时间:2023-08-16 17:28:20
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇化学工程和化学工艺,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
一、绿色化学工程与工艺的开发
在传统化学的生产过程中,在有毒、有害物质的处理上存在较为严重的滞后性,因此导致化学工艺一直处于被动生产。应用这样的化学工艺对污染物进行处理无法取得理想的效果,资源优化也无法得到有效实现。化学工艺的应用不但导致化学生产污染物成本提高,还导致污染物处理效率严重下降。绿色化学工程的应用可有效弥补传统化学工程中存在的缺陷,其通过对相关科学技术及先进方法的利用,对化工生产相关污染物进行除尘、脱硫等处理。绿色化学工程与工艺具体实施方法主要有以下几种。
(一)采用绿色化学原料
在化工生产工艺及具体流程中,化学生产原料是起着决定性作用的主要因素,在传统化学工程中,所用原料大部分为不可再生能源。采用这些原料不但大大提高国家不可再生能源的消耗,同时还导致污染物的排放量大大增加,加重生态环境污染程度。将绿色化学原料作为化工生产材料是绿色化学工程重要研发内容之一。在化工生产过程中,可使用绿色化学物质、自然物质等无染/,!/污、可再生的化学原料。典型的绿色化学原料主要有芦苇、苞米杆、纤维植物等。将这些作为原料投入到化工生产过程中,可使其转化为酮、醇、酸类等多种化学品。在整个转化反应过程中,这些原料仅会产生一定量的氢气,而不会有任何一种有害、有毒的物质产生。
(二)提高化学反应的选择性
在化学工程的物质反应中,化学反应作为必不可少的重要组成部分存在。所有化学原料的转化均是需要化学反应才能得以实现。在化工生产过程中,合理选择有效的化学反应形式可有效促进化学工程生产效率及质量得到提高[2]。对化学反应产生影响的因素有很多种,反应原料、环境、时间、特点等均会对化学反应产生不同程度的影响。在化学生产过程中应用最为普遍的反应形式为氧化反应。在氧化反应过程中会有大量的热产生,所有化学原料均会在热的催化作用下发生变质,因此会大大降低化学品的生产质量。在绿色化学工程中,应用新型的反应形式,这种新型反应形式为烃类氧化反应。这种反应形式的应用不仅可促进催化物反应催化能力得到提高,同时还可有效促进生产物同分异构反应时间增加。
(三)使用无毒无害催化原料
随着化学工业发展速度的不断加快,将化学反应合理的应用于化工生产过程中已经成为促进工业可持续发展的重要前提之一。在化学反应过程中均离不开催化剂的使用。将催化剂应用于化学反应过程中,可有效加快反应速度,缩短法宁时间。所以,在化工生产过程中使用无毒无害的催化原料成为推动绿色化学工程与工艺不断深入发展的重要前提条件之一。目前,我国相关部门已经高度重视对催化原料的选择及应用进行深入研究。越来越多的催化剂得到开发和研制,化学反应过程中使用的催化原料不断得到改善,分子筛除催化剂等优良催化原料在化工生产过程中的应用越来越广泛。无毒无害催化原料的应用可有效提高化学反应效率,降低能源消耗量,同时也可减少环境污染。
二、绿色化学工程与工艺对化学工业节能产生的促进作用
目前,在各工业产业的生产过程中均已广泛应用到绿色化学工程与工艺。该工程中具有的应用性能不仅可有效改善化工产业发展过程中存在的资源浪费和环境污染问题,同时还可有效促进化工生产的结构不断得到优化。绿色化学工程与工艺在化工产业中的应用主要表现在如下几点。
(一)清洁生产技术的应用
清洁生产技术是一种具有较高价值的绿色技术,该种技术主要是通过对化工原料进行无害、无毒、无废处理,实现原料利用率得到提高,进而促进化学工程的生产质量得到提高。在清洁技术中,应用最为普遍的技术分别为脱硝和脱硫两种技术。应用该两种技术对存在较为严重的污染的化学废物、生活垃圾等进行绿色处理,经过相关技术的处理后,生活垃圾可有效转化为沼气。应用自然发电技术来代替传统发电技术。太阳能、风能的开发和应用是清洁生产技术飞速发展的重要标志。在生物工程中合理应用清洁生产技术,可有效促进细胞及基因工程的发展效果得到显着提高。在辐射加工中应用清洁生产技术,可促进催化剂的作用得到显着提高。
(二)与生物技术相互结合的应用
在生物技术领域中,其技术范畴具体包含细胞、微生物、基因、酶等多种技术。其在各化工生产中的应用主要包含有生物化工合化学仿生学两个方面的内容。在生物体内,生物酶作为催化剂存在,其具有显着的专一性和高效性,在生物合成的每个过程中均无法脱离酶的作用。在绿色化学工程与工艺中对生物技术进行合理应用,通过相关技术处理,可使再生资源转化为相应的化学品。早期所应用的有机化合物原料大部分是直接源自动物和植物,后来才逐渐发展为将煤炭、石油作为原材料使用。在绿色化学工程与工艺中,通常情况下均是应用工业酶或存在于自然界中的酶作为催化剂。将酶与通常应用的化学催化剂进行比较,酶在应用过程中的优点主要表现为无污染、产物性质好、反应条件温和等。例如通常情况下均是应用丙烯腈进行丙烯酰胺制备,当使用酶作为催化剂后,能耗消耗量大大降低,反应具有彻底性,并且在反应过程中无任何副产物产生。
(三)生产环境友好型产品
绿色化学工程与工艺的主要发展目的之一即为为社会生产处环境友好型产品,如清洁汽油、磷洗衣粉等无毒无害产品。通过绿色化学工程可以生产出与社会、自然环境发展相符合的友好型产品。绿色化学工程生产的出现在很大程度上起到了保护环境的作用。在社会生产、生活中,人们的购买的产品均为绿色产品,不仅有效保证了人们身体健康,同时也可促进社会健康、和谐发展。因此,在化工生产过程中,如能够促进绿色化学工程与工艺对的优势得到充分发挥,可有效降低生态环境的染污,促进国家自然环境和社会经济得到可持续发展,对国家的长远发展及社会的进步具有重要意义。
[关键词]化学工程 绿色化学 节能
中图分类号:O6 文献标识码:A 文章编号:1009-914X(2016)25-0032-01
近些年来,我国的总体经济得到了很大的发展,但在发展经济的同时也对环境造成了很大的危害。现在人们也都已经意识到了环境污染的问题,现在人们更加提倡绿色低碳的生活理念。绿色化学工程主要是以化学工程工艺为基础,然后在其进行生产的过程中,使用一些相应的技术来加入绿色环保的理念,最终达到节能环保、绿色生产的目标,从真正意义上实现节能减排、低碳生活的目的。
一、化学工程中绿色化学工程工艺开发的分析
1.1 绿色化学工程工艺开发的意义
相对于之前传统的化学工艺而言,绿色化工工艺更加注重低碳以及对环境的保护。在使用传统化工工艺的过程中,对大对数有毒污染物的处理并不够彻底,还具有非常明显的滞后性。而且,很多化学工艺都是有针对性地对一些污染物进行处理,这样虽然在一定程度上节约了处理的成本,但是也会导致一些污染物的处理不够彻底,从而对环境造成一定的危害,根本不能够从真正意义上达到处理的效果。例如:对于一些化工厂对烟尘的处理,看起来是采用了一定的措施对烟尘进行净化,但实际上所处理得并不够彻底,一些类似于一氧化碳等气体可以通过一定的方式转化为其它的一些污染物,如果再使用一道相应的程序进行一定的处理,这样在很大程度上增加了处理的成本。在进行化工艺生产的过程中,对化学原料的选择也是非常重要的,化学原料是整个化工工程生产的基础,从原材料出发进行加工再结合绿色化学工艺对其进行一定的处理,不仅仅可以降低污染,还能够提高资源的利用率。
1.2 绿色化学工程工艺开发的重要性
在进行化学反应的过程中,需要在一定程度上使用选择性相对比较高的的试剂来进行相关的一些工作,以促进绿色工艺的合理利用。例如石油化工,在进行相关化工品加工生产的过程中,会产生很多的氢化物,这类化学产物的生成物质相对而言比较活跃,可能会与其它对的一些物质相结合,产生一定地化学反应,这类反应大多都为放热反应,而且整个反应的过程是非常不稳定的,不仅仅需要使用一些相应的技术作为基础,还需要使用更多的程序对这些污染物进行一些相应的处理。那么这个时候,绿色化学工程的使用就显得十分有必要了,就当前的化工工程工艺的就是来看,无公害、无污染始终都是放在整个生产领域的第一位,推行绿色化工工程工艺也是当前建立环境友好型和资源节约型社会的一个重要体现。
二、化学工程节能中绿色化学工程工艺的促进作用
2.1 绿色化学工程工艺的应用
就当前社会而言,节能、绿色、环保是当前社会发展建设的一个特色,绿色化学工艺的使用对实现节能减排有着十分重要的意义,绿色化工工艺的使用不仅仅能够体现出全国乃至全社会对于绿色环保、节能减排的重视,这也是全世界一直在努力的一个目标。在过去的一百多年的时间里,不论是经济、科技、工艺、文化等各个方面都得到了很大的进步,但是在进行社会发展的过程中,人们只注重经济的发展,却忽视了对环境的保护,最终走上了“先污染,后治理”的道路,不仅仅对环境造成了严重的污染,还造成了一些资源的枯竭,最终导致生态失衡,并对人们的生活造成了一系列的问题。而现在,人们面临着资源缺乏、环境污染、人口加剧等一系列的问题,人们也深刻意识到节能环保、绿色生活的重要性,也意识到化工生产所造成的污染是导致环境恶化的非常关键的一个部分,但是在进行整个社会发展的过程中,化工工艺生产优势一个必不可少的一个产业。由此而建,在进行化学工程生产的过程中,对绿色化工工艺的生产是非常重要的一个选择。
2.2 绿色化学工程工艺的促进作用
就当前的环境而言,我们虽然在提倡也在实行绿色环保的生产生活理念,但是环境仍然处理一个正在恶化的状态。目前我们所提倡的绿色环保理念、,主要是从以下的几点来进行的:(1)要开发新的技术。现在社会发展非常迅速,为了能够跟上时展的步伐,化学工艺生产的过程中也需要开发一些新的技术,来提高化工工艺的生产效率;(2)从源头上来对污染进行一定的控制。这也是控制污染的一个非常好的方法,由此可见,对材料的选择就显得十分关键了;(3)打造可循环的绿色生态产业链。为了能够顺应现在绿色生活的理念,化工工艺生产也需要采取一些应对措施,以走上可持续发展的道路;(4)发展循环经济。从绿色化工工艺的角度来说,发展循环经济对于实现节能减排来说,也是十分关键的一步。绿色化学工程不仅仅能够在化工生产领域中得到了一个非常好的发展,而且还能够在其他的一些生产领域中得到非常有效的应用,从而创造出一个资源节约型、环境友好型的社会。例如:清洁生产技术、生物技术、创造环境友好型这三个方面的技术,就可以通过一定的方式,应用到其他的一些生产领域当中,这样不仅仅可以促进化学工程工艺生产领域的发展,还可以促进社会的共同进步。
三、结语:
就目前我国的化工工艺生产的状况来看,绿色环保的生产理念以及相对技术得到了非常好的应用。本文主要通过对绿色化学工程工艺的开发和促进作用进行了一定的分析,在化工工艺生产的领域,绿色化工技术的应用是必然的一个选择,这不仅仅可以在很大程度上促进人们的生产和生活,还有助于社会走上可持续发展的道路。由此可见,绿色化工工艺的应用和发展使十分有必要的。
参考文献:
[1] 蔡永宏,浅论绿色化学工程与工艺,创建高效、节能、清洁的未来化工厂[J],化工管理,2013,14(24):142-143.
关键词:化学工程工艺 绿色化工技术 应用
前言
随着我国工业科技的进步,人们对化工材料的要求越来越高,例如节能性、环保性等方面的要求不断提高,近年来,我的能源及环境因为工业的发展带来了严峻的挑战,特别是近几年,我国的环境污染问题及能源消耗问成为备受关注的领域,我国化工研究人员也在重点研究关于不可再生能源的保护问题、生活垃圾的处理问题及工业污染物的合理排放问题。众所周知,在化工工程工艺中,很多有害、有毒的物质会被产生,如果这些物质处理不当,便会排放到大自然中,久而久之会对生产平衡起到严重的影响,绿色化工技术是提高化学工程工艺的先进技术,化工材料对生态环境的污染问题可以有效解决,提高化学工业的能源利用效率。本文将重点对绿色化工技术在化学工程工艺中的应用展开深入研究。
一、绿色化学技术的发展
在传统化学生产过程中,很多有害、有毒的物质会被产生,严重的滞后性使得化学工程工艺长期处于被动的生产状态下,因此,这种传统的化学工程工艺无法得到资源优化的目的,对于污染物的处理工程效果较差,污染物处理效率低下,同时提高了对化学污染物处理的成本。而绿色化学技术的出现,可以有效解决传统化学工程工艺中对污染物处理的问题,可以通过先进的技术,对污染物进行脱硫、除尘等方面的处理,具体实施方法如下:
1.采用绿色化学原料
在化学工程生产过程中,其流程及工艺直接由化学生产原料决定。在传统化学工程中,大多数采取的生产原料是不可再生的能源,选择这种化学材料增加了污染物质的排放量,同时增加了我国对不可再生能源的消耗量,因此,化学工程工艺中,选择绿色的化学原料是重点研发的领域,例如使用苞米杆、芦苇等农副产品废弃物,便是典型的绿色化学原料,这些物质无污染,直接投入化学生产中,可以直接转化成醇、 酮、 酸类的化学品,不会产生任何有毒或有害其物质,只会产生氢气等物质。
2.提高化学反应的选择性
化学原料通过化学工程工艺,产生相应的化学反应,产生相应的化学品,因此,在化学工程中物质反应的重要组成部分便是化学反应,在提高化学工程的生产效率及生产质量时,利用合理、有效的化学反应途径意义重大。反应环境、原料、时间、特点等因素都会影响化学反应。在化学工程中,氧化反应是最常用的反应形式之一,在整个反应过程中会产生大量热,很多化学原料会因为热催化产生变质现象,这也是直接导致化学品生产质量低下的主要原因。而新型反应形式―烃类氧化反应可以增加生产物的同分异构反应时间,同时提高催化物反应催化能力。
二、绿色化工技术在化学工业中的应用
1.清洁生产技术
辐射热加工技术、临界流体技术、绿色催化技术等无毒、无害、无污染的绿色化工技术统称为清洁生产技术。该项技术可以广泛应用于冶金、印染、垃圾处理等各个行业。此外还有很多先进的脱硝脱硫技术、煤气化技术及利用风能太阳能灯自然发电技术也都利用清洁生产技术。例如,在海水淡化技术的应用中,有效利用了我国海水资源,将海水中的盐与水的成分分离,在处理过程中不会对环境状态产生任何不利影响,还能有效解决我国淡水资源匮乏的现状。此外,海水淡化处理工艺所产生的氢氧化镁等物质的处理工艺成本低廉,工艺简单,并且 不会产生二次污染,因此此项技术未来发展的前景非常广泛。
2.生物技术
生物技术主要应用于化学仿生学及生物化工两个方面,其中技术范畴主要包括细胞、基因、微生物等。作为一种高效、转移性强的生物体内催化剂――生物酶,可以广泛参与到各个生物化工的合成过程中。另外,膜化学技术也是化学仿生学中被广泛应用的生物技术。通过生物技术可以使再生资源合成化学品,这是绿色化工技术经常沿用的方式。动植物中提取的有机化合物原料或石油、煤炭等作为原料都是绿色化工技术的原料。例如,在绿色化学工程工艺中,制备丙烯酰胺,可以利用自然界中的酶替代丙烯腈催化合成丙烯酰胺后,这样可以将能耗大大降低,并且没有污染环境的物质产生。与化学催化剂中的工业酶相比,自然界中的酶做催化剂更加环保,无污染,其反应条件相对较为温和,产物的性质也优良。
结束语
综上所述,在传统的化学工程工艺为人类创造了丰富的物质基础和能源,但是其生产过程中产生的残留物给环境污染产生了众多问题。绿色化工技术的出现对我国化学工程工艺产生了积极的影响,大大减少了化学产品生产加工过程中产生的有毒、有害物质,对我国整个化工产业及环保事业意义重大,能够真正实现绿色环保、节能减排的目的,是当今化学工业发展中的重要环节。
参考文献
[1]井博勋,莒菲.浅议绿色化工技术在化学工程工艺中的应用[J].天津化工,2015,03:10- 11.
[2]张忠平,薛建跃,王新运,程乐华.地方院校应用化学专业绿色化学人才培养模式探索[J].巢湖学院学报,2011,03:142-145+164.
[3]纪红兵,佘远斌.绿色化学化工基本问题的发展与研究[J].化工进展,2007,05:605-614.
1化学工程技术与化工工业的联系
化学工程技术支持着化工工业的前进与发展,化学工程技术从理论到实验,再到实践,最后投入生产成品,是必不可少的一个环节。然而,从实验室到工业生产,特别是大规模的生产,需要解决装置的放大问题,其直接影响企业工业生产规模的扩大及经济利益的增加,装置放大可以节省资金,减少不必要的消耗,节省劳动力。但是要考虑到,装置放大过程中,物流的一系列物理过程的相关条件很可能改变,达到的某些指标通常低于实验室的小型技术设备产生的结果。这种起源于放大过程的效应被笼统称为“放大效应”,包含很多已知及未知物理因素的影响。现代化工对于一套装置一年的产量,一般情况下按照目前的工业生产规模可以达到大于或者等于数十万吨,大规模的生产使其面临工程方面的问题,且在指标方面也有所降低,这对于工业而言会造成较大的资金损失。化学工程技术的进步,主要体现在新产品及工艺的不断创造,而这些都需要借助化工工业,除此之外,还需合理的经济和技术。就上述情况而言,凡是关于工业化的东西,一般情况下都归属于化学工程的研究范畴。在日常生活中,化学工程无处不在。如:烟筒排放物中的硫、氮氧化物等有害物质,需要经过严格的处理,才能对外排放,以防污染生态环境。在实验室达到要求后,要在工业规模中实现大量烟气的净化,就必须考虑大规模净化的经济性和可行性,要考虑的问题与实验室研究不同。又如,化工工业生产中,要求以十分纯净的产品为原料,对实验室操作来说,这比较容易达到。对大型生产装置的要求是,消耗低而且经济方面可行,这表明课题存在很大的不同之处。
2化学工程的研究对象及复杂性
化学工程是以物理学、化学和数学为基础,并结合工业经济基本法则,研究化学工业中的物理变化和化学变化过程及其有关机理和设备的共性规律,并将之应用于化工装置的开发、设计、操作、控制、管理、强化以及自动化等过程中,在化工工艺与化工设备之间起着承上启下的桥梁和纽带作用的一门工程技术学科。一般情况下,化学工程的对象的情况较为复杂,具体如下:首先,该过程自身具有一定的复杂特点,包括化学与物理,而且两者经常发生,彼此影响。其次,物系方面较为复杂,流体与固体,或者兼而有之。流体特质变化较大,如有低粘度和高粘度、牛顿型和非牛顿型等。最后,物系流动时边界复杂,由于设备的形状较为多样,而且其在填充物方面的形状也不正常,如催化剂、填料等,使得设备在流动边界方面的设置较为复杂而且在确定方面不准确。
3化工工业的现状及发展
目前从形式上看,现代的化学工业经历了单元操作和传递原理与化学反应这两个发展阶段,正准备走向一个新的阶段。但种类多样、制造过程复杂以及生产产品款式较多,造成排放物复杂、量多及危害大,因此,目前化工工业应重点关注污染问题。与此同时,在加工、贮存、运用或者处理化工产品时应防止操作对环境生态以及人类健康造成危害。在化工生产中应遵循国家可持续发展战略,制定正确的方案。随着我们国家科学技术的快速发展,各行各业进行生产都要接触化学工艺,涉及制药、石油、材料、能源等行业的发展和污染问题,这都是现代化学工业需要面对的问题。目前,我国的化学工业经过了半个世纪的发展,已经形成了门类比较齐全,品种大体配套并基本可以满足国内需要的化学工业体系。2001年全国国有及规模以上非国有企业的石油加工工业和化学工业总产值达到10990.6亿元人民币,占全国工业总产值的9.8%,实现利税747.8亿元,石油和化学工业企业13765个,资产总额13344.2亿元。我国化学工业获得长足进步的同时,环境保护工作也不断得到加强。但是化学工业在实施可持续发展战略过程中,仍存在不少问题和障碍,严重制约着我国化学工业的发展。
4二者的发展探究
综上所述,随着科学技术的发展和化学行业的不断进步,化学专业的研究重点已经从化学过程、设备等单一方面,转向化学行业与其他行业的融合方面,以最大限度地节约资源、能源,实现绿色化学目标,实现可持续发展。应最大限度地发挥化学工程技术对人们生活的巨大作用,探究化学工程技术的热点分析与发展趋势,通过对现有化学工程技术的分析,研究其技术热点,从而经过理论分析,判断未来化学工程技术的发展态势。化学工程技术与化工工业的结合,是化学工艺造福人类的前提,只有两者很好地结合,才可以推动社会进步。由于化学工程往往涉及污染问题,因此应从化学工程技术角度分析,从而最大限度地降低化工技术对环境的影响。
作者:芦丽霞潘俊超单位:郑州兰博尔科技有限公司
【关键词】:化学工程;系统;和谐;辩证法
自然界中的和谐系统比比皆是,大至宇宙,小到原子;地球生态系统是和谐的,动植物群落是和谐的,人类社会体系是和谐的,健康的人体更是一个绝妙的和谐体。所有这些和谐系统遵循着同样的辩证综合的规律,具体可以归纳出三条:1.统一律;2.层次律;3.进化律;所有和谐系统具有同样的性质:1.开放性;2.自组织性;3.非线性;4.无限发展性[1]。当爱因斯坦把大半生致力于统一场论时,其哲学上的需要相对物理学上而言或许要来得大,面对物理学的系统和谐,理论规则的分立是不能令他觉得满意的。而化学工程的发展是不是因循同样的哲学历程呢?
在化学工程作为学科开始被重视之前,化学工业已具有了相当的规模,各种具体的工程与工艺都被独立开来,在认识上是被分为各门特殊的知识,因此,当国外高等院校在十九世纪末开始设置"化学工程学"时,开设的课程大多是学习当时化学工业的各种工艺学,"化学工程"的概念在当时还是相当模糊的,在理论上充其量是化学与机械的一种混合(amalgam)。然而这种理论混合的模式在德国人看来却是很正统的,即使在今天,他们也避免专论"化学工程",而是称之为"过程工程"(ProcessEngineering),这一名称实际上要比"化学工程"的范畴更广,甚至更为准确,凡是涉及一定流程与工艺的领域都是适用的。但我们习惯上还是沿用"化学工程"的名称。
二十世纪开始,化学工业迅猛发展,在社会经济中占的比重越来越大,客观上需要化学工程学科的发展和支持。随着生产力的发展,人们对事物运动规律性的认识也愈来愈深化,愈来愈有概括性。伴随着其他领域科学技术的快速进步,人们逐渐认识到化学工业中各门看似不相干的工程和工艺中存在着共同的物理特性。1901年,美G.E.的Davis《化学工程手册》的发表,初步提出了"化工物理过程"的原理。1900年始,以合成氨、纯碱、燃料等为代表的近代化工厂出现,如1913年,德哈勃-博施法高压合成氨技术的产业化,星火燎原的,化学工业呈现出巨大的发展前景。到了二十年代,美MIT的一些学者提出:不管化工生产的工艺如何千差万别,它们在众多的典型设备中进行着原理相同的物理过程。1920年,美MIT成立了第一个严格意义上的化工系,时W.K.Lewis任系主任。1922年美国化工学会认同了新的见解,引出了"单元操作"(UnitOperation)的概念,这一概念在苏联时期和我国则广泛称为"化工原理"。
1900年始的"分离工程"研究使"单元操作"的概念日趋成熟。被称为单元操作的过程主要有流体流动、传热、干燥、吸收、蒸发、萃取、结晶和过滤等,以这些单元操作作为研究和学习的主要内容,是化学工程学科在二十世纪前半期发展的核心,其理论迅速成为发展化学工业的重要基石。这种把千变万化、千差万别的过程和工艺概括成"单元操作"是生产力发展到一定水平的反映,是化学工程学从"个性"到"共性"的第一个哲学性概括,是在一个系统整体性把握的高度上建立了一门技术科学,体现了系统科学发展的和谐统一规律。
随着"单元操作"概念的确定,另一方面,化学工程学科中重要支柱之一的"反应工程"亦逐渐浮出水面。从最初的德Winkler流化床煤气化炉的应用到德Bergim-Pier三相液化床煤液化工艺的开发,又到1931年丁纳橡胶和氯丁橡胶的投产,化学工业上发展的高峰持续不绝,1940年美国FCC炼油开发成功,成为石油化工的起点。直到1957年,欧洲第一届反应工程会议,明确提出"反应工程"的概念,成为化学工程学科的重要组成部分,是化学工程学的进一步和谐统一。"反应工程"的建立,乃至今日仍备受困扰的"过程放大效应"问题,及从"逐级放大"到"数模放大"的研究都带动了"化工过程系统工程"的发展,并共同体现了系统科学发展的和谐层次律。
就在"反应工程"发展的同时,"单元操作"得到了更加深刻的认识,人们发现各单元操作之间存在着更为普遍的原理,"过滤只是流体传动的一个特例;蒸发不过是传热的一种形式;吸收和萃取都包含着质量的传递;干燥与蒸馏则是传热加传质的操作……"[2]于是单元操作可以看成是传热、传质及流体动量传递的特殊情况或特定的组合。这种认识的深化过程并没有停止,人们进一步又发现了动量传递、热量传递和质量传递之间的类似性。于是从二十世纪50年代开始,人们综合了以往的成果,开始用统一的观点来研究三种传递过程。1960年,美威斯康辛大学(Univ.Wiscosin)的R.B.Bird教授出版了《TransportPhenomena》一书,系统地采用统一的方法来处理三种传递现象,从此化学工程学科的核心过渡到了"三传一反"的系统性概念。"三传"的研究是系统科学和谐进化律的又一体现,使化学工程学达到了一个新的整体性高度,这种高度的和谐统一是对客观世界本质性的认识,并在学科上反映出了系统科学的基本原理和性质,其影响力是普遍性的,是跨学科的,不仅使"传递原理"成为化学工程学的重要基础,同时在生物工程、机械、航天和土木建筑等工程学科上也具有重要意义,并日益成为工程专业共有的一门技术基础课,只是侧重点有所差异而已。
至此化学工程学科自身经历了一系列的演化和发展,并在短短的一个世纪中达到了一个前所未有的高度,涵括了众多的生产和应用领域,如医药、化肥、能源、材料、航天、冶金、日用化学品等,每年为社会提供数以亿吨计的千百万种产品,是人们衣、食、住、行须臾不可离开的物质基础,为社会繁荣作出了巨大贡献。然而事物总是一分为二的,从人类发展最为激动人心的口号"征服自然"到今天庞大的工业化进程,地球自然生态系统遭遇了前所未有的严峻局面,这之中,化学工业是造成大规模环境污染及恶性重复污染的主要过程之一,化学工程学科需要肩负起新的使命。1990年,"生态化工"(Eco-ChemicalEngineering)的概念提出来了,相应在化工生产和过程工艺中提出了"清洁化工"和"绿色化工"的概念,因时应势,化学工程学开始了系统科学的自组织过程,这也是和谐系统对立统一发展的需要。在系统科学看来,自组织是和谐系统的基本性质之一,只有自组织系统能通过外部和自身内部的不断协调、整合,在适应环境的同时保持自己的特性并产生新的功能。从自发到自觉地,化学工程学吸收了自组织的理论,不断在广度和深度上充实、完善和发展。随着新世纪的到来,世界正发生着全球性的变化,经济、社会、环境和技术等领域都面临着新范畴新理念的变更和冲击[3]。化学工程学科需要因应时展而改变传统的限制,不断有新的概念提出来,如化学工程应是伺机而待的专业(aprofessioninwaiting);化学工程师必须"besteepedintechnology",能够创新、开发、变换、调控和适应取代;化学工程学科要从"ProcessEngineering"达到"ProductEngineering"再到"FormulationEngineering"。进一步的综合认为,化学工程学关注着同时发生在非常广泛的时空跨度内的现象,必须具备多尺度、多目标的方法来达到过程的总体优化。涵括了五个方面[4,5]:
①Nanoscale(纳观尺度):研究量子化学、分子过程与分子模拟等。
②Microscale(微观尺度):研究微粒、气泡、液滴、控制界面胶束和微流力学规律等。
③Mesoscale(介观尺度):研究换热设备、反应设备、塔器以及传统的"单元操作"和"三传一反"等。
④Macroscale(宏观尺度):研究生产装置和生产过程等。
⑤Megascale(兆观尺度):研究环境过程和大气生态过程等。
于是化学工程学的核心转变到了"多尺度、多目标择优"的概念,化学工程学科又到达一个新的和谐统一的高度,进入了更高层次的系统工程领域。
新的发展的深度促使化学工程学科作出了一定尺度的"分化",然而这还远未结束,人们对世界的认识还在不断探索不断深入,一个更深刻更普遍也更一般的问题已经触到了化学工程学科的神经,触到了化学工程学的认识本质,并促使化学工程学需要有新的"融合"。这一问题就是"非线性及其包涵的混沌原理",相对于"线性"是人类认识客观世界的基本工具,"非线性"则是客观世界的本质特征,是"线性"反映的目的,是从科学角度看待世界的一种和谐统一;而在对"混沌发展"的研究表明,"混沌运动的普遍存在,揭示了自然界中实际系统发展演化的新行为,混沌态的自相似性使这种时间演化表现为一种空间结构,而且以其不同空间尺度上的相似性,揭示了系统复杂运动的统一性。这种统一性是一个观察"整体"的问题,只有在长时间范围(因为混沌运动是一种长时间行为)和更高层次复杂性中才能显现出来。"[6,7]这一问题涵盖了自然科学和人文社会科学的众多领域,具有重大的科学价值和深刻的哲学方法论意义。马克思曾经预言:"自然科学往后将会把关于人类的科学总括在自己下面,正如关于人类的科学把自然科学总括在自己下面一样:它们将成为一个科学。"从这一角度上,"非线性"问题是这种过程一体化的契合点以及整体认识论上的共性[8]。当站在这种整体性的高度上,化学工程学科获得了全新的视野和更强大的分析解决问题的能力,并最终具有了学科融合的基础。
在整个化学工程学科的孕育、诞生和发展过程中,始终交织着学科的"分化"与"融合",除了上述尺度(scale)上的分化以外还有着所谓的石油化工、精细化工、高分子化工等专业上的分化;另一方面,作为近代工程技术,它又是自然科学(化学、物理等)和技术科学(机械、材料等)的融合。正如物理学家普朗克(Planck)所指出的:"科学是内在的整体,它被分解为单独的部分不是取决于事物的本身,而是取决于人类认识能力的局限性,实际上存在着从物理到化学,通过生物学和人类学到社会学的连续的链条,这是任何一处都不能被打断的链条。"事实上,当化学工程学科的核心发展到"非线性混沌系统"时,实现科学的融合已是其客观系统性的需要,它需要强有力的非线性解算能力和综合分析能力。基于人工智能和神经生物学的人工神经网络(ArtificialNeuralNetworks)技术为这种系统性的融合提供了新的思路和途径。人工神经网络特有的信息处理能力在愈来愈多的领域中展现出广阔的应用前景,它具有如下特点[9,10]:
①学习:神经网络可以根据外界环境修改自身行为,这使它比其他任何方法接受自身感兴趣的外界信息更敏感。
②概括:经过学习训练后,神经网络的响应在某种程度上能够对外界信息的少量丢失或自身组织的局部缺损不再很敏感,反映了神经网络的健壮性(鲁棒性),即工程上说的"容错"能力。
③抽取:神经网络具有抽取外界输入信息特征的特殊功能,在某种意义上可以说它能"创造"出未见的事物。
④模拟:神经网络由众多的神经元组成,以并行的方式处理信息,大大加快了运行速度,可以逼近任意复杂的非线性系统。
当然,神经网络并非十全十美,其自身的发展就曾经历过相当曲折的过程,但是,人工神经网络(ANNs)特性的融合将是化学工程学科发展到非线性核心系统的自组织适应和需要。例如采用神经网络设计的控制系统,适应性、稳定性和智能性均较好,能处理复杂工艺过程的控制问题,也使得化学工程师不但也是机械工程师,还首先是系统工程师,并能从最一般的非线性原理出发,解决实际过程的创新、应用、开发、生产等问题。
生产力的不断发展,科学技术的持续进步,人类认识自然和改造自然的不断深化,化学工程学科必将不断"分化"和"融合",体现出和谐系统的无限发展性质。
参考文献
[1]李立本.系统的和谐与和谐观[J].自然辩证法研究,1998,14(5):39.
[2]韩兆熊.传递过程原理[M].浙江:浙江大学出版社,1988,11:3.
[3]季子林,陈士俊,王树恩.科学技术论与方法论[M].天津科技翻译出版公司,1991,9:115.
[4]金涌,汪展文,王金福,等.化学工程迈入21世纪[J].化工进展,2000,(1):5-10.
[5]黄仲涛,李雪辉,王乐夫.21世纪化工发展趋势[J].化工进展,2001,(4):1-4.
[6]张生心,梁仲清.从量子混沌再看物理学的统一性[J].自然辩证法研究,1996,12(10):8.
[7]苗东升.系统科学精要[M].中国人民大学出版社,1998,5:20.
[8]成思危.试论科学的融合[J].自然辩证法研究,1998,14(1):2.
关键字:化学工艺与工程;安全性;风险评估
中图分类号 :G633.8文献标识码:A
前言:随着我国的国民经济的不断地发展,化学工业在这个发展的过程中起着越来越重要的作用。这几年来,我国的经济不断地快速发展,工业化的进程也不断地加快,随着生产规模跟生产设备的不断地扩大化,一些化学工艺跟工程的流程也在不断的变得复杂化,如果对某一项工艺监管的力度不够,很有可能造成事故的发生。
随着社会的进步,人们对安全越来越重视,逐渐意识到人的安全性是十分重要的,所以在化学工艺与工程项目开始进行之前,需要相关的部门给予一定的可行性研究,进而把风险控制在可以接受的范围内,保证化学工艺与工程项目安全可靠地进行。
1化学工艺与工程可行性研究时存在的问题
我国的化学工艺与工程在进行可行性研究的时候,往往采取一些比较传统有关事故的预防措施跟事故发生以后相应的应对措施,而没有从事故的根本上出发,所以,在化学工艺跟工程进行可行性研究的时候,需要从安全的本质出发。但是现在的化学工艺跟工程的科研并没有从本质安全出发,指标不治本,在进行风险评估的时候,也仅仅是对于出现的某些暂时可以预见性的风险进行评估,或者对于一些已经出现了的风险进行规避。实际上,应该从安全的本质上出发,这样就可以彻底地从根源上减少风险,从源头上消除风险。在化学工艺与工程研究的过程中可以考虑从本质上进行安全的评估,这样就可以有效的在工程设计实施的初期减少跟消除危险,避免进一步造成更大的损失[1]。然而有些时候,这一观点往往被大家所忽略,人们总是在风险发生以后才想办法去规避,而不去从一开始就把危害扼杀在摇篮之中。
2可行性研究在化学工艺与工程中的重要性
可行性研究就是在一个工程还没有开始之前,就把这个工程可能出现的问题进行全方位的预测,来观测投资效果。可以从技术上经济上管理上综合考虑,可行性研究的基本任务就是,在考虑了所有的可能性之后,如何把风险降到最低,并且还需要达到追求的经济利益,以最少的投入获得最大的产出,并且把工程中可能出现的风险降到可以规避的范围中。而且合理的利用资源,选择最优的方案,达到预期的社会效益跟经济效益。
可行性研究对于化学工艺跟工程的重要性从本质安全上可以体现出来,,[]首先需要知道什么是本质安全,本质安全需要从根本上考虑施工工艺跟设备可能出现的潜在的危险,这也是做可行性研究的时候事先需要注意的问题。对于本质安全来说,需要通过工艺跟设备的本身的设计来减少系统中出现的危险。通过研究具体的施工工艺的过程,对于在工艺的过程可能出现的风险进行防范[2]。基于本质安全,对化学工艺跟工程进行可行性研究有着非常重要的作用,可以从本质上有效的遏制了风险的发生。
在化学工艺与工程还没有开始之前,对将要进行的项目进行可行性研究,提前对这个项目有一个宏观上的把握,指出其中出现的问题,以及可能发生的问题,及时地给予相关的解决办法,列出相应的解决方案。通过可行性研究给了化学工程与工艺一个具体的研究方向,通过对成本跟受益的确定,能够明确这个项目的风险多大是否可以投资,这样就给相应的管理者提供了一个投资的参考,确定可研几率的高低,也就是确定了投资回报率的高低跟项目的风险收益的高低。可行性研究也给相关的监督部门一个依据,更好的对化学工程与工艺项目进行监管和控制。
3如何提高化学工艺与工程可行性
在本质安全的前提条件下,想要提高化学工艺与工程项目进行可行性可以细化为几个基本的策略。首先在对化学工程与工艺项目进行可行性研究的时候,可以考虑把影响系统安全性的一些危险物质减少到最低,在系统中危险物质的数量越少那么事故发生的可能性就越小,影响事故的严重程度就越小。在可行性研究的过程中,也可以考虑用一些危险性较小或者最好没有危险的工艺过程来替代有危险或者是危险性较高的工艺,通过替代使化学工程与工艺的可行性大大的提高了。在可行性研究的过程中,为了提高化学工程与工艺的可操作性,也可以在选择工艺条件的时候,考虑一些危险物质最小或者是危害形态最小的条件。这样在进行具体施工的过程中,提供相对安全的工艺条件,可以提高系统的可行性,减少对于系统造成的危害。在化学工艺与工程具体实施的过程中,可以把危险控制在一个能够接受的范围内。在具体实施的过程中,也可以通过简化操作来进行可行性研究的控制,俗话说,做得越少错得越少,在实际操作的过程中可以减少操作,减少使用的安全防护装置,这样就减少了人为的失误。在化学工艺与工程的过程中,越是简单的设备跟系统就越能增加安全,简单的工艺相对来说,包含的部件都比较少,这样就可以减少一些不必要的失误[3]。
以上的一些安全性的原理,都是提高系统的可行性的具体办法,在具体实施的过程中需要按照一定的先后顺序,依次进行选择,在前者达不到的情况下,再采取后者。通过这些有效的措施,可以大大的提高系统的可行性,有效合理的把系统风险降到最低,增加了投资商对项目投资的可能性。
4化学工艺与工程的风险评价
要想对化学工艺与工程进行可行性研究,还需要对化学工艺与工程进行风险评价。由于化学工艺经常涉及一些危险易燃易爆的物品,而且在生产的 也会发生一些物理的或者是化学的反应。在化学工艺跟工程的具体实施的过程中,一些化学工艺一旦选用在以后的操作过程中就很难进行更改,所以需要对工艺的过程进行可靠性跟风险性的评估,进而为科学的决策做一个有效的依据。评估的过程如下,首先进行一系列的前期的准备,然后进行化学工艺的设计,对设计的工艺进行分析,通过本质安全的定量评价的模型或者是本质安全的指标体系,建立具体的数学模型进行风险评估。对于得出的评估结果在经济或者技术的限制条件下,进行分析,看是否符合风险的接受的准则,如果符合的话就可以确定设计方案了,如果不符合的话则需要重新对工艺进行分析。
通过对化学工艺与工程项目的风险进行相关的评价,确定项目是否可靠进而确定是否进行可行性研究也是十分有必要的。为后期的可研提供了一个有效的评价标准,也为相关的管理部门跟人员提供了一个可靠的投资依据。所以说在化学工艺与工程开始实施之前,进行风险评估也是确定可研性的一个有效的措施。
5、结语
通过对化学工艺与工程的可行性研究,可以确定具体的实施方案,在本质安全的前提条件下,降低事故发生的概率以及影响人员的风险。
化学工艺与工程是一个比较具有危险性的工作,需要在实施的过程中给予足够的重视,事先考虑到所能考虑的各种情况,把危险扼杀在摇篮之中。对化学工艺与工程项目进行可行性研究也是十分有必要的,需要统筹兼顾。先做好可研报告,再具体实施,从而给了监管部门一个有效的依据,也可以确定风险投资的大小,进而确定项目是否可行。
参考文献:
[1]谢若曦,赵阳.化学工程与工艺[J].民营科技,2012,(8):22-22.
关键词:燃料乙醇 工艺 创新
随着世界石化能源的日趋匮乏,石油类产品价格日益攀升,开发一种绿色可持续的能源已经变得相当急迫。乙醇作为一种生产工艺成熟、生产来源广泛的替代能源越来越受到人们的关注。
乙醇俗称酒精,它以玉米、小麦、薯类、糖蜜木质纤维素等为原料经发酵,蒸馏而制成。所谓燃料乙醇是指对浓度95%左右的乙醇进一步脱水,再加上5%体积分散(一般为无铅汽油或无铅的烃类)的变性剂使之成为水分小于0.8%,且不可食用的变性无水乙醇。燃料乙醇既是一种清洁能源,又是一种良好的汽油增氧剂和辛烷值调和组分,用以代替四乙基铅和甲基叔丁基醚(MTBE)或乙基叔丁基醚(ETBE),乙醇调入汽油对降低汽车尾气中的一氧化碳含量很有效,起到净化空气的效果,同时,乙醇用粮食制造,是一种生物转化的太阳能,是一种取之不尽,用之不竭的可再生能源,在汽油中加入一定比例的乙醇作燃料,能节约石油、净化空气,转化多余的粮食,为人类社会的可持续发展提供一条简单有效的途径。
目前,世界上燃料乙醇的生产方法有合成法(即乙烯水合法)和生物法两种。由于近年来受原油资源问题及乙烯价格上涨的制约,合成法被生物法所取代。生物法生产燃料乙醇,大部分是以甘蔗、玉为、薯干和植物秸杆与农产品或农林废弃物为原料酶解糖化发酵制造的,其生产工艺有酶解法、酵水解法及一步酶法工艺法等。这段工艺与食用乙醇的生产工艺基本相同,所不同的是需增加浓缩脱水后处理工艺,使其水的体积分数降到1%以下,由于乙醇生产过程中水的存在,使得乙醇与水形成二元共沸物,而采用普通精馏方法所得乙醇中水的体积分数约为5%,要想控制燃料乙醇水的体积分数达到1%以下就必须采用较新的脱水工艺(目前开发的脱水工艺主要有:渗透汽化、吸附蒸馏、特殊蒸馏、加盐萃取蒸馏、变压吸附和超临界萃取分离等),脱水后制成的燃料乙醇再加少量变性剂就成为变性燃料乙醇。
燃料乙醇生物法生产过程包含发酵生物化学反应与乙醇分离两大主要过程,其工艺流程与人们熟知的化学工程中的许多单元操作存在不少共同点,如传递和反应诸多化学工程问题,所不同的是这里反应是发酵生化反应。在理论上来说似乎是简单的过程,但要想在大规模水平上获得最大效率,却需要依靠生物学和化学工程的结合。
化学工程的核心仍是“三传一反”,即使在纳米尺度上,反应和传递两种因素的共同作用是造成形形式式物质结构的根本原因,目前发醇工艺的放大仍停留在经验阶段,并没有上升到理论水平,这与燃料乙醇发展的需求极不相称,因此,采用化学工程的成熟理论及先进技术来研究燃料乙醇工艺过程,并进行创新具有重要的理论及实际意义。
一、发酵过程的化学工程分析
1.多尺度问题
由于酒精发酵过程是一个综合了微生物学、生物化学以及化学工程等的复杂过程,因此,模拟市场计算该过程不能仅仅单一采用传统的生物学方法或化学工程的方法,而应对生物反应器中多尺度问题作综合考虑。在化学工程学角度看来,酒精发酵罐可以看做是反应器,理论上计算反应器的模型应可以适用于酒精发酵罐。
2.动力学与放大
乙醇发醇过程前沿课题主要集中在液化、糖化和发酵过程节能降耗,包括:耐高温、高糖浓度、高乙醇浓度的能力以及酵母高效发酵过程的基础研究;液化酶、糖化酶的作用机制及实际物系的动力学研究;同步糖化发酵动力学方面的研究。从化学工程角度看,上述问题涵盖发酵生物反应动力学及传递特性两个方面,动力学方法是发酵过程放大的理论基础。发酵动力学包括两个层次:一是本征动力学,它是指没有传递等工程因素影响时,发酵生物反应固有的速率;二是宏观动力学,它是指在反应器内所观测到的总反应速率及其形式和结构、操作方式、物料的流动与混合,传递与传热等。
在大多数情况下,只要体系物性、流场、流态与在实际操作(热态)时比较接近,往往可以用冷模的实验方法模拟在热态下的流体力学状态,这对大设备的放大规律的研究有帮助。因此,采用大型冷模研究在过程设备中流体的流体力学特性并与小型热模所进行的动力学研究相结合是研究发酵设备放大规律的一种有效方法。
3.发酵罐内多场分布
多场分布包括温度分布、浓度分布和速率分布。发酵生物反应器中的物理因素—传递特性将影响到反应器内基质和产物的浓度分布及温度分布,进而影响到反应器内某一组分的反应速率。因此,传递特性的研究是不可忽视的问题,研究发酵罐内传热、传质及传动将是化学工程领域的一项重要任务,同时也为更好地控制发酵过程提供了理论依据。
CFD模型在模拟反应器内的温度、浓度和速度分布上是一种十分重要的方法,应引起重视。
二、乙醇纯化过程中的化学工程问题
采用发酵的方法生产乙醇,同时不可避免地会生成水,要获得乙醇势必要对乙醇和水进行分离,从原理讲分离乙醇和水的方法有精馏、吸附、渗透汽化膜分离等方法,然后发酵液中乙醇质量分数一般为5%~12%,而燃料乙醇产品的纯度却要在99%以上。因而从发酵液中分离出乙醇所消耗费的能量占总能量的绝大部分。所以从发酵液中分离乙醇—水混合液一般分两步:先用普通精馏得到质量分数为92.4%的乙醇,再用共沸精馏、萃取精馏、液液萃取、吸附或其它方法得到无水乙醇。
精馏作为具有技术成熟度和应用成熟度较高的分离方法,是分离乙醇—水混合液最早,也是最普遍的方法,但需很高的能耗。现有3种方法替代精馏方法生产乙醇:萃取法、超临界流体法和渗透蒸发膜分离法,这部分工艺几乎等同于化学工程的分离工艺技术,可以应用。
三、生物发酵反应与分离过程耦合
现有燃料乙醇工艺的基础研究包括生产过程放大和流程创新、研究生物反应与分离过程耦合探索新的短流程工艺。
将生物发酵直接看作反应并与分离技术耦合来提高整个发酵及分离的效率,将推动燃料乙醇工艺的技术进步。
多场耦合对开发新型发酵与分离设备具指导意义,未来发展趋势必将是将反应与分离以及多种分离结合一起的设备。如精馏与吸附、发酵与精馏等通过一个设备操作实现两者完美结合,而目前的多塔生产工艺将会被逐渐淘汰而发展对应短流程工艺这方面研究及发展将极大地消减成本,同时也降低能耗,对改善反应与分离过程,提高效率具很大潜力。
贯穿于燃料乙醇生产过程的流体流动、热量传递、质量传递问题与发酵生化反应交织在一起,对燃料乙醇过程产生决定性的影响。发酵过程尤其是同步糖化发酵技术背后的物理、生物、化学机制及工程策略,发酵罐中流场、温度场及浓度场的多场耦合,对生物反应器中多尺度问题作综合考虑,采用人工智能研究流程优化组合分析工程策略,发展新型分离发酵设备等,都是目前急需研究的内容,是燃料乙醇领域的难点和热点问题。
采用化学工程学理论及方法研究燃料乙醇生物反应工程规律、工程放大及流程创新将是一种主要趋势。
参考文献
[1] 李静海.浅谈21世纪的化学工程[J]. 化工学报,2008,59(8): 1879-1883.
关键词:工程技术;化学反应;应用技术
中图分类号:G633.8 文献标识码:B文章编号:1672-1578(2015)04-0025-01
化学工程技术是一门主要研究化工生产过程中研究和开发以及过程装置的设计、制造和管理的综合性技术。化学工程技术在化学生产中的应用已涉及到各行各业,化学工程技术的发展对于强化化工生产过程,提高产品质量,降低原料和能量消耗,对于企业的技术改造以及新技术的开发起着重要作用。
1.新型反应技术的研究
1.1 超临界化学反应技术。超临界液体是指在温度和压力都处于临界点之上时,此时状态处于液体和气体之间,具有这两种状态的双重性质。这种状态的流体不仅在化学工业、生物化工、食品工业有广泛的应用,而且还在医药工业等领域应用很广泛,已经显示出巨大的魅力,极具发展前景。近年来,化学界将超临界水氧化法应用到保护环境的领域,但是都处于初级发展阶段,很不成熟。
1.2 绿色化学反应技术。绿色化学是指对环境不会造成污染的,有利于保护环境的化学工程。绿色化学简单说就是采取化学的技术和方法来减少或消除那些对人类有害的、妨碍社区安全的、对生态环境会产生不利影响的原料或溶剂等。绿色化学是将污染从源头进行消除的工程,因此很彻底,这主要包含原子经济性和高选择性的反应,生产出对环境有利的材料,并且回收废物循环利用的一门科学技术。
1.3 新的分离技术。从广义上看,分离强化首先是对设备的强化,随后对生产工艺进行强化,整体来说就是只要能将设备变小、将能量转化效率提高的技术都是化工分离技术强化的结果,这样不仅有利于实现可持续发展,同时也是化工分离技术的重要技术与主要趋势之一。然而,古老的化工分离技术原理:利用沸点的不同,将不同的组分从分离塔里分离出来。随着科技的发展及国内外的分工合作共同研究除了大量新的分离技术,具有广阔的发展前景,但是这些在应用中同样也存在着很多问题,此项研究对相关分子蒸馏的基础理论探究比较少,没有在理论上充分说明和指导,对设计刮膜式分子蒸馏器也没有深入的研究。随着信息技术和科学的不断进步和发展,分离技术也随之得到改善,取得了长足的进步,逐渐信息技术引入到分离技术的研究与开发上,例如在研究热力学和传递的性质、多相流等方面,这些都是信息技术发生功效的主要分离技术,再如分子模拟大大提高了预测热力学平衡和传递性质的水平。对分子的设计加速了可以加速分离,因此对研究和开发新的高效的分离剂有深远的意义。信息技术的引进对于分离过程的深入产生了重要的作用,而且还能提高工作效率。
2.传热过程中一些新的研究进展和方向
2.1 微细尺度传热学研究进展。微细尺度是从空间尺度和时间尺度微细的探讨和研究传热学规律,现在传热学中已经自成一个分支,发展前景广阔。当物体的特征尺寸远大于载体粒子的平均尺寸即连续介质时假定依然会成立,但是由于尺度的微细,原来的假设的影响因素也会相对的发生变化,这就导致了流动和传入规律发生着变化。目前,微米、纳米科学已经取得长足的进步,受到人们的广泛关注,诸多领域都是围绕微细尺度传热学进行研究的。其中高集成度电子设备、微型热管、多空介质流动传热等多项研究都是微热尺度传热学研究取得的丰硕成果。
2.2 强化传热过程的研究进展。这项研究主要是从改进换热器设备的形式入手,提高传热的效率,并想办法改进设备使其持续对外放热,这种改进包含发明新的传热材料和改进生产工艺,将过去的设计进行优化等方法。
2.3 传热理论研究进展。近年来,传热研究者一直都致力于滴状冷凝在工业生产上的应用,但至今仍未能很好的实现,主要问题是如何获得实现滴状冷凝,并且使其冷凝表面寿命延长。改变冷凝界面的性质,将滴状冷凝应用到工业上进行传热改造是传播热学研究的主要热点之一。沸腾的传热方式不仅在机械、动力和石油化工等传统的工业之中广泛使用,而且在航空航天技术等高科技领域也广泛的应用着。长期以来,人们都在对液体发生核态沸腾的主要原因和具有高换热强度的机理进行着深入的探究。由于沸腾的现象是复杂和多变的,这些都导致了我们不能利用常规的计算方法来计算出沸腾所能传输的热量。到现在为止,加热器表面受到水沸腾时产生的气泡的影响,这一问题是最需要得到解决的,也是研究的重点所在,对沸腾传热进行计算大都采取机理模型,这种方法存在严重的缺陷就是计算的准确率很低,而且需要大量的实验做基础,所以目前应用的范围较窄,目前没有能较准确计算沸腾传热的计算式,因此我们有另辟蹊径,从新的角度来探究和研究问题,从基本理论出发,提出新的理论与计算方法或研究出新的模型,将数学与之相结合计算出沸腾所传出的热量,这将成为今后研究的重中之重。
3.促进化学工程技术发展的对策
3.1 着眼全局提高化学工程技术水平。化学工程科学近年来的发展趋势已经明显地呈现与多学科交叉的现象,要进一步促进化学工程技术的进步,就要从全局出发综合考虑与化学工程交叉的各个领域的情况。要统筹考虑各个领域的运用,做好整体的规划,协调各项科学的开发利用。并且统筹现有领域的同时积极开拓新的研究领域,使各个学科领域相互促进,最后实现共同发展。
3.2 提高化学工程机械设备研究水平。机械设备是提高一项技术必须具备的,先进的机械设备能为更高水平的技术研究硬件支持。但是相对而言,目前化学工程技术方面的机械设备还比较落后,应该加强研究力度,向世界化学工程技术研究的机械水平靠近。有了这些高科技水平的机械设备,在化学工程技术领域赶超世界水平指日可待。
关键词:化学工程;工艺;绿色化工技术;应用
在我国经济飞速发展的条件下,环境问题呈现出了可怕的形势,环境污染问题已慢慢的浸透到人们的日常生产生活中,而化学工业中的污染对环境造成的危害十分突出,是需要迫切解决的问题,因此,化学工程工艺中绿色化工技术的应用价值更为显著,具有长远的影响,不仅对环境污染问题进行改善,更对化学工业健康持续发展起着不可估量的作用。
1绿色化工技术阐述
绿色化工技术在化学工业生产过程中充当的角色十分突出,绿色化工技术应用的主要目的是控制化学工业生产对环境所产生的污染,期望通过对化学工业生产方法的革新和改良,来控制化学技术中化学原料和废弃物给环境所带来的污染和潜在的危害,因此,一定要减少排放有毒的废弃物,将废弃物资源回收利用做好,使资源利用率得到充分高效的提高,对污染物的排放实行有效的限制,把绿色化学工业的健康持续发展作为前进的方向。
2化学工程工艺中绿色化工技术的开拓
(1)化学原料选取化学原料作为绿色化工技术开拓中的基础,能从根源上使污染源得到很好的控制,进而缓解环境污染问题。对于绿色无污染化工原料并不是最佳的原料选取,其依然存在着缺陷,在生产的过程中依旧会产生污染物,给环境造成污染。因此,在生产中最好选用无毒的或是毒害相对少的原材料,不添加化学药剂的,比如,天然植物、天然农作物都是较好的材料选择。随着化学工业的兴盛,应该舍弃有毒害的材料,而选用无污染、无毒害的原材料,这样,才能在达到环境保护标准的条件下,使原材料成本减少,材料来源得到充分扩展。(2)化学催化剂选取化学工业在具体的生产过程中,往往会习惯性地运用化学催化剂加速化学反应,对化学工业生产效率的提升具有明显的效果,但是,同时也会有大量的有毒废弃物排放出来,给周围环境造成潜在的危害。因此,在面对具体的绿色化工技术开发时,应将焦点聚集在无毒无害化学催化剂研发上,以此为核心,使有毒废弃物排放量得到有效控制。另外,需要重视化学催化剂的选取要点,把无毒害或是毒害甚小的化学催化剂作为首选,从而接近工业绿色发展。在现阶段的化学工业中,众多研究人员在对无毒害催化剂研发方面的成绩令人们醒目,对烷基化固相催化剂倾向关注,它是一种无毒害,甚至不会对环境造成污染的化学催化剂,非常适合大力扩展应用。在此,需要强调说明的是,关于无毒害化学催化剂的研发,必须控制废弃物排放量严格符合规定要求,重视排放的废弃物循环使用这一点,使资源利用率有良好的改观。(3)化学反应选择性深化绿色化工技术具体钻研过程中,需要偏重深化化学反应选择性,进而达到加倍有效地实现化学生成物的提取,在确保符合减少环境污染标准要求的情况下,还可以使化学工业生产成本得到有效降低,更进一步改进资源利用效率。比如,在石油化学工业中,通常会运用烃类选择性氧化物,因为其化学反应极其易于发生氧化,在生成物产生方面存在着严峻的损坏与浸染。对此,针对化学反应选择性深化这一点,必须把防止产生损坏生成物的反应作为重点关注,进而使化学工业沿着绿色生产发展,消除对环境污染的潜在危害。
3化学工程工艺中的绿色化工技术应用
(1)清洁生产技术应用清洁生产技术的优点非常独到,不仅在冶金、海水淡化、废弃物处理等范畴被普遍的应用,而且也不会出现任何毒害反应,更不会产生任何的污染物。比如,在海水淡化中,通过清洁生产技术针对海水实行淡化处理,把海水里面的盐分和其他物质提炼出来,转化为日常生产生活中需要的水资源,所有环节中应用的清洁生产技术对环境不会造成污染,不会存在潜在的危害。(2)生物技术的应用生物技术通常在生物化工中比较充分的展示其优势,在实际操作应用中膜化学技术应用比较普遍,其效果最佳。通过生物技术把很多可再生资源转化成有价值的化学品,比如,酶成分,是一种比较普遍存在与环境中的化学催化剂,在化学反应过程能够充分发挥其作用,加快反应速度,而且不会出现污染废弃物,其反应特点相对温和,在化学行业中使用意义相当深远。而在以前的化学生产过程中,通常是把动植物内部的有机原料作为原料,以后改用自然环境条件下的石油和煤炭。(3)环境友好型产品应用环境与人们的日常生活紧密相关,拥有良好的环境十分的重要,因此,对环境的要求越来越严格,对环境的注重程度也越来越高,而环境友好型产品是针对控制环境污染问题而研发的一种摒除以往污染严重的产品。传统汽油,在日常生活中使用相当普遍,传统汽油燃烧,不仅给大气带来严重的污染,更会对人们身体健康造成危害,对此,需要开发新型产品取代这种情况,环保型汽油和新型燃料和能源等迅速出现,人们的环保意识在不断的增强。比如,酒精的生产,其原料以天然甘蔗为主,以新型乙醇汽油代替原来的汽油,在实际中应用非常普遍。环境友好型绿色产品,在具体的实际应用中对减缓环境污染起着至关重要作用。
4结语
总而言之,在化工生产过程中产生的有害物质给环境造成了危害,导致污染问题日趋严重,使社会健康和谐持续发展受到了严重的限制。因此,发展绿色化工,将绿色化工技术恰到好处的应用到化学工程工艺中,不仅能高效控制环境污染,更能对资源的合理利用起到关键作用,进而促使化工行业朝着健康和谐的方向发展。
作者:赖锦杰 单位:广东新华粤石化股份有限公司
武汉科技大学化学工程与工艺专业始建于1958年,原名为“炼焦化学专业”,1985年改为“煤化工专业”。1992年,按“煤化工”“、城市燃气”和“炭素材料”三个专业分别招收新生。1996年,随着教育部大学本科专业目录的调整,“煤化工”“、城市燃气”和“炭素材料”三个专业归并为“化学工程与工艺”专业。尽管名称几经变化,但始终坚持煤化工培养方向和煤焦化的特色。其原因主要是由于武汉科技大学的前身“武汉钢铁学院”和“武汉冶金科技大学”原来隶属于冶金工业部,毕业生主要面向钢铁冶金系统;培养目标针对性、学生的工程意识和实践能力较强,受到钢铁冶金行业焦化企业、科研院所的认可。目前,武汉科技大学化学工程与工艺专业为国家级特色专业,拥有化学工程与技术一级博士点和化学工程与技术博士后科研流动站。经过几代人的辛勤努力,学校化学工程与工艺专业的教学和科学研究规模及水平均有了显着的提高。在化工专业“宽口径”培养模式下,坚持煤化工方向特色有着重要的现实意义。首先,中国是以煤为主要能源的国家,在一次能源中,煤炭占70%左右,在较长的时期内这一能源结构不会改变[4]。大力发展煤化工产业,推广洁净煤技术,保证国家的能源安全,是中国的一项基本能源政策。其次,煤焦化是煤化工中技术最成熟、应用最广泛的一种煤炭综合利用方法。至少在50年内,采用高炉,利用焦炭作为炼铁的主要燃料、还原剂和料柱支撑体的技术仍将是钢铁冶金的主流技术。再次,“节能减排”是中国的重要战略任务,也是全世界面对的主要挑战。面对以煤烟型污染为主和焦化行业普遍污染严重的现实,从煤炭利用源头减少污染是实现“节能减排”的必由之路。最后,煤化工(包括焦化)行业涉及到中国能源供应和安全、钢铁行业的生存和发展以及节能减排的实现,当前以致今后相当长的时期仍是中国国民经济的主战场。因此,武汉科技大学的“化学工程与工艺”专业坚持煤化工方向特色是非常必要的;理顺两者的关系,既具有理论意义,也具有实际价值。
二、特色专业建设的基本原则
进行具有煤化工特色的化学工程与工艺专业建设,是优化专业学科结构,推进教学改革,加强内涵建设,提高人才培养质量,提升专业竞争力的重要举措。这不但有利于促进学校教学基本建设,进一步改善办学条件,巩固办学特色,而且有利于提高办学实力,更好地适应以煤化工为主的经济社会发展的需要[5-6]。
(一)市场导向
目前,中国大学生就业已完全走向市场,学生和用人单位之间进行“双向选择”,大学毕业生的一次就业率已经成为评价一所大学教学质量和综合竞争力的主要指标之一。要提高就业率,就必须瞄准市场对人才的需求,特色专业建设也必须以市场为导向,培养市场需要的专业人才。
(二)自主创新
特色专业建设是中国高等教育教学改革的一项新内容,本身具有探索性、创新性,加之各校各专业都要根据内外部条件形成自己的特色,更无先例可循。因此,特色专业建设要在教育观念、人才培养目标、人才培养模式、课程体系改革和评价标准等方面坚持创新。
(三)错位发展
特色专业建设要在市场导向的基础上,根据现有的办学条件、科研成果和发展潜能,集中力量,凸现特色;坚持有所为有所不为,采取“人无我有,人有我优,人优我新”的差异化策略,实现“错位发展”,避免正面竞争。
(四)相对稳定
特色专业建设是一项系统工程,是一个不断建设、不断积累、不断完善的过程,其特色的形成应该具有相对的稳定性。同时,要适应内外部环境的变化,具有一定的前瞻性,能够体现现代科学技术发展的趋势和未来社会和市场的需求变化。
三、主要措施
(一)更新教育观念
办学理念和专业建设观念是特色专业建设的指导思想,决定着特色专业建设的方向、进程和绩效。特色专业建设是一项涉及专业建设多方面创新和变革的教学改革活动,必须首先在专业建设和教学理念上实现突破,更新传统的教学观念以适应时代和社会发展的需要。为此,化学工程与技术学院针对“宽口径”的教育观念进行了多次研讨,并邀请、走访用人单位,进行深入地调研,逐步树立了化学工程与工艺专业在“宽口径”培养模式下坚持煤化工特色教学的观念。
(二)加强师资队伍建设
师资队伍建设是特色专业建设的根本保证。特色专业需要配备有学科特色的师资队伍,其教学和科研方向专长必须和专业特色的培育相匹配。化学工程与工艺专业的专业课教师多数既是理论知识的传播者和研究者,又是专业工程的实践者。他们多数在武汉科技大学设计研究院从事煤焦化设计研究工作,有着丰富的实践经验。近年来,随着学校跨越式发展,新引进了一批优秀的青年教师。这些青年教师多数没有煤焦化专业的知识背景,为此,安排新教师随班学习煤焦化方面的课程,而后安排到焦化厂进行3个月现场学习,并在学校设计院教师指导下完成焦化的工程设计,经教研室组织考核合格后方可上岗。
(三)创新课程体系
特色专业建设必须目标明确,在保持专业目标的基础上突出体现特色目标;在人才培养规格上要有明显特色,同时制定科学合理的人才培养方案。课程体系是高等院校实现人才培养目标和基本规格要求的总体设计蓝图,设置合理、科学、超前、前后呼应的课程体系是特色专业建设的基础和关键。应广泛吸收国内外先进的教育理念和教学经验,整合教学改革成果,优化课程教学内容,不断丰富课程内涵,努力构建适应经济社会发展需要、反映时代特征、具有学校特色的化学工程与工艺本科专业课程体系。依据学校的学科特点,在培养“通才”的基础上,构建了“焦化特色模块”、“精细化工模块”等专业方向课程。同时,将煤化学课程列入专业基础必修课,从而保证学生具备煤化工的知识背景。新的课程体系充分体现了“提升内涵、强化特色”的教学指导思想。
(四)改革实践教学环节
特色专业建设过程中,要高度重视校内外实习、实验、实训基地建设,为培养学生创新能力、实践能力提供良好的实践教学条件。近年来,化学工程与工艺专业建立了一批相对稳定的教学实习基地。考虑到专业培养方向的要求,实习基地以武汉平煤武钢联合焦化有限公司为主体。该公司在国内具有技术力量雄厚,生产工艺先进的特点,并具有较高的管理水平。同时,该公司可以说是焦化的一部“百科全书”,建有4.3m、6m、7.63m焦炉,所采用的配套工艺也有多种,是一个相当理想的本科专业特色教学实习基地[7]。在实验教学方面,依托湖北省煤转化与新型炭材料重点实验室,通过开设本科生创新性实验与创新性研究等课外实践活动,为培养学生的动手能力、创新能力、提高人才培养质量和专业特色教学提供了保障。
(五)强化课程、教材建设
课程建设是专业培养目标实现的基本途径,专业特色必定要在课程建设中得以体现。在进行课程体系改革的同时,学校十分重视课程内涵建设,重新整理了传统课程的教学内容,加强不同学科之间的交叉和融合。如在煤化学课程的基础上,将其它一些主要能源也引进来,从而形成了能源化学课程。在化工设备及材料中融入了力学、材料等知识;化工设计基础与技术经济分析课程在原来技术经济分析的基础上,增加了化工设计内容,以加强学生动手能力的培训;根据企业用人需求,增设了化工CAD绘图与识图。教材的质量体现高等教育和科学研究的发展水平,也直接影响本科教学的质量。为提高教学效果,主要专业课程都选用省部级以上优秀教材、“面向21世纪课程教材”、“十五”、“十一五”国家重点教材和教学指导委员会推荐的教材。同时,鼓励教学经验丰富、学术水平较高的教师编写与出版具有学校化学工程与工艺专业特色的教材,以进一步优化教学内容和深化课程体系改革。目前,本专业自编公开出版的教材主要有:《煤化学》《燃气工程》《化工技术经济学》《化工设计概论》《化学工程与工艺专业实验》以及《环境工程导论》等,其中《煤化学》为国家“十一五”规划教材。
(六)建立健全质量保障和监控机制
建立健全质量保障和监控机制是创建特色、保持特色的关键。只有特色鲜明,才能优势突出;只有集中力量重点建设,才能使学校加强对某一专业重点投入,创造良好的教学、科研条件,取得预计的成果。特色专业更强调精干高效,它是学校具有标志性作用的专业。要做到这一点离不开质量监控。为进一步保证教学质量,实行课程、专业带头人负责制,并建立了科学、合理的教学质量监控体系,包括学生评教制,干部同行评议制,教学检查员听课指导制,教学信息员信息反馈制,监督电话、信箱信息收集制,等。此外,还加大了对青年教师的培养力度,为青年教师配备指导教师,制定青年教师“过教学关”计划。上述措施有力地保障了教学质量的稳步提升,为培养高质量的煤焦化特色化工专业人才提供了制度保障。
关键词:化学工程;应用;发展方向
近几年由于我国科学技术水平的进步,自动化技术的应用在各行各业中逐步扩散起来,比如化学工程技术在化学生产中的应用也逐渐受到人们的关注,化学工程行业关系着人们的日常生活,影响着其他行业的发展,所以对在化学生产过程中的应用进行研究探析,是十分有必要的实时话题。
化学工程技术是一门主要研究化工生产过程中研究和开发以及过程装置的设计、制造和管理的综合性技术。化学工程技术的发展对于强化化工生产过程,提高产品质量,降低原料和能量消耗,对于企业的技术改造以及新技术的开发起着重要作用。
1 新型反应技术的研究
1.1 超临界化学反应技术
超临界液体是指在温度和压力都处于临界点之上时,此时状态处于液体和气体之间,具有这两种状态的双重性质。这种状态的流体不仅在化学工业、生物化工、食品工业有广泛的应用,而且还在医药工业等领域应用很广泛,已经显示出巨大的魅力,极具发展前景。近年来,化学界将超临界水氧化法应用到保护环境的领域,但是都处于初级发展阶段,很不成熟。
1.2 绿色化学反应技术
绿色化学是指对环境不会造成污染的,有利于保护环境的化学工程。绿色化学简单说就是采取化学的技术和方法来减少或消除那些对人类有害的、妨碍社区安全的、对生态环境会产生不利影响的原料或溶剂等。绿色化学是将污染从源头进行消除的工程,因此很彻底,这主要包含原子经济性和高选择性的反应,生产出对环境有利的材料,并且回收废物循环利用的一门科学技术。
1.3 新的分离技术
从广义上看,分离强化首先是对设备的强化,随后对生产工艺进行强化,整体来说就是只要能将设备变小、将能量转化效率提高的技术都是化工分离技术强化的结果,这样不仅有利于实现可持续发展,同时也是化工分离技术的重要技术与主要趋势之一。然而,古老的化工分离技术原理:利用沸点的不同,将不同的组分从分离塔里分离出来。随着科技的发展及国内外的分工合作共同研究除了大量新的分离技术,具有广阔的发展前景,但是这些在应用中同样也存在着很多问题,此项研究对相关分子蒸馏的基础理论探究比较少,没有在理论上充分说明和指导,对设计刮膜式分子蒸馏器也没有深入的研究。随着信息技术和科学的不断进步和发展,分离技术也随之得到改善,取得了长足的进步,逐渐信息技术引入到分离技术的研究与开发上,例如在研究热力学和传递的性质、多相流等方面,这些都是信息技术发生功效的主要分离技术,再如分子模拟大大提高了预测热力学平衡和传递性质的水平。对分子的设计加速了可以加速分离,因此对研究和开发新的高效的分离剂有深远的意义。信息技术的引进对于分离过程的深入产生了重要的作用,而且还能提高工作效率。
2 传热过程中一些新的研究进展和方向
2.1 微细尺度传热学研究进展
微细尺度是从空间尺度和时间尺度微细的探讨和研究传热学规律,现在传热学中已经自成一个分支,发展前景广阔。当物体的特征尺寸远大于载体粒子的平均尺寸即连续介质时假定依然会成立,但是由于尺度的微细,原来的假设的影响因素也会相对的发生变化,这就导致了流动和传入规律发生着变化。目前,微米、纳米科学已经取得长足的进步,受到人们的广泛关注,诸多领域都是围绕微细尺度传热学进行研究的。其中高集成度电子设备、微型热管、多空介质流动传热等多项研究都是微热尺度传热学研究取得的丰硕成果。
2.2 强化传热过程的研究进展
这项研究主要是从改进换热器设备的形式入手,提高传热的效率,并想办法改进设备使其持续对外放热,这种改进包含发明新的传热材料和改进生产工艺,将过去的设计进行优化等方法。
2.3 传热理论研究进展
近年来,传热研究者一直都致力于滴状冷凝在工业生产上的应用,但至今仍未能很好的实现,主要问题是如何获得实现滴状冷凝,并且使其冷凝表面寿命延长。改变冷凝界面的性质,将滴状冷凝应用到工业上进行传热改造是传播热学研究的主要热点之一。沸腾的传热方式不仅在机械、动力和石油化工等传统的工业之中广泛使用,而且在航空航天技术等高科技领域也广泛的应用着。长期以来,人们都在对液体发生核态沸腾的主要原因和具有高换热强度的机理进行着深入的探究。由于沸腾的现象是复杂和多变的,这些都导致了我们不能利用常规的计算方法来计算出沸腾所能传输的热量。到现在为止,加热器表面受到水沸腾时产生的气泡的影响,这一问题是最需要得到解决的,也是研究的重点所在,对沸腾传热进行计算大都采取机理模型,这种方法存在严重的缺陷就是计算的准确率很低,而且需要大量的实验做基础,所以目前应用的范围较窄,目前没有能较准确计算沸腾传热的计算式,因此我们有另辟蹊径,从新的角度来探究和研究问题,从基本理论出发,提出新的理论与计算方法或研究出新的模型,将数学与之相结合计算出沸腾所传出的热量,这将成为今后研究的重中之重。
3 化学工程学科未来的发展动态
科学的进步使大量新的技术和产品能源不断涌现,并且在先进技术的引导下得到了广泛的应用,这就为化学工程的研究提出了新的问题,那就是如何为新的产业的形成和发展提供良好的服务并不断形成新的完整的理论,化学工程的发展就此进入一个新的发展阶段。在学科研究的方法上更多的注重学科的交叉,更多的研究材料其中包含信息和化学、生物与化学、能源与化学、环境与化学相结合的工程学科,这些都为化学工程的发展提出了新的发展方向和研究课题,为化学的发展做了良好的铺垫。
4 结束语
电气工程中使用电气自动化技术可以提升相关设备的有效性,可以实现整个工程的信息化、网络化和效率化,可以使电气工程的数据采集、电网调度更加高效便捷,可以满足目前经济环境下的刚性需求,更好地适应社会的发展规律。
参考文献
[1]陈伟.浅析化学工程技术在化工生产中的应用[J].科学专论,2013(1).
关键词:化学生产;化工生产工艺;化工技术
化学工程通常就是指为达到一定效果在理论基础上进行的一系列化学生产活动,它是将理论应用于实践的一个过程。现如今化工行业除了包括石油化工、催化制造等传统化工,还囊括了生物制药、纳米技术等现代化工。但目前化工生产行业还是主要以化石燃料等传统化学工业为动力,但是燃烧化石燃料不仅使得不可再生资源的减少,更对自然环境造成重大的污染。很显然,这和人们日渐追求绿色环保的观念产生矛盾。因此,面对化工生产过程中产生的环境污染问题,及时地做出科学合理的改进措施已经变得至关重要。
1化工生产行业当前现状
1.1对环境造成重大污染
化工行业是目前当今世界最主要的污染源之一。首先,化工生产过程中会产生很多的废水。废气和固体废弃物,如果不加以合理处理直接排放到水源里,那么对当地的地下水生态系统造成的后果将不堪设想。其次,化工行业在生产大量日常生活品为人们带来便利的同时,也带来了大量的生活垃圾,由于很多生活垃圾都是高分子化学材料,处理起来非常困难,如果将它们直接采取填埋的方式处理,将很长时间难以降解,这会对土壤造成严重的污染。化工生产过程中不仅会对当地的土质、水源造成污染,而且对空气也会有很严重的影响。化工行业主要以燃烧化石燃料为主。燃烧化石燃料会生成大量的二氧化碳、二氧化硫和固态颗粒物,不仅会造成温室效应加剧的后果,还会形成雾霾、酸雨等恶劣现象,给人们经济和健康带来巨大的损失。
1.2化工生产效率太低
随着人们生活水平的提高,传统的化工生产工艺已经无法最大限度地满足人们的日常需要了,这是由于化工生产工艺本身的缺陷造成的。化工生产工艺是将理论的化学反应放大应用在实际生产过程中,因此在具体工艺中会遇到很多问题。例如化学反应过程中转化率太低,化工生产过程中连续性较低等。这些问题都可能导致化学反应不充分,最终造成化工生产效率比较低。另外,反应设备的效率太低也是造成化工生产过程中效率比较低的一个重要原因。
2化工生产行业改进措施
2.1优化化学反应环境
每一个化工工艺都是化学反应的放大过程,但是又要比简单的化学反应复杂得多。就像化学反应的各个参数一样,反应条件也是化工生产中最为重要的环节。而每一个化学反应都会有其最佳的反应温度、反应时间等参数,同理,化工生产过程中的最佳反应条件决定着化工生产过程中的质量。因此,要想实现提高化工生产过程效率的目的,也应该最大限度地创造一个最佳的化工反应环境,同时应该尽可能避免各种副反应的出现。另外,在适当的情况下,也要使用恰当的催化剂以提高化工生产过程中的速率。
2.2改进化工生产工艺
在化工工艺的改进方面,不仅要提高反应生产过程的效率,更应该注重化工生产工艺的绿色安全环保。通过调整化学反应的反应参数和条件可以实现对化工生产过程中效率的改进。而化工工艺要想实现绿色环保,就需要寻求一些新的途径,例如,更加绿色环保的化学反应,使用最少的生产原料,生成对环境友好的产物等。在日趋崇尚绿色环保的当今社会,化工生产工艺走向绿色安全是大势所趋,而绿色安全环保的生产工艺也能带领化工行业走上新的辉煌。
2.3合理处置生产废料
化工生产过程中会产生大量的废水、废气和固体废弃物,而这些废料通常都是对自然环境和人体有严重危害的。所以在处置这些化工生产过程中的废料时应该格外注意。通常处理这些废料主要采用物理法和化学法,但是二者各有利弊,物理法较为环保,而化学法较为彻底,具体是由废料的种类来决定采用哪种方法处置。另外,生物法处理化工废料也逐渐受到科学家们的关注,生物法处理化工废料既绿色环保又反应彻底,是一种较为理想的处理办法。综上所述,无论采取何种方法处理化工废料,都应该秉持绿色安全的原则,将其对环境和人类的危害降到最低。
2.4寻求化工新能源
当今化工生产行业仍然是主要以燃烧化石燃料为主。但是化石燃料作为不可再生资源已经面临很多的问题,而且大量燃烧化石燃料也会对自然环境和我们人类的健康带来巨大影响,因此寻求别的能源来替代不可再生的化石燃料已经迫在眉睫。新的可再生能源不仅保障了化工生产的长久稳定发展,也避免了传统化工行业对人类和自然环境带来的恶劣影响。而科学家们也在这一方面取得了较好的成果,例如,电化工、生物化工、纳米技术等。我们有理由相信在科学家们的不懈努力下,将新能源大量普及并应用于化工领域指日可待。
3结语
通过对我国当前化工生产行业现状的了解和分析,我们发现化工生产过程中还存在很多的问题正待我们去研究和解决。我们要想改良化工工艺就需要对科学进行不断探索,要想维持自然环境的不被污染,就需要找到更加科学环保的办法保护自然环境,这是考验人类生存和自然环境共同长久发展的重大课题。而现在的我们要做的就是认真探索,寻求突破创新,对传统化工工艺中存在的问题进行研究并改进,最终保障化工行业的绿色健康可持续发展,这样我们才能稳定的推动社会建设。
参考文献:
[1]李珺瑶.化学工程中的化工生产工艺[J].化工管理,2017,(06):90.
[2]罗泽鹏,刘森,都颖,刘思乐.浅谈化学工程中的化工生产工艺[J].黑龙江科技信息,2016,(02):76.