时间:2023-08-14 17:26:53
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇生命科学领域的新技术,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
致力于孵化、投资超前的生命科学领域的蓝色彩虹,涵盖了“长寿宠物猪”、“宠物基因检测”、 “护肤品、益生菌、营养代餐”、“华大基因学堂”和“华大优选”等创新。
在会现场,华大基因董事长汪建强调,蓝色彩虹是一个全面提供种子、土壤、阳光和水分的光合作用式生态孵化器,健康、幸福、长寿是人类亘古的追求。华大基因执行副总裁朱岩梅表示,希望蓝色彩虹成为一个更加公共、更加包容性的平台,不仅支撑起深圳,甚至是整个中国,走向世界,希望大家共同挖掘数据、采集数据、分析数据。而投资于正迎来爆发性增长的生命科学领域,与当下互联网创业者将遭遇资本寒冬的论调正相反。事实上,在全球投资者看来,生命经济是工业经济、信息经济之后,未来新的主导经济形态。
《福布斯》认为基因测序科技是下一个1000亿美元市场,以现在10亿美元市场测算,整个市场有100倍的成长空间,而与之配套的大健康、精准医疗、农业食品等领域则有数以千万亿计市场都会因此而受益和改变。
蓝色彩虹创始合伙人兼联席CEO刘靓表示,“生命科学的发展与生物技术的进步,极大推动了生命科学产业化的进程,也逐渐使得生命科学经济这一新经济形态的出现。”
专注生命科学
自1999年成立以来,华大基因不仅在全球生命科学领域的科研发现上贡献突出,在医学、健康、农业等产业应用层面也硕果累累,被视为代表深圳创新与未来的重要明星机构。华大基因近二十年来扎根国际前沿的生命科学研究和产业实践应用,拥有科研、仪器、大数据、专家、行业资源等支持。
华大基因的首个面向生命科学的光合作用式孵化器蓝色彩虹的成立,意味着华大基因开始探索构建一个开放、协同、创新的生命经济生态体系。蓝色彩虹得天独厚的创新性技术平台与配套服务设施,为业内称羡不已。
人类的生老病死,衣食住行无不与基因有关。当物质文明发展到一定程度之后,必然会倾力关注健康、幸福、长寿、美丽。生命经济本质上是以人为本,是将科学到产业之间的转化,通过更多对人文的关怀,满足人自身的需求。
为创新者打造的开放平台
《中国经济信息》记者获悉,目前蓝色彩虹正致力于打造开放平台,布局未来。作为全球首个专注于生命科学的孵化器和基金,蓝色彩虹早在今年9月23日就已经启动,由松禾资本、同创伟业等投资机构共同投资。领航全球基因研究的“航母”,正在从“神秘”走向“开放”,从“科研”走向“生活”,将向创业者开放核心资源,向全球创业者发出邀请。
随着基因检测技术进一步提升、成本不断下降,基因产业链的中下游已经成为创新主战场。然而,以基因检测技术为基础的精准医疗尚属前沿技术领域,还面临科研成果转化速度缓慢、技术人才缺乏、生物药创新及上市周期过长、政策法规尚未完善等现实问题,这使得国内创业者需要在打通上下游资源、创新人才、寻求融资渠道等方面付出更高的成本。
第六版《辞海》的生物学部分共有5107条词目,在删除冷僻、很少使用的词目和增加反映学科发展前沿的词目外,对80%的条目内容进行了更新、修改和充实,比较全面地收录了生物学科领域中的基本概念、学科发展历程、著名人物等基本面貌。
我是复旦大学的一名退休教师。在20世纪80年代,我的老师谈家桢先生推荐我参加《辞海》的工作,从此我与《辞海》结下了不解之缘,参加了第四版(1989年版)、第五版(1999年版)和第六版(2009年版)的工作并担任了生物学科的主编。
第六版《辞海》的生物学部分共有5107条词目,在删除冷僻、很少使用的词目和增加反映学科发展前沿的词目外,对80%的条目内容进行了更新、修改和充实,比较全面地收录了生物学科领域中的基本概念、学科发展历程、著名人物等基本面貌。这是我们生物学科几十位同仁不辞辛劳、通力合作的成果。特别要提到的是上海水产大学的伍汉霖先生和中科院古脊椎动物所的叶祥奎先生两位耄耋长者,在国外探亲或身患重病期间仍不忘为《辞海》收词、审订和校阅。
我是《辞海》的作者,又是《辞海》的读者,我的体会是《辞海》是适合于所有知识阶层阅读的综合性工具书。有一种误解认为专家只是《辞海》的作者而不是读者。其实不然。我举个例子。美国《科学》杂志编辑部在组织讨论生命本质时曾提出一个问题:一只活猫和一只死猫有什么区别?生物学家可以从心脏搏动、血液循环、呼吸停止和神经反应等层面上指出两者的差别。可是,物理学家说:活的猫是无序趋于有序,是负熵增加;死的猫则是有序趋于无序,是熵增加。熵是什么概念?恐怕不是每一位生物学专家都很清楚的。这时,就需要《辞海》了。
《辞海》给人另一个误解,是收录的词目偏重于历史。这是误解,同时也是广大读者对《辞海》能更好、更多地反映当代科学发展的期待和需求。
生命科学是当展最为迅猛的自然科学。人们对生命本质的认识日益深入,并且在这个基础上不断发明新的技术来为提高人类生活水平和增进身体健康而服务。其中最突出的是近年来出现的“组学”研究,就是说,从研究一个基因、一种蛋白质或一个生物大分子的结构和功能,逐步深入研究一个细胞里的所有基因、所有蛋白质和所有生物大分子的结构和功能,以及这些分子之间的相互作用。从研究单个分子到研究一组分子,从研究单个分子间的相互作用到一组分子间的网络式的调控,由此开辟了生命科学研究的新天地,大大地推进了对癌症、衰老和许多种复杂疾病的病因研究和提出新的医疗措施。这种“组学”包括[基因组学]、[蛋白质组学]、[转录物组学]、[代谢物组学]、[糖组学]等。这些都是第六版《辞海》增添的反映科学前沿和发展趋向的词目,反映了生物学条目的重大变化和新的面貌。
词目的收录总是落后于科学发展的步伐。在《辞海》2009年版出版之日,正是2019年版修订起步之时。我感到,生物学已经有大量需要增添的词目,比如,[生物学]和[生命科学]。现在全国高校没有一家设立生物学系,都改成生命科学学院或生物工程(技术)学院。生物学和生命科学的区别及定义需要诠释说明。又比如,以前是生物化学、生物物理、生物数学等学科,现在则出现了化学生物学、物理生物学、数学生物学,需要诠释这些学科的内涵与界定。举个例子,BioNano生物纳米是研究生命系统中处于纳米量级的物质及其运动规律。而NanoBio纳米生物学则是以纳米技术为背景的生物学研究,探讨纳米技术能为生命科学研究提供哪些新思维和新技术。这说明,纳米生物学、生物纳米不是文字游戏而是各有实质内涵的科学名词,需要我们作出诠释和介绍。
干细胞研究是当代的一个热点。2006年日本科学家山中伸弘把4个基因转入小鼠皮肤细胞,使细胞“返老还童”,使即将衰老死亡的细胞重获新生,具有分化发育成其他类型细胞的能力。2007年,以同样的方法使36岁整容妇女的皮肤细胞和69岁男性的结缔组织细胞也“返老还童”。2009年我国科学家把转入了“重编程因子”基因的小鼠皮肤细胞经过处理后移植到小鼠的子宫里,结果正常发育生下了小鼠。这说明皮肤细胞还原成为胚胎细胞。 这有非常诱人的医学应用前景。比如,可将皮肤细胞改变成多种脏器,为病人提供来源于自身皮肤细胞的器官,可以不产生免疫排异反应。
由于这些科学进展,生命科学领域不断有新的科学发现,新的科学名词、概念和规律,这是推动《辞海》与时俱进、继续革新的动力。我愿继续为《辞海》的编撰工作尽自己的绵薄之力。
作者:《辞海》分科主编、复旦大学遗传所教授
对于此次参加高交会,拉莎・诺蕾基埃内说,“立陶宛的技术有着巨大的潜在商业利益,可以创建和开发新技术、产品和服务,进行贸易并进入新的市场。我很高兴,立陶宛和深圳加强了合作,相信我们的双边关系将朝着互利的趋势发展。”
《中国经济信息》:世界范围内,立陶宛在交通物流、生物技术、激光技术等方面都有着非常优秀的成绩,那么在这些领域立陶宛和中国之间在未来有相关的合作开发考虑吗?
拉莎・诺蕾基埃内:中国是立陶宛在亚洲的重要经贸合作伙伴。两国对于合作的共同理解和兴趣反映在各种项目成功的伙伴关系上,例如贸易、投资、创新、教育、交通等领域。
立陶宛的生命科学领域被认为是中欧和东欧最先进的。立陶宛的生命科学领域,特别是生物技术和激光技术尤其强大。生物技术和制药研究和生产领域的平均年增长率是26%,产品出口高达80%-90%。
在立陶宛,激光行业也有着强大的背景。过去曾专注科学激光领域,最近几年进入工业市场。目前,立陶宛拥有全球10%的科学激光市场,超过90%的产品出口。
两国在以下领域已经展开了成功的合作,包括:立陶宛科学和工业激光制造商艾克斯玛(Ekspla)和来特激光(Light Conversion)公司已在中国建立了实体。
运输和物流领域的合作也正在进行中:经过频繁地联系、访问,立陶宛铁路、克莱比达海港、立陶宛和中国对口的自由经济区签署了《合作谅解备忘录》。
《中国经济信息》:中国提出了“一带一路”发展战略,立陶宛也是“一带一路”的沿线国家。近年来,两国在科技、教育、能源、基础设施建设和金融领域的合作也越来越多,贸易额也有所提升。您怎样看中国提出的“一带一路”发展战略,对于两国未来的合作方面能够起到怎样的意义?
拉莎・诺蕾基埃内:“一带一路”发展战略是一项引人瞩目的战略,与此同时,也是一项复杂的战略。实现统一两个全球网络并创建一个有效的亚欧供应链的目标,需要大规模的互惠互利的伙伴关系、信任和务实合作。欧洲和中国快速增长的商业往来是国际运输系统发展的重要指标之一,去年双方贸易营业额增加至近5000亿欧元也证实了这一事实。
立陶宛不断发展铁路和公路,物流中心和产业集群,以满足即将到来的需求。通过与中国合作,立陶宛可以在中国和欧洲之间的供应链中创造价值。基础设施开发项目以及运营集装箱列车具有巨大的合作潜力。
一、中国高新技术产品贸易发展现状
(一)进出口规模持续增长,进出口月度增幅继续回落
据海关统计,2011年我国高新技术产品进出口总额首次突破万亿大关,达到10117.8亿美元,同比增长11.8%,占外贸进出口比重27.8%。其中,高新技术产品出口5487.9亿美元,同比增长11.5%,进口4629.9亿美元,同比增长12.2%。受欧债危机、国际贸易保护主义等不利因素影响,我国高新技术产品贸易月度增幅有所回落。特别是2011年下半年以来,随着欧元区危机加重,全球经济增长环境恶化,经济贸易风险上升,6月份以来出口呈个位数增长,连创2009年以来月度出口增幅新低。虽然从绝对值上看,进出口规模缓慢增长,但总体表现后续增长疲弱。
(二)信息与通信技术类仍居主导,部分领域进出口提速
2011年,我国在信息与通信技术类等传统领域出口仍居主导地位,全年出口5294.6亿美元,同比增长12.7%,较整体高新技术产品出口增长高1.2个百分点,占比增加至96.6%。单类产品出口额居前三位的分别是便携式自动数据处理机(1058.8亿美元)、手持式无线电话机(627.6亿美元)、集成电路(325.7亿美元)。除生命科学技术类、航空航天技术类产品出口提速外,多数领域出口增速下滑。其中生命科学技术类产品出口178.4亿美元,同比增长28.7%,较上一年度提高2.9个百分点;航空航天技术类产品出口45.9亿美元,同比增长31.6%,较上一年度提高1.5个百分点。2011年,电子技术类产品仍是我国高新技术产品主要进口产品,全年进口2139.7亿美元,占比46.2%,较上一年度下降1.3个百分点。单类产品进口居前三位的分别是集成电路(1707.7亿美元)、液晶显示板(471.7亿美元)、手持式无线电话机的零件(190.0亿美元)。在整体高新技术产品进口萎缩的情况下,生命科学技术类产品进口速度提高,全年进口158.1亿美元,同比增长35.3%,较上一年度增加12个百分点,进口占比提高至3.4%。
(三)外资企业贸易增速趋缓,其他企业增速依然强劲
从企业性质上看,外资企业仍是我国高新技术产品出口的主体。2011年,外资企业高新技术产品进出口8015.3亿美元,同比增长10.37%,全年出口4527.53亿美元,占比82.5%,较2010年下降0.6个百分点,全年进口3487.22亿美元,同比增长10.06%,占比75.3%。国有企业进出口831.9亿美元,同比增长2.09%,全年出口318.1亿美元,占比5.8%,下降1.1个百分点,进口占比11.0%,下降0.5个百分点。宏观经济政策收紧等消极因素对民营企业出口影响更加明显,以民营企业为主体的其他企业四季度出口环比折年率萎缩17.52%,进口环比折年率萎缩24.22%。尽管如此,其他企业全年进出口占比仍有所提升,其中出口642.2亿美元,同比增长31.1%,占比11.7%,提高1.7个百分点,进口占比13.6%,提高1.9个百分点。
(四)一般贸易进出口增长明显,加工贸易份额继续缩减
2011年全年我国高新技术产品一般贸易出口898.3亿美元,增长20.2%,占比提高1.2个百分点,进口1228.9亿美元,增长18.5%;加工贸易出口4221.2亿美元,占比76.9%,下降1.9个百分点。进料加工贸易仍是我国高新技术产品出口的主要方式,全年出口3824.6亿美元,同比增长11.53%,占高新技术产品出口的69.69%。2011年,中西部承接加工贸易转移初见成效,部分在金融危机中向周边国家转移加工产业的企业回流,加工贸易下降幅度较2010年度有所收窄,东部地区加工贸易加工增幅下降,其中苏州、广东两地高新技术产品加工贸易增幅分别为-1.03%、8.12%,均低于8.8%的全国平均水平。从高新技术产品各领域内部来看,各领域加工贸易出口占比变化不十分明显,说明加工贸易占比萎缩对不同领域影响大致相同。
(五)主要市场进出口增速放缓,传统市场占比下降
2011年我国与多数国家和地区的高新技术产品进出口贸易呈现萎缩态势,其中出口至欧元区794.8亿美元,增长4.08%,较上一年度下降35个百分点,四季度环比折年率萎缩13.28%。由于欧债危机蔓延,新兴市场国家和地区经济贸易受到普遍拖累,进出口增速有所放缓,四季度我国出口到其他“金砖四国”高新技术产品62.3亿美元,较三季度下降13.7%,环比折年率萎缩44.53%。从高新技术产品进口来看,亚洲地区仍是我国主要进口来源地。2011年,我国从东盟、韩国、中国台湾和日本进口2891.9亿美元,同比增长11.3%,占比62.4%,较上一年度下降1.2个百分点。中国香港、欧盟和美国仍是我国高新技术产品主要出口市场,合计占比64.6%,较2010年下降0.6个百分点。其中在航空航天技术、计算机与通信技术、电子技术类领域出口至上述三个地区的高新产品占同类技术领域比重分别为69.35%、67.33%和65.68%。
(六)中西部地区出口快速增长,东部地区占比继续下降
从地域分布来看,东部地区仍是我国高新技术产品贸易的主要集中地,但随着我国中西部地区承接沿海产业转移步伐加快,中西部地区高新技术产品贸易迅速增长,特别是出口增长强劲。2011年全年中部地区高新技术产品出口171.7亿美元,同比增长80.2%,占比提高1.2个百分点;西部地区出口217.4亿美元,同比增长58.2%,占比提高2.3个百分点;东部地区出口5098.8亿美元,同比增长7.5%,低于全国平均水平,比重继续下降。2011年中西部地区进口增幅有所下降,但下降幅度明显小于东部地区,中部地区全年高新技术产品进口168.1亿美元,增长46.9%,占比提高0.8个百分点;西部地区占比提高1.0个百分点;东部地区进口增幅下降较大,进口增长10.0%,下降22.2个百分点,占比由93.9%下降到92.1%。中、西部在承接东部产业转移动的同时,充分发挥自身产业基础优势,在传统产品领域之外的材料技术、航空航天技术领域形成了各自的特色贸易比较优势。2011年,东部地区在传统领域出口占比仍占据绝对优势,光电技术类产品出口314.16亿美元,区域占比97.86%;中部地区材料技术类产品出口6.43亿美元,占比13.63%;西部地区航空航天技术类产品出口8.24亿美元,占比17.93%。
(七)整体国际竞争力略有下降,产业内贸易指数下滑
2011年高新技术产品国际贸易竞争力有所下降,贸易竞争力指数(TC指数)由2010年的0.0881下降到0.0848。传统优势领域中的计算机与通信技术类产品、计算机集成制造技术类产品的竞争力下降,其中计算机与通信技术领域的贸易竞争力指数由0.5832下降到0.5762,计算机集成制造技术领域的贸易竞争力有所下滑。随着我国加大对战略性新兴产业的培育,高新产品中部分新兴领域的国际竞争力得到提升,其中生物技术、航空航天技术类和材料技术类领域虽然仍处于净进口状态,但是国际贸易竞争力较2011年均得到提高,生物技术贸易竞争力指数由-0.0856提高到-0.0465,航空航天技术领域由-0.6540提高到-0.6062,材料技术领域由-0.1340提高到-0.1111。近年来,我国与主要贸易伙伴的高新技术产业内贸易指数呈下滑趋势,但在国际分工格局方面变化不大,中美之间在高技术领域贸易仍表现为垂直分工,中国与东盟之间在高新技术产品领域贸易仍具有很强的相似性。中美之间格鲁贝尔—劳埃德指数(GL指数)由2010年的47下降到2011年的43,中国与东盟之间的GL指数由2010年的65下降到64。2011年高新技术产业多数领域的产业内贸易指数处于50以下的较低水平。我国与日本之间的高新技术产业内贸易指数最高,为73,两国在生物技术、计算机与通信技术、材料技术和航空航天技术贸易领域属于水平分工,特别是在生命科学技术贸易领域属于高度水平分工形态。我国与东盟国家高新技术产业内贸易指数为64,为水平分工;在计算机与通信技术、计算机集成制造技术领域的产业内贸易指数分别达到了88和76,属于典型的高度水平分工状态;在材料技术领域的产业内贸易也达到水平分工。高新技术产业内贸易指数排在第三位的是欧盟,为58。其中,我国与欧盟在材料技术领域贸易属于典型的高度水平分工,在生物技术、生命科学技术、光电技术领域贸易比较活跃,在计算机与通信技术领域贸易不活跃。我国与美国之间在高技术产业贸易属于典型的垂直分工,两国在生命科学技术、材料技术领域产业内贸易指数分别为95和98,属于高度水平分工状态。
二、中国高新技术产品贸易面临的挑战与机遇
2012年,我国高新技术产品面临的外部经济环境更加严峻复杂,国内经济贸易发展中不平衡、不协调的矛盾与问题依然突出,高新技术产品进出口的机遇与挑战并存。
(一)面临挑战
一是世界经济低速增长,全球贸易增速回落,高新产品出口增长面临下行压力。2012年上半年,世界经济将延续上一年度的缓慢增长态势,虽然部分经济体的经济景气度指标呈现向好迹象,但考虑到宏观政策空间有限,各国对欧债危机能否顺利解决仍持怀疑态度,整体经济观望情绪较大,经济表现温和复苏。下半年经济走向的不确定性仍主要取决于欧债危机的解决、主要发达国家和新兴市场的表现。根据国际货币基金组织2012年1月份《世界经济展望》预测,2012年全球经济减速似乎已成定局,预计发达国家经济增长率1.2%,新兴与发展中国家经济增长率5.4%。从全球贸易来看,表征国际贸易领先指标的波罗的海干散货指数(BDI)似乎也预示了贸易增速回落的事实。2012年开年以来,该指数始终处于历史低位运行,2012年2月下降到647的历史低点,不到2011年的2161高点的1/3,虽然3月份以来该指数缓慢上扬,但全球贸易复苏动力不强。根据国际货币基金组织预测,2012年世界贸易增长率3.8%,其中发达国家和发展中国家的贸易增长率均较上一年度有所下降。从我国高新技术产品出口来看,实现稳定增长难度加大。2011年欧债危机对中欧高新产品双边贸易影响明显,特别是下半年危机恶化后导致中国出口大幅萎缩。全年我国对欧盟出口高新技术产品1124.5亿美元,同比增长滑落至个位数(3.5%),占高新产品出口比重降至20.5%。2012年一季度,我国对欧盟出口245.0亿美元,季度环比(-20.3%)与季度同比(-1.04%)双双萎缩。目前,欧盟是我国高新产品的第二大出口贸易伙伴,欧元区及欧盟成员经济收缩将通过贸易渠道产生溢出效应,加大高新产品出口稳定增长的难度。
二是劳动力成本上升,企业融资难问题加剧,出口企业利润受到挤压,高新技术产品出口供给动力不足。2012年,我国劳动力市场的供求矛盾并未得到有效缓解,相反,劳动力成本上升已经成为我国经济发展中不可逆转的结构性问题,低成本竞争优势正不断削弱。预计未来,随着我国经济发展中“刘易斯拐点”的逐步呈现,人口红利下降,劳动力短缺以及随之而来的外贸企业用工难问题将成为困扰外贸企业的突出问题之一。普遍性的融资难问题将加重企业的经营困境。自2010年三季度至今,我国政府9次提高存款准备金率共4.5个百分点,5次上调存贷款基准利率共1.25个百分点,导致市场资金趋紧,银行借贷成本提高,企业财务费用上升,特别是大量从事外贸经营的中小企业被排斥于银行授信额度之外,面临资金链断裂风险,转向高利贷或民间借贷,导致融资风险进一步加大。外贸企业在经历“用工难”、“融资难”之后,企业盈利受到影响,企业家信心不足,部分东南沿海城市出现“跑路潮”风波。中国人民银行对5000家企业开展的调查问卷显示,2012年一季度,企业盈利指数为51.19,经营景气指数为64.35,均创2009年三季度以来新低,企业家信心指数较2011年四季度略有回升,为2009年三季度以来次低点。
三是贸易保护主义抬头,贸易摩擦向新兴产业领域蔓延,高新产品拓展国际市场难度加大。金融危机爆发至今,各国经济仍未完全走出危机阴霾,贸易保护主义相继抬头。截至目前,中国已经连续17年成为遭遇贸易摩擦最多的国家。2012年以来,我国共遭受了8起贸易摩擦,涉案金额22.8亿美元,同比增长了80%。从贸易摩擦领域来看,战略性新兴产业逐渐成为各国贸易保护主义关注的对象。自2011年至今,美国相继对我国太阳能电池和应用级风塔提起反倾销和反补贴调查。伴随“双反”调查的还有各种专利侵权诉讼、破产限制购买法令等措施。2012年,全球经济在低迷中缓慢增长,美、法等国家政治大选、主要发达国家推动本国制造业发展,在各种政治、经济因素的作用下,预计各种贸易保护主义措施只增不减,国际贸易形势更加严峻。
(二)发展机遇
一是新兴领域的宏观支持政策陆续出台,产品国际竞争力稳步提升,高新技术产品出口新的增长引擎逐渐发力。为促进新兴产业国际化发展,抢占国际经济科技制高点。在2010年国务院《关于加快培育和发展战略性新兴产业的决定》的基础上,《新材料产业“十二五”发展规划》、《太阳能光伏产业“十二五”发展规划》、《环保装备“十二五”发展规划》、《工业清洁生产推行“十二五”发展规划》陆续出台。此外,《鼓励和引导民营企业发展战略性新兴产业国际化发展的指导意见》等陆续。这些政策的出台和相继实施有利于未来产业的有序、健康发展。目前,新兴产业领域产业化和规模化发展强劲,新能源等领域发展态势迅猛。根据全球风能理事会(GWEC)2012年2月最新的全球风电市场报告,全球风电产业2011年新增风电装机容量41000MW,中国排在首位,约占全球新增装机的44%。从产业国际化发展来看,部分领域出口竞争力稳步提升,生物技术、材料技术等领域的贸易竞争力指数不断提高。
二是企业研发支出持续增长,知识产权国际化程度提高,高新技术产品向高技术含量升级有望。近年来,我国研发支出呈稳定增长态势,研发强度不断提高。美国巴特勒研究所最新的《2012年全球研发投资预测》显示,中国研发支出年增长率12%,研发强度从1995年的约0.6%提高到2011年的1.6%,如果中国研发支出年均增长保持11.5%,美国保持4.0%,到2030年中国将超过美国成为第一研发大国。企业知识产权意识不断增强,推动知识产权国际化程度提高。中国在五大专利局(美国、日本、欧洲、韩国和中国)获得授权专利数量持续增长。目前所获得的专利授权数量相当于欧洲和韩国总和的2倍。从所获得的专利领域来看,主要集中在数字计算机、电话和数据传输系统、无线和有线传输系统等,为我国高新技术产品向高技术含量迈进提供了技术准备。
三是科技兴贸创新基地不断发展,新基地不断加入,战略性新兴产业国际化的产业基础逐渐成型。经过几年来的培育和发展,前三批认定的58家科技兴贸创新基地已经积累一些龙头企业,产业链日益完善,产业集聚程度较高,战略性新兴产业不断发展。目前,基地在新能源、新材料、生物医药等产业领域业已形成相当出口规模,在国际市场上竞争力显著增强。2011年,上海张江等10家生物医药基地进出口4833.96亿美元,同比增长21.24%,其中出口2294.83亿美元,同比增长20.1%;江苏省无锡市等5家新能源基地进出口843.92亿美元,同比增长20.2%,出口499.08亿美元,同比增长18.4%;江西鹰潭市等14家基地进出口175.12亿美元,同比增长40.73%,其中出口100.59亿美元,同比增长72.21%。2012年,为加快培育战略性新兴产业,商务部、科技部将针对节能环保、新一代信息技术等七大新兴领域,从国内相对成熟的地区培育一批新基地。作为新兴产业的发展载体,科技兴贸创新基地将进一步发挥产业集聚效应,为高技术产品贸易和战略性新兴产业国际化奠定、巩固坚实的产业基础,为转变外贸发展方式、优化贸易结构提供持续的动力。
三、政策建议
(一)着力推进高新技术产品进出口贸易均衡发展
一是继续优化高新技术产品贸易的产品结构、方式结构、主体结构、地区结构和国别结构;二是充分发挥我国巨大市场规模优势,重视进口对外贸协调发展的平衡作用;三是推进战略性新兴产业国际化发展,提升新兴领域在高新技术产品贸易中的比重。
(二)加快形成以高新技术企业为主体的创新体系
一是不断完善有利于创新的政策环境,加快制定并出台支持创新的配套政策;二是推进创新型企业建设,鼓励企业聚集高层次创新人才,与科研院所实现创新资源优化重组,建立产业技术创新战略联盟;三是着力提升科技兴贸创新基地的集聚辐射带动作用的同时,培育一批战略性新兴产业骨干企业。
(三)着力培育新的高新技术产品贸易增长点
一是加快用高新技术改造传统产业,应用新技术、新材料提升传统产业,加快出口产品升级换代;二是加快培育出口竞争新优势,促进加工贸易从组装加工向研发设计、销售物流等环节拓展;三是鼓励高技术产业在境外开展技术研发合作,以技术、服务带动产品出口。
关键词:生命科学;开放式讨论教学;案例分析
生命科学是研究生命活动的本质和发生规律,以及各种生物之间和生物与环境之间相互关系的学科。近年来,生命科学研究的新方法、新技术的不断涌现为解析各种生命现象构建了研究平台,使科研人员从分子、细胞、个体和群体各层面深入探讨生命活动的基本规律成为现实,促进了生命科学领域中一系列观念和认识的更新[1]。与此同时,生命科学领域基础研究的进步也促进了应用,其成果正在以前所未有的速度向农牧渔业、能源工业、环境保护、食品轻工和医药卫生等多个方面渗透,产生了巨大的经济效益、社会效益和环境效益[2]。因此,目前高校生命科学相关的专业课程中既包含基础理论又包含技术手段,既包含研究前沿又包含应用进展,内容丰富、信息量大、逻辑性强。在当今以素质教育和创新型人才培养为核心的教育思想指导下,生命科学相关课程的教学过程中应采取灵活多样的教学方式,帮助学生夯实基本概念,掌握前沿进展,培养创新意识,适应现代化建设和未来社会发展的需要。传统的课堂授课方式以教师主动讲述、学生被动接受为主。这种授课方式教师讲授偏多,学生主动性发挥不足,从而导致学生对部分知识点掌握的深度和广度受到限制,仅停留在熟练记忆的层面。近年来,笔者对生命科学专业课程教学方式进行了初步的改革尝试,将教师讲授式授课与开放式讨论授课相结合,注重对学生的学习方法、思维能力、综合素质和创新能力的培养,产生了积极的反响。我们在学期伊始便给学生介绍与本课程相关的参考书、期刊和网站,教授学生查阅中英文相关文献的方法,随后将与课堂教学内容密切相关的知识延伸、科研进展、研究方法等作为小组(每小组学生4~6人)讨论题目布置给学生。学生通过在课下查阅文献、积极思考和相互交流等方式深入认识讨论题目,并在课堂上以视频、PPT和presentation的方式向全班同学展示。而小组展示过后,教师会引导学生对所讲内容展开讨论并对讨论内容进行归纳总结。同时,教师根据学生报告情况予以打分,并按一定百分比计入期末成绩。下面笔者以生命科学专业的骨干必修课“细胞生物学”和专业必修课“植物生理学”为例,阐述如何在生命科学专业的教学中引入开放式讨论教学模式,引导学生深入探究生命科学理论的内涵。
一、开放式讨论教学应用于“细胞生物学”课程教学的案例展示
细胞作为有机体结构与生命活动的基本单位,既是生命科学发展的生长点,又是生命科学发展的汇聚点。细胞生物学是在显微、亚显微和分子水平研究和揭示细胞基本生命活动规律的科学,是当代生命科学的重要基础学科。目前,细胞生物学的研究日益深入,已成为21世纪生命科学研究的重要领域。“细胞生物学”课程既是北京林业大学生物科学与技术学院理科基地生物科学专业的重要主干课程,也是生物技术专业重要的专业基础课程。
(一)通过开放式讨论教学引入最新科研进展内容
“细胞生物学研究方法”是“细胞生物学”课程中承前启后的一个章节,该章节从细胞形态的显微观察、细胞及其组分的分析、细胞培养与生物工程、细胞及生物大分子的动态变化等几个方面介绍了有关细胞生物学的研究方法。其中关于细胞形态的显微观察,课本中主要介绍了光学显微镜、荧光显微镜、激光共聚焦显微镜和电子显微镜的原理和使用方法。这些显微成像技术可以帮助研究者从分子和细胞等微观层面观察生命过程中的变化,揭示生命活动的物质基础和动态规律。近年来,科学家们不断尝试,实现了突破衍射极限的光学显微成像,即超分辨荧光显微术[3]。2014年诺贝尔奖即授予了其中两种超分辨率光学显微镜的发明者———受激发射损耗显微术(以下简称为STED)的发明者StefanW.Hell和光激活定位显微术(以下简称为PALM)的发明者EricBetzig、WilliamE.Moerner。由于教材内容篇幅的限制以及修订和出版时间的周期性,这一重要内容并没有被及时收录在内。于是,我们选择这一部分内容作为开放式讨论教学内容。首先,教师为学生强调衍射极限的概念,从成像的角度来说,衍射极限影响下的显微成像系统只能分辨有限小的细节,一般在200nm到300nm之间。德国物理学家ErnstAbbe发现了这一现象,并将其公式刻在自己的墓碑上。在教师的引导下,学生们播放了在网上查找到的诺贝尔奖获得者的采访视频和超分辨率显微术动画,激发大家的学习兴趣;另一组学生则通过PPT和presentation展示了STED和PALM技术的原理和特点。随后,教师通过设立以下问题引导学生展开讨论:相对于传统光学显微术,STED显微术和PALM显微术通过何种方式突破了刻在墓碑上的公式———光学衍射的极限,实现了在纳米级对生物大分子和细胞结构进行清晰成像。最后,教师对学生讲述中提到的多种超分辨率显微镜的优势和不足加以补充和总结。通过这次讲述和讨论,学生们增长了知识,开拓了视野,知道了超高分辨率显微镜通过多种技术革新大大提高了人们对细胞内大分子物质定位和功能分析的观测尺度,深刻理解了显微镜是认识复杂生命现象的窗口这一观点。由上述案例可知,通过开放式讨论教学可将更多的研究进展融入到课堂教学中,更新和充实基础理论。
(二)通过开放式讨论教学将理论与实际应用相结合
“细胞增殖调控与癌细胞”是“细胞生物学”课程中备受学生关注的一个章节。细胞增殖是生物繁殖和生长发育的基础,是受到高度严格调控的细胞生命过程。在细胞增殖中任何关键步骤的错误,都有可能引发严重后果。在动物体内,异常旺盛增殖的细胞会发生癌变转化为癌细胞,对生命安全造成严重威胁。“细胞生物学”课程中大多数章节理论性较强,知识较为抽象,然而“细胞增殖调控与癌细胞”一节与每位同学的身体健康密切相关,学生们有着强烈的学习兴趣和探索欲望。因此,我们借助学生的学习兴趣,将癌细胞的形成与特征部分作为开放式讨论教学内容。首先,教师为学生概述癌细胞的定义和与细胞增殖调控的关系。紧接着,有学生讲解癌细胞的基本特征及肿瘤的发生过程,另一组学生讲解肿瘤发生的细胞信号调控网络以及目前针对特异信号通路的癌症治疗靶向药物。随后,教师通过设立以下问题引导学生展开讨论:癌症的发生与环境因素是否密切相关?癌症是不是遗传性疾病?癌症是不是可以称为老年疾病?癌症的产生除了基因突变,有没有其他遗传机制的参与?等等。最后,教师对学生讲述中提到的癌基因、抑癌基因和生长因子等重要知识点加以强调和深化。通过这次讲述和讨论,学生不但对课本知识理解得更为深刻,也真正认识到细胞生物学与人类生活的密切关系,以及细胞生物学在解决人类所面临的重大健康问题中所发挥的重要作用。由上述案例可知,通过开放式讨论教学,可以将与理论知识密切相关的实际应用融入课堂教学中,激发学生的学习兴趣,促使学生积极主动地学习和运用知识。
二、开放式讨论教学应用于“植物生理学”课程教学的案例展示
植物生理学包括植物生命活动过程中物质代谢、能量转化、信息传递及由此表现出的形态建成等多方面内容,是从不同层次、不同水平、不同角度探索研究植物生命活动规律及其与环境相互关系的科学。植物生理学既在基础研究领域探究相互联系、相互依存、相互制约的生命现象本质,又为农业和林业生产实践提供了理论指导和技术支持。正是因为“植物生理学”课程的重要性,这门课程成为北京林业大学生物、林学、园艺和水保等多个专业的专业必修课程。
(一)通过开放式讨论教学展示多种技术手段
“植物矿质与氮素营养”是“植物生理学”课程中介绍植物生命活动横断面中的一章,围绕高等植物矿质元素的概念及生理作用、矿质离子跨膜运输的机理、植物根系吸收养分的过程和特点等几部分展开讲述。膜片钳技术和非损伤微测技术均可用来测量和研究生命体外微环境中的离子/分子流,在植物矿质元素转运研究中均获得成功应用[4]。膜片钳技术利用微玻管电极接触细胞膜,对膜片上离子通道的离子电流进行监测记录,从而反映单个或多个离子通道的分子活动。非损伤微测技术利用选择性电极,可在保证被测样品完整性和近似实际生理环境状态下,对进出样品的各种离子/分子流进行三维、实时和动态的测量,从而获得离子/分子流的浓度、流速和运动方向等多方面信息。我们将这两种研究植物矿质元素转运的重要技术的比较作为开放式讨论教学的内容,作为该章理论知识介绍的补充。首先,教师为学生讲授膜片钳技术和非损伤微测技术的历史由来,再由一组学生讲解膜片钳技术的原理、特点和应用举例,而另一组学生讲解非损伤微测技术的原理、特点和应用举例。随后,教师通过设立以下问题引导学生展开讨论:膜片钳技术和非损伤微测技术相比,分别有哪些优势和劣势?应该应用在哪些不同的领域?最后,教师为学生们讲述现实中两种技术的应用并加以总结,指出膜片钳技术是研究植物细胞膜离子通道的传统工具,但非损伤微测技术可以使植物矿质离子转运研究更加深入和丰满。通过这次讨论和讲述,学生们在明确植物矿质元素转运、吸收和生理功能等理论的基础上,进一步了解了进行上述理论研究的技术手段,做到了知其然,也知其所以然。由上述案例可知,通过开放式讨论教学,可以有的放矢地加强学生对研究方法和技术手段的学习。
(二)通过开放式讨论教学锻炼学生科学思维的能力
“植物生长物质”是“植物生理学”课程中内容相对独立的一章,主要介绍多种植物激素和植物生长调节剂的生物学功能。在这一章中,教师不但需要为学生介绍生长素、赤霉素、细胞分裂素、脱落酸和乙烯等5大类经典激素,还需要为学生讲解油菜素内酯、茉莉素、水杨酸、独脚金内酯等4大类新型植物激素。每种激素都需要围绕激素的发现与种类、分布与运输、合成与降解代谢、生物学功能和信号传导途径等多方面进行讲述。我们希望学生在听教师讲授完其中8大类植物激素的相关知识后融会贯通、举一反三,对最后一种也是最新的一种植物激素———独脚金内酯展开开放式讨论。首先,教师向学生强调植物激素的定义和特征。紧接着,一组学生讲解独脚金内酯的发现和分布、结构和合成,而另一组学生讲解独脚金内酯的生物学功能和信号传导。随后,教师通过设立以下问题引导学生展开讨论:独脚金内酯的各种生物学功能中,哪些是与其他激素的生物学功能协同作用,哪些是与其他激素的生物学功能相拮抗的?独脚金内酯的信号传导途径与哪些激素的信号传导途径具有相似性,而不同之处又在哪里?最后,教师对独脚金内酯的各种信息进行梳理,加深学生对植物激素特征和生物学功能的理解。通过这次讨论和讲述,学生们可以从对每种激素具体细节的领会中跳出来,对植物激素从最初合成到最后发挥生物学功能的一系列过程加以宏观把握。由上述案例可知,通过开放式讨论教学,可以锻炼学生的科学思维能力,引导学生由个别到一般、由局部到全面,独立有序地完成教学内容。通过上述“细胞生物学”课程和“植物生理学”课程中多个教学案例可以看出,开放式讨论教学可以补充讲授型课堂教学的不足,帮助学生在教师的指引下进行积极而独立的思考和自主而深入的学习,了解科研进展,知晓实际应用,掌握研究方法,锻炼科学思维,培养创新意识。
参考文献
[1]张道民.对生命科学前沿问题的几点思索[J].前沿科学,2010,4(14):26-32.
[2]熊国梅.生物工程技术的发展对社会经济发展的影响[J].教育教学论坛,2012,45(38):171-172.
[3]吕志坚,陆敬泽,吴雅琼,等.几种超分辨率荧光显微技术的原理和近期进展[J].生物化学与生物物理进展,2009,36(12):1626-1634.
关键词:问题; 先进制造技术; 前沿科学; 应用前景
论文
制造业是现代国民经济和综合国力的重要支柱,其生产总值一般占一个国家国内生产总值的20%~55%。在一个国家的企业生产力构成中,制造技术的作用一般占60%左右。专家认为,世界上各个国家经济的竞争,主要是制造技术的竞争。其竞争能力最终体现在所生产的产品的市场占有率上。随着经济技术的高速发展以及顾客需求和市场环境的不断变化,这种竞争日趋激烈,因而各国政府都非常重视对先进制造技术的研究。
1 当前制造科学要解决的问题
当前制造科学要解决的问题主要集中在以下几方面:
(1)制造系统是一个复杂的大系统,为满足制造系统敏捷性、快速响应和快速重组的能力,必须借鉴信息科学、生命科学和社会科学等多学科的研究成果,探索制造系统新的体系结构、制造模式和制造系统有效的运行机制。制造系统优化的组织结构和良好的运行状况是制造系统建模、仿真和优化的主要目标。制造系统新的体系结构不仅对制造企业的敏捷性和对需求的响应能力及可重组能力有重要意义,而且对制造企业底层生产设备的柔性和可动态重组能力提出了更高的要求。生物制造观越来越多地被引入制造系统,以满足制造系统新的要求。
(2)为支持快速敏捷制造,几何知识的共享已成为制约现代制造技术中产品开发和制造的关键问题。例如在计算机辅助设计与制造(CAD/CAM)集成、坐标测量(CMM)和机器人学等方面,在三维现实空间(3-Real Space)中,都存在大量的几何算法设计和分析等问题,特别是其中的几何表示、几何计算和几何推理问题;在测量和机器人路径规划及零件的寻位(如Localization)等方面,存在C-空间
(配置空间Configuration Space)的几何计算和几何推理问题;在物体操作(夹持、抓取和装配等)描述和机器人多指抓取规划、装配运动规划和操作规划方面则需要在旋量空间(Screw Space)进行几何推理。制造过程中物理和力学现象的几何化研究形成了制造科学中几何计算和几何推理等多方面的研究课题,其理论有待进一步突破,当前一门新学科--计算机几何正在受到日益广泛和深入的研究。
(3)在现代制造过程中,信息不仅已成为主宰制造产业的决定性因素,而且还是最活跃的驱动因素。提高制造系统的信息处理能力已成为现代制造科学发展的一个重点。由于制造系统信息组织和结构的多层次性,制造信息的获取、集成与融合呈现出立体性、信息度量的多维性、以及信息组织的多层次性。在制造信息的结构模型、制造信息的一致性约束、传播处理和海量数据的制造知识库管理等方面,都还有待进一步突破。
(4)各种人工智能工具和计算智能方法在制造中的广泛应用促进了制造智能的发展。一类基于生物进化算法的计算智能工具,在包括调度问题在内的组合优化求解技术领域中,受到越来越普遍的关注,有望在制造中完成组合优化问题时的求解速度和求解精度方面双双突破问题规模的制约。制造智能还表现在:智能调度、智能设计、智能加工、机器人学、智能控制、智能工艺规划、智能诊断等多方面。
这些问题是当前产品创新的关键理论问题,也是制造由一门技艺上升为一门科学的重要基础性问题。这些问题的重点突破,可以形成产品创新的基础研究体系。
2 现代机械工程的前沿科学
不同科学之间的交叉融合将产生新的科学聚集,经济的发展和社会的进步对科学技术产生了新的要求和期望,从而形成前沿科学。前沿科学也就是已解决的和未解决的科学问题之间的界域。前沿科学具有明显的时域、领域和动态特性。工程前沿科学区别于一般基础科学的重要特征是它涵盖了工程实际中出现的关键科学技术问题。
超声电机、超高速切削、绿色设计与制造等领域,国内外已经做了大量的研究工作,但创新的关键是机械科学问题还不明朗。大型复杂机械系统的性能优化设计和产品创新设计、智能结构和系统、智能机器人及其动力学、纳米摩擦学、制造过程的三维数值模拟和物理模拟、超精度和微细加工关键工艺基础、大型和超大型精密仪器装备的设计和制造基础、虚拟制造和虚拟仪器、纳米测量及仪器、并联轴机床、微型机电系统等领域国内外虽然已做了不少研究,但仍有许多关键科学技术问题有待解决。
信息科学、纳米科学、材料科学、生命科学、管理科学和制造科学将是改变21世纪的主流科学,由此产生的高新技术及其产业将改变世界的面貌。因此,与以上领域相交叉发展的制造系统和制造信息学、纳米机械和纳米制造科学、仿生机械和仿生制造学、制造管理科学和可重构制造系统等会是21世纪机械工程科学的重要前沿科学。
2.1 制造科学与信息科学的交叉--制造信息科学
机电产品是信息在原材料上的物化。许多现代产品的价值增值主要体现在信息上。因此制造过程中信息的获取和应用十分重要。信息化是制造科学技术走向全球化和现代化的重要标志。人们一方面对制造技术开始探索产品设计和制造过程中的信息本质,另一方面对制造技术本身加以改造,以使得其适应新的信息化制造环境。随着对制造过程和制造系统认识的加深,研究者们正试图以全新的概念和方式对其加以描述和表达,以进一步达到实现控制和优化的目的。
与制造有关的信息主要有产品信息、工艺信息和管理信息,这一领域有如下主要研究方向和内容:
(1) 制造信息的获取、处理、存储、传递和应用,大量制造信息向知识和决策转化。
(2) 非符号信息的表达、制造信息的保真传递、制造信息的管理、非完整制造信息状态下的生产决策、虚拟管理制造、基于网络环境下的设计和制造、制造过程和制造系统中的控制科学问题。
这些内容是制造科学和信息科学基础融合的产物,构成了制造科学中的新分支--制造信息学。
2.2 微机械及其制造技术研究
微型电子机械系统(MEMS),是指集微型传感器、微型执行器以及信号处理和控制电路、接口电路、通信和电源于一体的完整微型机电系统。MEMS技术的目标是通过系统的微型化、集成化来探索具有新原理、新功能的元件和系统。MEMS的发展将极大地促进各类产品的袖珍化、微型化,成数量级的提高器件与系统的功能密度、信息密度与互联密度,大幅度地节能、节材。它不仅可以降低机电系统的成本,而且还可以完成许多大尺寸机电系统无法完成的任务。例如用尖端直径为5μm的微型镊子可以夹起一个红细胞;制造出3mm大小能够开动的小汽车;可以在磁场中飞行的像蝴蝶大小的飞机等。MEMS技术的发展开辟了技术全新的领域和产业,具有许多传统传感器无法比拟的优点,因此在制造业、航空、航天、交通、通信、农业、生物医学、环境监控、军事、家庭以及几乎人们接触到的所有领域中都有着十分广阔的应用前景。
微机械是机械技术与电子技术在纳米尺度上相融合的产物。早在1959年就有科学家提出微型机械的设想,1962年第一个硅微型压力传感器问世。1987年美国加州大学伯克利分校研制出转子直径为60~120μm的硅微型静电电动机,显示出利用硅微加工工艺制作微小可动结构并与集成电路兼容制造微小系统的潜力。微机械技术有可能像20世纪的微电子技术那样,在21世纪对世界科技、经济发展和国防建设产生巨大的影响。近10年来,微机械的发展令人瞩目。其特点如下:相当数量的微型元器件(微型结构、微型传感器和微型执行器等)和微系统研究成功,体现了其现实的和潜在的应用价值;多种微型制造技术的发展,特别是半导体微细加工等技术已成为微系统的支撑技术;微型机电系统的研究需要多学科交叉的研究队伍,微型机电系统技术是在微电子工艺的基础上发展的多学科交叉的前沿研究领域,涉及电子工程、机械工程、材料工程、物理学、化学以及生物医学等多种工程技术和科学。转贴于
目前对微观条件下的机械系统的运动规律,微小构件的物理特性和载荷作用下的力学行为等尚缺乏充分的认识,还没有形成基于一定理论基础之上的微系统设计理论与方法,因此只能凭经验和试探的方法进行研究。微型机械系统研究中存在的关键科学问题有微系统的尺度效应、物理特性和生化特性等。微系统的研究正处于突破的前夜,是亟待深入研究的领域。
2.3 材料制备/零件制造一体化和加工新技术基础
材料是人类进步的里程碑,是制造业和高技术发展的基础。每一种重要新材料的成功制备和应用,都会推进物质文明,促进国家经济实力和军事实力的增强。21世纪中,世界将由资源消耗型的工业经济向知识经济转变,要求材料和零件具有高的性能以及功能化、智能化的特性;要求材料和零件的设计实现定量化、数字化;要求材料和零件的制备快速、高效并实现二者一体化、集成化。材料和零件的数字化设计与拟实仿真优化是实现材料与零件的高效优质制备/制造及二者一体化、集成化制造的关键。一方面,通过计算机完成拟实仿真优化后可以减少材料制备与零件制造过程中的实验性环节,获得最佳的工艺方案,实现材料与零件的高效优质制备/制造;另一方面,根据不同材料性能的要求,如弹性模量、热膨胀系数、电磁性能等,研究材料和零件的设计形式。进而结合传统的去除材料式制造技术、增加材料式覆层技术等,研究多种材料组分的复合成形工艺技术。形成材料与零件的数字化制造理论、技术和方法,如快速成形技术采用材料逐渐增长的原理,突破了传统的去材法和变形法机械加工的许多限制,加工过程不需要工具或模具,能迅速制造出任意复杂形状又具有一定功能的三维实体模型或零件。
2.4 机械仿生制造
21世纪将是生命科学的世纪,机械科学和生命科学的深度融合将产生全新概念的产品(如智能仿生结构),开发出新工艺(如生长成形工艺)和开辟一系列的新产业,并为解决产品设计、制造过程和系统中一系列难题提供新的解决方法。这是一个极富创新和挑战的前沿领域。
地球上的生物在漫长的进化中所积累的优良品性为解决人类制造活动中的各种难题提供了范例和指南。从生命现象中学习组织与运行复杂系统的方法和技巧,是今后解决目前制造业所面临许多难题的一条有效出路。仿生制造指的是模仿生物器官的自组织、自愈合、自增长与自进化等功能结构和运行模式的一种制造系统与制造过程。如果说制造过程的机械化、自动化延伸了人类的体力,智能化延伸了人类的智力,那么,"仿生制造"则可以说延伸了人类自身的组织结构和进化过程。
仿生制造所涉及的科学问题是生物的"自组织"机制及其在制造系统中的应用问题。所谓"自组织"是指一个系统在其内在机制的驱动下,在组织结构和运行模式上不断自我完善、从而提高对于环境适应能力的过程。仿生制造的"自组织"机制为自下而上的产品并行设计、制造工艺规程的自动生成、生产系统的动态重组以及产品和制造系统的自动趋优提供了理论基础和实现条件。
仿生制造属于制造科学和生命科学的"远缘杂交",它将对21世纪的制造业产生巨大的影响。
仿生制造的研究内容目前有两个方面:
2.4.1 面向生命的仿生制造
研究生命现象的一般规律和模型,例如人工生命、细胞自动机、生物的信息处理技巧、生物智能、生物型的组织结构和运行模式以及生物的进化和趋优机制等;
2.4.2 面向制造的仿生制造
研究仿生制造系统的自组织机制与方法,例如:基于充分信息共享的仿生设计原理,基于多自律单元协同的分布式控制和基于进化机制的寻优策略;研究仿生制造的概念体系及其基础,例如:仿生空间的形式化描述及其信息映射关系,仿生系统及其演化过程的复杂度计量方法。
机械仿生与仿生制造是机械科学与生命科学、信息科学、材料科学等学科的高度融合,其研究内容包括生长成形工艺、仿生设计和制造系统、智能仿生机械和生物成形制造等。目前所做的研究工作大多属前沿探索性的工作,具有鲜明的基础研究的特点,如果抓住机遇研究下去,将可能产生革命性的突破。今后应关注的研究领域有生物加工技术、仿生制造系统、基于快速原型制造技术的组织工程学,以及与生物工程相关的关键技术基础等。 3 现代制造技术的发展趋势
20世纪90年代以来,世界各国都把制造技术的研究和开发作为国家的关键技术进行优先发展,如美国的先进制造技术计划AMTP、日本的智能制造技术(IMS)国际合作计划、韩国的高级现代技术国家计划(G--7)、德国的制造2000计划和欧共体的ESPRIT和BRITE-EURAM计划。
随着电子、信息等高新技术的不断发展,市场需求个性化与多样化,未来现代制造技术发展的总趋势是向精密化、柔性化、网络化、虚拟化、智能化、绿色集成化、全球化的方向发展。
当前现代制造技术的发展趋势大致有以下九个方面:
(1) 信息技术、管理技术与工艺技术紧密结合,现代制造生产模式会获得不断发展。
(2) 设计技术与手段更现代化。
(3) 成型及制造技术精密化、制造过程实现低能耗。
(4) 新型特种加工方法的形成。
(5) 开发新一代超精密、超高速制造装备。
(6) 加工工艺由技艺发展为工程科学。
(7) 实施无污染绿色制造。
为了促进载人航天的应用,提高工程综合效益,使我国的空间应用跨入载人空间实验阶段,“神舟二号”的太空之旅,肩负着开展一系列空间科学及技术实验的神圣使命。
“神舟二号”飞船的3个舱段,几乎都安装了各种科学实验设备,“神舟二号”由此成为一个名副其实的“空间科学技术实验室”。这些科学实验设备各有各的用途。我国科学家试图通过这些设备,进行材料科学、生命科学、空间天文、环境监测等实验任务。这些实验任务由中国科学院为主的全国50多个科研院所和大学承担。
太空“百宝箱”
太空中几乎没有重力,没有空气和水分,各种比重不同的物体可以在一起“和平共处”。在这里也几乎没有地面上的对流、沉淀等现象,可以生长出地面上得不到的结构完整、性能优良的晶体材料。在飞船上进行的空间材料科学实验,对于获取高质量的晶体材料,了解晶体材料生长过程中重力对流等因素对晶体品质的影响,指导地面批量生产具有重要意义。
进行空间微重力科学研究和实验,是当今载人航天实验的热点。空间材料实验向人们传递着这样一个信息:外层空间是发展研究新材料、新的加工工艺的理想场所。
人类开展空间科学研究已有40多年历史,而大规模进行太空生产材料实验活动始于70年代末。从1980年到1990年,苏联在空间站里进行了500项材料加工实验。1989年,在“和平”号空间站生产出297公斤砷化镓,价值上百万美元。如今,在空间生产的砷化镓晶体已成为最有希望的商品。一些诸如大尺寸微乳胶球、高纯度药物等都已贴上了“空间”商标。通过空间实验,还获得了一些新的加工工艺。这些工艺为改进地面材料的生产指明了方向。
多年来,我国先后利用返回式卫星开展了80多项材料加工和生命科学等方面的研究,进行了各种形式的搭载实验300多项,已经形成了以中国科学院为主,航天研究院所、高等院校等参加的空间微重力科学研究应用队伍。
作为人类文明进步的标志,材料是现代工业与高新技术领域的重要支柱之一。材料的进步,推动了科学技术的不断发展。进行材料科学研究,是“神舟二号”飞船的使命之一。
在空间可以获得在地面无法生长出的高性能晶体材料,这些材料在高新技术领域有着重要的应用价值。例如二元半导体锑化镓晶体,是制造微波器件、微波集成电路和超高速集成电路的关键电子材料。与目前普遍应用的硅单晶相比,其性能更加优良。三元半导体碲锌镉晶体是制造红外探测器不可缺少的材料。我们现在通过“风云”气象卫星可以获得准确的天气预报,进行矿产资源勘探、指导农牧业生产和自然灾害预防,这其中红外探测器功不可没。氧化物激光晶体硅酸铋是光信息存储功能材料。随着信息时代的到来,信息存储材料的重要作用已是有目共睹。
地面的晶体生长过程可以通过肉眼直接观察,那么,在空间微重力环境下的晶体生长过程又是什么样的呢?我国科学家设计了一种安装在“神舟二号”上的空间晶体生长观察装置,可以利用摄像机拍摄空间微重力条件下氧化物单晶的生长全过程。在空间对晶体材料生长机理和生长工艺的深入研究,有利于指导地面晶体材料的生产,改进工艺,提高晶体质量,以推进材料科学及工程的发展,造福全人类。
太空“生物军团”
空间微重力、强宇宙粒子辐射、节律变化等特殊环境,给生命科学、生物技术实验提供了地面不能或不能完全模拟的条件。利用这种独特环境进行生物体组织培养,可以避免地面重力作用所造成的对流和积淀作用,获得比地面更好的效果。因此,空间生命科学研究不仅有助于揭示生命科学中不可能在地面环境下获知的一些本质特征,而且在应用上可望获取空间生物工程的方法,生产出高质量单晶、高效生物制品等。
今天,微生物的生长代谢研究已由地面拓展到太空,由此而发展起来的微生物技术已广泛用于药物合成、医学研究等领域,为人类生产生物制剂开拓了新的前景。
在生物材料加工方面,已分离出地面很难分离的哺乳动物特化细胞,其纯度比地面高4~5倍,分离速度提高400~700倍。这些成果给药物学研究带来了新的生机,一些地面不能制造和提纯的药物,却可以在太空中完成。
在“和平”号空间站里,科学家已经成功地种植了卷心菜、土豆等蔬菜,还种植了只有40厘米高的小麦。由于在空间站里24小时都有电灯照明,小麦无法“安眠”,60天就成熟了。这种转基因小麦的产量是地面普通小麦产量的3倍。
自1988年以来,我国先后进行了4次藻类空间生长试验,研究了20种藻类和大型藻在太空环境中的适应能力,取得了固氮能力强的藻类新品系。用它们的发酵物配置的饲料喂养梅花鹿,不仅节省饲料,还能使鹿茸的产量增加16%。
科学家们还发现,在空间失重的条件下,蛋白质晶体比在地球上生长的个大,且更为纯净,结构更为完整,可以很方便地进行分析。通过对它们的分析,能更深入地揭开蛋白质、酶和一些病毒的秘密,并由此研制出新的药物。
生命体的一切活动都是通过其基本构成物质,特别是蛋白质和核酸的功能来实现的,而这些生物大分子功能如何又直接取决于它们的结构。因此,测定这些生物大分子的结构,研究其结构与功能的关系,对于揭示生命奥秘和了解疾病十分重要;而且,它也是发展蛋白质工程及药物设计等生物高技术所必需的基础,特别是在人类基因组计划完成之后,这类研究的意义将更加突出。“神舟二号”飞船上装载的蛋白质结晶装置是我国科研工作者为了揭示生命的奥秘,经过多年研制而成的。这项研究对于抗农作物病害、治疗人体顽症、设计新药物、在细胞和分子水平上研究生命现象和揭示生命的奥秘具有重要意义。
“神舟二号”所进行的空间生物效应研究,是我国航天领域首次多物种、多种生物的综合性生物学研究。众多的生物学实验材料,组成了一个进军太空的“生物军团”。
本次生物学效应实验所用的生物材料是在过去7年筛选出来的。在19种生物中,有17种分别是微生物、植物、水生生物和无脊椎动物,有2种为脊椎动物的细胞或组织。实验的目的是从细胞、组织、个体、种群和简单生态系统等不同层次上,研究生物体和生物封闭系统的空间生物学效应,争取研究开发出空间生物加工的共培养技术、反应器技术和发现高效、高质生命物质的特殊代谢途径;同时,争取利用空间环境的诱发变异获得具有优良品质和经济价值的生物品系。
重力的干扰对活细胞的体外生长会产生一定的影响,空间环境由于不受重力干扰更容易进行细胞的培养。通过空间细胞的培养实验,可使医生在不危害病人的条件下,精确地试验治疗癌症的新方法。同时,高质量的组织培养已用于生长胰腺细胞,使得糖尿病患者在不使用胰岛素的情况下也能得到治疗。
空间生物学效应的实验方法、工艺和实验结果,可以促进高效、高抗体、优质物种在相关生产领域的应用。通过建立生物反应器原理模型和生态管理模型,可以指导解决我国和世界当前面临的严峻环境问题。
太空“天文台”
你想知道在遥远的太空是怎样的景象吗?除了用肉眼可以见到的星星之外,科学家近年来还发现了一个神奇的现象,那就是人们用肉眼看不到的γ射线暴。
宇宙γ射线暴是宇宙中一种突发的巨大能量的爆发现象,其巨大能量的来源及其发生机理,无法用现有的科学理论解释,至今还是一个谜。因此,它已成为一个重要的国际前沿热点课题。“神舟二号”飞船携带了进行空间天文观测的超软X射线探测器和γ射线探测器,目的就是尝试为解开这一谜底提供更多的信息,以便了解宇宙γ射线暴的起源、产生机制和内在性质等。
太阳耀斑中的质子耀斑所产生的高能质子辐射,对载人飞船有很大威胁,对短波通讯、洪涝灾害等也有直接影响。通过对太阳高能辐射变化的观测研究,可以判断耀斑性质,可能提前几十小时对其作出警报,并在太阳活动高峰年期间对太阳高能电磁辐射进行监测。对太阳高能辐射变化的观测研究,也有利于载人航天器的安全保障。因此,我国天文学家将以“神舟二号”飞船为平台,在对宇宙γ射线暴进行探测研究的同时,也兼顾到对太阳耀斑高能辐射的监测。
此外,我国科学家还将用安装在“神舟二号”飞船上的大气成分探测器、大气密度探测器等,监视空间环境的变化,为空间环境预报和警报提供实时监测数据。也就是说,利用空间环境预报中心,收集、综合分析国内外卫星和地面的观测数据,提供飞船运行轨道的有关大气参数及太阳活动和地磁活动的参数,预报飞船发射、运行期间空间环境状况和可能出现的空间环境异常,并在出现危急情况时警报。同时,它还是将来航天员出舱活动的“空间天气预报”系统。
腾飞吧,“希望之舟”
如果把我国空间科学实验比喻为“阳光事业”,那么,它的承载者就是“神舟号”飞船。
“神舟二号”第一次集中了有一定学科面的开拓性的空间科学研究工作。
这一系列实验,何时能知道结果?能否取得突破性进展?是大家十分关心的问题。科学家对此次空间科学实验的估计,总是十分谨慎的。他们认为,现在下结论尚为时过早,因为有些结果飞船回收后就知道,有些还有待于进行深入研究,有些将继续在太空中进行长达半年的观测。但可以肯定的是,通过“神舟二号”的太空之旅,将会开拓我们的视野,增加我们的新知,积累更多的经验,为今后更深入、更大规模的实验,最终实现空间产品的商品化和产业化,更为广泛地服务社会、造福社会开辟了前进的道路。
据专家介绍,继“神舟二号”以后,我国还将在今后陆续上天的“神舟号”飞船中,进一步加快空间实验的脚步。在空间材料科学方面的研究,将增加新的样品;在生命科学和生物技术实验研究方面,将增加细胞反应器实验、细胞融合、电泳等实验项目;在空间环境探测方面,将进一步开展空间大气成分、密度等多项研究。
英文名称:Physical Testing and Chemical Analysis Part B(Chemical Analysis)
主管单位:上海科学院
主办单位:上海材料研究所;中国机械工程学会理化检验分会
出版周期:月刊
出版地址:上海市
语
种:中文
开
本:大16开
国际刊号:1001-4020
国内刊号:31-1337/TB
邮发代号:4-182
发行范围:国内外统一发行
创刊时间:1963
期刊收录:
CA 化学文摘(美)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
期刊荣誉:
中科双效期刊
联系方式
关键词:分子生物学 教学过程 解决对策
中图分类号:G42 文献标识码:A 文章编号:1674-098X(2014)06(a)-0110-02
双语教学是我国高等教育与国际接轨、培养具有国际竞争力人才的必然要求,也是当前教学改革和教学研究的重点与热点。教育要面向现代化、面向世界、面向未来,为适应经济全球化和科技发展的挑战,推进我国高等教育的发展,提高学生外语应用能力,教育部在2001年颁布的(《关于加强高等学校本科教学工作提高教学质量的若干意见)(教高[2001]4号)[1]中的第八条专门谈到了在高等学校推进双语教学,该文件指出:“本科教育要创造条件使用英语等外语进行公共课和专业课教学。对高新技术领域的生物技术、信息技术等专业,以及为适应我国加入WTO后需要的金融、法律等专业,更要先行一步。”此外,在教育部(《关于进一步加强高等学校本科教学工作的若干意见》(教高[2005]1号)文件中,再次强调双语教学的重要性[2]。
作为生命科学的一个重要组成部分,分子生物学是研究核酸等生物大分子的功能、形态结构特征及其重要性和规律性的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科[3-5]。近年来,分子生物学领域的突飞猛进,新技术、新理论层出不穷,给分子生物学的教学带来了极大的考验和挑战。为了使学生能够更加及时了解快速发展的分子生物学理论知识及实验技术,培养更具国际竞争力的高素质人才,江苏科技大学从2008年起对分子生物学的教学进行了双语教学模式的探索。在本课程的教学实践中我们不断总结经验,积极创新,该文主要介绍我们在双语教学实践中遇到的主要问题,和对这些问题解决办法的几点思考。
1 双语教学目前存在的问题
1.1 教材的选择问题
分子生物学课堂教学既应包括经典内容,又应增补生命科学的新技术、新进展,尤其是人类基因组计划的完成和后基因组时代的到来,该领域呈现日新月异的变化,因此,在教学选择上需要着眼于21世纪生命科学的重大学科方向和领域,注重本学科出现的重大理论和应用问题,充分反映生命科学最新进展和成就。此外教材的选择还要兼顾双语教学的需要。目前国内有很多部优秀的英文原版教材,如《分子生物学精要速览系列》[6]。该书脉络清晰,内容详实,但是对于本科三年级学生来说,阅读全英文教材仍感吃力,尤其对一些复杂机制、机理的理解存在一定困难。该教材由中国科学出版社出版的配套中文翻译版,但是同时购买两本教材增加了学生负担,并给课堂教学带来不便。
1.2 学生英语水平参差不齐,双语比例难把握
本课程授课对象是生物技术专业本科大三学生,学生英语水平参差不齐的问题较为突出。教学过程中,如果英文讲授比例偏大,学生则经常反应专业英语词汇量不够、听力水平不高,所以对于很多复杂知识点难免会一知半解。如果课堂上教师增加中文解释说明,一方面教学时间紧张,另一方面影响双语教学的效果,教学目标也得不到彻底的贯彻执行。
1.3 双语教学影响学生对互动式教学的参与
互动式教学是一种广泛采用的,旨在通过营造多边互动的教学环境,在教学双方平等交流探讨的过程中,达到不同观点碰撞交融,进而激发教学双方的主动性和探索性,达成提高教学效果的一种教学方式。但是双语教学实践中我们发现,由于英语水平尤其是口语水平的限制,一部分同学不敢开口,放弃了和老师之间互动。老师“唱独角戏”的场面时有发生,达不到互动式教学的教学效果。双语教学中如何提高师生间的互动,是一个值得思考的问题。
2 对解决分子生物学双语教学中诸多问题的思考
2.1 对教材选择的思考
英汉对照的分子生物学教材是最适合本科生使用的双语教学教材。目前本课程正在使用的教材是化学工业出版社的《英汉对照分子生物学导论》[7],教材为中英文对照教材,配有CD碟片,此教材知识难度适中、用语地道、简洁明了,图片生动易懂,十分适合大三年级学生使用。教师可以引导学生在课前预习时,先尽力阅读英文部分,遇到理解困难后可直接查阅相应的中文对照部分。课堂教学中教师用英语讲授过程中,如果学生出现听不懂的词汇,也可迅速在书中找到中文参考,帮助理解。使用中英文对照教材,既可以让学生沉浸式的体验英文的原版教材魅力,增加专业英语词汇量,又不会因为英文水平的限制影响对课程知识点的理解。但在教学实践中我们也发现该教材在使用中的一些问题:(1)有些重要知识点阐述过于简单,使得学生理解有些困难;(2)知识点涵盖面较窄;(3)此教材为2010年北京第1版,缺乏对分子生物学许多领域最新的研究成果的描述。因此,我们在教学中适当增加了参考教科书,如引入内容更为全面的《Instant Notes on Molecular Biology》[6]和《Molecular Biology ofthe Gene》[8]等。
2.2 对授课内容换和授课手段的思考
(1)将分子生物学前沿科研成果“导入”课堂教学。
将分子生物学前沿科学进展“导入”课堂是激发学生学习兴趣的绝佳手段。我们可以结合分子生物学某一研究领域的最新进展来启发学生,循循善诱,激发他们进一步了解相关内容的学习兴趣。比如,在讲真核基因表达调控时,可以“导入”2012年诺贝尔生理医学奖表彰的发现“体细胞重编程技术”,这样既让学生觉得自己所学的知识是新鲜的,又让他们因接近世界顶级科学研究成果而感到兴奋,可以极大的刺激学生的学习热情;再比如,在讲DNA变异时,先让学生讨论非典病毒及近期在中国蔓延禽流感的可怕原因,并在学生讨论过程中适时的提问,引导学生思考病毒变异的机理,激起学生强烈的求知欲望。
分子生物学的知识日新月异,先进的技术手段推陈出新,而且中英文专业词汇较多,学生既要克服语言障碍又要理解记忆专业知识;同时,教师也要紧跟学科发展的步伐,及时调整、补充教学内容,让学生及时了解学科发展的最新动态。所以,针对分子生物学知识更新快的特点,教师的教学方法也必须做出必要的改革。
(2)“情景式”教学加深学生对复杂知识点的理解。
分子生物学教学内容中涉及多处对复杂机理的阐述,如真核、原核生物基因表达调控机理、DNA复制机理、转录机理、内含子剪切机理等。机理中有包含多种酶、多种条件。这些复杂机理如果只是凭借教师口述、演示等,学生很难真正理解其中的原理,多种机理容易混淆不清,造成教学效果不佳,且容易使学生失去学习兴趣。而情景式教学能有效提高学生的学习兴趣,有利于理论与实践的过渡,帮助学生理解,从而提高教学效果。
比如对于复杂抽象的知识点,通过图片、动画等情景手段,将复杂内容直观地展现给学生。乳糖操纵子调控机制是教学中的重点及难点内容,涉及机制较复杂,按以往的课堂教学经验,如果直接讲授,学生理解具有一定困难,大多只能对相关机制及概念死记硬背,正负调控很容易混淆,教学效果不佳。
但采用情景式教学法,以学生生活中的常识:用油门和刹车控制汽车的运行来类比乳糖操纵子的正负调控机制,学生很容易理解,并且对这两种机制所起的作用有了更为形象和深刻的认识,不再发生混淆,教学效果良好。
此外,类似的教学法还可以在其他知识点的教学中多次使用,如,将lac阻遏蛋白的别构调节机制类比为钥匙开锁;将大肠杆菌利用乳糖的条件类比为人类饥饿时选择小麦还是面包等,这些类情景的模拟和类比,都是将晦涩难懂的微观世界的抽象规律转化为学生们生活中的具体实例,此方式十分适合于本课程中对复杂抽象机制及概念的教学。在教学中还需引入更多的情景式教学。
(3)用“动态平衡”的思想调节双语比例。
本课程内容术语多,需阐述的机制复杂,且不同章节难易程度不同、不同学生的英语及专业课基础不同,所以不能在教学中机械的限定双语使用比例,而是应该不断的根据教学内容和课堂实际情况的变化进行“动态平衡”式的调整。
例如在难度较大的章节,如果使用英语过多、过难、过快都会将本来就复杂的内容更加复杂化,不仅不能达到双语教学效果,反而会严重影响教学质量。所以应该适当增加中文使用中文解释。此外教学中辅以非语言教学,如直观、形象地图示和类比,帮助学生理解教学内容,消除由于语言理解滞后带来的知识点理解障碍。教学过程中还可以根据学生现场的反应来判断学生的理解情况,灵活掌控双语比例、语言难度及语速。
参考文献
[1] 教育部.关于加强高等学校本科教学工作提高教学质量的若干意见,2001.
[2] 教育部.关于进一步加强高等学校本科教学工作的若干意见,2005.
[3] 朱玉贤,李毅,郑晓峰.现代分子生物学[M].3版.北京:科学出版社,2007.
[4] 阚显照,陈冬生.国家级分子生物学双语教学示范课程的实践与思考[J].中国电力教育:上,2010(5):96-97.
[5] 李佳楠.分子生物学双语教学尝试的新思路[J].科教文汇,2010(22):44-45.
[6] Phil Turner,Alexander McLennan,et al.2005. Instant Notes in Molecular Biology(3rded)[M].New York:Taylor & Francis,2005
医学生物技术是现代生物技术领域中成果最多、发展最快的学科之一。在医学生物技术专业人才的培养过程中,不仅需要有系统的理论知识作为基础,还要注重学生实验能力的提升。根据学校学科建设优势,通过实验内容的选择、课程整合、开放实验室、鼓励学生参与教师科研实验工作等措施,加强学生综合素质培养,提高实验教学质量。
医学生物技术人才培养实验教学生物技术是一门涉及领域宽、涵盖范围广、基础性强的综合学科,是现代生物学发展并与相关学科交叉融合的产物。20世纪80年代以来,随着生命科学的迅猛发展,现代生物技术及其产业已成为世界经济发展的重要支柱,其原理和技术手段的更新速率也在不断加快,其中60%以上的成果应用在了医学领域,融合形成的医学生物技术成为现代生物技术中比重最大和取得成果最多的领域之一。随着医学生物技术专业的人员需求量的不断扩大,对人才综合素质的要求也在不断提升。为了加强学生实践能力和创新能力的培养,通过以下几个方面对医学生物技术实验教学方法进行了改革和实践,并取得了显著效果。
一、实验内容的选择
医学生物技术是由生命科学与医学交叉融合而成的新兴学科,在人才培养过程中,不仅要求学生掌握生物技术专业相关理论及实验知识,还要求学生有一定的医学知识储备。为此,在实验教学课程设置的过程中,着重突出了一些与现代医学相关的交叉前沿内容,如医学微生物、医学免疫、实验诊断、分子生物学检验技术、临床基础检验技术等,通过这些内容将理论与实践相结合,让学生了解到生物技术在医学领域的具体应用,同时通过对新技术的讲解与示范,进一步拓宽学生的思维视野,为今后的工作以及科研实验打下坚实的基础。
二、实验教学课程整合
生命科学是一门以实验为基础的自然科学,传统的生物技术实验教学内容主要安排在理论教学内容之后,实验教学地位不明确,其内容大都为重复性验证实验,并且课程之间的相互联系不紧密。这导致许多学生只注重理论知识,对于实际动手操作的重要性认识不足,并且忽视了生物技术各门课程之间的内在联系。为此,我们尝试将实验教学内容进行整合,如将发酵工程中的“工业微生物菌种的选育和纯化”、基因工程中的“工程菌生长曲线的绘制”、酶工程中的“目的蛋白的诱导及SDS-PAGE电泳”相联系,通过对实验课程的精心设计合理安排,不但将各门课程联系到一起,让学生对学到的知识形成体系,同时大大激发了学生的求知欲望和探索精神,对实验课程的顺利推进,起到了良好的效果。
三、开放实验室
建立开放实验室创新平台是促进医学生物技术学科发展的重要举措。目前,大多数院校生物技术实验室开放时间与形式均存在不确定性,即实验课时间开放,其他时间不开放,或是根据教师的科研实验安排开放实验室,这样不符合以学生为中心的实验教学标准。我们尝试面向全体学生进行开放式实验教学,同时开放了医学免疫学实验室、生物化学检验实验室、临床输血实验室等与生物技术相关的医学实验室,鼓励学生自主设计完成实验,从实验的准备到结果的分析,绝大多数工作都由学生自己完成,老师只为学生提供一些必要的建议,解决实验过程中遇到的难题。这样不仅能使实验室的资源得以充分利用,同时培养了学生分析解决问题的能力,并且让学生在自主设计实验的过程中,对所学知识进行更加深刻的理解,真正做到学以致用、用以促学、学用相长。
四、鼓励学生参与教师科研实验工作
目前,生物技术专业学生考研率呈逐年上升的趋势,学生对科研实验的热情以及学术创新的需求也在不断提升,医学生物技术专业作为我校新开设的专业之一,在校教师普遍面临的问题是,科研压力大,任务重,时间紧,人员短缺。根据以上情况,我们适时地挑取一些科研创新热情高,实验态度端正认真的学生,组建科研创新团队,协助老师完成一部分科研实验。在参与老师的科研工作过程中,学生会接触到一些前沿的实验技术,并对医学生物技术领域的发展方向有了一定把握。部分学生通过教师的正确引导,以第一作者发表了学术论文,并且获得了学校“先进科研创新个人”的荣誉称号。通过对实验结果的具体分析和同教师之间的学习交流,培养了学生自身的科研创新能力,为其日后的学习以及科研工作提供了宝贵经验。
生命科学的研究和发展,植根于牢固的实验基础,加快实验教学改革步伐,对实验教学的发展以及学生实际动手能力、创新意识的培养起到了积极的促进作用。通过以上几种措施,激发了学生对科研实验的热情,培养了学生的独立思考与创新能力,同时实现了实验室资源的合理利用,对医学生物技术学科建设发展起到了一定的积极推动作用。同时,我们应及时总结经验,坚持以学生为中心进行实验教学,不断优化教学效果,努力培养出更多的高素质医学生物技术专业人才。
关键词:基因工程;教学改革;探索
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2015)03-0119-02
基因工程又称为基因拼接或者DNA重组技术,是将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序。1972年美国人Berg在基因工程基础研究方面做出了突出贡献,被公认为“基因工程之父”。1973年美国人Cohen等用核酸限制性内切酶EcoRI,首次基因重组成功。近些年来,基因工程的新概念、新理论及新技术不断涌现,内容也在不断丰富与充实,已广泛应用于生命科学的各个领域[1,2]。21世纪以来,基因组学已进入功能基因组学时代,对基因功能的研究是生物技术发展的新方向,体现了基因工程的重要价值所在。基因工程学作为当代生命科学研究领域最具生命力、最引人关注的前沿学科之一,已经发展成为现代分子生物学、技术学的核心内容,其课程质量的好坏直接关系学生的专业素质和创新能力的培养。作者所在学院(浙江海洋学院海洋科学与技术学院)于2007年新增了生物技术专业,同时开设了基因工程课程。为了不断提高该课程的教学水平,笔者结合这几年的教学经验以及兄弟院校相关课程的授课经验,努力充实教学内容,不断更新教学手段,对基因工程课程的教学体系进行了探索式改革。
一、教学内容
1.不断更新教学内容,突出实用性。基因工程理论作为一种专业性很强的课程,需在学生有一定生物学知识的基础上教学。在浙江海洋学院本课程于大三下学期开课,在此之前学生已修完细胞生物学、分子生物学、遗传学等生物学基础课程,具备了较完整的理论知识体系,在此基础上开展教学,有利于学生对知识的理解和掌握。基因工程作为一种技术性很强的课程,与上述生物学基础课程关系密切,同时与酶工程、蛋白质工程、细胞工程等学科紧密联系,存在一定的内容重复。在教学过程中,对于此类重复,或一笔带过,点到为主,或采用实例对重要知识加以巩固,尽量避免重复,突出课程特色。教材是提高教学质量的重要环节,浙江海洋学院第一次即2010年选用的《基因工程》教材由高等教育出版社出版,孙明教授主编。该教材内容全面翔实、章节清晰,对基因工程的原理、策略和技术方法均有系统介绍,具有很强的理论性和前瞻性。但是其内容较多,很多内容对于二本院校本科生来讲过于深奥、难以理解,学生也反映该教材较难,建议选其他较易理解的教材。结合该院校是二本院校的实际,笔者从2011年开始使用袁鹜洲主编,化学工业出版社出版的《基因工程》,属普通高等教育规划教材。本教材为国家精品课程教材,主要介绍了基因工程的基本概念、基本原理、常用基因工程操作技术以及基因工程与功能基因组学相结合的技术应用进展。主要内容包括三大块。一是基因工程的基本原理与基本技术,包括工具酶和克隆载体。表达载体及常用的基因表达系统,目的基因获取、制备、扩增、导入与鉴定的各种方法。二是基因工程在功能基因组学研究中的应用,包括基因表达谱的研究技术,全基因组化学诱变、转座子饱和诱变的技术,基因敲除与基因敲减的技术,GAL4/UAS过表达系统,酵母双杂交及免疫共沉淀等蛋白质相互作用研究的技术等。三是基因工程在工农业生产中的应用,包括转基因植物、转基因动物的制备与应用,基因治疗的原理与策略以及基因工程药物的研制与现状等。该教材内容清晰易懂,实例举证充分,且涉及基因工程在实际生产中的应用,在一定程度上可以提高学生的学习兴趣。使用该教材3年来,目前感觉学生反映较好,适合该校学生使用。
2.引领学生了解前沿动态。基因工程作为一门前沿学科,发展速度快,内容日新月异。我们常用教材多侧重原理、基础等理论知识,且更新速度始终落后于基因工程技术本身的发展速度。现代学生思维活跃,求知欲强。为了充分满足学生的求知欲和好奇心,在基因工程教学过程中,尽可能地添加一些新成果、新理论和新技术[3],如:生物能源,基因工程疫苗的开发,基因治疗等,并结合自己在国外实验室所学向同学们展示最新技术与相关研究进展。基因工程的新技术多发表于Science、Nature、Cell等顶尖杂志,在教学过程中,对于发表的经典新成果,尝试让学生自己阅读、分段翻译、小组讨论,增加对新知识的了解[3]。一些重要的生命科学论坛,如:生物谷、丁香园、小木虫等是生命科学领域研究人员交流学习的地方,而知识的碰撞最容易产生科学的火花。因此,鼓励学生浏览这些论坛,并参与讨论,增强学习兴趣。另外,也鼓励他们加入相关的QQ群,比如转基因群、生物信息群,增加同业交流,为自己拓宽理论知识和解决实际技术问题,同时也为今后从事的相关工作打下坚实基础。
二、教学手段和教学方法多元化
不像动物学、植物学可以直观地看到实物,基因工程内容抽象,多涉及细胞、分子等微观内容,且高新技术多,操作流程长,如果仅仅采用文字和语言表述,难以讲授明白,学生学起来也比较晦涩难懂[4]。因此,需要运用多种教学方法,使概念、原理讲得通俗易懂,学生理解起来就更容易。
1.多媒体教学的应用。目前,大部分高校已广泛采用多媒体教学。在基因工程多媒体教学过程中,改变原来单纯的文字、图片等内容,不断尝试加入一些声音、录像、动画等信息,使课堂图文并茂、有声有色、栩栩如生,便于学生理解并强化记忆。如在讲解“PCR反应”一节中,自己录取了PCR的准备、操作以及电泳检测等全套过程,老师讲得省心,同学们听得舒心,极大提高了基因工程课程的教学效果。
2.小组讨论式教学。有价值的讨论是促进学生开动脑筋、举一反三、加深认识的有效手段。在遇到抽象内容时,讲解完毕后,鼓励学生分组讨论,并选出一名组长上讲台以PPT的形式汇报本小组的学习心得,组长实行轮换制。下面的同学给汇报的小组分别从以下几方面打分:汇报PPT的表现,制作PPT的质量,所讲内容的条理性、创新性以及讲解能力。通过此手段,极大调动了学生的学习积极性。例如,可引导学生讨论以下专题:①转基因动物;②中国的转基因水稻;③基因工程产品的安全性;④基因治疗。
三、改革实验教学、科研项目与课程教学相结合
本校基因工程实验是在大三结束后的暑假短学期开展的,共16学时,这时学生已上完基因工程理论课,具备了实验操作的相关理论知识。实验内容至关重要,是理论知识的综合运用。那么如何选择实验内容呢?这一点比较关键。授课教师多具有博士学位,承担着较高水平的科学研究工作。在基因工程教学过程中,尝试将实验内容和教师的科研项目相结合,让学生自主参与到科研项目的研究中。学生可根据教师的科研项目自主确定实验课程内容,从实验内容的选择,到实验方案的设计、试剂的购置、实验步骤的进行等都由学生自主完成,老师在此过程中起指导作用。笔者将课题“曼氏无针乌贼微卫星富集文库的构建”分解成几个小实验,包括PCR扩增、琼脂糖凝胶电泳、限制性内切酶酶切反应、载体连接、感受态细胞的制备及转化、蓝白斑筛选与鉴定、测序、序列分析和引物设计等,指导学生进行整个流程实验,使其知识更具有系统性、完整性。此外,还可鼓励学生申报省级或校级的大学生创新项目,由笔者指导的“转基因绿色荧光观赏鱼开发技术探索”以及“青鱼β-actin基因的启动子功能初步检验”分别获得省级可喜奖项,这个实验培养了学生的创新能力及今后独立从事科研的能力。
四、试探采用双语教学
现代高素质专业人才不仅要具备高水平的专业知识,还应具备高水平的专业外语阅读与写作能力。为适应学科发展趋势,并扩充学生的英语专业词汇,培养英语思维模式,在基因工程教学过程汇总尝试进行双语教学[5]。在教学上,以中文课件为主,主要的专业词汇用英文标注,时而用英文讲解,尽量创造双语教学环境。并且鼓励学生借阅相关的英文教材,例如,在国际上使用广泛,权威性和时代感强的英文教材《Principles of gene manipulation and genomics》(7th ed)作为教学参考书。
简而言之,经过几年的努力工作,浙江海洋学院在基因工程课程的教学内容方面进行了优化,改进了教学方法与手段,培养了实验设计能力和创新意识,拓展了他们的知识面,取得了不错的效果。然而,课程教学改革是一项系统工程,目前还处于探索和实践阶段,必须坚持不断地探索、实践、总结,最好建立一支教学团队,希望把基因工程课程教学改革工作开展得更有效果,为国家输送更多高素质的专业人才。
参考文献:
[1]孙明.基因工程[M].北京:高等教育出版社,2006:1-6.
[2]李立家,肖庚富.基因工程[M].北京:科学出版社,2004:1-8.
[3]张传博,李莉,耿红卫.基因工程课程教学改进与实践[J].安徽农业科学,2013,(04).
社会经济发展到如今阶段,生命科学、电气工程、建筑、化学、计算机等各个领域的问题变得越来越复杂,问题间的内部联系更为盘根错节,每类问题出发于同一现象的不同视角而得出迥异结论,技术与理论的研发已经不能局限于一个学科内或一学科内的某个分支领域,而物理学基于它的研究对象和研究方法的普适性、理论的成熟性,对各个学科具有强大的调和与指导作用,为人类社会的发展提供了独特的创新方法。这些方法运用于教学实践既能够提高学生的创新思维能力,又能够增强学生创新实践能力。是应用型本科院校建设与发展过程中大学生知识与能力与创新意识协调发展的催化剂。
1.1物理学课程对于生命科学中的作用
物理学为生命科学提供了现代化的实验手段和技术,物理学的许多技术方法已成为生命科学研究中的重要技术手段。在生物学中开设《大学物理》课及《大学物理实验》课可以让学生掌握或了解显微镜、中子衍射、核磁共振谱仪、同步辐射、扫描隧道显微镜等种种研究手段及其原理,让学生知其然还知其所以然,必定会对今后的新技术研发带来极大的便利。
1.2物理学课程对于建筑工程学科的作用
物理学为建筑提供了非常大的理论支撑,建筑中光学、声学、热工学的物理现象和结构稳定规律都是由物理学进行阐述。许多建筑理论都是在实验室进行理论实验研究,通过实验结果揭示物理现象的基本规律,形成比较完整的理论,然后在生产实践中发展为一种新的技术。在建筑学专业中开设《大学物理》课及《大学物理实验》课程不仅可以使学生学习建筑专业应具有的专业基础,还可以使学生具有技术研发的功底。为成为行业的领先者铺好宽泛且坚实的道路。
1.3物理学课程对于化学学科的作用
物理与化学的交叉历来就是最融洽的,并且经常是难以区分的。如导电聚合物的研究,有机光电材料研究,或是近年来纳米科学与技术的发展等等。而许多电化学测试原理就是大学物理学中电学的积分电路与微分电路原理。不懂得物理学的化学技术工作者在以后的工作中遇到的困难是难以想象的。在化学专业中开设《大学物理》课及《大学物理实验》课程能让学生学习基本的物理研究方法与实验方法,对于学生在今后工作中技能的培养和应用型研发视野的拓展有相当大的好处。物理学与其它自然科学的交叉、融合、渗透,不仅在以上几个方面,当今科学技术前沿科学中,例如机械制造,电气自动化,计算机科学,甚至艺术领域没有与物理学无关的。所以,我们可以肯定,放弃了物理学,也就放弃了当今世界的现代科学技术。我们也应该认识到,应用型学校物理学的发展虽然是必要的,但着眼点不在于使非物理专业学生达到综合性大学理科生的水平,而是在于通过构建学生基础性、交叉性的知识体系,解决在技术学习、研发中遇到的基础性技术问题,拓展其眼界,为学校转型提供有力支撑。所以笔者认为我们的物理课程也必须进行相应的改革。
2目前我校物理课程的改革方向
2.1加大物理学课程与其它专业课程的横向联系
根据上述转型过程中对于物理课程的任务,就要求教非物理系普通物理的教师,了解物理学与其所教院系的学科的结合点,讲课时指出所讲内容在后续课中哪一部分有应用,对提高学生学习物理学的兴趣也有益。然而就在那些结合点上,我们也只能从物理学角度把问题交待清楚,不可能去讲其它学科课程本身;另外,我们要站得高些,看得远些,从交叉学科发展的角度来看,今天尚未有结合到的内容,说不定明天就会是结合点。所以既代表现代物理学的支柱,又是将来科学发展的方向的量子力学、狭义相对论等近代物理学知识,就必须要让学生了解。我们必须把物理学真正当作基础科学来教,更多地强调物理学的思想、概念、方法对其它自然科学的渗透,把物理学完整的体系教给非物理类学生,使他们通过普通物理的学习,打下一个坚实的物理学基础,为今后的学习和研究拓宽思路。
2.2鼓励物理相关专业教师做科研
随着各个学科的逐步交叉与融合,人们对许多科学现象及其本质的联系有了新的更加宽泛、更加深入的认识和解释。但教科书中的概念和范畴却由于其具有的相对稳定不变的滞后性而无法去更加全面、及时地反映这些已经变化了的现实,所以笔者认为必须大力鼓励物理教师做相关的科研工作,在科研活动中,教师创新的能力、实践的能力均得到训练和提高,而这些能力又会内化为教师的知识能力,扩展了教师的知识范围,认识水平,使之在教学中对学生知识的传授更具有前沿性、综合性。这些对于普通物理教师找到物理学与其他学科的结合点有很大的帮助。物理教师对于这些结合点的阐述加上学生在本身专业知识范畴内的理解,谁知道会不会催生出一项新的技术、发明呢?
2.3重视大学物理实验在应用型本科转型中的作用
由于工科院校一般课程任务都比较繁重,物理实验一般都是考查课程,造成了学生和教学院系对实验课程的轻视,一定程度上挫伤了实验课教师的教学积极性。然而科学家密立根说过:科学靠两条腿走路,一是理论,一是实验,有时一条腿走在前面,有时候另一条腿走在前面,但必须靠两条腿才能前进。大学物理实验是通过精心设计准备实验过程,排除了次要干扰因素,使学生预测、验证或获取新的信息,通过技术性操作来观测由预先安排的方法所产生的现象,根据产生的现象来判断假设和预见的真伪。它最大限度地模拟了真实的科学发展的过程,通过多个基础性的实验让学生对物理的力、热、光、电、原子等概念有深刻的认识,对研究与发现过程有清楚的脉络。极大地拓展了学生的视野,在学生的知识结构中加强了学科之间的交叉融合。大学物理实验必然在学校应用型本科转型中起着巨大的推动作用。
3结束语