水平相对较高,年度均值分别为0.35和0.44,标准差分别为0.02和0.22,材料技术的产业内贸易水平波动相对较大,2011年和2012年产业内贸易水平较高,分别为0.75和0.81;计算机与通信技术产业内贸易水平呈下降趋势,由2012年的0.29逐渐降至2011年的0.05,转变为以产业间贸易模式为主;光电技术和电子技术的产业内贸易水平基本稳定;航空航天技术的产业内贸易水平近年来略有增长。

(二)产品竞争力

九大技术领域中,计算机与通信技术、其他技术产品TSC历年均为正,均值分别为0.88和0.66,说明我国该两类产品具有较强的竞争力和比较优势;电子技术、计算机集成制造技术、材料技术和航空航天技术四类产品历年TSC均为负值,说明我国这四类产品在国际竞争中处于比较劣势;光电技术产品由负值逐渐转变为正值,说明我国此类产品正逐渐建立起比较优势;生物技术产品逐渐由正值转变为负值,说明该类产品的国际竞争力恶化;生命科学技术产品整体而言呈处于比较劣势。

从全部高技术领域产品来看,对美贸易中,我国具有弱比较优势,这似乎与上述按领域分析的结果相矛盾,因而需要做进一步分析。通过计算每个技术领域产品进出口额占所有高技术领域产品的进出口额的比重,可以得到我国高技术产品对美贸易的结构。

由表4可以看出,我国九大技术领域中,计算机与通信技术产品的进出口额占据绝对优势,历年平均比重达67%,其次是电子技术产品和航空航天技术产品, 历年平均比重分别为12%和8%,由此不难解释我国对美贸易高技术领域产品的弱比较优势。

(三)贸易模式

采用FF方法计算的同一产业的产业间贸易份额、水平产业内贸易份额和垂直产业内贸易份额三者之和等于1,因此,可以采用三角形图直观地分析上述贸易类型,离顶点越近,说明该类型贸易份额越多;离顶点越远,则该种类型贸易份额越少。

图1显示出各标志点离水平产业内贸易顶点较远,说明整体而言,我国高技术产品水平产业内贸易比重过低。生物技术、其他技术以产业间贸易为主,这与GL指数相符;材料技术产品以产业内贸易为主,2002年,材料技术产品以垂直产业内贸易为主,而2011年水平产业内贸易则占据近40%的份额;电子技术产品2002年三种贸易类型均占据一定比例,到2011年则发展为以垂直产业内贸易为主,兼有少量产业间贸易;航空航天技术、计算机与通信技术、计算机集成制造技术和光电技术产品以产业间贸易和垂直产业内贸易为主,产业间贸易份额要大于垂直产业内贸易份额;生命科学技术产品产业间贸易和垂直产业内贸易均有,但垂直产业内贸易份额要明显大于产业间贸易份额。

(四)产业分工

由于生命科学技术、电子技术和材料技术产品垂直产业内贸易份额较高,因此,进一步计算这三类产品VIITL和VIITH在垂直产业内贸易中所占比重,从而可以判断出,我们在产业链分工中所处的位置。

由表5可见,各年份我国生命科学技术、电子技术产品VIITL的比重明显高于VIITH的比重,说明这两类产品出口单位价格明显低于进口价格,在中美产业分工中处于产业链低端,对美贸易中,以出口低价格低技术含量、进口高价格高技术含量的产品为主;材料技术产品起初处于产业链高端,然而,近年竞争优势逐渐丧失,2011年对美贸易中,主要出口低端产品。

四、结论与建议

依据样本数据计算,2002年中美高技术产品进出口总额243亿美元,顺差41亿美元;2011年进出口总额则增为1150亿美元,顺差扩大至591亿美元。虽然整体而言,我国对美高技术产品贸易呈现顺差,但是我国高技术产品竞争力不均衡,只是在计算机与通信技术和其他技术领域建立了比较优势,对美贸易以产业间贸易模式为主,互补性较强;光电产品领域正逐渐建立起比较优势;而其他6个领域均处于比较劣势,此外,我国高技术产品对美贸易顺差与美国对华技术出口管制有很大关系。

中美高技术产品贸易模式以产业间贸易和垂直产业内贸易为主,而垂直产业内贸易份额较多的生命科学技术、电子技术和材料技术产品分工中,我国处于产业链低端,以加工制造为主,缺乏核心技术和自主创新产品,缺乏国际知名品牌,出口产品附加值很低,国际竞争力不足。因此,建议采取如下对策:

(一)多角度入手解决中美高技术产品贸易失衡问题

在我国具有比较优势的高技术产业领域,如计算机与通信技术领域,鼓励企业积极参与国际分工和和国际市场竞争,扩大对美直接投资数额,实施“走出去”战略,进行国际化经营,有助于减轻对美贸易顺差压力,减少贸易摩擦;改善对美高技术产品贸易结构,适度降低加工贸易所占比重,促进加工贸易转型升级,使其由简单的组装加工向研发设计、营销物流等高端环节延伸;重视进口对于外贸协调发展的平衡作用,在技术管制相对宽松的领域,可以根据产业发展的需要,扩大产品的进口规模,在技术管制相对严格的领域,只要技术条件允许,可考虑进口其中间产品,在国内加工成成品销售,有助于减少贸易顺差;加强与美国在知识产权领域的沟通与协商,敦促其放宽对华技术出口限制,为双边高技术产品贸易营造良好的氛围,有助于扭转高技术产品贸易失衡的局面。

(二)鼓励我国高技术企业向产业链上游攀升,提高在国际分工中的地位

建立有利于企业技术创新的微观激励机制,加大对高技术企业的扶持力度,增加对高技术领域的研发投入。引领企业加快转变外贸发展方式,注重产品质量和经营效益的稳步提高,使企业从依赖低成本竞争向依靠综合实力竞争转变,从规模扩张向集约化生产转变,不断提高自主创新能力,提高产品的附加值,提高拥有自主知识产权的高技术产品的贸易比重,这既是我国开展高新技术产品贸易的关键所在,又是增强我国高技术产品国际竞争力的根本途径。此外,积极探索技术引进新模式,提高技术引进的有效性,打破技术引进中的不良循环,不断提高外资项目的技术含量和层次,制定优惠政策引进我国真正需要的高技术项目。鼓励美国高技术企业来我国直接投资,设立研发中心,不但可以绕过美国设置的高技术产品出口壁垒,而且能够在技术引进的基础上加快消化吸收与开拓创新进程,提高国内技术创新的起点和水平,在产业链国际分工中争取到有利地位。

(三)政府应为高新技术产业营造良好的制度环境

首先,加快推进产业结构调整,使高技术产业成为我国产业结构优化和升级的重要推动因素。其次,加快研究和制定符合WTO规则的产业和贸易政策体系,并根据我国高技术产业的不同发展阶段和技术特征,实施有差别的政策,着力培育和发展技术先进、竞争力强的现代产业体系。与美国相比,我国生物技术、计算机集成制造技术、航空航天技术等关键领域明显处于比较劣势,在今后的政策中应予以倾斜。第三,落实科技兴贸规划,建立和健全国内高技术产业发展的税收和投融资政策,适当加大对部分高技术领域产品的出口退税力度,强化对高技术企业尤其是小微企业的信贷支持和风险资本投入,发挥出口信用保险对高技术产品贸易的支持作用等,解决高技术企业的融资困境问题。第四是加强与国外政府、企业间的交流与合作,坚持以人为本,完善高技术产业人才的培养、培训和激励机制。

[参考文献]

第4篇

世界航天工业经过五十多年的发展,目前规模已相当可观。在不同程度上建立了航天工业的国家和地区已有20多个,但在能力与水平上,各国的相互差距仍然很大。目前,世界航天工业主要分布在一些发达国家和大国,以美国最为发达,俄罗斯、欧洲和日本的航天工业也相当发达,发展中国家中,中国、印度、巴西等国的航天工业都有一定的能力和水平。

一、美国的航天工业

美国的航天工业经过数十年的发展已形成了庞大的科研生产体系,从事航天工业的员工人数近百万人,其中科研和工程技术人员约占到总数的近80%。美国从事与航天有关的研究与咨询活动的研究机构及学会等约有200多家。按照航天产品和导弹的总体、动力系统和电子设备三大部分的主要承包商统计,约有370多家公司;如果将有关设备、仪器仪表、地面设备、电子元器件及原材料企业也计算在内,则为航天产品配套的公司有1000多家。美国大型航天和导弹公司大多从事航空航天业务,同时经营多种业务,有雄厚的技术开发设计能力。

美国将空间开发与利用作为综合国力新的增长点,确立了发展空间能力为基本国策,不断加强国家对航天工业的协调,实施商业化空间政策,对民用和军用航天计划在技术开发、发射和服务支持方面进行最大限度的协作,并广泛参与世界范围的竞争。美国已形成了一套比较完善的航天与导弹工业管理体制。总统与国会为决策层,总统负责航天和导弹工业发展的战略决策和方针政策,国会进行航天和工业管理的立法,监督政府有关部门的航天和导弹工业管理工作,并通过预算拨款和政策对航天和导弹工业进行宏观调控。国防部与国家航空航天局(NASA)为计划层,国防部是军用航天和导弹的主管部门,NASA是美国民用航天活动的政府主要管理部门,并承担部分军用航空航天计划,NASA还与其它政府部门负责商业航天规划的实施。承包商(工业界)、科研部门、大学等为实施层。

美国在航天工业上的投资远远超出其它国家,2001年达到288亿美元,约占世界所有国家航天预算总和的75%。

到目前为止,美国不仅形成了庞大的航天和导弹研发、生产和管理体系,而且不论是航天运载工具和航天器、还是各类导弹,均形成种类齐全、型号繁多的体系。美国具有世界上最强大的航天运载能力,拥有重型、大、中、小型等多种系列运载火箭,目前只有美国的航天飞机是世界上唯一投入使用的可重复使用的运载器,在研的及预研的可重复使用的运载器数量最多时达到十几种;美国载人航天和空间探测技术发展成熟,目前领导和管理着庞大而复杂的国际空间站工程,数十个空间探测器探测了月球、行星和星际,各类在轨的卫星门类齐全。自人类发射第一颗人造地球卫星以来,各国发射了5000余颗卫星,其中美国占了将近一半。

美国的航天和导弹技术始终处于世界领先地位,这与其长期保持雄厚的航天工业基础和持续的创新能力分不开。航天与导弹技术属于综合技术和系统工程技术,需要以各专业技术为基础。美国十分重视国防技术基础的发展,国防部制订的15项国防关键技术,其中12项都用于航天和导弹的研发。而这些关键技术的绝大多数在世界居领先地位。

二、俄罗斯航天工业

俄罗斯继承了苏联大部分航天与导弹工业的科研设计机构和工业企业,保留了规模巨大航天与导弹工业的基础,以及雄厚的科研、生产、试验和应用能力。独立后,俄联邦政府给航天与导弹工业的财政拨款锐减,许多已列入航天与导弹计划的研制和生产项目被取消或推迟,航天与导弹工业受到巨大的影响。但由于苏联航天与导弹工业的庞大规模和坚实的基础,使俄罗斯至今仍然保持着一个实力仅次于美国、许多领域可以与美国并驾齐驱的航天与导弹工业强国的地位。

俄罗斯非常重视航天工业的发展,在经费有限,航天与导弹发展规模缩小的情况下,突出保证国家航天与导弹重点项目的实施和发展,继续保持重点航天与导弹技术在世界的领先地位。俄罗斯将核威摄力量做为国家安全的基石,保持和发展包括新型战略导弹在内的战略核力量,确保独立研制、生产先进战略导弹系统的能力。鼓励航天与战术导弹产品的出口,积极开展国际航天合作。

目前,俄罗斯航空航天局直接管理着从事航天与导弹系统及相关部件研制的研究设计机构和生产企业一百多家,另有航空航天局内外的45家企业通过合作参与航天器与导弹的研制生产,还有一些俄罗斯与国外合资的航天企业。从事航天与导弹研制与生产的雇员近30万。从独立后的1992年至2000年底,俄罗斯共进行了316次航天发射,先后发射了454个各种轨道的航天器。近5年来,俄罗斯平均每年约进行20~30次航天发射,发射数量大约是苏联时期的1/3。俄罗斯的航天产品包括各种航天运载器、卫星和深空探测器、载人飞船与空间站,建立了完整的航天飞行控制与测量系统,开展了全面的航天应用与丰富空间科学研究活动,是美国之外全球航天产品最齐全、设施最配套的国家。俄罗斯已经形成种类齐全、产品配套的导弹武器系统。总体上说,在许多领域俄罗斯导弹武器系统在品种、技战术水平上都可与美国匹敌。

三、欧洲航天工业

法国是西欧第一航天大国,也是美国和俄罗斯之后的世界第三航天大国。它拥有强大的运载火箭与航天器制造能力和类型较齐全、规模较庞大的导弹研制生产能力。法国航天和导弹工业的规模在西欧居第一位,从业人数和销售额均高居西欧各国之首。法国能独立或为主研制各种大型运载火箭,通信、侦察和对地观测卫星,较大型航天器以及各种类型的导弹,共研制过或正在研制约5个系列的运载火箭、约15种型号的卫星、3种型号的航天器和约60种型号的导弹,具备总体设计、推进、制导、结构、防热等分系统设计与研制以及电池、火工品等零部件研制能力。法国研制生产的各种运载火箭、卫星 、航天器和导弹具有较高的技术和应用水平。其中,通信和遥感卫星性能接近世界先进水平,并带头打破了美国对国际商业通信卫星研制市场的垄断,成为“阿拉伯卫星”和“土耳其卫星”的主承包商;反舰导弹、防空导弹、空空导弹的性能基本接近或达到美国同类武器系统的水平。法国航天大型企业的基础雄厚、设备精良、技术先进,如在“阿里安”火箭总装车间拥有现代化的机器人、加工中心、CAD/CAM、数学仿真、模拟仿真等设备,其设计、研制、管理手段均非常先进。

英国航天和导弹工业的规模,在西方国家中处于前列。英国有比较配套的航天工业产业结构和产品结构,研发、生产能力与水平在西方国家中处于前列。英国航天工业的研发和生产注重选择重点发展方向,主要是在对地观测卫星、小卫星和卫星软件等领域的研发、生产中具有很强的实力;在通信卫星技术领域的研发中处于世界先进水平;能独立研发、生产卫星整星和探空火箭,但不能独立研发、生产运载火箭。英国虽然缺乏战略导弹生产能力,但在战术导弹领域,除了不具备独立研制生产巡航导弹的能力外,其它战术导弹不仅可以独立研发和生产,而且其水平位居世界先进行列,至今已经生产了30多种型号的战术导弹。英国的航天与导弹产品在国际市场上具有一定的竞争力,其中每年战术导弹的出口贸易额达10多亿英镑。

德国近年来在航天器系统设计、制造、管理和工程总承包方面积累了丰富的经验,掌握了许多领域的关键先进技术。在单、双组元液体推进系统,硅太阳电池及复合材料电池板,卫星姿控系统,行波管放大器,光学仪器,电火箭发动机技术等领域拥有世界一流技术。在大型运载火箭第二级液体芯级、液体捆绑助推器、上面级液体火箭发动机、姿控发动机和火箭结构件的研制上具有丰富的经验。德国具有应用卫星和科学实验卫星整星研制的能力,并拥有很高卫星制造水平,尤其在卫星太阳电池系统、姿控系统、光学仪器、卫星通信有效载荷、卫星单组元和双组元推力器及电推进系统领域拥有先进水平。德国近年来积极参与了欧洲阿里安4、阿里安5运载火箭的研制和生产,并自己研制了哥白尼德国邮政卫星。德国不生产战略导弹产品,研制的导弹产品主要有地空导弹、空地导弹、空空导弹、反舰导弹、反坦克导弹等。

意大利航天与导弹工业规模在西欧排名第四位。意大利的航天工业在欧洲具有较先进的技术水平,能够独立开发卫星系统和轻型运载火箭。在大型运载火箭固体助推器、卫星平台、卫星通信高频技术、通信卫星有效载荷、卫星天线、远地点发动机领域位于欧洲前列。意大利作为主承包商研制的典型卫星型号有意大利卫星-1、-2通信卫星,阿蒂米斯先进中继和技术卫星,宇宙-昴星团卫星,米塔科学小卫星。与其他国家联合研制的航天器有多种型号。意大利目前作为主承包商正在研制维加轻型运载火箭;参加了国际空间站项目,承担了多功能增压后勤舱(MPLM)等重大项目的研制。在导弹领域,主要通过与法国、德国、英国和美国等国家合作的方式研制生产战术导弹,产品包括反舰导弹、防空导弹、空空导弹、空地(舰)导弹和反坦克导弹。

第5篇

【关键词】河北省廊坊市 航天战略 新兴产业

【中图分类号】F276.44 【文献标识码】A

我国社会主义现代化建设,经过改革开放多年努力,已经取得了重要实质性成果,尤其表现在我国社会经济快速增长。但是,随着全球经济和金融一体化趋势不断深入,我国各项产业正面临着严峻考验,2008年金融危机以来,国民生产总值和贸易出口额获得了进一步增加,这一结果主要还是以高额资源消费为代价。世界各国都更加关注高新科学技术和构建未来可持续发展的制高点,如何构建符合我国国情的产业结构和培植具有核心竞争力的新产业,已经成为国家宏观政策制定的主要方向和学术界研究的一个热点问题。

2012年,我国出台关于《“十二五”战略性新兴产业发展规划》,更加明确我国着力发展新兴产业的相关政策和指导方针,由于航天产业从自身建设和功能性外延等特征,更加成为我国战略新兴产业发展的关键性支撑石。2011年,河北省政府与中国航天科技集团公司签署区域地方和航天产业系统发展战略框架协议,在“十二五”期间,共同促进河北省社会经济和航天产协同发展,主要包括:运载火箭制造及实验、战略性新兴产业等五个主要内容。而廊坊市在河北省具有得天独厚的位置优势,廊坊航天战略新兴产业建设,对于我国航天工业可持续发展、京津航天产业的拓展和延伸、地方传统产业调整和产业结构全面系统升级都有着关键性的实践性理论意义。

航天战略性新兴产业是基于高新技术和新兴产业相互融合,代表着我国科技创新和产业发展方向,近年来,河北省在推进产业结构调整和突出新兴战略产业方面,推出了一系列具有导向性政策措施,而这些实践性政策性策略,对于航天战略新兴产业长足进步起到关键性作用,并且取得一定的成效。但是不可回避的是,河北省产业调整和战略产业培育过程中,受到理论和经验等多维度影响,以及实际客观条件局部限制,产生很多新问题。

河北省航天产业发展的必要性

航天产业发展将会直接带动一系列战略新兴产业培育和学科技术的融合式发展,我国经过几十年的航天工业的探索和建设,已经构建出我国航天产业体系结构,并且航天产业的发展迈入了一个新发展阶段和历史时期。

航天产业具有重要的战略导向性。航天产业的发展直接关系到我国高端装备制造建设和发展,是我国众多行业中具有高新科学技术应用产业之一,同时对于我国企业产业发展,起到战略导向性作用。①航天产业技术创新和应用,对于我国社会经济的发展起着重要的技术支撑和推进性作用效果,在提升我国人民生活质量、国际地位和综合国力方面,更加强调其战略性影响意义,一方面代表着我国在国际航天发展领域地位,另一方面也能够表示我国核心国防实力。例如美国航天协会关于航空航天技术的相关说明,②即该技术是否领先于世界水平,直接关系到国家各个方面战略性安危,发展航空航天技术是现在乃至未来长期投入和建设国家安全战略。可见,航天产业在我国社会经济和军事中占据核心地位,河北省航天战略性新兴产业建设,将会直接关系到我国航天产业整体规划和可持续发展。

航天产业的技术多样性和链条可扩性。航天产业建设和发展具有战略现代性作用,主要体现在航天产业技术的构成技术多样性和链条可扩展性,一是技术多样性,航空航天产品制造和生产是一项高精端、多学科技术融合而成,从某种程度上讲,航空航天产业发展水平能够直接代表我国先进科学生产力的基础建设情况。由于航天产品生产工艺的复杂性要求,制造生产需要在特定环境下完成,涉及多个学科和技术领域的协调配合,例如要求航空航天材料具有高可靠性新材料、新工艺和新技术,这也能够进一步说明航天产业在我国各产业领域前瞻性地位。同时技术多样性还体现在,生产航天产品需要小批量和多零件构成,这也要求在加工工艺选择和技术上,呈现出明显柔性生产力。二是链条可扩性,据有关部门相关数据统计,③航天战略新兴产业发展带动我国80%的新材料研发,促进多产业链条企业之间融合式发展,技术能够直接提升企业核心市场竞争力,能够更加有效促进其他产业结构的有效调整。未来10年,一个航天项目与产业效益的比值为1:180,推进国民生产总值增长值为 0.714%。

河北省航天产业发展存在的问题

河北省在航天性战略产业培育和发展方面,具有独特发展优势。一是区域位置属于京津经济的三角区域,符合产业延伸和资源互相渗透互补的要求,河北省航天产业的发展,将带动区域多元新兴产业发展,并且能够具有影响和被影响的区域经济发展优势;二是河北省的产业优势,2012年底,河北省物流产业呈现出快速增长趋势,同比2011年增加23.4%,物流产业已经成为河北省现代服务性的优势性产业,这也为航天战略新兴产业全国协同发展,提供重要基础性保障,同时河北省在推动我国“十二五”新兴产业方面,具有明显的发展成果,尤其是先进制造、新材料和高科技电子信息技术等;三是河北省航天产业政策性优势,主要体现在“十二五”纲要中明确指出进一步促进和实现河北省沿海地区发展,这也为河北省航天产业发展,提供上层政策性保证。由于河北省航天产业建设过程中基本无样本参照,属于探索性发展模式,目前,河北省航天产业发展的过程中,依然存在两个重要问题。

航天战略新兴产业集群模式偏低。从国家统计据的相关数据分析可知,④河北省是我国一个重要经济型大省,但是从河北省国内生产总值产业分布情况看,不属于一个以新兴产业为主导经济强省。主要体现在河北省的基础性还是以粗放式、高资源消耗为主的,例如钢铁等传统产业,企业规模虽有所增加,但是系统化归类集成程度不明显,低水平生产现象还很明显,这也是河北省产业发展过程中一个基础性问题。河北省航天产业有其自身特有发展模式,航天战略性新兴产业需要从布局上,充分考虑集中性,并通过相应产业集群模式,进行统筹式发展,构建出航天产业企业之间协调、多赢和技术互补促进融合的创新发展模式,并积极带动与之相关辅产业发展,初步形成以廊坊市为主的新兴航天产业集群,而对比河北省其他产业来说,还是属于较小规模产业集群,并且还需要进一步完善系统框架上的组织协调发展,形成航天战略新兴产业的协同发展机制,形成大产业链条下的规模性循环经济,从而形成以河北廊坊为中心的航天产业集群基地。

缺失高新核心支持性技术。全球范围内已经掀起了新一轮航空航天产业发展新时期,我国航空航天产业虽然在一些关键性技术领域,例如载人和火箭技术,已经达到国际航空航天的世界领先技术,但是从整个航天产业发展上,却具有明显的缺点和不足,主要体现在两个方面:一是航天产业原始创新能力还存在着明显的差距性,尤其是一些关键性核心支撑技术,不能满足我国社会经济发展要求,例如民用和军用飞机在我国社会生产生活中需求量急剧增加,而我国大型航空工业,还承接一些国外外包业务,严重影响航空科技技术创新资源。同时航天产业相关技术研发过多关注于数量而不是质量,2012年航天制造产业的申请专利数达到908件,但是具有整个行业高新技术比例不足2%,美国申请8654项,核心技术占26%,这一数据显示,我国航天产业原始创新能力和驱动力存在着较为严重问题,这也是河北省航天战略新兴产业发展的一个关键性问题。二是创新体制上存在着一定问题,尤其是在航天产业高新技术研发和市场结合方面的问题,河北省政府与中国航天科技集团具有战略性协同发展关系,在航天战略新兴产业发展过程中,已经感觉到中国航天科技集团具有明显的计划经济体制形态,企业之间管理上还存在行政领导关系,各个企业的自主经营权受到了重要限制,这也是导致原始创新动力不足的一个重要原因,同时,中航集团强调科研是主要,直接影响科研成果的市场性技术转化,导致与河北省航天战略新兴产业发展中的资源浪费和技术搁置情况,这也是河北省以及廊坊市航天战略新兴产业发展过程中的一个关键性抑制性问题。

促进航天战略性新兴产业发展的对策和建议

河北省航天产业发展是一项多技术、多企业相互融合,协同发展的高新技术产业模式,在河北省产业结构调整和新兴产业配置中,具有特殊的重要作用和意义。

地处京津两大城市之间的廊坊市其地理位置优越,并且具有较好的航天产业发展基础和条件,已建成的固安航天科技城正在成为对接北京、借势发展的契合点,预计在未来几年,固安航天科技城将形成航天技术研发、应用、服务一条龙的完整产业链,抢占战略性新兴产业发展的制高点。此外,廊坊市还拥有较好的科学研究平台,“河北省航天产业发展软科学研究基地”和“河北省航天遥感信息处理与应用协同创新中心”均设在廊坊市北华航天工业学院,这将为我省航天产业发展提供高质量的研究成果。在我国“十二五”规划的指导推动下,廊坊市航天产业必然会成为河北省社会经济发展的新的增长点。因此,在促进河北省及廊坊市航天战略新兴产业发展过程中,可以以廊坊市航天产业发展为着眼点,集中一切优势资源,制定符合区域经济发展可行性政策引导和支持,完善航天产业链条发展支持性渠道,运用多维度协同共进机制和手段,加大培养和促进航天战略性新兴产业发展。具体建议及对策如下:

促进廊坊航天产业集群模式和产业链条协同创新。航天产业自身特点是一个大型复杂、多技术、多产业组合,要实现国家航天战略创新导向目标,不断创造和提升航天战略新兴产业发展增长点,就要更加关注和强调航天产业集群模式合理化构建和产业链条中各个相互企业之间协同创新能力。廊坊市航天战略性新兴产业可持续发展,需要产业系统良好外界政策性环境和产业链条中各个企业创新,两者直接相互协调,直接影响航天产业发展实质性效率,也制约着航天产业价值链条各企业均衡性发展。因此,河北省及廊坊市航天新兴产业发展,就要不断完善和优化航天产业各企业外部发展环境,即给予政策性的引导和税收支持,构建出符合产业发展航天产业链条各个企业协同创新和共生平台,加大对于产业关键性核心共性产业技术研发突破,作为其他产业发展的技术导向和配套支持,从而更好服务于河北省传统产业结构转型和新兴战略产业发展。

实现廊坊特色航天产业核心技术创新。河北省航天战略新兴产业发展要充分和依靠自身,地理、科研和政策性优势,强调和突出以廊坊市为产业中心,支持和培养企业核心技术发展。核心技术企业发展是航天产业链条中心脏组成部门,直接代表着航天产业专业化和高信息技术性,这也直接需要政府政策性导向和引入社会资本进行长期可持续建设和发展。例如,国际上航天产业的一些核心技术都是由寡头企业垄断,由于利益驱使,其更加注重核心技术保护,使得其他国家难以获取。而我国在掌握航天产业关键技术中,具有较好产业发展优势,核心技术研究就是要依靠企业原创性,要耐得住长期投入和风险,建议河北省构建出航天产业核心技术创新保障平台,增加航天产业核心技术研发抗风险能力,关注国外航天同类技术反向工程求解、结合我国本土技术,进行核心技术再创新。在实现以河北省廊坊市为代表的航天产业核心技术创新的过程中,要始终明确两个支持问题:一是结合国内外航天产业发展新形势,解决关键性技术核心问题,以点盖面,充分把握住航天产业发展必要性和特殊性,建立廊坊市航天战略新兴产业良性发展合理化机制,形成一种产业优势发展稳定环境。二是以中央国企混合制改革为背景,不断整合河北省航天战略新兴产业链条,推进航天产业军用和民用相结合模式,更好地实现航天产业研发性向服务性模式转化,促进河北省及廊坊市区域社会经济航天新兴产业和其他产业的联动协调发展。

结语

航天战略性新兴产业的可持续发展,直接关系到我国社会经济发展和国际地位,航天产业发展的必要性,主要体现在航天产业具有先天的战略导向性和航天产业的技术多样性和链条可扩性,战略导向性是航天产业发展的必要前提,而产业技术多样性和链条可扩性是航天产业推进自身和促进其他产业建设的着眼点,可见构建我国大战略背景下的航天产业航母,促进河北省航天战略新兴产业发展具有现实客观需求。河北省在产业结构调整和培育新兴战略产业上,具有更加突出的京津翼黄金三角区地域优势、更加完备的产业配套服务保障体系和航天战略新兴产业发展的政策性扶持导向优势。

近几年,河北省航天战略性产业发展取得一定成绩的同时,也暴露出一些明显不足和问题,主要是航天战略新兴产业集群模式偏低和缺失高新核心支持性技术,而产业集群模式是航天战略新兴产业价值链条协同发展的保障性措施,高新核心技术支持是航天战略性新兴产业发展基础,也是推进河北省其他产业模式创新发展推动力。对于当前所存在的问题,文中建设性提出促进航天战略性新兴产业发展的对策和建议,主要包括,航天产业集群模式和产业链条的协同创新,及河北省具有特色航天产业核心技术创新。河北省航天战略产业发展需要来自各方面的多维度创新,只有创新才能走出一条符合我国实际情况的航天产业发展之路。我国航天战略新兴产业发展,是一项理论和实践反复结合的工作,需要更多机构和学者,进行系统性和关键问题研究,希望笔者文章关于河北省廊坊市航天战略性新兴产业发展问题探究,能起到抛砖引玉之作用,更加有利于航天战略新兴产业可持续发展的进一步探讨和研究。

(作者单位:北华航天工业学院;本文系2013年度北华航天工业学院科研基金项目“加速廊坊战略性新兴高端产业发展,助推绿色崛起”阶段性成果并受“河北省航天产业发展软科学研究基地”资助,项目编号:KY―2013―24)

【注释】

①傅培瑜:《我国战略性新兴产业发展的研究》,东北财经大学硕士学位论文,2010年,第6~9页。

②张春玲:“加快培育我国战略性新兴产业的对策研究“,《生态经济》,2013年第3期,第30页。

③王新新:“战略性新兴产业的培育与发展策略研究“,《生产力研究》,2011年第8期,第155~157页。

第6篇

 

这个国庆节里,酒泉卫星发射中心为120对航天新人举行集体婚礼。在载人航天发射塔架下,新人们挥动国旗,唱响《歌唱祖国》,请祖国见证幸福。

 

“欣闻航天新人喜结良缘,我们在中国空间站送上来自太空最诚挚的祝福,祝大家新婚快乐、百年好合、永结同心。”婚礼现场播放了神舟十二号航天员乘组聂海胜、刘伯明、汤洪波此前在太空录制的祝福视频,这份特殊礼物让新人们无限感动。

 

据悉,酒泉卫星发射中心已连续10年为950多对航天新人举办集体婚礼。前不久,该中心圆满完成了神舟十二号载人飞船搜索回收任务,即将迎来神舟十三号飞船发射任务的大会战、大决战。

 

航空航天基本知识

 

我们知道,人类的家园是地球,而地球的外面覆盖着一层大气,如果没有水和大气以及适宜的温度和环境,生物是很难生存的。

 

通常,在人们的眼中,“天”很高,要想冲出厚厚的大气层,进入太空非常非常困难。其实,与地球相比,大气层是很稀薄的。

 

人们知道,地球的直径大约为12700千米,而大气层的厚度只有100 -800千米。如果将地球比作一个苹果的话,那么,我们可以把大气层看成是苹果的皮,可这层“苹果皮”本身却是变化多端的。

 

比如最贴近地球表面的一层,叫作对流层,其高度从海平面起一直到大约11000米止,其顶界是随纬度、季节等情况而变化的,在赤道地区为17000米,在中纬度地区(如北京、天津地区)为11000米,在地球两极地区则为7000-8000米。

 

对流层的主要特点是,空气温度随着高度的增加而降低,因而又称为变温层,平均而言高度每上升1000米,气温约下降6.5℃。与此同时,气压也随高度的增加而降低。由于地球引力的作用,在 5500米的高度范围内,包含了大气总量的一半,而整个对流层,大约占了全部大气质量的四分之三。

 

由于几乎所有的水蒸气都集中在这一层大气内,再加上大量的微粒,因而,这里也是风云变幻最为剧烈的一层。从大约11000米的高度起,直到30500米左右,其大气温度基本不变,平均保持在-56.5℃上下,因此被称为同温层(实际情况是:在25000米以下,气温随高度的升高而上升。在同温层顶,气温约升至-43至-33℃)。同温层的气温之所以具有这样的特点,是因为该层大气离地球表面较远,受地面温度的影响较小,并且其顶部存在着臭氧,能够直接吸收太阳的辐射热等。

 

同温层所包含的空气质量大约占整个大气的四分之一弱。在这一层大气内,没有上下对流,只有水平方向的风,所以又叫作平流层。另外,该层大气几乎不存在水蒸气,基本上没有云、雾、雨、雹等气象变化的现象,这对飞行器的平稳飞行是非常有利的。不过,由于空气密度很小,飞机在这一高度层上又不适宜机动飞行。

 

人类的航空活动差不多都集中在对流层和同温层内。为了保证飞机和发动机的工作效率,飞机飞行的高度一般不超过30千米的界限。

 

从30千米到80-100千米的高度范围,被称为中间层。这一层空气的特点是:以 45千米为界,温度先升后降。由于大量的臭氧存在,其气温先由同温层顶的-33℃提高到17至40℃左右;从45千米起,随着高度的升高,气温又开始下降,一直降低到-65.5℃至-113℃。

 

中间层的空气已经很稀薄了,其空气质量约只占整个大气层的1/3000。在80千米高度上,空气的密度只有地面的五万分之一;而在100千米高度上,空气的密度仅为地面的一千万分之八。由于空气非常稀薄,并且气体开始呈现电离现象,因此,人们一般把飞行高度达到80—100千米的飞行器,看成是不依靠大气飞行的航天器。

 

1967年10月,美国试飞员约瑟夫·沃尔克驾驶X-15A火箭飞机飞出了 7297千米/小时的惊人速度,创造了有人驾驶飞机速度的世界纪录。而且,他还曾多次飞到了80千米以上的高空,成为美国第一个“驾驶飞机的宇航员”。按照美国航空航天局规定:飞行高度超过80千米的飞行员即可称为宇航员.

 

在中间层之上直至800千米高空的范围,称作电离层。其特点是:含有大量的带正电或负电的离子,空气具有导电性。并且,其温度随高度的增大而迅速升高,在200千米高度时,气温可达400℃。所以,这里又被人们叫作“暖层”。

 

在电离层顶端之外,便是大气的最外层——“散逸层”了。由于地球引力的减弱,气体分子和等离子体与地球已若即若离。

第7篇

一、高分子材料与工程

高分子材料与工程专业培养具备高分子材料与工程等方面的知识,能在高分子材料的合成、改性、分析测试和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。

本专业学生主要学习高聚物化学与物理的基本理论和高分子材料的组成、结构与性能知识及高分子成型加工技术知识。

学习课程

聚合物加工原理、聚合物成型工艺、聚合物流变学、高分子物理、高分子化学、物理化学、有机化学

毕业生具备的专业知识与能力

掌握高分子材料的合成、改性的方法;

掌握高分子材料的组成、结构和性能关系;

掌握聚合物加工流变学、成型加工工艺和成型模具设计的基本理论和基本技能;

具有对高分子材料进行改性及加工工艺研究、设计和分析测试,并开发新型高分子材料及产品的初步能力;

具有应用计算机的能力;

具有对高分子材料改性及加工过程进行技术经济分析和管理的初步能力。

就业方向

该专业毕业生可到石油化工、电子电器、建材、汽车、包装、航空航天、军工、轻纺及医药等系统的科研(设计)院所、企业从事塑料、橡胶、化纤、涂料、粘合剂、复合材料的合成、加工、应用、生产技术管理和市场开发等工作,以及为高新技术领域研究开发高性能材料、功能材料、生物医用材料、光电材料、精细高分子材料和其它特种高分子材料,也可到高等院校从事教学、科研工作。

高分子材料与工程专业的20所大学

二、复合材料与工程专业

复合材料与工程专业培养具有良好的思想素质,强烈的社会责任感,健康的体魄和健全的心理素质、德、智、体全面发展,掌握新型复合材料生产原理和生产工艺、能胜任无机材料、高分子材料、新型复合材料等生产企业基层管理工作和实际岗位操作,具有较高综合素质,“用得上、留得住”的应用型人才。

专业特色

该专业既重视学生数学、力学和材料科学的基础理论培养,又重视学生的工程能力训练,并对有关专业课实行教学内容的国际接轨。课程设置注重基础理论与工程的结合、自然科学知识教育与文化素质教育结合,理论与实践相结合。学校会设有工程设计制图课程设计、工程训练、下厂实习、毕业实习、毕业设计和毕业论文等实践环节。实验有高分子物理实验、高分子化学实验、复合材料制备与加工实验、材料性能测试实验等 。

就业方向

本专业学生毕业后可毕业生可以就业于与复合材料相关的汽车、建筑、电机、电子、航空航天、国防军工、信息通讯、轻工、化工等有关企业和公司,担任工程研究 人员、工程师和营销管理人员,从事设计、研发、分析、生产、测试、评价、营销、管理等工作;也可以在高等院校、研究设计院所从事科研教学工作。

开设院校

哈尔滨工业大学、西北工业大学、华东理工大学、南京工业大学、青岛大学、青岛科技大学、长江大学、中北大学、河北工程大学等

第8篇

关键词:CDIO模式;航天专业;课程体系;大学生创新实践项目

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)21-0051-02

一、引言

目前诸多高校针对空间工程、飞行器系统与工程、导弹工程等多种航天专业设置的本科生课程,可划分为力学、航空宇航、电子、信息与控制等多个系列课程。同时,航空航天等技术领域内很多问题,其研究对象可能既是航天问题又是力学问题,具有与多学科多专业广泛交叉、相互渗透,与实际工程结合紧密的特点。基于上述原因,为了提高航天专业本科人才的培养质量,如何在有限的课时计划内、在有限的课程数目内有效设计航天专业固体力学系列课程,是一个值得探讨的问题。

随着高校内部增大学生的实践比重、面向工程能力培养的呼声日渐高涨,笔者所在的教学组借鉴了起源于美国麻省理工MIT的国际工程教育模式――CDIO模式,在航天专业的固体力学系列课程的设计与应用中进行了相应的教学探索与教学实践,期望通过该模式在教学实践中的正确引入与有效发展,更新教师教学理念与实践手段,增加课程实践比重,充分调动学生学习效率与积极性,为航天或力学专业工程师的培养提供参考。

二、CDIO模式与航天专业力学系列课程的结合途径

国际工程教育模式CDIO,是以产品、过程和系统全生命周期的开发与运用为背景,包含了构思、设计、实施和运行(Conception,Design,Implementation,Operation,简称CDIO)4个教育和实践训练环节。它与航天专业力学系列课程的有机结合,可以考虑如下几个途径:

(一)CDIO模式的起源

CDIO是一种基于传授航天领域技术知识与培养预备工程师能力而起源产生的工程教育模式,其创始人是美国麻省理工MIT航空航天系Edward Crawley教授,其发展初期在2004年左右。可见,将CDIO模式与航天专业力学系列课程的结合,则具有一定的合理性和先天优势,是一种积极有益的尝试。

(二)基于CDIO教育理念形成课程观

CDIO模式是基于“做中学”的教育理念,是一种将实践过程与理论教育相结合的教育理念,结合该模式在航天专业力学系列课程的设计中可形成两种课程观:首先,是一种凸显了“社会需求”的课程观,即根据工程师的社会角色与责任,培养工科毕业生具备较好的工程能力与深厚的技术基础知识,在课程体系与课程内容上,并不是按照严密的学科知识体系来组织课程,而是强调基于社会现实需求来选择和编排;其次,亦是一种强调了“学生为主体”的课程观,即学生的学习效果侧重于从学生的实践感知和实践经验出发来构件知识和能力,基于“做中学”强化学生探究兴趣和实践能力,从而体现了学与做的结合、知与行的统一。

(三)明确实践对象与执行方案

CDIO工程教育模式主要特点是深化技术知识基础和实际职业能力的二元学习经验模式,且该模式的基本原则是反复强化实践,因此CDIO模式的实践必须包括两个或者更多的设计与实施环节。具体来说,航天专业固体力学系列课程体系的实践对象包括如下三类环节:第一个是突出导论性基础课程,即引导学生入门工程实践,领略工程技术的魅力;第二个是初级的实践环节,即针对核心基础课程《工程力学》开展课堂一线教学改革研究;第三个是高级的实践环节,即针对来源于科研任务的设计综合项目进行教学改革实践。

三、CDIO模式下航天专业固体力学系列课程的具体设计与教学实践

教学理念的转变最终体现为课程设置、教学内容与实践对象的改革。在我校2012本科人才培养方案中,我院结合CDIO模式对航天专业固体力学系列导论课程进行了具体设计与教学实践的工作,主要包括如下三个方面:

(一)导论性课程的设置

导论性课程是一个早期的基础工科课程,我院针对航天专业的大一新生设置了导论课程《空天工程导论》,要求选课学生具有一定的数理基础即可。该课程内容主要介绍飞行简史、工程学简介、航空器飞行原理、结构与动力系统等基本概念、基本知识,通过它为入学新生搭建了航空航天器设计、构造、应用所需的知识框架。同时,课程还提供了一个初级的设计―实现的实践,让学员参与水火箭或LTA飞行器的设计与制作。

设置导论课程的主要目的快速引导学生了解航天器的基本构造及工作原理,让学生参与入门的工程实践,从而激发学生兴趣和后期加强学习的主动性。

目前,我院30学时的《空天工程导论》课程已经成功申请为我校的精品视频课程,主讲教师的授课教案和讲义脚本已经完成,且授课视频录制已完成一半以上。

(二)《工程力学》课程的教学改革

首先,调研了近年来国内高校在《工程力学》课程中的改革研究:例如,天津科技大学的李秋h在建构主义教学基础上建立“刨设问题情境”教学法[1],山东英才学院的来小丽实施项目驱动教学法[2],哈尔滨学院的张田梅探索了研究性教学法在工程力学课程教学中的实践。上述内容从不同方法与形式来提高学生处理分析和解决工程实际问题的能力,均可作为低年级核心力学课程改革的组成部分。

其次,调整了我院的《工程力学》教学内容:在静力学部分中重点介绍构件的受力分析、简化与平衡规律;在材料力学部分中以杆件的轴向拉压、扭转和弯曲三个基本变形为研究目标,以“内力分析―内力计算―应力应变计算”为逻辑分析主线,结合强度理论、稳定性分析或能量法来优化组织教学内容,并删除了图乘法和摩尔圆等内容。

然后,改革了我院的《工程力学》教学方法与成绩评定:理论讲授采用了习题讲解、启发式、研讨式、案例式等多元化教学方法;实验操作侧重学生动手能力培养,要求学生按照2~3人合作或单人独立完成课程内13项实验内容,同时实验室采取了鼓励课外开放式实验的机制;成绩评定是将考核点分布于教学全过程中,即由平时成绩、课堂讨论、实验操作、实验报告、科技小论文、期末成绩等考核点综合评定最终成绩。

最后,给出《工程力学》课程近年内取得的成绩:2015年《工程力学》评为校优课程;2015年委托科学出版社再版了《工程力学》教材;2015年成功申报了36学时的MOOC课程《工程力学》,目前主讲人和授课内容已确定,2015年完成了省精品课程《工程力学》复核工作,并向湖南省高校数字教学资源中心提交了课程教学视频、课件、教学大纲、电子教案、教学案例、试题习题、文献资料、教学成果、软件工具等电子材料整理;2015年该课程主讲老师分别获得了学校教学质量新星奖和学校本科教学优秀个人一等奖;2015年实验室新增加了XL3418K互动式普及型材料力学实验装置,完成了12个虚拟实验的材料整理。

(三)大学生创新实践项目与本科毕业设计综合项目的优化

CDIO模式将顶峰级实践体验作为本科教育的顶点。该实践环节往往侧重于学生对以前所学知识的综合运用以及创新能力的培养,要求学生在大三或大四年级中申请了综合项目实践,以团队或个人形式承担来源于科研项目的、更为复杂的实际任务。

我院高年级本科生顶峰级实践环节大多数包括大学生创新实践项目与本科毕业设计综合项目两类。例如,为了优化本科毕业设计模式,笔者所在课题团队采取“双团队设计项目”的集成教学方法进行了如下实践工作:首先,成立了以航天方面的学科带头人为核心,包括结构动力学与设计、振动控制、姿态控制、电子电路共5人组成的教师团队;将总体设计、主控分系统、姿控分系统、动力学建模与分析、帆板振动分系统、星体结构设计等六个子项目形成课题任务书,让学生自主选择,并形成了自然分工、相互合作的学生团队;之后,学生会在教师的指导下,按照任务书计划在规定的时间段内(两个或多个学期)逐步完成开题审查、中期检查、方案设计、理论推导与计算、设计制造、实验验证、撰写报告、项目验收或毕业答辩等步骤。

在课题团队的努力下,近年来取得了如下可喜的成绩:2015年课题团队成员指导的省级大学生创新实践项目《座椅弹性缓冲器等效刚度分析与实验研究》顺利验收,并且验收结论为优秀;课题团队指导了2015年国家级大学生创新实践项目《非对称复合材料拉伸-扭转耦合结构设计》,目前为在研阶段;继续完善了学校级的基础力学虚拟仿真实验教学分中心、应用力学虚拟仿真实验教学分中心、力学与航天工程虚拟仿真实验教学中心的工作,并且在省实践教学示范中心的基础上,实验室2016年成功申请为国家级力学与航天工程虚拟仿真实验教学中心。

四、结束语

对航天专业固体力学系列课程进行设计与应用的教学实践表明,由于航天航空领域内很多问题是多学科交叉融合、与实际工程联系紧密的问题,应用CDIO教育理念中深化技术知识基础和实际职业能力的二元学习经验模式,对于学生掌握扎实的专业知识和技能,感受鲜活的科学研究过程,激发创新意识起到了良好的促进作用。

参考文献:

第9篇

【关键词】 高端装备制造业 产业集聚 江苏省

装备制造业可以分为传统装备制造业和高端装备制造业。其中高端装备制造业是国民经济的支柱产业和先导产业,在国务院2010年10月的《国务院关于加快培育和发展战略性新兴产业的决定》中被列为七大战略新兴产业之一。在《江苏省国民经济和社会发展第十二个五年规划纲要》、《江苏省“十二五”培育和发展战略性新兴产业规划》和《江苏省“十二五”工业转型升级纲要》中都提出将高端装备制造业作为重点培育的战略性新兴产业之一。重点发展电控装备、高档数控机床、航空装备、轨道交通和海洋工程装备、大吨位工程机械等,加快提高装备的智能化、自动化水平,向大型化、成套化方向发展。然而,江苏省高端装备制造业发展中存在着一些问题,因此,笔者通过对其发展现状及发展中存在的问题进行分析,并提出相应的政策措施,以期促进江苏省高端装备制造业的更好发展。

一、江苏省高端装备制造业发展状况

1、基于分析性指标的分析

(1)工业生产总值

江苏高端装备制造业主要涉及航空航天装备、轨道交通装备、智能制造装备、高端专用装备和关键零部件等领域,现有企业近3000家,销售收入过万亿元,整体发展水平居全国前列,是我国最大的高端装备制造业的生产和出口基地。

从图1可以看出,江苏以及全国的高端装备制造业工业总产值一直呈现逐年上升的态势,除2013年外,江苏占全国的比重也一直在不断增加。

(2)劳动生产率

全员劳动生产率反映的是劳动者的生产效率,在计量分析中,本文采用高端装备制造业的从业人员一年内生产出来的产品总值,即用高端装备制造业工业总产值与高端装备制造业年均从业人数之比来计算。

从图2可以看出,2004―2013年江苏高端装备制造业规模以上工业企业全员劳动生产率呈现逐年上升的态势。

(3)产业积聚

区位熵由哈盖特(P.haggett)首先提出并用于区位分析中,是产业的效率与效益分析的定量工具,又称专门化率,可以用来衡量某一区域要素的空间分布情况,用来反映某一产业部门的专业化程度,专业化程度实际上也代表了一个地区的产业集聚程度。区位熵指数是从行业角度来分析集聚状况。本报告用区位熵的方法来计算江苏省装备制造业产业集聚状况。区位熵的具体计算公式如下:

其中,βij表示j区域i行业对于高层次区域的区位熵指数,qij表示j区域i行业的产值,qj表示j区域工业总产值,qi表示i行业高层次区域的产值,q表示高层次工业总产值。如果βij>1,说明j区域i行业的集聚程度大于高层次区域行业的集聚程度,βij越大,表明产业集聚程度越高。

根据统计资料,计算所得的2004―2013年江苏高端装备制造业产业集聚指数如表1所示。从江苏高端装备制造业分行业来看,产业集聚指数大小依次为船舶及海洋工程装备、智能装备、轨道交通设备、航空航天装备。2004―2013年,大部分产业地方专业化指数都有下降趋势,说明产业集聚在减弱。

2、发展现状分析

(1)产品的市场竞争力进一步增强

高档全地面起重机、高空作业车等国内市场占有率排位第一;城轨和动车牵引制动系统、车辆和门系统、通信与信号控制系统、售检票系统、内装饰等轨道交通装备,交流电动机、变压器、电力电缆、光缆等新型电力设备的产量居全国首位;固体废弃物处理设备在全国的市场占有率为44.4%,数控金属成形机床产量占全国的41%,仪器仪表总产值占全国的40%,金属切削工具产量占全国的75%。

(2)企业技术创新能力进一步提升

近年来,江苏高端装备制造产业建立国家级企业技术中心26家,省级企业技术中心349家,分别占全省国家级和省级企业技术中心总数的38.8%和41.8%,位居全省各新兴产业首位。在新型航空材料制造技术、高速轨道交通车辆牵引制动技术、高速大型精密数控机床制造技术、超大型施工机械设计制造技术、智能化网络化机器人生产线集成技术等关键核心技术领域,率先实现研发突破。

(3)各产业初步形成相应的产业集聚区

江苏已形成以徐工集团为龙头的工程机械产业链,以南车浦镇车辆、戚墅堰机车为龙头的轨道交通装备产业链,以华恒焊接机器人、天乾科技等为龙头的智能制造装备产业链等;已形成以南京、无锡、苏州、镇江为中心的航空装备产业集聚区,以南京、常州为中心的轨道交通装备产业集聚区,以南京、常州、苏州、扬州为中心的智能制造装备产业集聚区,以徐州、常州、无锡、南京、扬州、苏州等为中心的专用设备产业集聚区。

二、江苏省高端装备制造业发展中存在的问题

一直以来,江苏省的高端装备制造业都走在全国前列。未来,在轨道交通、海洋工程、航空航天、智能装备等高端装备制造业的引领下,江苏省的高端装备制造业将迎来新一轮黄金发展期。但在发展的过程中,也出现了一些问题。

1、产业的集聚化趋势中出现新的重复建设

在江苏省高端装备制造业逐步向园区集中的过程中,形成了一批高端装备制造业产业集聚区,促进了产业的发展,但在部分地区的园区建设和高端装备制造业的发展中,出现了低层次的重复建设。

2、重大装备的成套能力比较薄弱

江苏省重型机械工业的经济总量虽然名列全国首位,但重大装备的成套能力仍然较弱,在涉及国民经济的重大关键、高端装备方面,如大型电站、石油机械、矿山设备、核电装备、航空航天等领域,江苏省仍然是处于配套地位。

3、基础零部件和关键通用机械比较薄弱,依赖进口

江苏省很多基础零部件和关键通用机械的经济总量,在全国都处于领先地位,但很多重大装备的关键基础零部件和通用机械都要依赖进口,如机床行业的产业规模全国领先,但机床的数控系统几乎全部要依赖进口和外省。我国高端机床市场95%以上被国外品牌占据,关键技术、核心技术高度依赖国外。目前,江苏一些机床企业主要借用美国、德国、荷兰、瑞士等国家的技术开展整合组装,产业创新性较低,竞争力较弱,这种局面最终会大幅提高高端装备制造成本,从根本上限制了江苏高端装备制造产业综合竞争力的有效提升。

三、促进江苏省高端装备制造业发展的政策措施

1、加强宏观调控,加大政策扶持力度

在促进高端装备制造业发展的同时,要加强行业的宏观调控力度,尽可能避免新的重复建设。在政策扶持方面,既要用足国家关于进口设备关税减免、国产设备抵扣税及财政扶持等投资政策,又要充分发挥国家、省、市各级政府在扶优扶强大中小企业和科技创新方面的政策优势,调动企业积极性,充分激发企业的投资热情。大力实施新产品开发扶持政策,推动企业自主创新,加大新产品开发及产业化的投资力度。鼓励企业自主创新、保护自主知识产权、积极参与国际竞争。

2、优化特色产业集群,培育骨干龙头企业

促进产业集群发展,优化现有的产业集群。现有基本形成的产业集群主要有:南京、苏州、镇江等重点航空产业集群;常州、南京、苏州、扬州、泰州、南通等重点智能制造装备产业集群;南京、常州等重点轨道交通产业集群;徐州工程机械、常州新型农用机械、泰州医用诊断医疗仪器仪表、金湖井口石油机械、建湖采油石油机械、宜兴电力电缆等一批特色产业集群;南京齿轮、无锡内燃机配件、常州刀具、泰州车用精锻齿轮、昆山模具等特色产业集群。鼓励国内外企业进入产业集群园区内新办企业或新上项目,在土地或厂房使用方面给予优惠,企业所得税方面也给予一定减免,促进产业集群的发展。

大力培育骨干龙头企业。鼓励龙头企业做强、做大主业。龙头企业集中精力抓好产品升级换代的研发设计、产品营销和品牌推广以及关键零部件生产和整机组装,从而提高专业化生产、社会化协作的水平。鼓励龙头企业延伸产业链,向上游的科技研发、工业设计和下游的营销网络、售后服务、为客户提供安装调试等链节延伸;由制造业向生产业延伸,以自身的主导产业为基础,发展总集成、总承包、专业维修、检维修等生产业。鼓励龙头企业组建战略联盟,龙头企业应选择上下游企业、研发机构中实力较强的合作伙伴组建战略联盟,实现优势互补,提高产业整体竞争力。

3、加强对高端装备制造业的配套服务

大力发展与主机技术水平相协调的专业化、规模化配套企业,鼓励配套企业向“专、精、特”方向发展,提升基础元器件、核心零部件及关键系统的配套能力,满足高端装备制造业发展需求。打造一批具有优势的专业化、特色化的生产和服务企业。建设产品全生命周期的服务体系和服务网络,发展具有高端装备特色的现代制造服务业,形成制造与服务相互促进的机制,形成以具有总承包资质、国际竞争力的大企业集团为核心,若干具有完整配套能力的中小企业为辅助的高端装备制造业配套产业集群。

4、加强高端装备制造业人才队伍建设

牢固树立“人才是第一资源”的理念,加强高端装备制造业企业管理、研发、技术、行销、品管、专利等相关人才的引进、培养和使用。建立人才引进基金、创业扶持基金,对人才给予政府专项津贴。高端技术人才对高端装备制造业的发展尤为重要,要加强技术工人的技能培育和素质提升,筹集技术工人培养专项资金,对相关企业的技术工人培训提供资金补贴。依托国内外高校、大型企业集团,加强高端装备制造业技术工人和经营管理人才的培养。完善人才激励机制,推动企业通过持股、技术入股、提高薪酬等方式,吸引优秀企业家、经营管理人才和技术骨干。

(基金项目:江苏高校哲学社会科学研究项目(项目编号:2014SJD227)。)

【参考文献】

第10篇

【关键词】高职;物联网;课程建设

0 引言

目前,it业界和学术界一致认为,物联网技术将带来世界信息产业发展的第三次浪潮,国家“十二五”规划也已明确提出将物联网产业作为新兴战略产业。无论是在企业界、工程界还是在学术界,物联网研究和应用都受到了前所未有的重视,面对如此良好的发展契机,作为全国的首批示范性高职,我校对该领域的发展也非常重视,并已开始筹建物联网专业。物联网专业相关的的课程建设,是专业建设的一个重要基础,是培养合格的物联网专业人才的一个必备条件,因此物联网课程的建设就成了一个极其迫切的任务和亟待完成工作。本文以我校物联网专业的核心课程《物联网数据处理技术》为落脚点,探索适用于高职的物联网课程建设方案,对于其他同类的课程的建设也有一定的借鉴意义。

1 课程建设的知识点涵盖与难点

1.1 课程建设涵盖的技术领域

物联网是通过新一代的it技术(如rfid射频识别技术、zigbee技术、云计算技术等)将传感器装备或者嵌入到全球各行各业的物体中,通过相互之间的链接形成“物联网”,然后通过云计算技术和超级计算机对收集到的海量数据进行处理和分析,达到对物体智能化管理和控制的目的。

物联网中的个体通过感应器来感知信息,然后通过中间传输网来传送信息,最后在数据处理中心进行智能处理和控制。随着物联网技术的广泛应用,我们将面对大量异构的、混杂的、不完整的物联网数据。在物联网的万千终端收集到这些数据后,如何对它们进行处理、分析和使用成为物联网应用的关键[1]。

因此,物联网信息数据处理涉及到物联网通信数据结构、zigbee协议算法设计和实现、ipv6技术、中间件技术、后台数据库技术、数据挖掘技术和云计算与海计算技术。而就这些的技术相关的课程有《计算机网络及ipv6技术》、《数据结构》、《数据库》、《算法设计》和《面向对象的编程技术》。其中我系开设的《物联网通信技术》课程就可以解决ipv6技术的问题,在该课教学中不再重复。

1.2 课程建设的难点

考虑到该门课程涉及的技术领域,我们将讲授物联网通信数据结构、zigbee协议算法原理与实现、z-stack原理和实验部分,以及部分物联网中间件技术和云计算技术的相关内容。与四年制普通本科院校相比,要涉及这些内容所开设的课程有《数据结构和算法》、《面向对象的编程技术》、《中间件技术》、《传感器信息融合云与计算技术》,由此可见需要开设的科目多而且内容理论性很高。特别是《中间件技术》、《传感器信息融合与云计算技术》这两门课,均是大量的理论推导计算,通常在本科高年级或者研究生阶段才讲授。由于我们的同学在校学习只有两年,该课程将在大二第二学期开设,很多同学的知识也仅限于模电数电c语言,如果大量的讲授抽象的中间件技术、传感器信息融合与云计算技术,很多同学会很难听懂。同时高职学生的培养特点是加强他们应用和实践的能力,所以大量讲解理论的效果会是事倍功半[2-3]。

2 课程建设的具体实施过程

结合我系对物联网专业学生的培养定位和学时分配,在充分考虑考虑课程技术内容和重难点的基础上,我们课程的重点放在数据结构和算法编程实践上,让学生在实践中学习,在编程中理解一些基本的数据处理方法和物联网数据结构,做到实践中有理论,理论和实践相结合。在pc端的编程,我们采用dev++的编译环境,侧重于常用数据结构的编程与理解,这部分内容是课程学习的基础,占到总课时的35%。在嵌入式和物联网的技术方面,我们的技术落脚点选择在了z-stack上。借助于z-stack物联网实验平台,学生可以学习到物联网技术领域中常用的数据处理技术,同时有了数据结构的基础之后,就可以对z-stack协议栈中的算法实现和数据结构有更深的理解。该部分的内容占到总课时的35%。对于云计算和中间件技术,我们在课程中主要是以概念介绍和学生调研、小组汇报的方式进行学习,该部分的内容占到总课时的10%。最后我们针对课程开发了一个物联网的实训项目,主要以智能家居为切入点,技术内

容涉及到上位机使用、数据存储、物联网节点和协调器的调试和网关的设置,该课程的内容占到总课时的20%。该项目对前面的内容进行总结和具体实现,突出学生在做中学,弱化纯原理性的学习,突出实践性和学生对数据处理内容体验。

3 效果与结语

考虑到高职学生在校学习该课程在国内目前缺少相关的教材,我们在整合和相关技术内容后,完成该课程素材、ppt以及程序实现部分。与此同时,我们引导学生积极查阅图文资料,并借助于互联网络来积累项目素材和问题的解决方案。在教材编写的过程中,我们积极利用现有的实验平台和多媒体技术,同时在课程建设过程中让学生也参与进来,多听取他们的学习感受,在第一轮教学实践中取得了良好的效果。同时我们在课余时间积极鼓励学生多学习、多思考,并带领他们到物联网企业了解实践,把所学的技术直接应用到实际的开发中去,不断加强专业本领,为将来就业打下坚实基础。

【参考文献】

[1]罗剑.高职院校《无线传感网应用与实践》课程建设的探索[j].科技信息,2012(34).

[2]周立功,王祖麟,陈计明,等.arm嵌入式系统基础教程[m].北京:北京航空航天大学出版社,2008.

第11篇

人们一直对神奇的科幻、超前的技术情有独钟,这种痴迷是人类科技进步的原动力之一。电影作为艺术的一种,题材往往源于生活而高于生活。导演和编剧们的灵感并非空穴来风。这些道具弥漫在电影的各个角落,当你在回味电影情节时,可否意识到他们与大学专业的关系呢?

三百六十行,行行出状元。每一行的状元就是这个行业的榜样。在中国悠久的历史中,无数的榜样被大家称为祖师爷,被各行尊崇。正如大家生活中常知的木匠拜鲁班,茶行拜陆羽等等。他们是这个行业的榜样,奋斗的精神寄托。

测控技术与仪器(下简称测控)属于新兴的理工科专业,在中国沉迷于八股取士的数百年间,理工的中心在欧美确立,牛顿、法拉利等人也顺理成章地成为科学历史上的里程碑。大多数工科出身的朋友,掌门怕是要向西而拜了。而我们测控却不必如此,因为测控的祖师爷在中国!记得在大二的时候,我们曾问过老师两个问题,其中一个就是测控专业是做什么的。当时老师是这么回答我们的:“简单来说,给学测控的人一张桌子,你敲一下,光听声响和看敲的位置,就要知道这个桌子哪里有伤。”

笑说测控祖师爷

听到这回答,看过电影《狄仁杰之通天帝国》的同学,都应该知道这测控专业的祖师爷是谁了吧。电影中的亢龙锏——这个世界上第一个测控仪器,与狄仁杰一起构成了世界上第一个测控反馈系统。

亢龙锏是一件非常神奇的兵器,在原著中的形容是这样的:“狄仁杰的家传兵器亢龙锏有一种特殊的威力,就是可以测出与之相撞的物体的弱点,而这个弱点就是密度不集中的空心之处。然后一击必出裂痕,再击必会断碎。” 在电影里面,亢龙锏被演绎成了一件转起来嗡嗡作响,一打石柱碎、一打铁链断、一打剑分两半的神奇兵器。这时不禁有人想问,如此细小的一根铁棒,真能够探出物体弱点?

那我们再来看看测控专业的官方概述:测控技术与仪器是将自动化系统上的信号加以采集、整理、处理,而后进行显示或者发出控制信号的过程。

从测控的角度,结合测控定义,亢龙锏的原理就非常好理解了。简单来说,在实际测控中,一组信息进去,一组反馈信息出来,然后我们加以判断。亢龙锏转动后的高频响声传入石柱或兵器,引起目标物体的共鸣,狄仁杰通过探测和反听,了解到物体不同部位的质量状况,轻易地找到了所探测物体的弱点,于是将其“一击必断”。这整个就是一个信号输出、反馈、处理的测控自动化体系。我们测控的返璞归真就是敲桌子听响声,然后做处理,而狄仁杰的神技竟然可以达到在决斗中的间不容发之际,击断上官大人的剑。这恐怕除了高度精密的自反馈系统,无法再有更好的解释了。

当然说狄仁杰是测控祖师爷就和说蹴鞠是足球先祖一样有娱乐之意。但是却给我们测控人找到了精神寄托。

制造业中的技术流

还记得上面说到我们问了老师两个问题吗?我们的第二个问题是“我们测控专业能干什么?” 老师的答案很经典,他说:“我们专业,只要记住两点,第一,不要把220V的电压接地;第二,不要违反能量守恒定律。其他你想干啥就干啥。”这虽然有些说笑成分,但却是有根据的。因为我们专业是由11个专业(精密仪器、光学技术与光电仪器、检测技术与仪器仪表、电子仪器及测量技术、几何量计量测试、热工计量测试、力学计量测量、光学计量测量、无线电计量测试、检测技术与精密仪器、测控技术与仪器)合并而成,所以我们需要学量关于机械、电路、光学、材料、控制、软件的专业知识。在数学方面,需要学习高等数学、线性代数、工程数学、数理统计等课程;在机械方面,需要学习机械制图、工程力学、精密机械设计等课程;在电子方面,需要学习电路、电子技术、微机接口、编程语言、单片机原理等课程;专业课方面,则要学习测试信号处理技术、误差分析、传感器技术、控制理论、测控系统设计、测控仪器设计、智能仪器和虚拟仪器等课程。

测控技术与仪器专业涉及的面非常广,放大镜、汽车制造流水线、飞机清洗机、微型机器人、武器夜视瞄准系统、导弹防御系统、大型强子对撞机等仪器的设计、制造与开发都离不开测控专业的人才。有的同学看到这里肯定要问了:“那得多少年才能毕业呀?”由于学习的内容多,在四年的学习时间里不可能面面俱到,所以开设该专业的大学都有自己的特色。比如,北京航空航天大学偏重于航空领域,长春理工大学偏重于光学领域,成都理工大学偏重于电子技术及核技术等。所以,当你遇到它时,你可一定要分辨清楚哦!

工程领域的万金油

自从1810年柏林大学开创了“研究与教学相结合”的研究型大学模式以来,大学在教学之外的一个重要任务就是科研了。进入本科高年级或者研究生阶段,就会进入科研的领域。由于测控技术与仪器是一个宽口径的专业,因此研究的内容极为广泛,也容易自成一派。

就拿卫星研究来说吧,国家花巨资把卫星送上天为的是进行科研,所以卫星一般都会携带各种研究宇宙环境的仪器。但是宇宙并不太平,太阳风暴、彗星、陨石、太空垃圾等危险随时威胁着卫星以及各种仪器的安全,于是设计能在宇宙恶劣的环境中运行的仪器就成了一门单独的学问。

第12篇

减排无下限

E-Fan验证机的问世与欧盟近年来大力推动的节能减排战略密不可分。欧盟委员会专门拟定了“飞行路线2050”计划,目标是到2050年,欧盟航空业二氧化碳排放量比2000年下降75%,氮氧化物排放量减少90%,噪音水平下降65%。

为了响应“飞行路线2050”计划中提出的目标,空中客车集团着手研究一些新技术和新产品,全力支持欧盟委员提出的环保目标。近10年来,空中客车集团一直致力于研究电动飞行技术,已经取得了积极进展。EADS公司创新工厂和ACS公司在2010年合作验证了Cri-Cri活塞式轻型飞机的电动改型,欧洲直升机公司在2011年验证了电动机在直升机自转过程中可以提供应急动力。接着,可以真正实现零排放的全电飞机概念陆续浮出水面。2011年6月,EADS公司在柏林航展上首次展示了一种电力驱动共轴对转螺旋桨的客机概念。次年9月,由EADS等4家德国航空航天公司共同组建的包豪斯航空研究机构在柏林航展上首次推出了一种称之为Ce-Liner的缩比模型,采用了16组蓄电池来驱动2台尾部安装的动力装置。

基于这些研究工作积累的经验,空中客车集团从2012年10月开始研制一架完全由电力推动的E-Fan验证机。该机由ACS公司制造,同时得到了赛峰集团、卓达宇航集团和西门子公司的技术支持。

2013年6月,空中客车公司在巴黎航展上首次展出了一架E-Fan全尺寸样机,尽管在众星云集的航展现场并未产生轰动效应,但在业内已经引起了广泛关注。今年3月11日,E-Fan验证机在法国波尔多首次升空,成功地完成了第一次试飞。一个多月后,空中客车公司在4月25日专门举行了“电动飞机日”,正式对外公开了E-Fan验证机,法国工业部部长阿诺德・蒙特布赫等代表见证了这次飞行表演。随后,该机出现在本届柏林航展的现场,让来自世界各地的专业人士和热心观众有机会亲眼目睹世界上第一架全电动飞机的公开表演

中规中矩的设计

从航空工业发展的角度来看,E-Fan验证机是空客车公司在技术领域取得的一项创新成果。在总体设计上,该机采用了流线型机身、下单翼和T形尾翼,基本上是一种标准的通用飞机,具有低阻力、高升力的特点。它的长度为6.67米,翼展为9.5米,总体结构全部采用复合材料制造,空重仅有580千克。在性能方面,该机的巡航速度大约为160千米/小时,最大飞行速度为220千米/小时。

前机身设计为串列双座,座舱内采用了“佳明1000”数字式航空电子设备和无线电系统。中机身两侧分别安装了一个涵道风扇,各由一台30千瓦的电机驱动可变距8叶风扇,产生750牛的推力。涵道风扇能增加静推力,减少噪声,改善了地面的安全性。由于动力装置位于机身的中段,该机在单发飞行的时候也能够实现较好的操控性能。

与小型通用飞机相比,E-Fan验证机的外部构型中规中矩,但机翼内部结构则显著不同。作为一架全电动飞机,它在机翼内携带有120块锂离子聚合物电池,总重量为127千克,可以输出250伏特和100安培的直流电。研制人员吸取了近年来波音787客机在锂电池使用方面的教训,将电池舱设计在机翼中段,远离座舱,具有很好的通风条件,有助于及时驱散电池工作时产生的热量。

该机采用了全新的电能管理系统(E-FADEC),可自动管理所有的电力性能,有效地简化了显示和控制系统,从而减少了飞行员的工作负荷,可以更加专注行操纵和训练任务。

与当前电动汽车相类似,E-Fan验证机同样存在着续航时间有限的问题。据空中客车公司在航展上提供的宣传资料介绍,它的最大续航时间可以达到45分钟。到目前为止,该机的最长一次飞行持续了37分钟,累计试飞时间达到了15小时。空中客车公司希望E-Fan验证机能达到1小时15分钟续航时间的储备功率,以证明这种平台作为飞行员训练飞机的潜力。然而,当前所使用的电池组是无法实现的。目前,E-Fan项目的合作伙伴正在研制一种更高能量密度的新型电池,将在不久后达到这一要求。

由于只是用于试验目的,E-Fan验证机并未采用常规飞机的三点式起落架,而是独具匠心地在机身下采用了一前一后两个起落架,并在每侧机翼下面分别安装了一个具有弹性支撑的辅助轮,以便在地面滑行时保持飞机平衡。前起落架采用可转向机轮,用于控制滑行方向,而后起落架采用了电动式机轮,可由6千瓦电动机驱动。

这种设计的目的是为了减少气动阻力,以节省电力,E-Fan验证机在地面滑行时无需起动涵道风扇,借助于后机轮在跑道滑行,而且在起飞过程中可以帮助飞机加速到60千米/小时。然后,飞行员可以起动涵道风扇,迅速获得起飞功率,推动飞机滑跑至110千米/小时起飞速度,实现升空。

投产两种型号

在本届柏林航展上,空中客车公司还在室内展馆内展出了E-Fan 2.0和E-Fan 4.0电动飞机的模型。为了尽快生产出欧洲的第一种全电动飞机,空中客车公司今后几个月内将在位于波尔多的马里尼亚克机场附近建立一家名为伏特航空(VoltAir)的子公司,准备生产E-Fan 2.0和E-Fan 4.0飞机,二者与验证机之间的部件通用性达到95%。

E-Fan 2.0飞机是一种并列双座教练机,预计在2017年底首飞。据介绍,该机适合于30分钟至1小时的短程飞行任务,最高时速可达220千米/小时,可用于培训飞行员、拖曳滑翔机或特技飞行。

E-Fan 4.0飞机是一种四座通用航空飞机,仅比双座型长35厘米,预计将在2019年升空。为了增加航程或延长续航时间,该机将在机身内配装一台小型内燃机,为机载电池组充电。预计,这混合动力型式可以使E-Fan 4.0飞机的续航时间从2小时增加到3.5小时。

据空中客车公司介绍,两种型号都针对通用航空市场,与当前的活塞式轻型飞机相比,其价格具备竞争力,而且明显降低了各项使用成本,同时潜在地降低了维护成本。该公司希望位于伏特航空公司具备每年制造80架E-Fan飞机的能力,并认为市场需求强劲,尤其是飞行训练学校。尽管到目前还没有签署合同,但位于法国图卢兹的国立民用航空大学(ENAC)已经成为该项目的签约方。