时间:2023-08-11 17:26:30
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇医学影像技术导论,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
关键词:智慧医疗;信息技术;综述
中图分类号:TP311文献标识码:A文章编号:1009-3044(2012)05-1137-02
Summary of Key Information Technology and its Applications in Smart Healthcare
ZHU Rong, ZHAO Li-ping, GONG Xun-wei, LI Yong-gang
(Dept. of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China)
Abstract: The development of Smart Healthcare can not be achieved without the current rapid development of intelligent information processing technology. In this paper, we summarize and outlook the key information technology from the aspects of information collection technology, pre-processing information technology, information storage and transmission technology and information mining and decision technology ,which being used in the five stages of hospital information systems.
Key words: smart healthcare; information technology; summary
实现智慧的“健康管理”――智慧医疗”是当今卫生事业发展的必然趋势。IBM提出的“智慧医疗”是指利用先进的信息化技术,从而改善疾病预防、诊断和研究,并最终让医疗生态圈的各个组成部分受益[1]。李包罗教授认为,“智慧医疗“应通过信息技术的辅助,当病人或健康人随时随地需要获得相应医疗服务时,都应该非常容易、便捷地获取到医疗服务环境,对于每个患者都应得到公平的医疗服务[2]。“智慧医疗”源于“智慧地球“,尽管有着不同的诠释,但不容质疑的是,”智慧医疗“建立在当前信息化技术的基础上。而医院信息系统建设是实现“智慧医疗”的基石。信息技术在医院信息系统建设中不仅促进了自身的发展,也进一步推动了医学科学技术的变革与发展。本文对医院信息系统建设中信息化技术及其应用进行综述。
1信息处理技术在“智慧医疗”中的应用
美国专家把医院信息系统建设分为五个阶段:数据的收集、电子病历、医疗参谋、医疗协调以及完全智能化[2]。在当前”智慧城市“规划之年,我国很多城市都提出了当地”智慧医疗“建设方案,其实质就是不同程度地实现这五个阶段。信息化技术从处理流程来分,主要包括信息采集技术、信息预处理技术、信息存储与传输技术、信息挖掘与决策技术。而医院信息系统建设本身也是一个信息系统,本质上也就是具有对数据和信息的采集、处理、存储、传输、分析与决策的功能。图1给出了信息处理技术在“智慧医疗”中的应用。在下面的小节中详细给出具体技术的简介与在医院信息系统建设的应用。
图1信息处理技术在“智慧医疗”中的应用
1.1信息采集技术
信息采集是指获取原始数据的过程。原始数据是所有信息化系统的源头或基础。随着信息采集技术的发展,系统信息采集的方法与手段不断多样化与先进化。除了传统的各种形式的磁卡、IC卡、条形码、键盘录入等方式,信息采集还可以通过电子标签和传感器和各种大型自动化仪器设备输出端(如图像)来完成。RFID电子标签是一种把天线和IC封装到塑料基片上得新型无源电子 卡片,具有数据存储量大、无线无源、小巧轻便、使用寿命长、防水、防磁和安全防伪等特点。通过RFID电子标签,可以给医院所有的医疗资源,从医院的所有工作人员、医疗设备、药品乃至病人或健康人,提供身份标识,同时可以从流程上进行定位、跟踪,从而提高管理效率并减少人为操作失误。如iCabiNET[3]方案采用智能RFID包装技术来记录药丸的使用情况。随着电子技术的不断进步,传感器作为机器感知物质世界的“感觉器官”,可以感知热、力、光、电、声、位移等信号,为医院信息系统提供原始的信息。传感器节点形式多种多样,有腕带式[4],臂袋式、胸带式、夹克式。文献[5]设计了一种夹克式传感器,用来检测新生儿健康情况。
1.2信息预处理技术
通过各种方式采集到的信息一般需要通过处理或者进一步加工,从而使得信息更加有意义,继而进行存储、传输或者进一步分析。信息预处理技术主要分为信息标准化以及信息融合技术。信息标准化是实现跨区域医疗参谋与医疗协调的关键。近年来,卫生部加大了医疗信息标准化工作的投入力度。如2008年3月份启动的《卫生监督信息基础数据集标准》研究和《具名健康档案基本数据集标准》的研究。2009年启动的《医学数字成像和通信(DICOM)标准V3.0》等7项标准研制工作,2011年已启动《基于电子病历的医院信息平台技术规范》等108项标准研制工作[6]。为止,医学影像通信标准DICOM3、医疗信息交换标准HL7、集成规范IHE以及电子病历、电子健康档案评价标准等,都已经引起业界研究和遵循。除了标准化工作,数据融合技术[6]可以将多种数据或信息进行处理,从而获取高效且符合用户需求的数据。很多医疗应用中只关心监测结果,并不需要收集大量原始数据,数据融合可以有效地处理该类问题。
1.3信息存储、传输技术
越来越多样化与先进的信息采集技术,使得获取的数据也变得多样化、复杂化、海量化。医疗信息存储、传输技术主要包括无线技术(与前面传感器结合起来的无线传感网技术)、数据压缩技术等。无线传感网由大量传感器节点通过无线通信方式,具有数据实时采集、信息共享与存储传输的功能。无线传感网因其便携性、不可见性、易部署性、自组织性和扩展性等优点,在智慧医疗中有着广泛的应用形式,具体可参考文献[7]。另一方面,在远程医疗服务中,需要传送大量的图片以及视频音频信息。这些数据具有数量多,容量大等特点。目前,在医疗图片压缩方面,医疗系统一般采用JPEG2000的压缩方式,与JPEG相比不仅支持感兴趣区压缩,并且具有更高的压缩比。在医学影像方面,一般采用PACS(picture Aarchiving and communication system,影像传输及存档系统)来处理[8-9]。PACS具有容量大、信息保存时间长,安全性高等特点。PACS的建立对医学影像的管理和疾病诊断具有重要意义,不仅可以节省医疗成本,还有利于实现无胶片化的电子化医学影像管理,实现医学数据共享,提高医院的工作效率和诊断水平[6]。
1.4信息挖掘、决策技术
医院信息系统在运行中产生了大量数据,可以开发数据中所隐含的知识和规律,更好地为患者诊疗提供服务,为管理提供科学的决策。而数据挖掘技术[10-11]是从大量的数据中筛选出隐含的、可信的、新颖的、有效的信息处理的过程,对医院的日常工作可以提供更完善的信息支持和决策辅助。如文献[12]将数据挖掘的因子分析法应用到消化系统疾病患者医疗费用分析中。文献[13]将关联规则应用到在医疗投诉资料分析中。另一方面,医疗决策系统可以结合机器学习中的神经网络、遗传算法、支持向量机分类器等新方法。如文献[14]设计了一种基于BP神经网络的医疗诊断专家系统,利用专家先验知识和神经网络的数值推理、自学习能力,对疾病进行分析处理,从而使得诊断自动化、可靠准确。伴随着人工智能和各种新技术的发展,未来医疗决策支持系统除了支持机器学习中新技术外,还将与数据库、多媒体技术与网络技术相结合[6]。
2结束语
本文从信息处理流程的角度,对“智慧医疗”在医院信息系统建设五个阶段中关键信息技术及其应用进行总结与展望。可以看出,当前的先进信息技术推动了“智慧医疗”的发展,使得医疗信息化工作“数字化、标准化、集成化、自动化、智能化”。
参考文献:
[1]李海阳.IBM智慧医疗伴随新医改启程[J].中国数字医学,2009,4(5):57-59.
[2]曹剑峰,范启勇.漫谈“智慧医疗”[J].上海信息化,2011(3):26-28.
[3] Sibreeht B,Chen W,Feijs L,et al.Smart Jacket Design for Neonatal Monitoring with Wearable Sensors[C]//Sixth International Workshop on Wearable and Implantable Body Sensor Networks.California: IEEE Computer Society,2009:162-167.
[4] Lee Youngbum,Lee Byungwoo,Lee Myoungho.Wearable Sensor Glove Based on Conducting Fabric Using Electrodernml Activity and Pulse Wave Sensors for e-Health Application[J].Telemedicine and e-Health,2010,16(2):209-217.
[5] Lopez-nores M,Pazos-arias J J,Garciaduque J,et al.Monitoring medicine intake in the networked home:the iCabiNET solution[C]//Second International Conference on Pervasive Computing Technologies for Healthcare.Tempere:IEEE,2008:116-117.
[6]李书章,健.数字化医院建设理念与实践[M].北京:人民军医出版社.2011.
[7]陈钰,王捷,刘仲明.无线传感网在智慧医疗护理中的应用[J].医疗卫生装备.2011,32(5):73-75.
[8]仇建云,桂朝伟,唐晓薇,等.PACS系统的关键技术及应用[J].中国医学装备,2011,8(9):31-33.
[9]赵京晓,张传友,周晓峰.PACS系统在医院的应用[J].计算机光盘软件与应用,2011,15:36.
[10] Tan Pang-Ning,Steinbach M,Kumar V.数据挖掘导论[M].范明,范宏建,译.北京:人民邮电出版社,2011:7-15.
[11]韩家炜,堪博.数据挖掘:概念与技术[M].2版.范明,孟小峰,译.北京:机械工业出版社,2011:1-20.
[12]沈明霞,林雨芳,章光华.基于数据挖掘的消化系统疾病患者医疗费用分析[J].中国医院统计,2011,18(2):157-159.
【关键词】原子物理学教学;教学内容;教学方法
0 引言
原子物理学是物理学专业的一门重要的专业基础必修课,是继力学、热学、光学和电磁学之后的最后一门普通物理课程。原子物理学是普通物理的重要组成部分,它属于近代物理[1]。原子物理学包括原子物理、原子核物理和粒子物理[2]。原子物理学是20世纪随着量子力学的发展而发展起来的,至今,原子物理学的许多问题仍然是科学研究的前沿问题。原子物理学是现代科学技术的基础,是连接经典物理与现代物理的桥梁。学好原子物理学能为后继的量子力学、固体物理等课程打下坚实的理论基础。因此,学好原子物理学具有十分重要的意义。本文根据近几年原子物理学教学实践,分析了教学现状,在教学内容、教学方法上对原子物理学教学进行了研究和实践。
1 原子物理学教学现状
首先,原子物理学知识抽象、难懂,没有清晰的物理图像。原子物理学是研究原子的结构、运动规律及相互作用的一门科学。其研究的物质结构介于分子和原子核之间,线度约为10-10米,用肉眼是根本无法直接观察的,只能在头脑中想象。学生在学习的过程中普遍反映知识很抽象,摸不着头脑,不像学习力学知识那样,对物体运动有清晰的物理图像。其次,教材内容过于老化。20世纪30年代M.Born写了一本《原子物理学》,H.E.White写了一本《原子光谱导论》,这两本书是原子物理学方面的经典之作。现在的原子物理学教材体系一般遵循Born和White模式,大部分的教材内容都是反映20世纪30年代前后的知识,现代科技知识涉及太少。讲授理论知识若缺乏实际应用的介绍,将会使知识僵化,知识面狭窄,难以激起学生的学习兴趣。
2 原子物理学教学内容的研究与实践
2.1 恰当处理好玻尔理论与量子力学的关系
大部分的教材内容一般都是按照原子物理学的发展历史进行编写的。从原子的光谱实验到玻尔提出的量子化假设理论(基于经典物理基础上的量子化,半经典半量子,称为旧量子理论),再由玻尔理论讲授原子的能级、精细结构、超精细结构等。对于微观领域,正确描述电子运动的是量子力学理论,玻尔理论是有其局限性的。最突出的问题是电子的轨道运动,根据玻尔理论,电子在库仑力的作用下沿着一些特定的轨道绕原子核运动。在量子力学中,电子运动是由波函数来描述的,满足薛定谔方程,电子的运动具有不确定性,只能用概率来表示,没有轨道运动的概念,量子力学中是用“电子云”来形象说明电子的运动。教学中若处理不好玻尔理论与量子力学的关系,会让学生觉得知识有点混乱,莫衷一是。笔者认为在原子物理学教学过程中,能用玻尔理论解决的问题就尽量不要用量子力学,如玻尔理论不能解决,则可定性地用量子力学知识来解释,避免复杂的量子力学推导过程。原子物理学虽属近代物理,但仍是普通物理学的重要组成部分,应该具有普通物理学的特点,要注重基本的物理实验、物理图像、物理思想和物理模型[3]。若用量子力学进行详细的解释,则要涉及波函数、算符、力学量、薛定谔方程、微扰理论等复杂的量子力学知识,会淡化和掩盖了原子物理学的基本的物理实验、物理图像、物理思想和物理模型。恰当处理好玻尔理论与量子力学的关系,既能使学生易于接受原子物理学知识,又能为后继的量子力学等课程打下基础,使原子物理学成为连接经典物理和现代物理的桥梁。
2.2 紧密结合现代科学技术知识
原子物理学是现代科学技术的基础,随着原子物理学的发展,新思想,新知识不断被发现,在此基础上产生了大量的现代科学技术。如与原子受激辐射有关的激光技术;与原子的内层电子激发有关系的X射线的荧光分析技术、计算层析技术;与物质波有关的电子显微镜;与原子能级分裂有关的电子顺磁共振和核磁共振等等,其中X射线影像、核磁共振成像已应用到医学领域[4]。将这些科学技术知识引入到原子物理学教学中,不仅可以加深学生对所学知识的印象,还可以开阔他们的视野,激发学习兴趣,培养创新意识,取得良好的学习效果。
2.3 适当引入物理学史
原子物理学的发展产生了许多重要的创造成果,包括1999年在内共有96项诺贝尔物理学奖,其中就有66项是与原子物理学有关的,占到总获奖数的2/3。这些诺贝尔物理学奖的成果不仅是原子物理学发展的重要里程碑,而且是前辈物理学家创造性研究的典范[5]。在教学过程中,适当地讲解一些有代表性物理学家的工作背景、研究思路、研究方法以及他们在面对困难时的科学创新精神、非凡的胆识,都会对学生留下深刻的印象,引起长久的思考。例如,电子自旋假说是20世纪初最重要的假设之一,电子自旋的提出在原子物理学发展历史中具有里程碑的意义。1925年,荷兰的两位在读大学生乌伦贝克和古德斯密特,在地球运动规律的启发下,经过深入研究,大胆提出了电子自旋假设。但谁能想到这样重要的理论是由两个还没毕业的大学生提出的。对于两个年轻人来说,提出这样的理论不仅需要创造精神,更需要非凡的勇气和胆识。我们在课堂教学中引入这样的事例,在学生中激起了强烈的反响,引发了热烈的讨论,极大地提高了他们的学习热情和学习兴趣,同时也培养了学生的创新意识和创新能力。
3 教学方法的研究与实践
3.1 明确重难点,有的放矢
原子物理学的知识面较广,知识点松散,各知识点间的逻辑性、系统性不强,再加上学时少,一般只有54学时左右,教学任务重。因此,教学方法就显得尤为重要。按照原子物理学教学大纲,明确教学中的重难点。每堂课都要向学生明确哪些知识需要重点掌握,哪些需要理解,哪些需要了解。重难点知识要精讲、细讲,从物理实验、物理图像、物理思想、物理模型到具体的推导过程都要讲清楚,不惜面面俱到。理解性的内容可讲清楚物理思想和物理图像,不必过多涉及细节性内容。了解性的内容可让学生课下自行学习,给出一些参考资料,让学生以读书报告的形式提交作业。明确教学中的重难点,学生明确了学习目标,提高了学习的积极性,促进了学生的自主学习。
3.2 传统板书与多媒体教学的有机结合
传统板书具有讲课思路清晰,留给学生较多的思考时间,易于跟上讲课思路等优点。对重要公式理论的推导,系统知识的梳理具有良好的教学效果。多媒体教学可演示图片、动画、影像资料,具有形象直观的特点,而且幻灯片记载的信息量大,放映时间少。在原子物理学教学中,将传统板书与多媒体教学的有机结合起来,能收到良好的教学效果。例如讲电子的自旋―轨道相互作用时,先用多媒体演示电子自旋运动和轨道运动的动画,学生头脑中有了清晰的物理图像,然后再采用板书的形式详细推导其作用规律,就比较容易理解。一些著名的物理实验现象,现代科学技术应用,著名物理学家生平简介等都可以通过多媒体展示给学生。既能拓宽学生的知识面,还能活跃课程气氛,激发学习兴趣,提高学习积极性。
4 小结
原子物理学虽已有一百多年的历史,但仍是具有生命力的,不断向前发展的科学,原子物理学教学也应不断地向前发展进步。本文根据近几年原子物理学教学实践,在教学内容、教学方法上对原子物理学教学进行了研究和实践。以期能与同行进行讨论,共同提高原子物理学教学水平。
【参考文献】
[1]喀兴林.关于原子物理学课程现代化问题[J].大学物理,1992,11(11):6-8.
[2]褚圣麟.原子物理学[M].北京:高等教育出版社,2012.
[3]高政祥.原子物理学教学改革的几点探索[J].大学物理,2001(4):34.