时间:2023-08-16 17:29:43
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇化学工程与工艺类,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
【关键词】绿色化工工程;化工工业;节能;促进作用
引言:对于化工来说,其是促进社会和物质文明发展的关键,并且为人类做出了非常大的贡献。与此同时,环境污染问题也日益严重,这样就需要采取相应的措施进行解决。而绿色化学工程与工艺是利用科学有效的方法和材料等进行处理,不仅大大提升了生产的利用效率,还很好的解决了存在的污染问题,因此,其对化工节能就有很大的促进意义。
1.绿色化学工程与工艺概述
1.1 绿色化学工程与工艺的重要性
目前很多我们生活中需要用到的物品都有赖化工生产流程,传统的化学工程与工艺中往往对于绿色化学不重视,生产过程中只是注重结果,短期内或许能收获相应的产品及利益,但从长远来看,很多化工生产工艺流程在生产过程中对环境造成很多污染,有的污染对环境的破坏是不可逆的,后果可想而知。随着人们环保意识的加强,近年来绿色化学工程与工艺越来越被人们提倡,这样的方式采用一种更科学更自然的方式实现化工生产,仍然能通过有效途径得到最后的目标产品,但大大降低了生产工艺对于环境的污染与破坏,同时很好的促进了化学工艺的节能,也实现了可持续发展的要义。
1.2 绿色化学工程与工艺的基本原则
绿色化学化工在世界范围内的原则相对一体,主要涵盖下列几方面。(1)在反应过程的源头上减少甚至根除废弃物的产生,而不是在废弃物产生之后再对其进行净化处理。(2)产品进行设计时,尽量做到原料利用率最大化。(3)产品进行分析时,在考虑生产效率的同时使原料和产品的毒性降低。(4)对于析出剂和溶剂等辅助物,尽量少用或选择使用无害产品。(5)减少生产过程中能量的损耗及其对环境的影响。(6)除了考虑经济和技术的因素,生产原料尽量选择可回收的加工原料。(7)尽量避免生产过程中产生不必要的化学衍生物。
2.化工企业节能减排的措施
通常情况下,大型化工企业在生产过程中往往会消耗大量的煤炭、石油和一些化工原材料,最终排放出大量的“三废”,也只有通过不断循环市场经济,才能够促进化工企业在国内市场的发展,并取得一定的市场优势。而目前化工企业应该在节能环保的基础上促进经济发展,其方法主要有以下几点:(1)加大化工污染这方面的技术、资金投入力度,对污染问题进行全面的控制。(2)针对化工生产项目使用先进的节能减排生产工艺,控制好化工原料,进而从源头上对污染问题进行防控。(3)创建绿色的化工生产链条,实现节能减排技术集中化处理。(4)全面提高企业职工的绿色减排意识,从自身出发做好环境保护工作。
3.绿色化学工程与工艺的合理开发
3.1 绿色化学原料的合理运用
在化工生产工艺及具体流程中,化学生产原料是起着决定性作用的主要因素,在传统化学工程中,所用原料大部分为不可再生能源。采用这些原料不但大大提高国家不可再生能源的消耗,同时还导致污染物的排放量大大增加,加重生态环境污染程度。将绿色化学原料作为化工生产材料是绿色化学工程重要研发内容之一。在化工生产过程中,可使用绿色化学物质、自然物质等无染污、可再生的化学原料。典型的绿色化学原料主要有芦苇、苞米杆、纤维植物等。将这些作为原料投入到化工生产过程中,可使其转化为酮、醇、酸类等多种化学品。在整个转化反应过程中,这些原料仅会产生一定量的氢气,而不会有任何一种有害、有毒的物质产生。
3.2 提高化学反应的选择性
在化学工程的物质反应中,化学反应作为必不可少的重要组成部分存在。所有化学原料的转化均是需要化学反应才能得以实现。在化工生产过程中,合理选择有效的化学反应形式可有效促进化学工程生产效率及质量得到提高[2]。对化学反应产生影响的因素有很多种,反应原料、环境、时间、特点等均会对化学反应产生不同程度的影响。在化学生产过程中应用最为普遍的反应形式为氧化反应。在氧化反应过程中会有大量的热产生,所有化学原料均会在热的催化作用下发生变质,因此会大大降低化学品的生产质量。在绿色化学工程中,应用新型的反应形式,这种新型反应形式为烃类氧化反应。这种反应形式的应用不仅可促进催化物反应催化能力得到提高,同时还可有效促进生产物同分异构反应时间增加。
3.3 使用无毒无害催化原料
从目前的现状来看,伴随着化工行业的不断发展,合理运用化学反应成为了化工行业健康稳定发展的关键,而在进行化学反应的时候,催化剂的使用是非常关键的,既可以对反应速度进行加快,也可以对反应时间进行缩短,那么在进行化工生产中,要想确保绿色化工工程和工艺得到快速的发展,就要使用没有毒害的催化原材料。同时现在我国有关部门对催化原材料的选择和应用已经给予了高度重视,并且催化剂的开发、研究和制作在不断增多,从而就促使在进行化学反应的时候,催化原材料有了很大的改善。此外,使用没有毒害的催化原材料还能够大大提高化学反应的效率,对能源消耗含量进行降低,也能够很大程度减少环境的污染。
4.绿色化学工程与工艺对化学工业节能的促进作用
加强对绿色化学工程与工艺的研究是化学工程的一次全新探索与实践创新,绿色化学工程工艺研究能够将废弃物的科滋控制在合理的范围之内,实现化学工程的规划化发展,与此同时也可以改善人民群众生活环境,对构建环境友好型社会具有重要的现实意义。
4.1 清洁生产技术的合理应用
清洁生产技术的合理应用具有超高的价值,对化学原料进行无公害化的处理,以期最终达到合格生产的目的。清洁生产技术的使用可促使原料等到有效的利用,提升原料的使用效率,清洁生产技术最为常见技术例如脱硫技术等,化学生产加工不可避免将会产生一定废气,为了进一步降低废气对于空气质量的污染,就需要进行脱硫处理。此外,除了清洁生产技术的研发外,当前自然发电技术也被赋予了更多的重视,在环境污染日趋恶劣下,自然发电技术受到的关注,利用风能等自然资源发电,可在生物工程中降低污染,并提高环境质量,以期实现资源有效利用。
4.2 生物技术的有机结合
在可持m发展理念推进下,生物技术也不断得以升级,生物技术也可理解成为生物工程,其中包括生物化工以及仿生学两部分。生物技术利用生物科技进行生产与加工,如常见的生物酶技术,生物酶是一种具有催化作用的有机物,该种有机物可具有超高应用价值,加之其污染系数较小,故此被广泛的应用到各领域之中。例如纺织领域,通过氧化还原酶的作用促使衣物处于仿旧状态等。生物技术的使用符合绿色化学工程工艺的要求,因此将生物技术与绿色化学工程工艺相互结合,可进一步的深人落实化学工程节能理念,并改变传统化学生产工艺模式,共同打造绿色环保社会。
4.3 环境友好型产品的加工生产
绿色化学工程与工艺的主要发展目的之一即为为社会生产处环境友好型产品,如清洁汽油、磷洗衣粉等无毒无害产品。通过绿色化学工程可以生产出与社会、自然环境发展相符合的友好型产品。绿色化学工程生产的出现在很大程度上起到了保护环境的作用。在社会生产、生活中,人们的购买的产品均为绿色产品,不仅有效保证了人们身体健康,同时也可促进社会健康、和谐发展。因此,在化工生产过程中,如能够促进绿色化学工程与工艺对的优势得到充分发挥,可有效降低生态环境的染污,促进国家自然环境和社会经济得到可持续发展,对国家的长远发展及社会的进步具有重要意义。
结语
通过上文对绿色化学工程和工艺技术进行系统分析可知,绿色化学工程对促进化学工业节能发展起到了重要助推作用,是实现化学工业节能减排发展目标的重要手段。现阶段,开发和应用绿色化学工艺,已成为现代化学工业的发展趋势和前沿技术,是建设环境友好型社会,实现可持续发展的关键。
参考文献
[1]于贺.论绿色化学工程与工艺对化学工业节能的促进作用[J].科技与企业,2013,05:132.
[2]刘冠辰.浅析绿色化学工程与工艺对化学工业节能减排的促进作用[J].科技创新与应用,2015,34:107-108.
在以往化学生产过程中,各种有害、有毒物质的处理存在严重滞后性,致使化学工业发展速度非常缓慢。因此,绿色化学工程与工艺的合理应用,在降低化学工业成本、提高能源有效利用率等方面都有着重要作用。本文就绿色化学工程与工艺的合理开发进行探讨,提出绿色化学工程与工艺对化学工业节能的促进作用,以有效改善化工环境的污染程度,从而达到各种资源最优化配置的目的。
关键词:
绿色化学工程;工艺;化学工业节能;促进作用
在环境污染程度不断加重、生态系统破坏越来越严重的新形势下,加大环保保护力度、提高各种资源与能源的有效利用率,对于促进人类、经济、环境等可持续发展有着重要意义。因此,深入了解绿色化学工程与工艺对化学工业节能的促进作用,是降低化工生产污染程度和减少资源浪费的重要途径。
1绿色化学工程与工艺的合理开发
根据当前绿色化学工程与工艺的开况来看,其主要包括如下几种:
1.1绿色化学原料的合理运用在化学生产工艺和相关流程中,化学生产原料的合理选用,在降低化学生产污染程度和减少资源浪费量上发挥着很总要的作用。一般情况下,化学工程中的原料都是不可再生的资源,如果大量使用,不但会加剧不可再生资源的消耗量,还会大大提高污染物的排放量,从而加重环境污染、资源浪费。因此,绿色化学原料的合理运用,是绿色化学工程的重要研究方向之一,通过使用自然物质、绿色化学物质、可再生化学原料等,如苞米杆、芦苇、纤维植物,可以有效生产出各种化学产品。与此同时,在整个生产过程中,绿色化学原料产生的气体一般是氢气,不会给环境、人体带来伤害,在保证生态系统平衡发展上有着极大作用。
1.2化学反应选择性的有效增强在化学物质发生反应的过程中,化学反应是非常重要的组成部门,通常情况下,化学原料的转化都必须经过化学反应才能完成。因此,在化学工程总,注重化学反应选择性的有效增强,有利于提高化学工程的生产效率、质量等。在实践过程中,化学反应的影响因素有时间、环境、原料等,如在氧化反应中会产生大量热能,致使化学原料发生变质情况,从而影响化学品的生产质量。所以,在注重新型反应形式的合理应用,是绿色化学工程的重要组成部分之一,不但能提高催化物的催化能力,还能大大增加物质的反应时间,从而获得更好的产生效果。
1.3无毒无害催化原料的利用在化学工业快速发展的情况下,化学反应在化学生产中的合理应用,对于促进化学工业可持续发展有着重要影响。而在化学反应的整个过程中,催化剂是重要的催化物质,需要注重无毒无害催化原料的合理利用,才能更好的改善催化物的效用,从而达到提高化学反应效率、节能和降低环境污染程度的目的。
2绿色化学工程与工艺对化学工业节能的促进作用
2.1清洁生产技术的合理应用目前,清洁生产技术的价值非常高,在对化工原料进行无毒、无害和无废处理以后,原料的有效利用率可以得到大大提高,从而达到提高化学工程生产质量的目的。目前,最常用的清洁生产技术是脱硝技术和脱硫技术,在对生活垃圾、具有严重污染的化学物质等进行绿色处理之后,生活垃圾很多都会被转化为沼气。与此同时,自然发电技术的合理应用,如风能、太阳能等清洁生产技术的研发,特别是生物工程中各种清洁生产技术的不断推广,在提高环境质量、降低环境污染程度和实现资源与能源的最有效利用上有着重要作用。
2.2生物技术的有机结合在化工生产中,比较常用的生物技术是生物化工、化学仿生学两个部分,如生物酶的合理应用,与绿色化工工程与工艺相结合,可以是再生资源得到最有效利用,并生产出绿色化学品。目前,绿色化学工程与工艺中,工业酶、自然界中的酶等是非常重要的催化剂,有着无污染反应条件好、产物性质好等多种有点,在促进生态系统循环发展上有着重要影响。
2.3环境友好型产品的合理生产通过生产各种环境友好型产品,可以起到很好的环保作用,如磷洗衣粉、清洁汽油等,是绿色化学工程与工艺不断发展的重要研究方向之一。因此,在人们生活、工作的过程中,各种绿色产品的使用和推广,是降低环境污染程度、促进社会和谐发展和推动经济可持续发展的重要途径。
3结语
综上所述,在加大环境保护力度和提高能源与资源有效利用率的过程中,绿色化学工程与工艺的研究,不但能减少染污物的排放量,还能改善人们的生活环境质量。因此,加大绿色化学工程与工艺的投入力度,对于实现化学工业节能、促进化学工业更长远发展有着重要意义。
参考文献:
[1]刘森,罗泽鹏,都颖,刘思乐.绿色化学工程工艺对化学工程节能的促进作用分析[J].黑龙江科技信息,2016,02:75.
[2]郭璐,张浩.绿色化学工程与工艺对化学工业的促进作用[J].科技创新与应用,2015,17:107.
关键词:专业特色;课程体系;化学工程与工艺;电化学工程
哈尔滨工业大学电化学工程专业成立于1962年,是国内最早建立的电化学工程专业之一。1999年我国大学本科专业目录调整,原多个化工类专业(含电化学工程)统一合并为“化学工程与工艺”专业,但各大学中的该专业侧重方向与特色不同。我校保留了原来的“电化学工程”方向与特色,并被教育部认定为第三批高等学校特色专业建设点。在特色专业的建设过程中,面对宽口径的“化学工程与工艺”专业,既要开设核心化工课程又要保持电化学工程专业方向的课程。2008年修订培养方案时,我们将化学工程与工艺专业分为“化学工艺”与“电化学工程”两个专业方向进行课程设置。对“化学工艺”专业方向的学生按“化学工程与工艺”专业规范要求构建化工课程体系进行培养;而对于“电化学工程”方向,探索以满足专业规范中核心知识要求为前提,依据专业特色的需要,通过以知识点为标准(不拘泥于课程名称)协调专业规范要求与专业方向的关系,构建彰显专业特色的课程体系。2012年修订培养方案时,我们在系统地分析总结前期实践效果的基础上,形成了新培养方案。本文重点介绍了我们构建与“电化学工程”专业方向对应的课程体系的一些做法,以期达到抛砖引玉之作用。
一、面向国家需求的专业特色定位与培养目标
专业特色是特色专业的灵魂,特色定位准确与否直接决定了特色专业建设的成败。首先,专业特色的定位要以长期形成的办学理念以及在人才培养方面的积累为基础。哈尔滨工业大学化学工程与工艺专业的“电化学工程”方向经过半个多世纪的深厚积累,培养了大批我国电化学工程领域的中坚力量。20世纪80年代,本专业王纪三教授的“发泡镍电极”技术,带动了我国电池行业的技术进步,胡信国教授的“一步法无氰电镀铜”工艺引领了电镀行业降低污染的技术革命,因此获得了国家发明奖。当前,传统石化类资源的日趋紧张及环境污染压力,已成为限制我国经济发展的一大瓶颈,研发新型能源与电镀清洁生产新工艺,是国家能源、环境的重大战略需求,特色专业责无旁贷要担当起此方面人才培养的重任。我们认为,特色定位不能脱离化工领域及化工学科,要根据国家对人才需求现状和发展趋势,充分发挥自己已经积累的特色基础和教学资源优势,有效利用外部环境中的有利因素和发展机遇进行定位。基于此,哈工大“化学工程与工艺”专业特色方向确定为化学电源和电化学表面处理,与电池及电镀行业对应。
本专业毕业的学生应具有以下几方面的知识和能力:(1)具有坚实的自然科学基础,较好的人文、艺术和社会科学基础知识及较高的科学素养;(2)具有较强的计算机和外语应用能力;(3)较系统地掌握本专业领域的理论基础知识,了解学科前沿及最新的发展动态;(4)具有创新意识和独立获取知识的能力;(5)具有较强的分析解决问题的能力及实践技能,具有从事与本专业有关的产品研究、设计、开发以及组织管理的能力;(6)熟悉本专业领域相关的发展方针、政策和法规。
二、基于专业特色的内涵和建设目标,明确课程设置的原则
专业特色是指充分体现学校办学定位,经过长期办学实践逐步积淀形成,优于其他学校相关专业的独特、稳定和具有鲜明个性特点并为社会所承认的专业风格。开展专业特色建设,旨在促进高等学校人才培养工作与社会需求的紧密联系,满足国家经济社会发展对多样化、多类型和紧缺型人才的需求。通过专业特色建设,探索专业建设实践,丰富专业建设理论,形成专业建设、人才培养与经济社会发展紧密结合的专业建设思路与人才培养方案,形成该专业建设内容的相关参考规范,对国内同类型专业建设起到示范和带动作用。
人才培养方案的制订与优化是专业特色建设的核心内容,而课程体系的设计是实现培养目标的基础,是完成特色型人才培养的保证。课程体系构建要根据人才培养目标要求应具备的知识、能力、素质,明确其应具有的知识结构进而设置相应课程,形成结构合理能满足专业特色需要的课程体系。我们认为满足专业特色的课程设置应遵循如下原则:
1.通识教育和专业教育相结合的原则。课程设置上要处理好宽基础与专业特色的关系,注重理学基础教育,既要满足特色的要求,又要为学生未来可持续发展和继续学习打好基础。通识教育和专业教育课程的有机结合,拓宽学生知识和视野,使学生在科学基础、人文素养、专业素质和能力等方面同步提升,促进学生的全面发展。
2.坚持在满足“化学工程与工艺”专业规范要求前提下彰显专业特色的原则。依据专业特色的需要,以知识点为标准,构建融会贯通、有机联系的课程体系。应以学生为本,不但要有与专业特色要求知识结构对应的课程体系,还要通过增加选修课的方式,构建与专业规范完全对应的课程体系,以满足本专业方向学生的自主选修。同时注意设置反映行业与产业形成的新知识、新成果、新技术和学科发展的课程。
3.加强实践教学与创新能力培养的原则。单独设置与实践教学及创新意识培养对应的课程,注重理论课与实验课的衔接与相互补充。增加实验教学比重,及时将教师的相关研究成果转化为实验教学内容,使我校的强势科研力量转化为优质教学资源。并通过设置产学结合与创新类课程等,培养学生运用所学知识解决实际问题的能力及创新意识。
4.促进本科教育国际化的原则。保证学生四年外语不断线。在通识教育阶段基础上,参照国外同类专业课程体系,设置和建设系列化专业教育双语课程,培养学生跨文化交流能力,提高学生的国际竞争力。
三、以满足专业规范基本要求为前提,构建彰显专业特色的课程体系
高等教育大众化的显著特征之一是多样化,但多样化不是随意化,不能没有基本的人才培养质量标准。专业规范就是专业人才培养的总体框架与规定,我们不能背离专业规范中的基本要求去追求所谓的专业特色,遵循专业规范而不拘泥于规范的专业特色才能日益彰显。专业特色总体上呈现多样性特征,而专业规范体现了统一性的特征,专业规范中的人才培养基本规格,核心知识领域等质量要求标准是统一的,这是专业本身具有的特征。要协调好专业规范的统一性与专业特色多样性的关系,以满足专业规范基本要求为前提来彰显专业特色。我们以“化学工程与工艺”专业规范中要求的知识点为标准,围绕“电化学工程”知识结构的需要构建课程体系。基本做法如下:
1.在通识教育方面,强化数理基础,数学类课程278学时、物理课程177学时,人文与社会科学基础课177学时,公共外语课200学时(前两学年完成公共外语课后,大三开设双语课有“化工热力学”、“电化学测量”等,大四开设“表面工程”、“新型化学电源”、“电动车能源系统”双语课,保证四年外语不断线),还设有文化素质讲座、全校任选课等;针对行业、学科发展的需求,在通识教育的基础上,通过知识点不重复介绍来压缩相应课程的学时,设置与电化学工程知识结构对应的学科基础课、专业核心课、专业选修课。为拓宽专业基础,将“工程制图基础”、“化工传递与单元操作”、“化工热力学”、“化工综合实验”、“专业导论课”、“化工安全概论”、“理论力学”、“材料力学”、“电工与电子技术”、“电工与电子技术综合实验”、“高分子材料”、“新能源概论”、“无机材料制备方法”等定为学科基础课。按教学目标重组突出专业特色的主干课程体系,把“无机化学”、“有机化学”、“分析化学”、“物理化学”、“化工传递与单元操作”、“化工热力学”、“电化学原理”、“电化学测量”、“化学电源工艺学”、“电镀工艺学”10门课程作为专业主干课。
2.以知识点为标准,通过必修与限选课来满足专业规范的基本要求。“电镀车间设计”、“化学电源设计”为实践类必修课,同时设有“化工机械与设备”专业选修课,以此涵盖化工设计的知识点;“化学反应工程”与“电化学反应工程”2门课限定为至少二选一,另外在10门专业主干课程中,包含了电极过程动力学、催化、反应器等内容,满足了反应工程知识点的要求。我们增加了选修课门数,并以知识点不重复介绍为原则压缩每门课程的学时,具体分为三类:第一类是设置了“结构化学”、“化工设计”、“化工仪表及自动化”、“化工分离工程”等化学、化工类课程及“材料分析测试方法”课程,使学生具备专业规范要求的化工知识体系,为有志于在化工行业就业及出国、考取外校研究生的学生打好基础;第二类是设置了“新型化学电源”、“固体电化学基础”、“电动车能源系统”、“绿色能源”、“电极材料结构表征”等课程,供希望从事电池行业的学生选修;第三类是设置了“化工设备腐蚀与防护”、“表面工程”、“电化学加工技术”、“涂装技术”等课程,供准备从事电镀行业的学生选修。从知识点看,既满足了“化学工程与工艺”专业规范的要求,又构建了适合专业特色的电化学工程知识结构体系。同时,不但满足了学生的就业要求,还为学生职业发展和继续学习奠定了基础。
四、发挥学科优势,设置加强实践教学与创新能力培养的课程
本专业依托的哈工大化学工程与技术学科,具有一级学科博士学位授予权,并建有化学工程与技术博士后流动工作站,2012年哈工大的化学工程与技术学科排名进入全国评估前八名。多年来面向国家、国防重大需求,形成了本学科的优势特色。在应用电化学方向上,产学研特色突出,多项原创性成果为企业创造了显著的效益。与本专业建立长期稳定的科研、教学合作关系的企业有十几家,为产学结合的学生培养奠定了良好的基础。我校化工学科在“211工程”、“985工程”的支持下,形成了科研、教学硬件大平台,为学生的科研训练、课程设计、毕业论文(设计)等提供良好的实践平台。在软硬件方面,对电化学工程的专业特色方向建设起到了保障和促进作用。另外,本专业正在逐步加大科研设备和科研实验室等资源向学生开放的力度,创造条件让学生能够较早进入实验室,参与教师的科研工作,在具体的科研活动中培养实践、创新能力。在专业实验内容上,鼓励教师将适合于实验教学的科研成果转化、更新为课程教学内容,有利于将最新的学科知识、技能传授给学生。
在实践教学与创新意识培养方面,对于基本技能、方法类实验,与四大化学相关的实验课为132学时、与化工基础相关实验72学时,与专业方向对应的实验课100学时。特色专业是面向行业培养人才,在产学结合上,设置“国内外专家讲学”学科基础课,还要求讲授专业课的教师要理论联系实际,注重启发科研思路。专业定期从合作企业中邀请高级工程技术人员来校为学生进行课堂教学或讲座,聘请具有教学经验的高级工程师参与本科教学活动;在创新能力培养方面,设置了“大一年度项目”、“创新创业训练计划”、“创新实验课”、“创新研修课”,要求学生在校期间至少完成2个学分,可通过选修创新研修课、创新实验课、参加大一年度项目、大学生创新创业训练计划、学科知识竞赛、发表研究论文、申请专利等方式获得。
自1999年本科专业目录调整后,我们围绕协调专业规范的统一性与专业特色多样性的关系上,进行了各方面的努力与探索,构建了面向国家需求的化学工程与工艺特色专业课程体系。作为特色专业建设,我们今后要为实现培养具有前瞻性、综合素质高、创新能力强和具有国际竞争力的行业人才的目标而继续努力。
参考文献:
[1] 赵祖平. 以专业特色建设促专业发展——以中国劳动关系学院行政管理专业为例[J]. 中国高教研究,2012(3):104-106.
[2] 周嘉,蒋玉龙,任俊彦等. 复旦大学微电子学专业特色的挖掘与拓展[J]. 中国大学教学,2012(4):35-36,60.
[3] 张灵,禹奇才,张俊平. 专业特色建设的几个基本问题[J]. 中国大学教学,2012(9):28-30.
[4] 徐定华,关勤,楼盛华. 论高校专业规范与专业特色的内涵及关系[J]. 中国高等教育,2010(8):57-58.
[5] 杨新海,徐宗宁,付保川等. 高校本科特色专业建设的路径探析[J]. 教育理论与实践,2011(12):17-19.
【关键词】:化学工程;系统;和谐;辩证法
自然界中的和谐系统比比皆是,大至宇宙,小到原子;地球生态系统是和谐的,动植物群落是和谐的,人类社会体系是和谐的,健康的人体更是一个绝妙的和谐体。所有这些和谐系统遵循着同样的辩证综合的规律,具体可以归纳出三条:1.统一律;2.层次律;3.进化律;所有和谐系统具有同样的性质:1.开放性;2.自组织性;3.非线性;4.无限发展性[1]。当爱因斯坦把大半生致力于统一场论时,其哲学上的需要相对物理学上而言或许要来得大,面对物理学的系统和谐,理论规则的分立是不能令他觉得满意的。而化学工程的发展是不是因循同样的哲学历程呢?
在化学工程作为学科开始被重视之前,化学工业已具有了相当的规模,各种具体的工程与工艺都被独立开来,在认识上是被分为各门特殊的知识,因此,当国外高等院校在十九世纪末开始设置"化学工程学"时,开设的课程大多是学习当时化学工业的各种工艺学,"化学工程"的概念在当时还是相当模糊的,在理论上充其量是化学与机械的一种混合(amalgam)。然而这种理论混合的模式在德国人看来却是很正统的,即使在今天,他们也避免专论"化学工程",而是称之为"过程工程"(ProcessEngineering),这一名称实际上要比"化学工程"的范畴更广,甚至更为准确,凡是涉及一定流程与工艺的领域都是适用的。但我们习惯上还是沿用"化学工程"的名称。
二十世纪开始,化学工业迅猛发展,在社会经济中占的比重越来越大,客观上需要化学工程学科的发展和支持。随着生产力的发展,人们对事物运动规律性的认识也愈来愈深化,愈来愈有概括性。伴随着其他领域科学技术的快速进步,人们逐渐认识到化学工业中各门看似不相干的工程和工艺中存在着共同的物理特性。1901年,美G.E.的Davis《化学工程手册》的发表,初步提出了"化工物理过程"的原理。1900年始,以合成氨、纯碱、燃料等为代表的近代化工厂出现,如1913年,德哈勃-博施法高压合成氨技术的产业化,星火燎原的,化学工业呈现出巨大的发展前景。到了二十年代,美MIT的一些学者提出:不管化工生产的工艺如何千差万别,它们在众多的典型设备中进行着原理相同的物理过程。1920年,美MIT成立了第一个严格意义上的化工系,时W.K.Lewis任系主任。1922年美国化工学会认同了新的见解,引出了"单元操作"(UnitOperation)的概念,这一概念在苏联时期和我国则广泛称为"化工原理"。
1900年始的"分离工程"研究使"单元操作"的概念日趋成熟。被称为单元操作的过程主要有流体流动、传热、干燥、吸收、蒸发、萃取、结晶和过滤等,以这些单元操作作为研究和学习的主要内容,是化学工程学科在二十世纪前半期发展的核心,其理论迅速成为发展化学工业的重要基石。这种把千变万化、千差万别的过程和工艺概括成"单元操作"是生产力发展到一定水平的反映,是化学工程学从"个性"到"共性"的第一个哲学性概括,是在一个系统整体性把握的高度上建立了一门技术科学,体现了系统科学发展的和谐统一规律。
随着"单元操作"概念的确定,另一方面,化学工程学科中重要支柱之一的"反应工程"亦逐渐浮出水面。从最初的德Winkler流化床煤气化炉的应用到德Bergim-Pier三相液化床煤液化工艺的开发,又到1931年丁纳橡胶和氯丁橡胶的投产,化学工业上发展的高峰持续不绝,1940年美国FCC炼油开发成功,成为石油化工的起点。直到1957年,欧洲第一届反应工程会议,明确提出"反应工程"的概念,成为化学工程学科的重要组成部分,是化学工程学的进一步和谐统一。"反应工程"的建立,乃至今日仍备受困扰的"过程放大效应"问题,及从"逐级放大"到"数模放大"的研究都带动了"化工过程系统工程"的发展,并共同体现了系统科学发展的和谐层次律。
就在"反应工程"发展的同时,"单元操作"得到了更加深刻的认识,人们发现各单元操作之间存在着更为普遍的原理,"过滤只是流体传动的一个特例;蒸发不过是传热的一种形式;吸收和萃取都包含着质量的传递;干燥与蒸馏则是传热加传质的操作……"[2]于是单元操作可以看成是传热、传质及流体动量传递的特殊情况或特定的组合。这种认识的深化过程并没有停止,人们进一步又发现了动量传递、热量传递和质量传递之间的类似性。于是从二十世纪50年代开始,人们综合了以往的成果,开始用统一的观点来研究三种传递过程。1960年,美威斯康辛大学(Univ.Wiscosin)的R.B.Bird教授出版了《TransportPhenomena》一书,系统地采用统一的方法来处理三种传递现象,从此化学工程学科的核心过渡到了"三传一反"的系统性概念。"三传"的研究是系统科学和谐进化律的又一体现,使化学工程学达到了一个新的整体性高度,这种高度的和谐统一是对客观世界本质性的认识,并在学科上反映出了系统科学的基本原理和性质,其影响力是普遍性的,是跨学科的,不仅使"传递原理"成为化学工程学的重要基础,同时在生物工程、机械、航天和土木建筑等工程学科上也具有重要意义,并日益成为工程专业共有的一门技术基础课,只是侧重点有所差异而已。
至此化学工程学科自身经历了一系列的演化和发展,并在短短的一个世纪中达到了一个前所未有的高度,涵括了众多的生产和应用领域,如医药、化肥、能源、材料、航天、冶金、日用化学品等,每年为社会提供数以亿吨计的千百万种产品,是人们衣、食、住、行须臾不可离开的物质基础,为社会繁荣作出了巨大贡献。然而事物总是一分为二的,从人类发展最为激动人心的口号"征服自然"到今天庞大的工业化进程,地球自然生态系统遭遇了前所未有的严峻局面,这之中,化学工业是造成大规模环境污染及恶性重复污染的主要过程之一,化学工程学科需要肩负起新的使命。1990年,"生态化工"(Eco-ChemicalEngineering)的概念提出来了,相应在化工生产和过程工艺中提出了"清洁化工"和"绿色化工"的概念,因时应势,化学工程学开始了系统科学的自组织过程,这也是和谐系统对立统一发展的需要。在系统科学看来,自组织是和谐系统的基本性质之一,只有自组织系统能通过外部和自身内部的不断协调、整合,在适应环境的同时保持自己的特性并产生新的功能。从自发到自觉地,化学工程学吸收了自组织的理论,不断在广度和深度上充实、完善和发展。随着新世纪的到来,世界正发生着全球性的变化,经济、社会、环境和技术等领域都面临着新范畴新理念的变更和冲击[3]。化学工程学科需要因应时展而改变传统的限制,不断有新的概念提出来,如化学工程应是伺机而待的专业(aprofessioninwaiting);化学工程师必须"besteepedintechnology",能够创新、开发、变换、调控和适应取代;化学工程学科要从"ProcessEngineering"达到"ProductEngineering"再到"FormulationEngineering"。进一步的综合认为,化学工程学关注着同时发生在非常广泛的时空跨度内的现象,必须具备多尺度、多目标的方法来达到过程的总体优化。涵括了五个方面[4,5]:
①Nanoscale(纳观尺度):研究量子化学、分子过程与分子模拟等。
②Microscale(微观尺度):研究微粒、气泡、液滴、控制界面胶束和微流力学规律等。
③Mesoscale(介观尺度):研究换热设备、反应设备、塔器以及传统的"单元操作"和"三传一反"等。
④Macroscale(宏观尺度):研究生产装置和生产过程等。
⑤Megascale(兆观尺度):研究环境过程和大气生态过程等。
于是化学工程学的核心转变到了"多尺度、多目标择优"的概念,化学工程学科又到达一个新的和谐统一的高度,进入了更高层次的系统工程领域。
新的发展的深度促使化学工程学科作出了一定尺度的"分化",然而这还远未结束,人们对世界的认识还在不断探索不断深入,一个更深刻更普遍也更一般的问题已经触到了化学工程学科的神经,触到了化学工程学的认识本质,并促使化学工程学需要有新的"融合"。这一问题就是"非线性及其包涵的混沌原理",相对于"线性"是人类认识客观世界的基本工具,"非线性"则是客观世界的本质特征,是"线性"反映的目的,是从科学角度看待世界的一种和谐统一;而在对"混沌发展"的研究表明,"混沌运动的普遍存在,揭示了自然界中实际系统发展演化的新行为,混沌态的自相似性使这种时间演化表现为一种空间结构,而且以其不同空间尺度上的相似性,揭示了系统复杂运动的统一性。这种统一性是一个观察"整体"的问题,只有在长时间范围(因为混沌运动是一种长时间行为)和更高层次复杂性中才能显现出来。"[6,7]这一问题涵盖了自然科学和人文社会科学的众多领域,具有重大的科学价值和深刻的哲学方法论意义。马克思曾经预言:"自然科学往后将会把关于人类的科学总括在自己下面,正如关于人类的科学把自然科学总括在自己下面一样:它们将成为一个科学。"从这一角度上,"非线性"问题是这种过程一体化的契合点以及整体认识论上的共性[8]。当站在这种整体性的高度上,化学工程学科获得了全新的视野和更强大的分析解决问题的能力,并最终具有了学科融合的基础。
在整个化学工程学科的孕育、诞生和发展过程中,始终交织着学科的"分化"与"融合",除了上述尺度(scale)上的分化以外还有着所谓的石油化工、精细化工、高分子化工等专业上的分化;另一方面,作为近代工程技术,它又是自然科学(化学、物理等)和技术科学(机械、材料等)的融合。正如物理学家普朗克(Planck)所指出的:"科学是内在的整体,它被分解为单独的部分不是取决于事物的本身,而是取决于人类认识能力的局限性,实际上存在着从物理到化学,通过生物学和人类学到社会学的连续的链条,这是任何一处都不能被打断的链条。"事实上,当化学工程学科的核心发展到"非线性混沌系统"时,实现科学的融合已是其客观系统性的需要,它需要强有力的非线性解算能力和综合分析能力。基于人工智能和神经生物学的人工神经网络(ArtificialNeuralNetworks)技术为这种系统性的融合提供了新的思路和途径。人工神经网络特有的信息处理能力在愈来愈多的领域中展现出广阔的应用前景,它具有如下特点[9,10]:
①学习:神经网络可以根据外界环境修改自身行为,这使它比其他任何方法接受自身感兴趣的外界信息更敏感。
②概括:经过学习训练后,神经网络的响应在某种程度上能够对外界信息的少量丢失或自身组织的局部缺损不再很敏感,反映了神经网络的健壮性(鲁棒性),即工程上说的"容错"能力。
③抽取:神经网络具有抽取外界输入信息特征的特殊功能,在某种意义上可以说它能"创造"出未见的事物。
④模拟:神经网络由众多的神经元组成,以并行的方式处理信息,大大加快了运行速度,可以逼近任意复杂的非线性系统。
当然,神经网络并非十全十美,其自身的发展就曾经历过相当曲折的过程,但是,人工神经网络(ANNs)特性的融合将是化学工程学科发展到非线性核心系统的自组织适应和需要。例如采用神经网络设计的控制系统,适应性、稳定性和智能性均较好,能处理复杂工艺过程的控制问题,也使得化学工程师不但也是机械工程师,还首先是系统工程师,并能从最一般的非线性原理出发,解决实际过程的创新、应用、开发、生产等问题。
生产力的不断发展,科学技术的持续进步,人类认识自然和改造自然的不断深化,化学工程学科必将不断"分化"和"融合",体现出和谐系统的无限发展性质。
参考文献
[1]李立本.系统的和谐与和谐观[J].自然辩证法研究,1998,14(5):39.
[2]韩兆熊.传递过程原理[M].浙江:浙江大学出版社,1988,11:3.
[3]季子林,陈士俊,王树恩.科学技术论与方法论[M].天津科技翻译出版公司,1991,9:115.
[4]金涌,汪展文,王金福,等.化学工程迈入21世纪[J].化工进展,2000,(1):5-10.
[5]黄仲涛,李雪辉,王乐夫.21世纪化工发展趋势[J].化工进展,2001,(4):1-4.
[6]张生心,梁仲清.从量子混沌再看物理学的统一性[J].自然辩证法研究,1996,12(10):8.
[7]苗东升.系统科学精要[M].中国人民大学出版社,1998,5:20.
[8]成思危.试论科学的融合[J].自然辩证法研究,1998,14(1):2.
1.1应用型本科人才要求
根据现代化学工业的特征及社会对化工人才需求的趋势,应用型高校化学工程与工艺专业的目标是培养化学化工理论基础扎实,实践动手能力、自主学习能力、创新能力及外语与计算机应用能力较强,适应化工、冶金、能源、轻工、医药、环保等部门从事工程设计、技术开发、生产技术管理等方面工作的应用型高级工程技术人才[2]。为了实现上述目标,化学工程与工艺专业应用型本科人才应具备的基本素质与专业能力包括7个方面:①树立正确的世界观,具有良好的人文精神、科学素养,能处理好人与环境、人与社会的关系;②掌握化学工程与工艺的基本理论和基本知识;③掌握化学装置工艺与设备设计方法,掌握化工过程模拟优化方法;④具有对新工艺、新产品、新技术和新设备进行研究、开发和设计的初步能力;⑤了解化学工程的理论前沿,了解新工艺、新技术与新设备的发展动态;⑥掌握文献检索的基本方法,具有一定的科学研究和实际工作能力;⑦具有创新意识和独立获取新知识的能力[2]。因此,根据现代科技和生产的发展需要,以服务地方经济社会发展为目标,把握高等教育规律和化学工程与工艺专业特征,制定化学工程与工艺专业应用型人才培养方案,具体如图1所示。在人才培养方案制定的过程中,合肥学院借鉴德国应用科学大学培养应用型人才成功经验,非常重视企业的作用,将企业要求与学生的培养相结合,构建理论教学与实践教学相学体系,确定了以“面向企业、立足岗位、注重素质、强化应用、突出能力”为指导思想的“应用型”人才培养模式。理论教学体系体现“三个服务”原则:基础理论教学要为专业技术课教学服务,理论教学为提高学生综合素质服务,把素质教育贯穿于教学全程,为培养学生具有独立分析和解决实际问题的能力服务,注重培养学生对技术成果的吸纳和综合应用能力。建立与培养目标相适应的实践教学体系,形成基础实训、专业实训及校内、外实训教学相结合的综合实训教学一体化,完成实训教学。促进学生掌握专业技能,实施“四年九学期制”,提高学生就业竞争能力。
1.2化学工程与工艺专业人才要求
化学工程与工艺专业是为了适应新世纪化学工业的发展而设置的,是由原来的化学工程、有机化工、无机化工、高分子化工、精细化工、煤化工、工业催化等专业合并而成的宽口径专业,覆盖面宽、涉及领域广[3]。该专业具有两大特色:一是覆盖面广。研究领域涉及无机化工、有机化工、精细化工、材料化工、能源化工、生物化工、医药化工、微电子化工等诸多领域;二是工程特色显着。该专业以化学工程与化学工艺为两大支撑点,化学工程主要研究化工过程及设备的开发、设计、优化和管理。化学工艺则研究以石油、煤、天然气、矿物、动植物等自然资源为原料,通过化学反应和分离加工技术制取各种化工产品。化学工程与工艺专业涉及的工程放大技术、系统优化技术和产品开发技术,不仅在化工领域,而且在医药、材料、食品、生工等众多相关领域均大有用武之地。因此,化学工程与工艺专业培养的学生应有较强的工程能力和工作适应性,需掌握化工生产技术的基本原理、专业技能与研究方法,具有从事化工生产控制、化工产品和过程的研究开发、化工装置设计与放大的初步能力[4]。
1.3应用型化工人才实践教学体系构建
高等工程教育强调综合素质的基础作用和工程素质的定型作用。培养应用型化工特色人才,核心就是培养实践能力强的应用型人才。以培养应用型人才为目标,以科学发展观为指导,遵循教育教学基本规律,坚持育人为本,教学为纲,根据学生需要,围绕学生能力拓展和知识结构构建实践教学体系。该体系由基本技能、专业能力、综合能力三层次训练组成,将课外创新活动和社会实践有机融合。借鉴德国成功的经验,培养学生工程设计能力、项目实现能力及创新能力,构建工程化的实践教学体系如图2所示。实践教学根据能力要求可分为3个层次:基础实践层、专业实践层、综合和创新实践层。基础实践层以强化“三基”,培养基础能力为目的,将基础化学实验分为3个层次和5个模块,构成一个彼此相连,逐层提高的体系[5]。通过化学专题研究训练,强化了知识和技能的综合性;认知实习在实践教学体系中处于承上启下阶段。学生在与自己相近或相关的岗位上经过认知实习,了解专业所需要的专业知识、能力、素质,有利于他们结合自己的兴趣,规划未来发展,在专业方向的选择、课程模块的选择上会更加理性。2周金工实习和1周电工电子实习,实现基础能力培养目标;专业实践层是在理论教学和基础能力培养的基础上,通过专业基础实验、课程设计、工程实训等实践教学的环节实现专业能力培养;综合和创新能力是对技术基础知识、运用专业知识解决实际问题能力和知识迁移能力的综合体现,反映学生整体素质。通过毕业实习、毕业设计(论文)等实践教学环节,配合第二课堂科技活动,达到培养专业技术应用能力的目的。总之,各层实践教学活动层层递进、相互渗透,达到培养目标规定的专业技术应用能力的要求。
2围绕工程能力培养,实施实践教学改革
2.1突出强化实践锻炼,提高教师实践教学水平
教师是实践教学体系的主导者,也是实践教学体系的实践者。要培养高质量应用型人才,必须要有高水平的教师队伍。按照这一思路,为所有的实验室配备了具有硕士学位的专职实验教师,采取走出去、请进来的办法培养教师的实践能力,派合肥学院高学位高职称的教师到企业去锻炼6~12个月,增加教师的工程意识和实践能力。根据学院要求成立了实验技术教研室,这不仅是名称和内涵的改变,更重要的是教育理念的转变,建立实验技术教研室,由教授、博士担任主任,具有研究生学历的教师为成员,研究实践教学内容、方法和手段,进行实验教学、实验课程内容和方法改革等工作。目前,和化学工程与工艺专业实验实践教学有关的合肥学院院级教研立项6项,安徽省教育厅立项3项,获得教学成果奖合肥学院二等奖一项、三等奖一项;安徽省三等奖一项。聘请企业和设计院等单位人员担任教师,让学生参与解决实际工作问题,提高实践能力。
2.2加强实践教学条件建设,提供实践教学载体
实验室和实习基地是完成实践教学内容所必需的保障平台。在实验室建设方面,加强以无机化学、有机化学、物理化学、分析化学课程为支撑的基础化学实验室建设,和以化工原理为支撑的化工基础实验室。专业实验作为一门最能反映专业特色,与专业科学技术发展关系最为密切的实践性课程,必须跳出原有的框架,重新构建一个能够全面反映化学工程学科发展方向、适合按专业大类组织实验教学、有利于培养学生工程实践能力和创新能力的新框架。根据化学工程与工艺核心课程化工热力学、传递过程原理、化学反应工程、分离工程和技术化工工艺学作为构架,遵循以下原则:紧扣化工过程研究与开发的方法论;充分考虑工程学与工艺学实验的适当平衡;具有典型性、力求先进性、增加综合性;实验内容既符合化学工程与工艺学科发展规律,又具有鲜明的先进性和特色,建立了化工热力学实验室等专业实验室。根据专业和学生发展需要,在专业方向上设立分离工程和精细化工2个化工专业方向,并建立精细化工和分离技术2个实验室,建立膜材料和膜过程院级重点实验室1个。校外实习是强化专业知识、增加学生的感性认识和创新能力的重要综合性教学环节,校外实习基地是培养学生实践能力和创新精神的重要场所,是学生接触社会、了解社会的纽带[6]。以校企互利双赢为机制,开展产学合作,和中盐四方集团等14家企业建立良好的合作关系,与企业合作共建实验室2个。每年由校内和企业教师共同指导学生进行实习,并在毕业论文(设计)环节,由企业提出课题,真题真做,学生将所学知识和生产实际相结合,取得在书本上得不到的收获。中盐四方集团、东华集团工程技术人员指导学生设计多次获合肥学院优秀毕业设计(论文)奖。
2.3第一课堂与第二课堂相结合,着力培养学生创新能力
为了达到实验课培养学生应用所学知识解决问题的更高目标,以培养学生实践创新能力为出发点,以学生个性化能力培养为重点,学院制定了《合肥学院学生第二课堂活动学分管理暂行办法》,将第一课堂与第二课堂结合起来,收到明显的效果。化学工程与工艺专业,以化学工程师之家和学生参与教师科研为主要内容开展第二课堂科技活动。化工工程师之家于2007年11月建成运行。以培养“未来的工程师”为目标、以工程设计为核心、以模型制作为基础,通过形式多样的活动培养学生的工程意识;通过加强合作促进团队精神;通过模型制作提高工程应用能力;通过工程设计提高工程素养;通过企业化运作模式培养学生效率意识、责任意识和管理能力。作为第二课堂的重要平台,重点培养学生的工程设计能力、管理能力、协调组织的领导能力和团队精神。通过借鉴企业化管理模式,营造企业氛围,培养学生效率意识、责任意识和管理能力,增强学生对社会的适应能力,提高学生的综合素质。目前,累计培训学生500人以上。化学工程与工艺学生在各种全国性竞赛中取得了一系列好成绩。2010年,在科技部等单位举办的青年科技创新竞赛获得二等奖,“三井化学”杯第四届大学生化工设计竞赛二等奖和华南地区第四届大学生化工设计创业大赛二等奖。近3年来,学生34篇,其中被SCI、EI收录的9篇。
一、生物质化学工程人才的需求分析
能源是人类社会赖以生存和发展的基础。随着经济的飞速发展,我国能源消耗快速增长,已跃居世界第二大能源消费国。我国能源总量和人均占有量却严重不足,石油供需约缺口1亿吨,天然气供需约缺口400亿标准立方米。而且,由于清洁利用的技术难度较大,化石能源在使用过程中引发了诸多的环境问题。生物质能是第四大一次能源,又是唯一可存储和运输的可再生能源。发展生物质能将缓解能源紧缺的现状和减少化石能源造成的环境污染。我国幅员辽阔,又是农业大国,生物质资源十分丰富。据测算,我国目前可供开发利用的生物质能源约折合7.5亿吨标准煤。国家“十一五”发展规划明确提出“加快发展生物质能”。同时,随着化石资源日益枯竭,化学工业的原料也将逐步由石油等碳氢化合物向以生物质为代表的碳水化合物过渡。目前,世界各国纷纷把发展生物质经济作为可持续发展的重要战略之一。以生物质资源替代化石资源,转化为能源和化工原料的研究受到普遍重视。政府、科研机构和道化学、杜邦、中石油、中石化、中粮等大型企业争相研发和储备相关技术,并取得了一系列重大进展。海南正和生物能源公司、四川古杉油脂化工公司和龙岩卓越新能源发展有限公司,依托我国自主知识产权的生物柴油生产技术,相继建成规模超过万吨的生产线,产品达到了国外同类产品的质量标准,各项性能与0#轻质柴油相当,经济效益和社会效益俱佳。我国对以生物质为原料生产化学品(即生物基化学品)极为重视,已列入科技攻关的重点。例如,生物柴油生产过程中大量副产的甘油是一种极具吸引力的非化石来源的绿色化工基础原料。从甘油出发生产1,2-丙二醇、1,3-丙二醇和环氧氯丙烷等大宗化工产品,已经实现或接近产业化。新兴产业的发展,最根本的是靠科技的力量,最关键的是要大幅度提高自主创新能力,其核心是人才的竞争。浙江是经济大省和能源小省,能源资源低于全国平均水平,一次能源消费自给率仅为5%;而气候条件优越,是我国高产综合农业区,森林覆盖率达60%,生物质资源居全国前列。浙江省乃至全国的生物质能源产业和生物质化学工业的蓬勃发展,对生物质化学工程人才的需求十分迫切。
二、生物质化学工程人才的知识结构
生物质化学工程(专业)模块是一个新生事物,并未包含在《全国普通高等学校本科专业目录》之中。在《专业目录》中与之接近的是生物工程专业。生物工程专业培养掌握现代工业生物技术基础理论及其产业化的原理、技术方法、生物过程工程、工程设计和生物产品开发等知识与能力的高级专业人才。生物工程专业重点关注围绕生物技术进行的工程应用,而生物质化学工程重点关注通过化学工程技术(包括生物化工技术)对生物质资源进行加工利用的工业过程。可见,生物质化学工程(专业)模块与生物工程专业的人才培养目标和知识体系存在着明显差异,其人才培养模式仍处于探索之中。人才培养必须与产业发展相结合,生物质能源转化利用途径如图1所示,生物质资源(以植物为例)转化生成化学品的利用路线如图2所示。生物质的组织结构与常规化石资源相似,加工利用化石资源的化学工程技术无需做大的改动,即可应用于生物质资源。但是,生物质的种类繁多,分别具有不同的特点和属性,利用技术远比化石资源复杂与多样。可见,生物质化学工程人才必须具有扎实的化学工程基础,并熟悉各类生物质资源的特点、用途和转化利用方式。因此,浙江工业大学将生物质化学工程人才的培养目标定位为:既能把握和解决各种化工过程的共性问题,胜任化工、医药、环保和能源等多个领域的科学研究、工艺开发、装置设计和生产管理等工作;又能将化学工程的基础知识灵活运用于生物质资源的转化利用和生物质化工产品的生产开发等领域,胜任生物质能源和生物质化工等新兴行业的工作。
三、生物质化学工程人才培养的探索与实践
(一)组织高水平学术会议,营造人才培养氛围
2007年4月,浙江工业大学与中国工程院化工、冶金与材料工程学部和浙江省科技厅共同主办了“浙江省生物质能源与化工论坛”。中国工程院学部工作局李仁涵副局长分析了我国能源技术的发展状况,强调了发展生物质能需注意工艺过程的绿色化。浙江省科技厅寿剑刚副厅长介绍了浙江省能源消费状况和新能源技术研发动态,鼓励省内外的科技工作者为改善浙江省能源紧缺现状而努力工作。浙江工业大学党委书记汪晓村回顾了浙江工业大学的发展历程,介绍了浙江工业大学化学工程学科在生物质能源领域的科学研究特色和人才培养思路。浙江工业大学的计建炳教授和石油化工科学研究院的蒋福康教授主持了学术交流与讨论。闵恩泽、李大东、舒兴田、岑可法、沈寅初、汪燮卿等六位院士分别从我国发展生物能源的机遇与挑战、我国生物质能源产业发展状况、生物质燃料(清洁汽柴油、生物柴油)利用技术、生物柴油联生产物利用技术和以生物质为原料进行化工生产等几个方面进行了精辟论述。2009年4月,浙江工业大学承办了“中国工程院工程科技论坛第84场———生产生物质燃料的原料与技术”。浙江工业大学副校长马淳安教授在开幕式上致辞,介绍了浙江工业大学化学工程学科在生物质能源领域开展的科学研究和人才培养工作。浙江省可再生能源利用技术重大科技专项咨询专家组组长、浙江工业大学化工与材料学院生物质能源工程研究中心主任计建炳教授主持了学术交流与讨论。国家最高科学技术奖获得者、两院院士闵恩泽做了题为“21世纪崛起的生物柴油产业”的报告,重点阐释了我国发展生物能源和生物质化工的机遇与挑战。在两次会议上,来自石油化工研究院、清华大学、浙江大学、浙江工业大学、浙江省农业科学院、中国林业科学研究院和中粮集团等单位的专家学者分别介绍了生物质原料植物的选育、生物质原料的收储运物流供应体系、生物质原料的梯级利用、生物质液体燃料的制取技术、生物柴油的生产实践及其副产物综合利用和生产生物柴油的反应器技术等方面的研究进展。会议期间,闵恩泽院士等人应邀参加了浙江工业大学化学工程与工艺专业建设暨生物质化学工程专业方向建设研讨会。闵恩泽院士指出,迈入21世纪以来,针对日趋严峻的能源危机和环境危机,国家高度重视能源替代战略的发展和部署,新能源代替传统能源、优势能源代替稀缺能源、可再生资源代替非可再生资源是大势所趋;因此,化学工程与工艺专业根据国家发展需求调整学科设置、进一步促进交叉学科的发展也势在必行。闵恩泽院士认为,在降低能耗和保护环境的时代背景下,生物质能源和生物质化工的产业发展为生物质化学工程人才提供了广阔的发展空间,生物质化学工程(专业)方向的建设思路符合当今化工产业的发展趋势。近距离接触学术泰斗,聆听专业领域的前沿进展,极大地激发了学生们的学习兴趣。通过组织高水平学术会议,浙江工业大学营造了培养生物质化学工程人才的良好氛围。
(二)理论与实验课程体系
根据人才培养目标定位,浙江工业大学将生物质化学工程(专业)模块的主干学科确定为化学工程与技术,针对生物质资源加工利用过程的特点,对化工原理、化学反应工程、化工热力学、化学工艺学、化工设计、分离工程和化工过程分析与合成等主干课程的教学内容进行了梳理。此外,增设了生物质化学与工艺学和生物质工程两门专业课程。生物质化学与工艺学重点讲授糖类、淀粉、油脂、纤维素、木质素、甲壳素、蛋白质、氨基酸等生物质的结构、性质、用途,以及加工转化为化工产品的生产工艺。生物质工程从原料工程学、转化过程工程学和产品工程学等角度出发,为学生讲授生物质资源转化利用过程中的工程原理、工程技术和生产实例。化学工程与工艺国家特色专业综合实验室在中央与地方共建高等学校共建专项资金的资助下,为生物质化学工程(专业)方向增设了酯交换法制备生物柴油和生物质热解制备生物原油两个实验,并在积极筹备开设生物柴油品质测定、淀粉基两性天然高分子改性絮凝剂的制备和易降解型纤维素-聚乙烯复合材料的制备等实验。
(三)实习、实践和毕业环节
生物质化学工程模块依托化学工程省级重点学科和生物质能源工程研究中心建设,师资力量雄厚,拥有专职教师14人。其中,正高职称5人,副高职称7人,11人具有博士学位,7人具有海外留学经历。生物质化学工程模块教师的科研成果成功实现产业转化,与企业建立了良好的合作关系。生物质化学工程模块不断加强产学研合作,与宁波杰森绿色能源科技有限公司、温州中科新能源科技有限公司等企业签订了共建大学生创新实践基地的合作协议,设立了企业专项奖助学金,拓展了实习实践渠道;还依托化工过程模拟基地,引入计算机模拟实习、沙盘模拟等方式,丰富了生产实习环节的教学手段。同时,生物质化学工程模块修订完善生产实习教学大纲和教学计划,根据实习厂和仿真软件编写实习手册,强化对实习的质量监控与反馈,建立科学合理的考评体系;增加“内培外引”师资的力量,加快实习指导师资队伍建设;从实习方式、实习内容、考核办法和师资队伍等多个角度出发,确保生产实习教学质量的全面提高,强化学生的工程意识和实践能力,培养学生的创新意识和创新能力。生物质化学工程模块教师承担了国家自然科学基金、浙江省自然科学基金、浙江省科技厅重大招标项目、浙江省科技计划项目和企业委托开发项目数十项。从这些科研和工程开发项目中选取的毕业环节课题,更加贴近科学研究、工程设计或工业生产的实际情况,能够全面检验学生所学的理论知识及其综合运用能力,全方位增强学生结合工程实际,发现问题、分析问题和解决问题的能力,为学生步入工作岗位打下良好基础。生物质化学工程(专业)模块以实践环节课程为中心,构建了课内和课外两个实践平台,如图3所示。通过两个实践平台的紧密联系,促进第一课堂和第二课堂的融通。依托实践教学平台,从“产品工程”的理念出发,选取若干个恰当的产品,串联实验、课程设计、实习、毕业环节和课外科技活动等教学内容,帮助学生理顺知识体系,建立起绿色化学和节能环保的基本理念。以生物柴油为例,核心反应是酯交换反应,可以采用水力空化等技术强化反应过程;产物需要采用精馏方法分离,生产废水需要采用电渗析等方法加以分离;生产过程中还涉及流体流动和传热等问题;生物柴油这一产品可以将多个实验内容组合成一个有机整体,有效降低实验原料的消耗。教学可以选取其中部分内容作为单元设备设计进行,可以将生物柴油生产车间作为化工设计的教学内容,可以选取部分内容作为学科课外科技项目或毕业环节的研究内容,还可以将生物柴油生产作为创业大赛的竞赛内容。学生可以到生物柴油生产企业进行实习,将工艺革新、过程强化和产品工程融为一体,并通过实验室规模与工业化规模的对比,强化工程意识。
关键词:化学工程与工艺;工程实践;能力培养;体系构建
1化学工程与工艺专业现状分析
从发展历程来说,我国近代的化工产业远远落后于世界其他国家和地区,在人才培养方面存在很大的弊端。建国以后,为了改变这种现状,国内开办了很多职业化工教育院校以培养应用型人才。在所开设的专业中,化工工程与工艺专业是一门实践性强、动手能力要求高的学科,在教学目标中,强调学生的独立工作能力、独立自主能力和探索实验能力。从上世纪80年代以来,我国的化工类专业人才逐渐进入市场,在满足社会发展需求的同时,也逐渐反馈一些人才培养的改进信息。就现状而言,化学工程与工艺专业的教育体制依然需要改革,人才培养方式依旧需要深化,使之能够适应快节奏的现代化化学工业发展,满足市场经济体制下人才竞争的需求,提高企业在国际市场上的竞争力。
2加强工程实践能力培养的策略
(1)重视基础知识的掌握
化学工程与工艺专业具有较强实践性的特点,对于大部分学生而言,牢固的掌握基础知识,是日后提高自己的关键。从教学角度来说,从大学专业入门基础课程抓起,严格要求,特别是在基础实验动手能力方面要打好基础。结合专业特点而言,化学工程与工艺所涉及的基础学科包括化工原理、反应工程、化学工艺设备及化学物料基础管理等。如果忽视了基础知识的掌握,不但在真实工作中难以适应,也很难再有弥补的时间和精力。相对应地,基础知识掌握牢固,在安全、精细、稳定等操作层面会养成标准化的习惯,甚至不需要规章制度的约束就能够主动做好,促使工作效率大幅度提高。基于这一目标,要求教师在教学的过程中采取多样化的方式,让学生更多的接触到现实岗位环境。如借助多媒体手段,综合应用视频、动画、图片等,让现实中的具体形象呈现在学生眼前,比单纯地依赖课本去讲解、去想象要更有效果。例如,借助3D动画模拟的形式,对某一化工设备的工作原理展开讲解,通过不同角度、分解状态或透视功能,让学生了解工作状态中的机械设备状态;同时,也可以模拟不按照规章操作之后,可能发生的危险状况。而利用这种手段,可以举一反三,实现基础知识的强化。
(2)突出教学与实验结合
在校学习阶段,学生的动手能力主要依赖于实验,为了满足进入工作岗位之后具有更好的适应性,教学过程要与实验案例紧密的结合起来。一般来说,化学工程与工艺专业教材中,每一章节都存在典型的工程案例分析,而这些案例只是通过简单的讲解,是不能发挥实践能力锻炼的作用的。结合教学中所涉及的案例,教师设计相应的实验项目,将知识点和实际操作巧妙的结合起来,不仅可以提高学习的新鲜感,也能够激发学生的自豪感和学习主动性,培养浓厚的研究兴趣。
(3)培养科研及工程设计能力
化工行业的人才培养与常规人才相比具有较大的差异,循规蹈矩或墨守陈规是不能促进生产效率提升的,科研能力和工程设计能力的培养是必须的,也是在未来的工作岗位中解决实际问题的重要训练。结合现实情况来说,我国在培养科研能力和工程设计能力方面还有很大的欠缺,突出表现是毕业考核中,化学工程和工艺人才重视论文写作,但不重视设计内容,导致能力的培养发生了偏离;而只会“纸上谈兵”的人才是不可能发挥实际的作用的。建议针对该专业的人才培养考核机制进行改革,增加更多的实践性内容。
(4)构建稳定的岗位实习基地
实习是从校园走上工作岗位的第一阶段,也是理论联系实际的重要时期。工科学生的实习周期较长,而化学工程与工艺专业学生在实习中,应该更多地接触到基层,了解真实工作环境的状态。但是,从安全性角度考虑,最好的方式是具有一个相对完善、监督严格的实习场所。通过学校与企业签订人才培养合同的方式,建设稳定的岗位实习基地,匹配一些技术成熟的工程技术人员,且具有较好表达能力,可以在实习中为学生讲解相关问题及解决措施,达到事半功倍的效果。
3结语
综上所述,随着我国现代化工业体系的不断发展和完善,化工工程与工艺专业作为一个实践性强、应用范围广的专业,应该从完善学校教育环境和人才培养体制入手,增加投入、严格要求,为我国的工业现代化发展贡献力量。
参考文献:
[1]刘柳,吴洪达.化学工程与工艺专业实践课程评价体系的构建[J].实验室研究与探索,2009,04:96-100.
[2]赵国庆,谢永,李晓玲,周丹红.化学工程与工艺专业学生实践能力培养模式的探究[J].广州化工,2015,19:174-176.
[3]李娟,王树立,郭泉辉.化学工程与工艺专业学生工程实践能力培养的思考[J].河南化工,2010,21:55-57.
前言:随着现在科学技术的发达,分子这一概念被带到了大众的面前,人们对分子的研究越来越详细,运用当今的科学技术研究分子,把分子放在显微镜下观察,化学对其结构了解的愈加深入,这样分子设计的诞生也推动了分子工程的诞生,这是时代和科学技术下的产物,他们的诞生使得化学研究进入到更深阶段——分子工程学。所以分子工程和化学工程两者是相辅相成的。
一、浅谈分子工程
在一个固定环境下对分子结构进行构造,不仅如此,还得理清分子之间的关系,这种原理就是分子工程学。分子工程不是单一的分子学科,而是由不同种类、学科构成的,但是,只要有关分子工程就会有三个基本的问题:第一,怎样按照要求对分子结构进行设计;第二,建筑分子结构时要用什么基元;第三,怎么实现分子设计预设的功能,就需要考虑怎么组装基元。这三个问题有着密不可分的联系,从而形成了三个实施分子工程的重要环节,这三个问题分别是分子工程的作用、结构、结合的理论基础。
与之前的化学研究方法有所不一样的是分子工程在研究时,会在研究手段、对象、内容等角度采取新的方法。传统的化学研究大多是利用自然物以及公式得到新的化合物,从这些化合物中找到比较好的化合物,1930年,磺胺药物被人发现,造就了那个年代合成药物的鼎盛时期。可是分子工程学的研究则恰恰和传统化学研究相反,它主要以功能研究为方向,通过对分子结构进行探究。这个时候它不单单对某一个化合物进行研究,而是研究化合物的功能体系。这样得到的信息要比传统化学研究得到的信息全面,不光可以得到分子结构还可以知道分子某些特定的结构层次。传统化学研究过分注意分子结构以及合成的联系。可是,分子工程学却看中功能和 物理原理。如今,化学不能独自发展了,化学的发展必须要建立在生命、材料科学这两门学科上。当然也需要注意另外一些科学技术。
从化学工程学得到的经验,分子工程学也从不同的分子工程研究中得出来。现在的分子工程学还在孕育,也就是在不同的领域、不同功能、对分子进行设计、构造。分子工程由不同种类的分子工程研究中得到,所以功能不同、种类不同,这就使得分子工程学需要按照功能、种类对其进行分类。分子工程学主要研究化合物的功能体系,针对体系的研究就必须在分子水平上探究之前提过的三个问题,得到规律,功能体系以及工程学原理,这几个不同方面相辅相成、互惠互利。
二、浅谈化学工程
当面对一些挑战时工程学科发挥的作用才能体现其重要性。如今,环境问题成为我们急需解决的问题,因为它与人们生产、生活、生存都有着密切的联系,这个时候化学工程就有了研究的目标,它需要解决资源可循环利用、化石资源的合理化利用等。化学工程需要解决经济的循环利用,不光肩负着科学方面的重担,还需要传递物质、能源、信息等。
化学工程之前从没遇到过的一些问题,却随着生物技术等一些高新技术的发展而产生,这有一个好处便是让化学工程的研究深入到更具体的领域中。一些过于具体的问题,比如纳米尺度问题,这是在传统的化学研究中都没有遇到过的微小领域,要是想加强微量产品的生产就必须扩宽化学研究领域。在当代这是化学工程打入到新领域必须要做的。发明催化剂以及工艺的源泉是新催化材料创造的。从另一个方面来说,要是将生产变得更加清洁,把不同的工艺以及流程进行合并,然后找出最好的,这也是化学工程将要研究的重要领域。现在有关生命方面的科学发展愈发成熟,生物催化在这一领域已经体现了自己价值。
如今人们愈加注意和自身相关的科学技术,随着科学技术的发展,健康、食品、医药等领域都对科学技术有了更深层次的要求,而且属于化学的问题占大多数。举一个例子,当我们的生命机能受到损害就得使用药物来控制,所要服用的药就会对人们的身体机能进行调节。将这些有关生命过程的问题解决就是化学过程在不属于自己领域里的重大挑战,所以肯定会得到化学工程学的注意。
随着不同体系科学的发展,科学技术的发展为化学工程带来的问题在一定程度上推动了化学工程学的发展。所有的科学技术都与化学工程有着密不可分的联系,当化学工程在发展的同时也推动了整个科学领域的进步。所以,化学工程学逐渐被人们注意,也更大化的注意科学在化学工程中的运用,化学工程学为整个科学领域所带来的价值就是该工程学以后要注意的方向。
为了让化学工程学得到更好的发展就必须提高化工人员的专业知识,加强对化工人员的教育。化工工程教育应该与时俱进,根据现代工程教育改革得到重要的成果来制定教育内容,教育内容不可以单调,需要将专业课与基础课相结合,还得根据时代的更替而及时更新教育内容,加强化学工程人员解决问题的能力;不过也得加强学生对资源环境以及另外科学领域的兴趣。
结束语:
化学工程是一门综合类较广的学科,在未来的世纪会体现出更大的价值所以我们要做的就是抓住机会,在化学工程的发展过程中找到特属于我国化学工程的优势及特点,利用化学工程实现可持续发展。在重视化学工程的同时需要注意分子工程。分子工程的发展可以推动化学工程的发展,另外分子工程与化学工程两者为科学技术提供了很多可研究的课题,这些课题的解决就是科学技术的飞跃。
关键词:化学工程;化工生产;工艺
1化工生产工艺流程分析
通过对相关文献研究以及结合笔者工作实践来看,化工生产工艺流程通常涉及三个方面:
1.1原材料预处理
为了确保化工生产中反应能够充分地进行以及降低原材料使用量,通常各企业在生产前都需要进行原材料预处理。目前在化工生产中对原材料进行预处理的方法众多,根据材料状态可以将其分为三类:(1)固体原材料预处理。化工生产中固定原材料预处理环节主要是溶解、粉碎或混合;(2)液态原材料预处理。液态原材料预处理上通常为过滤、预热蒸发;(3)气体原材料预处理。气体原材料预处理主要为净化、加温或加压。对此,各化工企业在生产前应依据产品实际选择适宜的原材料预处理方法,这样一来既确保生产有效开展,同时对于降低成本也大有帮助。
1.2各步化学反应控制
化学反应是化工生产中重要环节,其反应情况直接决定了化工产品的质量,这就要求企业必须基于相关生产规范对各部化学反予以严格控制。从实际来看,化工生产中所涉及反应种类众多,并且不少反应发生条件相互矛盾,比如某些化工生产反应过程中需要进行加温,而另外一些则要冷却,因而为了确保化工产品质量企业必须对各步化学反应进行准确控制。对此,化工企业首先需根据产品生产所涉及化工反应予以掌握,随后在此基础上对反应中所需仪器设备、条件等分析出来,之后根据化学反应不同环节制定出相对应的控制与保障措施,最后还需做好化学反应过程中的监控工作,从而确保生产中各步化学反应得到切实有效的控制。
1.3分离产物与精制
通过前面所进行的各项准备以及呼吸反应后,就可得到初步产物。然而这离预期想要获得的产物还相差甚远。因此,还需要对产物进行分离与精制。在分离完成后,切勿马上将杂质当做废物处理掉,因为大部分杂质还能够重复利用,变废为宝,在保护环境的同时还能够提升原材料的利用率。由于产物的分离纯化与最终产物的产率密切相关,并且在很大程度上关系着企业的经济效益。所以在选择化工生产设备时,企业必须要全面考虑到设备对化工工艺产品产率的影响,选取最佳反应设备,从而不断提高化工生产的效益。
2提高化工工程中化工生产工艺探究
2.1对化工生产工艺技术进行优化
除了上述工艺之外,还需要从根本上对化工生产工艺技术进行优化,深入研究化工反应的一系列原理与条件。以乙烯为例,合成乙烯的方式多种多样,可以通过将乙醇脱水、裂解石油品或是将长的碳链断裂成短的碳链等多种方式来获得。合成方式较多时,就有必要深入研究哪种原料来源更便利、哪种方式更节能、哪种工艺流程产率更高等。因为原料不同,其生产原料及方式均有所差别。所以在实际生产过程中,应当结合具体情况来选择合适的工艺流程,以促使工业化生产更高效、节能、环保的开展。换而言之,我们应当对当前化工生产现状进行深入研究,除去弊端并积极研发新工艺。
2.2进一步优化化工生产工艺条件
正如上文所述,反应条件不仅是保证化工工艺生产得以有效开展的环节,同时更是确保其产品质量的重点。另外,对化工生产工艺来说,良好的反应条件在提高生产效率与降低废料生成方面发挥着积极作用。鉴于此,为了提升化工生产工艺成效,进一步优化反应条件就显得十分必要。首先,化工企业在各种反应材料采购上除了要充分结合生产所需购进齐全外,材料质量也应要达到相应标准。其次,化工生产中所使用到的诸如催化剂、器皿以及设备等也需要根据要求准备齐全。最后,选择最适宜的化工生产反应设备,比如精馏塔作用力出现变化,则会造成反应过程中回流比减小,而采用热泵蒸馏则能够降低反应使能力损失,对此各化工企业应当在充分结合自身产品、生产工艺等实际情况下,并基于国家、行业相关规定指导选择最适宜的反应设备。
3尽可能降低生产过程中的动力能耗
3.1积极采用变频控制
一般情况下,电机拖动系统常常被运用于化工生产过程中。然而在使用过程中,电机拖动系统往往需要耗费大量电能,而变频节能调速则能够对普通的阀门静态调节技术起到改善的作用,从而让电动拖机系统的输出与输入均可以维持动态平衡,以降低生产过程中的电能损耗。所以在生产过程中可以选用变频控制进行调速以起到节能的效果。
3.2升级与改造供热系统
在实际操作过程中,化学工艺需要热能来促成反应,因此在生产过程中需要耗费大量的热能。在升级与改造供热系统过程中,应当突破以往单套装置的约束,在整体上优化组合装置,从而在根本上解决“高热低用”的问题,将热能的利用率发挥到最大化。
4结束语
总而言之,化工生产是化学工程中的重要组成部分,如何有效提升其生产效率与质量,并有效解决其对环境所造成的影响是当前摆在化工企业面前的重要课题。为此,本文通过对化学工程中化工生产工艺进行解析,希望能为促进化工生产进步以及化工企业的发展贡献一份力量。
参考文献
[1]张爱国.化学工程中化工生产的工艺解析[J].城市建设理论研究:电子版,2015,(2).
[2]孙英.浅谈化学工程中化工生产的工艺解析[J].中国厨卫:建筑与电气,2015,(7):66.
沈阳化工大学是二本。沈阳化工大学是一所以工为主,以化工为特色,工、理、管、经、文、法、医等7大学科门类相结合的高等学府。学校为辽宁省“双一流”重点建设高校。
沈阳化工大学介绍
沈阳化工大学是一所以工为主,以化工为特色,工、理、管、经、文、法、医等7大学科门类相结合的高等学府。学校为辽宁省“双一流”(一流大学、一流学科)重点建设高校,国家“中西部高校基础能力建设工程”(小“211”)重点建设高校。
沈阳化工大学重点学科
国家级特色专业:高分子材料与工程、化学工程与工艺、过程装备与控制工程、无机非金属材料与工程
辽宁省示范性专业:化学工程与工艺专业、过程装备与控制工程专业、高分子材料与工程专业
原国家级重点学科(2个):精细化工、自动化
省级重点学科:化学工艺、控制理论与控制工程、材料学、化工过程机械、应用化学
(来源:文章屋网 )
超临界流体技术一般是控制温度和压力的条件下,或者加入其他物资的情况下改变体系的传质系数、传热系数及化学反应特征的,这能更加高效清洁地进行化学生产,有的在超临界的状态下能节省能耗,所以超临界流体技术也被称为超级绿色化学技术。超临界液体技术(SCF)现在广泛应用到了材料制备中。早在上世纪九十年代该技术就已经开始应用,把二氧化碳制备成超临界的状态,以它为介质来制取特氟龙;还有聚丙烯工艺中也应用了SCF技术,利用丙烷的特点来做稀释剂,该技术也是做PE的升级版。当下,超临界流体技术则更多地应用在了高分子材料,复合材料,不易粉碎的无机物材料,以及提取不太容易溶解在单一超临界液体中的有机物。现在应用的超临界流体技术的方法主要有一下几种:
1、快速膨胀法,该方法主要用于固体颗粒状的物质的制备;
2、压缩抗溶剂发,主要用于制备微孔、微球类的物质,所以在药物分子及聚合物共沉上应用较多,也较成熟;
3、抗溶剂法,通常该方法会应用在制备爆炸性物质和不溶于单一超临界流体的有机物上等。除了以上在制备材料方面的突出贡献,超临界流体技术还在分析化学中大展拳脚。它与色谱技术相结合,能在色谱研究中得到比气象色谱更高效,比液相色谱更精准的超临界流体色谱。更由于它的高效和低成本使得超临界流体技术在石油化工、环境保护还有医药化学等多个领域得到广泛使用。
2绿色化学工程技术的应用
绿色化学指用化学的技术和方法,再结合其他学科的知识来减少或者消除化学对于人类的危害、社会的危害以及环境的危害。从源头的原材料开始,到生产过程中的试剂和介质还有催化剂,到最后的产物及副产物都要求绿色、环保、无毒害,还有就是“原子经济性”的“零排放”。像在绿色无毒原料控制方面,石油化工原料就可以改变成生物原料的。制作尼龙可以不用含苯的石油化工原料,改成生物原料,生物原料的淀粉及纤维素等在酶催化反映下也能形成己二酸,这样一样可以制作尼龙,而且对人体和环境都危害极小。再比如在反应过程中对介质、溶剂等的控制,也要求无毒无害,在有机反应中水就是很好的溶剂,不仅对环境无害还能节省到有机反应中的官能团的保护还有去保护等环节,所以也省工艺省时间了。还有反应中用的绿色催化剂,绿色催化剂能更加正对性,更加高效地参与化学反应,并且得到的副产物少。在有机合成反应中,绿色催化剂的应用显得尤为重要。像不对称合成反应中,催化剂不仅为化学农药和精细化工提供反应需要的中间体,有的还能为反应提供绿色的合成技术。比如酶催化反应、氢酯化反应、还有不对称酮反应等。
3化学工程技术中的传热研究
化学反应中传热的研究是化学工程的重要内容,因为它严重影响着一个反应的能耗,反应的进程等。在微细尺度传热研究中,由于尺度微细,原有的传热假设及会发生变化,其流动还有传入的规律也会发生变化。目前在纳米、微米、集成电子设备还有微型热管领域中该传热研究交深入,取得了较不错的成果。而我们在改进传热工艺和设备上也做足了研究,为了提高传热效率,我们可以改进设备的性能,使其持续对外传热的能力提高,改变里面的传热材料和工艺的设计来实现传热的效率。然而我们现在投入很多精力的滴状冷凝技术的研究还没能取得很好的成果。由于我们不能在维持物质在滴状的时候冷凝,同时冷凝表面寿命延长,所以目前这个难题还很难突破。还有就是我们在计算沸腾时的传热存在很多弊端,复杂的沸腾状态不适用目前所有的传热计算方式,就研究沸腾传热的计算方法也是一大块难题的,所以就滴状传热技术的研究也将会是我们传热研究领域的一个重要课题,如果该研究获得进展必将改变现在很多的化学生产工艺形式,将会带领化学生产进入一个新的时代。
4结语
【关键词】华峰班 CDIO 工程教育
【中图分类号】G642.0 【文献标识码】A 【文章编号】1674-4810(2011)09-0001-03
20世纪的工程教育课程主要是提高学生的动手实践,使学生掌握相关的专业知识和解决工程实际问题的能力。然而,随着世界经济全球化以及科学知识的发展,工程教育课程的教育偏向了“厚基础、宽专业”的工程科学的培养模式,从而削弱了对学生解决工程实际问题的能力培养。这种培养方式导致了学生缺乏对现实工程情况应有的认知程度。为了解决这个难题,2000年由麻省理工学院Crawley等人通过4年的探索创立了CDIO工程教育理念。CDIO作为一种新的工程教育理念,主张以产品研发的CDIO全过程,即构思(ConcEive)、设计(Design)、实施(Implement)和运作(Operate)为载体,以工程项目生命周期全过程为载体培养学生的工程能力、学生的职业道德、学术知识和运用知识解决实际问题的能力,以及具备终生学习和团队交流能力。
化学工程与技术作为化学工业的主要学科领域,担负着促进化学工业及相关行业发展与进步的重要使命,因此培养出具有解决实际化工过程问题能力和创新能力的人才是非常重要的。本文以温州大学化学工程与工艺专业的学生作为教学改革培养对象,将CDIO工程教育理念与化学工程与工艺的专业教育有机地结合,探索适合于以服务浙江及周边地区经济为导向的化学工程与工艺专业教学模式的改革与实践。
一 工科人才教育培养现状
我国传统的教学模式是以教师为中心、以课堂讲授为主,以理论考试成绩来评价学生的模式。当前,我国工程教育是通识教育模式和苏联教育模式的结合体。解放前,我国的先进高等工科教育主要是来自西方一些教会式的大学教育。建国后,由于化学工业发展的需要,我国效仿苏联搞起了专业教育。这种专业教育培养模式为我国的现代化建设作出了较大的贡献。其缺点是过于强调教材和教学大纲的统一,影响了教育工作者的思维活跃性,也阻碍了对工科学生创新能力的培养。因此,教育家们对苏联教育模式进行了回顾和反思,制定了通识教育和专业教育相结合的工科通识教育模式。然而,随着我国产业的进一步升级以及高校的持续扩招,导致了大量的工科毕业生找不到适合自己的工作,这可能是因为通识教育过于强调基础科学理论,而弱化了专业内容和工程实践,导致了工科毕业生只了解一些表面的理论,缺乏工程应具备的实践创新能力。
在办学机制上,一方面,高校过于强调科研业绩考核,许多具备丰富工程经验的老师很少参与到实际的教学过程中,而参与教学的教师又与企业的联系不紧密。负责教学的教师缺乏产业经验,工程教学过程又缺乏与企业的有效沟通,造成了工程教育和社会需求的严重脱节。另一方面,虽然在教学上安排了生产见习、毕业实习等环节,但是不少学校在实践教学环节上是比较薄弱的,这是因为见习、实习的时间一般比较短,相应的考核制度也不健全。
综上所述,我国工科教育从教学模式、办学机制等众多方面都存在着与产业发展脱节的问题,严重影响了人才培养的质量。尤其是理论脱离实际、实践环节薄弱、产学脱节的问题直接导致了学生找不到适合自己的工作岗位以及企业有岗位找不到合适的人才。由此可见,我国的工科人才培养模式已经不能满足产业升级的需求。为了更好地培养适合产业升级所需的人才,我们从培养模式上进行了改革探索。
二 化学工程与工艺专业CDIO工程教育改革探索
CDIO工程教育模式改革旨在培养学生系统工程技术能力,尤其是项目的构思、设计、开发和实施能力,以及较强的自学、组织沟通和协调能力。CDIO模式以工程项目全生命周期的要求来组织教、学、做,学生需要掌握各门课程知识之间的联系,并用于解决综合问题。因此,课程体系的建设要突出课程之间的关联性,这就必须打破教师单打独斗的传统教学方法,而围绕CDIO工程项目的实施进行教学计划和课程关联工作。
1.化工核心课程群的组织与教师队伍建设
核心课程群由化工热力学、传递过程原理、化学反应工程、分离工程、化学工艺学、化工设计6门课程组成,构成了化学工程与工艺核心专业课的主体。化工设计以其他五门课程为基础,对提高学生分析问题、解决问题的综合工程能力起到非常重要的作用。化工原理是讲述单元操作的基本原理,是学好其他专业课程的基础;化工热力学则建立在分离工程的基础之上,阐述工业条件下各种流体热力学性质的计算;化学反应工程以传递过程为基础,传递现象和化学反应工程利用数学的方法,从微观角度阐述化学反应过程、设备设计的共性科学问题;化工工艺是关于化学品生产方法的技术科学,它以自然科学和工程科学规律为基础,使化学反应达到工业化应用水平。由此可见,核心课程群的各门专业课是相辅相成的。
在课程群建设中,涉及专业课教学的老师主要通过进修、企业实践、参加会议三种方式提高业务水平,对化工专业工程教育模式做到整体的认识,同时要求参与指导学生的化工设计。利用校企合作的机会,与企业方面的人才进行专业知识和其他方面的交流与沟通。其具体的组织与实施过程如下:
第一,教学方法改革的探索。首先,按照CDIO的教育理念,要逐步形成教师引导和以学生为主体的思想,使教师从教育者转变为引导者,教师不再是简单地卖知识,而是引导学生学习知识,把主要任务放到教会学生学习方法上来。在教学方面的改革要得到全校上下的支持才可能顺利进行。温州大学为课程体系建设和师资建设提供了很好的平台,在化工核心课程群教改的过程中提供了强有力的物质基础和政策鼓励。在这种良好的环境下,教师也愿意投入更多的时间去听课评课,吸纳好的教学手段和方法。由于化工班都属于小班上课(30人左右),对部分课程如化工专业英语、精细化工工艺学实施角色互换教学模式,让学生参与到化工教学的过程中。这些课程的效果反映较好,对化工原理等课程中的部分章节,我们也将逐步展开开放式的教学方法。
为了达到各门课程的知识体系能够很好地衔接,通过教研室教师集体备课,相互切磋,讨论每门课程讲授的重点,个别章节内容的舍弃和补充,做到教学的知识体系完整、重点难点突出、学时合理分配,真正做到精选、精讲教学内容。摒弃了过去教学活动中的单打独斗,改为教学团队授课,使各门课程有机地衔接起来。通过相互听课并课后集体讨论,指出教师课堂教学中存在的问题与不足,相互交流教学经验,讨论改进的方法与策略,使教师的整体教学水平迅速得到提升。
第二,教师工程素质的培养。不少高校在引进人才方面主要考虑的是教师科研水平,其次关注人才的企业实践经验。鉴于科研压力,假期教师也不能到企业去参与实践或者工作。此外,许多教师只对与自己科研相关的专业课非常熟悉,对其他的专业课则非常生疏。因此,利用现有的教学资源,培养教学团队的建设是很重要的一环。温州大学化学工程与工艺教研所以化工设计为主线,基于地方化工企事业单位为依托,派遣年轻教师每年到相关的化工企业实践两个月,逐步培养教师的专业水平。近几年,利用学习、调研以及下派科技特派员的方式,到杭州化工研究院、衢州巨化、瑞安华峰等不同类型的企业参观学习,不断地提高老师的业务水平。同时,为了让教师能够很好地参与到企业生产实践中,温州大学对担任科技特派员的教师提出教学科研任务减半、考核优先等政策鼓励。仅2010年,我们派年轻老师带队到衢州巨化学习15天,杭州化工研究院学习3天,华峰学习7天,温州本地化工企业实践1个月左右,有效地提高了教师的工程素质。教师工程素质的增强也使学生收益颇丰,在2010年省化工设计大赛和全国“三井杯”化工设计大赛中多次获奖。转贴于 2.学生工程能力和团队合作的培养
作为地方院校,温州大学化学工程与工艺专业的办学宗旨是以培养创新应用型人才为主,服务地方经济和社会的发展。经过对近两年该专业的毕业生调查的情况来看,目前该专业存在以下问题:(1)毕业生虽然掌握较多的书本知识,但实践能力不强,导致他们从学校到公司需要较长的“岗位过渡时间”;(2)毕业生普遍缺乏对现代企业工作流程和文化的了解,缺乏团队工作经验、沟通能力和创新能力;(3)工程职业道德、敬业精神等人文素质薄弱,责任感不强。具体体现在:工作不踏实、心浮气躁、做工程不细心、不愿承担责任,客观上他们的实践能力与企业要求存在较大差距,而主观上又不能沉下心来虚心向前辈学习。
从以上的调查结果来看,以目前的培养方案和评价标准来指导学生的专业教育经不起企业用人单位的考验。为了更好地培养适应地方经济社会发展的人才,实现对学生创新思维、创新方法和创新能力的培养,我们与温州地区最大的化工企业华峰集团实行校企联合培养本科生,实施“华峰特色班”战略。目前,“华峰班”的学生采用“3+1”模式培养方案(即学生前三年在学校集中学习理论知识并完成实践教学,最后一年到企业,接受企业的培训,并在企业盯班盯岗接受生产实践活动)。同时在工程专家的指导下,根据企业的需要对培养方案进行部分修改,增设华峰提出的部分课程,使得学生在校期间所学的基本知识和专业理论更贴近于华峰实际的应用。在这种战略方针下,学生在企业的环境中真正做到知识和能力之间的无缝连接,缩短了“岗位过渡时间”,增加了学生的工程实践能力,有效地推进了CDIO教学改革。在2010届的化工专业毕业生中,华峰集团招聘了7名华峰班学生。提升了学生的工程能力、团队合作精神以及专业素养。
3.逐步建立适合CDIO工程理念的考核制度
正确、公平、合理且科学有效的考核制度对本专业的健康发展起着至关重要的作用,它应当是对教学效果做出真实和客观的评价,同时有利于提高学生学习的积极性和主动性。现行的课程考核方法主要是通过期中和期末考试成绩来评定,它能在一定程度上反映学生掌握知识的程度以及教师上课的教学效果,但不能很好地促进学生学习的主动性。部分学生比较反感现行的考核制度,这是因为现行的考核方法存在比较单一、部分学生在学习上投机取巧也能获得高分而影响其他学生学习的积极性、不能全面反应学生的综合应用能力等问题。
CDIO教学模式以能力培养为目标,其主要培养的是学生的理论知识、职业技能、人际交流以及产品研发的CDIO全过程。采用CDIO教学模式,评价方法则应侧重能力的考核,能力本位的教学观贯穿课程设置和教学实践的全过程。我们进行教改,其目的是提高学生的工程实际能力,因此我们的考核将使用过程能力评测替代以往单一的成绩评定。
我们现阶段的具体做法是:(1)选题:在学生进入大三学习开始,从企业选出一些与本专业相关的课题以及近两年化工设计大赛的课题,让学生自动组成4~5人的小团队;(2)专业学习:上专业课的老师或工程师把握好主要的授课内容,然后将大部分时间留给学生,让他们针对自己的课题与本课程相关的知识点进行思考、提问、讨论;(3)阶段性测试:上完某些知识点后,老师或者企业工程师根据学生所做的课题和所学的专业知识进行评价,其中主要包括面试、答辩、自我评价、团队合作能力等方面;(4)中期成绩总结:这次总结是比较重要的,一般在大三上学期结束后,包括阶段性测试的成绩、平时的表现、专家化工设计大赛作品的评价、企业对学生课题的反馈等进行中期总结,由学校老师和企业专家对学生现阶段的学习进行方法论指导,提出下学期的目标;(5)最后专业课成绩评定:最后专业课成绩进行A、B、C、D四个等级进行划分,其中阶段性测试占40%、中期成绩总结10%、企业专家评价10%、课题完成情况10%、专业综合能力20%、化工设计大赛10%。目前,整个评价体系尚在完善中。
三 结束语
化学工程与工艺专业学生的工程概念、分析和解决工程问题的培养对我国高等工科教育可持续发展以及化学工业的产业化升级起着非常重要的作用。本文就温州大学化学工程与工艺专业的毕业生进行调研,发现学生在所学的知识和培养的能力和企业所需的人才具有一定的差距。本文以服务浙江及其周边地区的经济作为出发点,初步建立了温州大学化学工程与工艺专业的CDIO工程教育理念,获得了一些正面的成果,为将来进行深入教学改革奠定了基础。同时,我们的改革尝试也为CDIO工程理念在化学工程与工艺专业的教育改革提供了一些思路。
参考文献
[1]孙晓莹.德国职业教育对我国职业教育发展的启示[J].教学研究,2006(5):384~387
[2]查建中.工程教育改革战略“CDIO”与产学合作和国家化[J].中国大学教学,2008(5):16~19
[3]Edward F. Crawley, Johan Malmqvist, Sören Östlund, Doris Brodeur: Rethinking Engineering Education: the CDIO Approach[M]. Springer, 2007
[4]余国琮、李士雨.化学工程与工艺专业创新人才培养方案的制定与实践[J].天津大学学报,2004(1):1~4
[5]夏淑倩、张金利、傅虹、王保国.培养化工类专业创新人才的探索[J].化工高等教育,2010(3):10~12
[6]刘长久.适应经济社会发展需求的化工类人才培养改革探索与实践[J].高教论坛,2009(3):17~19
[7]吴洪达、李利军.化学工程与工艺专业实践性课程体系的构建[J].高教论坛,2007(6):105~107
[8]冯建军、李为忠.教育发展的根本之道在于尊重教育规律[J].教育纵横,2009(2):53~56