时间:2023-08-14 17:27:40
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇智能科学技术导论,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
关键词:智能科学与技术;课程体系;培养管理
1背景
智能科学与技术是当前科学研究和工程实践的理论与技术发展的前沿领域,智能科学与技术专业是一个多学科交叉的跨应用领域专业Ⅲ。智能科学技术的发展将把整个信息科学技术推向“智能化”的高度,这正是当代科学技术发展的大趋势,对于这方面人才的需求也越来越迫切。智能科学与技术培养掌握坚实智能科学与技术基本理论和系统专门知识,具备作为工程师或领导者及公民的良好人文修养,具有从事科学研究、工程设计、教学工作或独立担负本专业技术工作能力,深入了解国内外智能科学与技术领域新技术和发展动向,能结合与本学科有关的实际问题进行创新研究或工程设计的高级专门人才。
高校应稳妥发展与完善智能科学与技术专业的本科生教育,夯实本科教育基础并积极创造条件,大力开展创新教学,努力培养学生的创新意识、创新精神和工程实践能力,使之成为具有系统技术基础理论、专业知识和基本技能,良好科研素质和较强创造能力的智能科学与技术工程师。
2教学计划与教学管理分析
智能科学与技术属于计算机类专业,其必修课程设计原则是使学生具备计算机科学与工程的基础理论知识,尤其是大类专业招生教学的院校,通识课程主要是数学、物理文化基础,强调扎实的自然科学基础。专业教学的特色体现在专业必修和专业选修课程,专业必修课一般分为数学基础和专业课程。计算机类专业数学基础课程一般包括线性代数、微积分、离散数学、微分方程、概率与统计、数值计算等;专业课程一般包括程序设计基础、高等程序设计、数据结构、操作系统、计算机组成与结构、数字电路与逻辑设计等。
2.1学分
本科培养计划的学分中,国内外大学学分总数趋势是逐步减少,追求少而精。国内院校一般在130~190学分之间,如北京大学为150学分,清华大学为1 70学分,东南大学与浙江大学均为160学分,还有16学时为1学分的,也有18学时为1学分的。
中国台湾的大学一般在130学分左右。台湾交通大学最低毕业学分为128学分,其中必修课程须达76学分(共同必修58学分+资工组核心须达分+(资工组副核心课程学分+另2组核心课程学分)),专业选修本系课程须达12学分,其他选修课程须达12学分,通识课程须达28学分(含外语课程必修8学分)。台湾“中央大学”为136学分,台湾“清华大学”为136学分,其中必修和必选学分126,其他与导师商量决定。
美国的大学各校差异较大。美国的学分计算有4学期制、两长一短制及两学期制,其中加州大学伯克利分校为120学分,麻省理工大学为90学分,加州大学洛杉矶分校为186学分,斯坦福大学为180学分。
2.2教学管理
在教学管理上,斯坦福大学给学生提供了非常宽松的自由发展空间。新生入校后不分专业、不分学院。除了医学院和法学院学生需要经过一定的选拔程序外,本科生可以在入学后的前一个学期适当时候随意选择专业,并且选择专业后允许更改,只要毕业时满足专业培养方案即可。
国内的浙江大学是较早实行按大类招生的学校之一,分为大类培养、专业培养和特殊培养3类,前两年不分专业,按学科分类集中培养。
台湾的大学专业也是按大类完成前期的基础课程,再分小专业完成各学程,包括基础课、核心课和进阶课。
教学分组是现在的主流课程架构,也是体现专业方向的主要形式,分组课程是体现专业特色的课程组。国内清华大学采用的是分组教学;台湾的大学基本上采用的是以教学方向分组的方式,台湾的大学教学分为课程与修业、学分学程。
2.3实验与实践教学
计算机类专业各大院校都强调课程实验与实验教学,而目前课程该如何进行教学?这不仅是实验问题,如何以工程教育专业论证为目标,怎样使教学目标达到毕业要求是关键。做中学是主流实验教学方式,尤其是美国的大学,大作业体现的是实验与理论教学的结合,是考查学生是否理解理论知识的重要途径。学生不仅能够学习扎实的数学和计算机专业知识,还进行大量的实践创新训练。麻省理工大学、加州大学伯克利分校、加州大学洛杉矶分校、斯坦福大学都属于实践创新性教学模式。例如,斯坦福大学程序设计范式课程重点比较C、C++、Java的特点和难点,每1~2周有一次大作业,针对不同的任务,要求学生用不同的语言实现,使学生加深理解各类编程语言的应用场合;麻省理工大学的课程计划是必须先修12学分的实验课程,再修3门或4门核心课程,最后选择3门方向学科和1门关于该方向的实验课、2门专业拓展课。
3智能科学与技术课程体系分析
智能科学与技术课程体系在智能基础理论研究的基础上,需要安排基础性、通用性、关键性的智能技术研究,主要包括感知技术和信息融合技术;自然语言处理与理解技术;知识处理(认识)技术,包括知识提炼、知识分类、知识表示技术等;机器学习技术,特别是统计与规则相结合的学习技术;决策技术,即知识演绎技术特别是不确定推理技术等;策略执行技术,即控制与调节技术;智能机器人技术,特别是面向专门领域的智能机器人技术;智能机器人之间的合作技术;基于自然语言理解的智能人机交互与合作技术;智能信息网络技术。
国内最早创办智能科学与技术专业的学校包括北京大学,西安电子科技大学是第2批开始培养智能专业学生的院校。北京大学的本科教学计划中,专业必修课程(2分)包括:①专业数学/理论基础(15学分):算法分析与设计、集合论与图论、概率统计A、代数结构与组合数学、数理逻辑;②硬件与系统基础(分):数字逻辑设计、微机原理和信号与系统;③智能基础(5学分):脑与认知科学与人工智能基础。专业限选课程(15学分)包括信息论基础、计算方法B、数字逻辑设计实验、微机实验、数据结构与算法实习、机器感知和智能处理实验、智能多媒体信息系统实验。选修组合课程(29~32学分):学生按照自己的兴趣,参考智能的2个专业方向推荐专业课组合,自行选择,至少选修20学分的智能专业课程。公共核心+专业方向+新技术及其他:①公共核心课程(分):智能科学技术导论、模式识别基础、生物信息处理、智能信息处理;②专业方向课程(11~15学分):机器感知与智能机器人方向、智能信息处理与机器学习方向、新技术及其他。
西安电子科技大学智能专业主要课程包括电路分析理论、信号与系统、数字信号处理、数字电路及逻辑设计、模拟电子技术基础、微机原理与系统设计、数据结构、软件工程、人工智能概论、算法设计与分析、最优化理论与方法、机器学习、计算智能导论、模式识别、图像理解与计算机视觉、智能传感技术、移动通信与智能技术、智能控制导论、智能数据挖掘、网络信息检索、智能系统平台专业实验等课程及30多门选修课程。
建议各学校可以根据学院教学特色与实际需求,设计专业核心课程。北京大学偏重“信息处理”,湖南大学偏重“智能系统”,但需要强调的一个前提就是智能科学与技术专业属于大计算机类,更需要大EECS专业的基础。编程、电路、数学、数据结构、计算机系统这五大核心基础就是大EECS;其次是专业,计算机以系统结构、操作系统、网络、编译、数据库五大经典专业核心课为主,湖南大学的智能科学与技术专业强调系统,因此信号与系统、操作系统、嵌入式系统、人工智能是最基本的专业核心课,然后再分不同的分支。湖南大学智能科学与技术专业核心课程包括人工智能概论、机器学习、计算智能导论、模式识别、智能控制导论、智能数据挖掘、机器人学等;研究学位课程包括模式识别、人工智能等,主要体现为智能科学与技术基础(人工智能概论、机器学习、计算智能导论、模式识别)、核心(智能控制导论、智能数据挖掘)和应用(机器人学)。
4结语
(1)在课程计划实施过程中,教师需要遵循课程的时序图,即描述课程的进阶关系,从本科直到研究生,同时还可以实行一定的修课限制,如台湾交通大学计算机概论与程式设计和面向对象程式设计两科皆不及格者不得修数据结构与算法概论,若数据结构不及格不能修算法设计课程等。
(2)程序设计类课程用上机程序能力考试来设置合格条件,如台湾交通大学基础程式设计及格条件为通过“程式能力鉴定”,湖南大学则以CCF―CSP软件能力测试作为程序设计课程通过的考核标准。
(3)鼓励学生参与项目、竞赛等课外科技活动,如台湾“清华大学”的综合论文训练是由具有同等水平的项目训练成果或SRT(student research training)计划项目以及其他课外科技活动成果经认定后代替的。
(4)精炼的课程教学。核心课程应该精且必须加强课程实验,只有对方法和理论有正确的认识才能掌握这门课程,而动手完成实验才能真正融会贯通。麻省理工大学、加州大学伯克利分校、加州大学洛杉矶分校的学生具备扎实的数学和计算机专业知识后,都需要进行大量的实践创新训练。
关键词:智能科学与技术;知识结构;应用型人才;人才培养;知识型能力本位教育
中图分类号:G64文献标识码:A
文章编号:1009-3044(2020)25-0153-03
1引言
智能科学与技术主要包含智能科学和智能技术两部分内容[1]:智能科学是以人如何认知和学习为研究对象,探索智能机器的实现机理和方法;智能技术则是将这种方法应用于人造系统,使之具有一定的智能或学习能力,让机器系统为人类工作。目前,在本科专业目录中,智能科学与技术专业是计算机类之下的特设专业,在现有的人工智能专业群中,除了新设的人工智能专业外(2019年全国共有35所高校获首批人工智能新专业建设资格),智能科学与技术专业与全球范围大力推进与快速发展的人工智能关系最密切,契合度最高。一方面,智能科学与技术的专业发展和人才培养将为人工智能技术提供理论支撑、技术推进和人才支持,另一方面,人工智能产业现状和未来发展趋势直接影响着智能科学与技术的专业发展和人才需求。
2人工智能时代对人才的需求
站在国家战略的高度来看,人工智能将成为新一轮产业变革的核心驱动力,可以实现社会生产力的整体跃升,因此人工智能将成为引领未来的战略性技术,世界主要发达国家都把发展人工智能作为提升国家竞争力、维护国家安全的重大战略。
随着人工智能时代的到来,许多企业对具有智能科学与技术专业背景的人才有着巨大的需求。首先,IT企业纷纷涉足智能科学领域,提高产品智能水平;其次,许多传统制造业也在转型,从劳动密集型到知识密集型,进一步提升到智能制造型,并逐渐具备高精尖装备制造能力;此外,医疗、通讯、交通等行业也对智能科技人才有着迫切的需要。人工智能对各行各业的影响,充分体现了智能科技的高速发展,对人才数量和素质要求也越来越高。
从人才的金字塔型分布来看,智能科学与技术领域不仅需要高端学术型人才,更需要接地气、重实践的应用型人才。随着“中国智造”的不断推进,智能科学与技术领域已由顶层设计和关键技术突破向生产、应用、装配、服务等环节延伸,迫切需求大批专业技术精、实践能力强、操作流程熟的应用型人才。2019年,人力资源和社会保障部、国家市场监管总局、国家统计局向社会了13个新职业信息,包括人工智能工程技术人员、物联网工程技术人员、大数据工程技术人员等,这也从另外一个侧面说明人工智能等技术推动了产业结构的升级,催生了相关专业技术类新职业,可形成相对稳定的从业人群。
3应用型人才培养模式分析
《中国制造2025》以推进智能制造为主攻方向,强调健全多层次人才培养体系,提到强化职业教育和技能培训,引导一批普通本科高等学校向应用技术类高等学校转型,建立一批实训基地,开展现代学徒制试点示范,形成一支门类齐全、技艺精湛的技术技能人才队伍。
通常而言,人才类型分为三类[2]:学术型人才、应用型人才、技能型人才。实际上从现代职业教育的发展和社会需求来看,应用型人才和技能型人才的界限相对模糊,可统称为应用型人才,即把成熟的技术和理论应用到实际的生产、生活中的技术技能型人才。从国家的层面来看,为了适应人工智能时展,人才需求数量基数最多、缺口最大的就是应用型人才,这也对众多高校培养人才的导向产生重大影响。这里我们重点讨论智能科学与技术应用型本科人才的培养,可从职能、知识结构、能力结构、行业(产业)导向四个方面来分析。
3.1职能
智能科学与技术应用型人才是培养面向各类智能科学与技术的工程设计、开发及应用,掌握各类现代智能系统设计、研发、集成应用、检测与维修、运行与管理等技术,具有扎实理论基础、较强工程实践和创新能力的高素质应用型工程技术人才。
3.2知识结构
智能科学与技术专业充分体现了跨学科的特点,其知识结构包含了三个并行的基础领域:电子信息、控制工程、计算机,也蕴含了电子信息工程、控制科学与工程、计算机科学与技术等学科的交叉和融合,体现了智能感知与模式识别、智能系统设计与制造、智能信息处理三个方面的专业内涵。
(1)智能感知与模式识别
属于电子信息与计算机交叉领域,主要定位在机器视觉与模式识别。包括三维建模与仿真、图像处理与分析、图像理解与识别、机器视觉、模式识别、神经网络、深度学习等。主要课程包括:电子技术基础、信号系统与数字信号处理、数字图像处理、模式识别等。
(2)智能系统设计与制造
属于控制工程领域,包括自动控制、无人系统与工程、精密传感器设计与应用等。主要课程包括:机械基础、工程力学、自动控制原理、传感器与测试技术、计算机控制技术、机电系统分析与设计等。
(3)智能信息处理
属于计算机领域,包括交通大数据、汽车与道路安全大数据等的分析与处理、信息处理与知识挖掘、信息可视化等。主要课程包括:智能科学技术导论、计算机程序设计、微机原理与接口技术、数据结构与算法、嵌入式系统设计等。
3.3能力结构
智能科学与技术应用型人才培养着眼于人工智能工程应用,要求学生具有运用计算机及相关软硬件工具进行大数据的采集、存储、处理、分析、应用的能力;具备智能系统的设计、开发、集成、运行与管理的能力;注重培养学生综合运用所学的智能科学与技术专业的基础理论和知识,分析并解决工程实际问题的能力,其能力结构可以借鉴能力本位教育(CompetencyBasedEducation,简称CBE)模式[3]。
CBE是国际上较流行的一种应用型人才培养模式,主要代表国家为加拿大和美国。该模式以能力为人才培养的目标和评价标准,一切教学活动均围绕综合职业能力的培养展开,CBE人才培养模式主要有以下三方面的特色:能力导向的教学目标;模块化的课程结构;能力为基准的目标评价体系。该模式所培养的本科应用型人才具有较强的专业综合能力和职业能力[4],在一定时期得到社会的广泛认可,但是单纯的CBE模式并不能完全适应人工智能时代对人才培养的需求,这是由于目前许多职业岗位在人工智能的冲击下,其形式和内容均会产生动态变化,要求现阶段的人才培养具有延伸性和前瞻性,既要兼顾眼前,也要考虑应对智能化浪潮,打好基础,提高自学习能力。因此,智能科学与技术应用型人才培养有一定岗位针对性,但并不是完全固化岗位内容及层次、固化知识属性,必须强化自我学习能力,才能实现能力可持续增长,岗位的向上流动性以及知识和经验的进化,才能真正适应人工智能时展的需求。
自我学习能力的形成与提高往往源于知识结构的构建[5]。为了塑造更合适的能力结构,需要CBE模式与知识结构的相辅相成,有鉴于此,将这种新型人才培养模式称之为知识型能力本位教育(Knowledge&CompetencyBasedEducation,简称KCBE)模式,这也意味着在人才培养过程中,将知识结构与能力结构放在并重的地位,既着眼于预期能力的培养,也必须让学生筑牢学科专业基础,在走向社会以后,在知识引擎的作用下,通过自我学习,具备并提升适应未来的、新的智能化岗位需求的能力。
3.4行业(产业)导向
从智能科学与技术专业的角度,培养的应用型人才以“智能化应用”为就业大方向,具体而言,包括:
(1)智能感知与模式识别领域
主要从事电子信息的获取、传输、处理、分析、应用等领域的研究、设计及应用,包括图像处理、机器视觉、工业视频检测与识别、视频监控、传感器设计及应用等。
(2)智能系统设计与制造领域
主要从事智能装备、智能制造、智能管理、智能服务等领域的设计、制造及应用,包括智能工厂、智能车间、智能生产线、智能物流、以及智能运营与服务等。
(3)智能信息处理领域
主要从事计算机数据处理、分析、理解、管理、以及服务等领域的研究、设计及应用,包括数据存储与管理、数据分析与预测、交通大数据分析应用、道路与汽车安全大数据分析、智能交通、智能电力、智能家居、智慧城市等。
涉及的产业领域主要包括智能制造,如工业互联网系统集成应用,研发智能产品及智能互联产品等。其他的领域还包括智能农业、智能物流、智能金融、智能商务等。
产业需求带动人才培养,人才培养在满足产业需求的同时推动技术进步,而技术进步又引燃了新的产业需求。产业需求与人才培养的相互作用,呈现出螺旋式上升的发展态势,这在人工智能相关产业与智能科学与技术应用型本科人才培养之间表现的得尤为突出。
4KCBE模式人才培养的主要措施和途径
智能科学与技术专业应用型本科人才的培养模式一定是和人才需求、学校定位相適应的。培养应用型人才,应注重学生实践能力,从教学体系建设体现“应用”二字,其核心环节是实践教学。结合上述的KCBE培养模式,知识结构在能力培养过程中也占有非常重要的地位,因此在能力培养方面,知识和实践作为两大要素,不能偏废任何一方,必须齐头并进,既要固基础,也要重实践。
(1)筑牢智能科学与技术专业知识基础,构建与智能化应用相关的知识体系
在本科的低年级阶段,应注重公共基础课,特别是数学和力学课程,还应充分了解智能科学与技术专业的内涵,让学生对所学专业有一个比较全面的认识。在本科中高年级阶段,重点强化专业基础,包括电子技术基础、自动控制原理、传感器与测试技术、微机原理与接口技术、数据结构与算法等。归纳地说,应该筑牢数理基础、计算机基础、机电基础和控制基础,因此对原理课程需要强化,这样对很多工作机理、来龙去脉的理解才能深刻。
(2)增强智能科学与技术专业的实践环节,构建以能力培养为重心的教学体系
按照KCBE模式,校企合作是强化实践的一种重要形式[6]。学校根据人工智能企业实际情况灵活设置实践课程内容,根据企业发展趋势及时调整课程体系以避免教学内容与企业需求相脱离。人工智能企业还可以参与学校教学目标和教学计划的制定,并为学校实践教学提供各方面支持,从而提高人才培养的针对性。
关键词:智能;决策系统;教学方法
随着信息技术的应用和普及,“智能化”成为信息化后续发展的重要内容之一。在决策领域,20世纪80年代,一种以计算机为工具、应用决策科学及有关学科的理论与方法、以人机交互方式辅助决策者决策的决策支持系统(DSS)应运而生。但是,DSS只能辅助和支持决策者决策,其贡献局限于对可选方案的评价,只能对有量化特性的问题使用数据模型和数值计算方法来辅助决策,不具有表示复杂决策过程的能力,因此,促使人们提出将DSS与专家系统(ES)相结合,以分别发挥DSS的数值分析和ES的符号处理优势,从而将定性分析和定量分析有机结合起来,以既能进行知识处理,又能有效地解决半结构化和非结构化问题,这就是智能决策支持系统(IDSS)的产生背景。
随着人工智能和智能技术的发展,IDSS在广泛的工程技术、经济、管理、医疗和农业科学等诸多领域,得到广泛应用。了解、掌握智能决策的基本知识和技术是计算机科学、智能科学类专业大学生的基本要求,因此,智能决策类课程应运而生,并逐渐发展成为计算机、自动化、管理科学与工程和智能科学技术等专业的专业课之一[1-4]。
在我校,智能决策系统课程作为计算机科学与技术、软件工程、网络工程和其他电子信息类专业的专业限选或选修课程。目前,该课程的教学内容存在如下问题:一是教学内容繁,二是技术更新快,三是涉及的专业知识深,对学生的理论基础知识(特别是数学知识、计算机技术)要求极高,教学难度大。因此,学生在学习过程中不得要领,抓不住课程的核心,只见树木、不见森林,从而影响学生们的学习效果。本文就是在这样背景下,提出并开展教学研究的。
1教学内容改革
智能决策系统是一门计算机科学、管理科学、人工智能和应用数学交叉的新兴专业课程,其学分通常为2~2.5学分,即32~40学时,其中包括0.5学分的实验课程(8学时)。因此,如何在有限学时中容纳下本课程教学内容,完成本课程的教学目标,就成为首要问题。
通过实践和教学改革,我校本课程的理论教学内容主要包括下列6个知识单元。
1) 决策理论概述。主要内容有决策的概念、类型、基础、流程和目标。理论课时数4学时。
2) 决策系统。主要内容有决策支持系统的概念、结构、功能、主要部件与设计要点。理论课时数控制在6学时。
3) 决策模型。主要内容有数据仓库、知识管理、数据挖掘、智能算法和数据处理。理论课时数控制在6学时。
4) 智能决策系统。主要内容有计算智能基础、专家系统的概念和结构、智能决策系统的概念和结构、智能决策系统的设计要点。理论课时数控制在8学时。
5) 群体决策系统。主要内容有协同计算概述,群体决策系统的概念、结构、功能、群体决策过程与建模和实现方法。理论课时数控制在6学时。
6)智能决策系统的发展。主要包括基于网络的决策系统技术和应用,网络技术与基于Agent的决策系统,智慧地球与智能化企业。理论课时数控制在2学时。
实践教学内容包括4个实验,学时总数为8学时,其教学内容设置见本文§3。
2教学方法改革
教学方法是为完成一定的教学目的、教学任务所采取的教学途径或教学程序,是以解决教学任务为目的、师生共同进行认识和实践的方法体系。其方法体系主要包含多个基本要素,比如教、学、信息传输载体(包含文字、图形、图像、肢体语言、表情、感知等)和教学辅助设备等。教学过程就是要充分利用具有信息优势、知识优势的教师,将信息、知识、技能、技巧,系统集成地传输给暂时处于低信息状态的学生。决定这个传输过程顺利进行的至关重要因素有:教师的积极性与责任心和学生的求知欲与基础知识及其结构。从教育学和心理学角度看,课程教学方法改革就是围绕这两个因素展开[5],限于篇幅,本文的讨论仅从如何调动学生的求知欲着手。
2.1探索式教学方法
经过多年教学实践,本文实践了“探索式教学法”,此法强调因材施教,在教学全过程创设教学环境、培养学生创新精神。所谓探索式教学方法是指在教学过程中,在教师的启发、诱导下,学生自主学习和合作讨论,以学习课程知识和科学问题为探索目标,以学生熟悉和能接触到生活原型为研究对象,为学生提供自由表达、质疑、探索、讨论问题的环境,学生通过个体、小组、团队等多种形式完成解难、释疑、尝试学习活动,将学生自己所学知识应用于解决实际问题的一种教学程序。探索式教学方法重视发展学生的创造性思维,培养自学能力,力图通过自我探索引导学生学会学习和初步掌握科学研究方法[6],培养学生的文献获取与加工能力、信息分析与加工利用能力、团队协作与沟通能力、语言表达与写作能力,和创新精神。为其终身学习和工作奠定良好基础。
尽管探索式教学法能够给教师的教学提供思想、理念指导,但是,针对不同教学对象和不同课程内容,其实际应用方法也会存在差异,这就是所谓的教无定法之说。本文以智能决策系统课程第1知识单元课外作业为例,尝试说明该法的具体应用方法,为保证该方法的实施效果,本文拟定了如下的教师操作流程:
1) 制定论文目标:培养学生综合利用参考文献和学会表达的能力。首先,要求学生学会获取、理解、过滤和分析信息;其次,要求学生掌握撰写科技论文的基本技巧;最后,要求学生在观众面前表达自己观点,学习说服听众、推销自己观点的技巧。
2) 论文基本要求:①围绕“关于信息技术对决策影响”的主题,学生自拟题目;②2周时间内,学生完成1 000字左右(2页A4幅面)的论文,其中内容需要包括摘要,关键词,问题或观点概述,目前发展状况,结论或结语;③制作演示幻灯片。
3) 提供信息查阅途径:通过网络教师自己已经掌握的文献资源和网络地址资源,指出查询方法和基本技巧。
4) 抽查式演讲:①使用幻灯片;②介绍主要内容;③结论;④点评、提问与回答。
5) 评价标准:①文档编制能力;②问题发现与分析能力;③表达与陈述能力。
在实施中,要防止出现如下情况:①题目太难或太容易,以免挫伤学生积极性;②提前告示和监督,防止学生偷懒或拷贝;③灵活掌握考评手段,鼓励创新,保护学生学习积极性。
2.2案例教学方法
案例教学法是在教师指导下,根据教学目标的要求,创设学生身临案例场境的教学氛围,使用案例来组织学生的学习、研究、实践等活动的教学方法。本课程利用该方法,加强了理论与实际的结合,为学生学习提供模仿案例,提高了学生对理论知识的理解和实践能力,培养学生综合运用所学知识解决实际问题的能力。案例教学法需要掌握好2个重要环节:
1) 案例选编。必须选择学生容易理解、常见的例子,案例选编必须围绕课程某个具体的教学目标,要适当加工,剔除与课程内容关联性小的内容和技术,降低难度,方便学生理解。同时,案例必须来自于实际,并且问题明确。
2) 案例讲解与分析。案例本身只是对实例的某些情况描述,表面上平铺直叙,但是,其中必须隐藏着多个问题,要引导学生积极思考、深入分析,以发现其中隐藏的问题,并找出问题产生的原因,提出解决方案。在思考和分析过程中,既要培养和开发学生智力,又要培养学生综合运用所学理论知识的能力。案例分析不能苛求解决问题的结果如何,而应该重点强调分析过程是否正确、方法是否恰当,案例讲解和分析的主要任务是培养学生发现问题、分析问题和逻辑思维等能力,通常解决问题的能力正是课程后续需要实施的教学目标。
本文在第4知识单元中,以6子棋计算机博弈系统为例,通过对6子棋计算机博弈平台的仿真实验,选择不同的博弈策略,比如不同的估值函数、不同的搜索策略等,获得不同的实验结果,实现人-机对战、机-机对战,让学生切实体会到机器智能的魔力及其智能系统的构造方法,有力地促进了学生对理论知识的理解,并激发了学生的学习兴趣。
3实验教学内容
3.1实验教学内容的设置
实验课是智能决策系统课程的重要环节,由于总课时有限,实验课时也就不多。但是,本校在专业课程中,仍然坚持设置了0.5学分的实验,以使学生能将理论知识与实践联系起来,使抽象的理论不再是深奥,提高学生灵活运用知识的能力。本课程实验学时为8学时,主要设置了表1中的3个实验。
3.2实验课的操作
为提高学生对课程理论知识的理解和应用设计能力,针对课程实验教学课时少和实验复杂特点,需要注意以下几点。
1) 简化平台、降低实验难度。实验教学过程重在是一个训练学生动手、动眼和动脑的过程,旨在培养学生好奇心和操作技能,以及观察问题、分析问题和解决问题能力。因此,在实验中,要尽量将实验平台简化,以将学生注意力集中于实验内容,保证实验效果。比如实验2,提供给学生智能交通灯控仿真平台,它实际上是一个软件模拟平台,能实现固定交管模式的全部功能,学生能通过标准接口建立自己设计的智能交通管理模式;又如实验3,以FIRA机器人足球5vs5比赛项目的仿真平台为实验平台,利用平台已设置的运球、传球、前进、后退、转动等命令,学生能通过这些命令建立足球机器人的路径规划和避障策略。
2) 科学分组、培养协作能力。由于实验3工作量比较大,需要多人协作完成,发挥集体智慧作用,因此,在实验3中,按照3~5人/组,实行组长负责制。组长监督、管理、协调本组实验过程,每个组员都有明确的任务,并对组长负责,组长对教师负责。实验3的课内实验设置4学时/2次,学时主要在课外完成实验3,历时1个月。
3) 设计算法、培养智能意识。引导学生,模仿人类智能,设计智能算法,实现简单的智能决策。由于课时有限,必须注意控制算法的简洁、实效,以使学生能在短时间内模拟实现简单的智能行为,着重引导学生分析业务行为,发现系统流程,构造智能算法,以此培养学生开发信息系统的智能意识。
4结语
智能决策系统是人工智能、计算机科学、自动控制科学交叉结合的一门新兴专业课程,对推动信息化向智能化方向发展具有重要意义。该课程作为在校主要面对电子信息、计算机专业学生,通过该课程学习,学生反映加深了对智能的理解,提高了对计算机技术应用的认识深度,培养了学生的智能化设计意识,激发了学生的求知欲望。本文的研究成果是源于智能决策系统课程,但是,对其他信息技术课程,也具有积极的借鉴意义。
参考文献:
[1] 钟义信. 智能科学技术导论[M]. 北京:北京邮电大学出版社,2006:1-38.
[2] 张彦铎,王海晖,刘昌辉. 地方工科院校智能科学建设的若干思考[J]. 计算机教育,2009(11):39-42.
[3] 韩力群. 智能科学与技术专业培养规范[R]. 北京:第二届全国智能科学与技术教育学术研讨会.2004.
[4] 王万森,钟义信,韩力群,等. 我国智能科学技术教育的现状与思考[J]. 计算机教育,2009(11):10-14.
[5] 杨德广,谢安邦. 高等教育学[M]. 北京:高等教育出版社,2009.6:1-50.
[6] 张伟峰. 本科高年级人工智能教学的几点思考[J]. 计算机教育,2009(11):139-141.
Research on Teaching Reform of Intelligent Decision System Courses
ZHANG Xiao-chuan, CHEN Feng
(School of Computer Science, Chongqing University of Technology, Chongqing 400054, China)
长久以来,除了高等数学外,自动化专业所需要的工程数学知识散见于多门课程之中,例如线性代数、复变函数理论,积分变换等。各个课程通常强调各自的理论体系,一些知识学习理解比较困难,但后续专业课程甚至专业生涯中都很少用到。因此,在精简教学课时的教改大潮中,一些学校将某些工程数学课程逐出教学计划,以腾出足够的课时给随着信息技术迅速发展而需要开设的课程。但是,这样又给学生造成知识体系的缺失,不利于构建学生完整的知识结构。因此,如何用不多的课时,教给学生必要而足够的工程数学知识,就成为应用技术主导型自动化专业教学改革的一个值得注意的课题。
北京信息科技大学自动化专业是国家级特色建设专业“控制工程数学基础”课程是我校自动化学院的公共专业基础课,是重点建设的课程之一。为我校自动化、智能科学技术、电气工程及自动化等专业本科生开设的必修课,其先修课程为高等数学,后续课程有电路分析基础、自动控制原理、现代控制理论、系统仿真、数字信号处理、计算机控制系统等,它是一门理论性和实践性较强的工具类课程。
“控制工程数学基础”课程对培养学生学习兴趣、夯实学生基础知识、进行后续课程的学习起着非常重要的作用。也可以这样说,本课程教学的成功与否直接关系到学生基本素质与能力的培养与发展。学生对该课程学习的好坏、对有关知识点掌握的熟练程度如何,能否有效地实施相关实践教学环节,将直接关系到学生运用专业知识解决实际问题的能力。因此,我们在“控制工程数学基础”课程的教学内容安排上进行了改革,修订了新的教学大纲。
2.教材改革
我校“控制工程数学基础”课程的教学以前选用的教材是“信号与系统教程”学生普遍对该课程非常重视,但其内容对于大一学生来说,有很大的难度,不容易学懂。为了调动学生学习的积极性,堤高教学效果,促进教学质量的堤高,我们课程组探索和尝试着对课程的教学内容进行改革,出版“控制工程数学基础”教材,以堤高教学的实际效果。
本课程教材改革是由该学科内容的抽象性、逻辑性和系统性以及所要求的基础知识的广博性所决定的。课程教材的编写应该考虑到以下三个问题:首先是对于自动控制的相关基本概念、原理和方法应有明确的表述,使学生形成对整个理论体系一个总体的把握。其次是适当增加控制理论教材中工程应用的例子,把新的知识建构在学生已有的知识结构的基础上。第三,在改革教材方面,采取以教材为主,与之对应的辅导材料为辅的教学参考模式。
3.教学内容体系研究
教学内容是教学改革的重要一环。针对教学实际情况,结合专业培养人才目标的需要,我们对本课程内容进行了调整和充实。基本概念、基本原理、基本方法必须要牢固掌握,加强训练的力度和内容。一些定理的证明不追求其严密性,只给出简要的解释或说明,重点强调结论的正确内涵直观意义和满足条件。面向实际应用的问题,强调其来龙去脉,便于面向对象处理问题。具有物理背景内容的教学,如滤波器等,增加物理系统的实例。物理意义弄清楚,不仅有利于学生理解内容,而且便于记忆一些传统教学内容不便表述或计算的问题。
教学内容要使学生明了怎样把所学理论用于工程实际,促进课程教学内容的改革。在教学内容的组织与安排上,将各章节定为既相对独立的教学周期,又与下一章节内容有机结合,相辅相成。这样所有的教学内容通过这种周期循环和相互连接、重复与不断强化的过程,就可以达到使学生理解所学理论的知识体系和扎实学生理论知识的目的。比如教学过程中,通过一个运动控制系统的实例,就可以给出一些基本控制理论概念,然后用基本物理知识和数学知识对它建立数学模型。
傅里叶变换、拉普拉斯变换和z变换是工程实践中用来求解线性常微分方程的简便工具,同时也是建立系统在频率域数学模型-频率特性、复数域的数学模型-传递函数和z域的数学模型-脉冲传递函数的工程数学基础。这些工程数学的运算能力是自动化及相关专业从事科研和技术工作的基本功,而在目前的课程体系中,像傅里叶变换、拉普拉斯变换和z变换是分别在不同学期、不同课程中讲授的,学时又较少,这样就造成学生对这些知识的掌握缺乏系统性和扎实性,在本科生毕业设计和研究生教学中明显地暴露出来这方面的弱点。
本教学改革以控制工程所需要解决的问题为出发点,在教学内容的组织上采取循序渐进,逐步深化,强调基本概念的理解和应用,减少一些定理和公式的太细的推演过程。在教学过程中,我们在确保课程体系完整的情况下,注重教学内容的整合和更新,因材施教。在授课内容上,分别讲解复变函数基础知识、微分方程、傅里叶变换、拉普拉斯变换、Z变换等方面的工程数学知识。为了使自动化专业学生对工程数学的应用背景有足够的了解,单辟一章讲解控制工程导论,这对于学生站在一个较高的层面来工程数学的作用很有帮助。不仅如此,在相关章节中,还分别介绍了相关数学知识在滤波器、电路分析、脉冲传递函数等方面的应用。由于是从专业的角度来叙述相关应用,不仅有助于学生理解数学知识,对将来专业课程的学习也会很有裨益。在教学的结构安排上,先讲述时域分析法,然后变换域(频域、复频域和z域)分析的方法。
4.制定教学大纲
课程教学大纲决定了课程性质、知识点以及能力培养的目标。为了制定有针对性的教学大纲,我们课程组反复讨论该课程在专业中的地位及与其它课程间的联系,从而形成了该课程的知识点及能力培养模块。“控制工程数学基础”是一门理论性较强的专业基础课。本课程的目的和任务是使学生掌握控制工程数学基础的基本概念、基本理论和基本分析方法,为后续课程的学习奠定必要的基础。
根据重点突出、系统性强的要求,并针对本课程在低年级开设的实际情况,学生们还没有关于自控等的概念的情况,本课程安排48学时。主要强调“三大变换”的数学概念,物理概念和工程概念,重点突出信号的时域和变换域分析、信号传输与处理。我们设计的课程教学内容和基本要求如下:
1.控制工程导论。
这一章主要是明确课程的内容、作用和培养目标。要求是了解控制工程、控制理论的一些概念;掌握线性系统的性质等内容。约3学时。
2.复数与复变函数基础。
这一部分是基础,需要进行深入、细致的讲解。主要是掌握复数、复变函数的概念;掌握复数的乘幂与方根的求解方法;理解映射的概念。约6学时。
3.连续系统时域分析。
这一部分是重点,要求掌握一些常用的控制信号及其运算,掌握时域系统数学模型微分方程的求解;理解并掌握系统的时域响应,特别是阶跃响应和冲激响应。约9学时。
4.连续系统频域分析的工程数学基础。
这一部分是基础性的重点,要理解傅里叶变换及其反变换;掌握傅里叶变换的性质与应用;了解频域数学模型-频率特性的基本概念及傅里叶变换在系统频域分析中应用。约6学时。
5.连续系统复频域分析的工程数学基础。
这一章是关键的内容,要理解拉普拉斯变换及反变换;能灵活运用拉普拉斯变换的性质;掌握拉普拉斯变换在系统复频域分析中应用;了解并掌握传递函数的基本概念。约11学时。
6.离散系统的工程数学基础。
这一部分是课程的另一个重点内容,讲述离散系统。要求理解采样的基本概念;掌握一些典型的离散序列;掌握差分方程及其求解;掌握z变换及其性质;掌握脉冲传递函数的基本概念;掌握z变换在系统分析中的应用。约13学时。
通过制定教学大纲,体现了数学理论、物理概念和工程应用的三结合,如不同变换域间的内在关系;还体现了课程群间的相互联系。在结构安排上,以连续控制系统和离散控制系统的分析处理为主线,先时域分析法后工程数学分析法(积分变换法)。突出概念,层层展开,逐步加深,体系严密,选材丰富,浅显易懂,以介绍结论为重点,易于大学低年级学生的理解。
5.结语