HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 化学工程与工艺现状

化学工程与工艺现状

时间:2023-08-17 18:03:15

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇化学工程与工艺现状,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

化学工程与工艺现状

第1篇

化学工程其实就是指一系列的化学生产活动,在现代的环保减排理念之下,化学工程的整个过程应该节能减排和低碳环保。也正是随着这些理念的出现,一系列新型的化学工艺以及加工生产技术逐渐走进化学工程当中。综合生产效益和生产效率的两个点,化工生产应该在环保化的基础之上促进高效化发展。将对化学工程中的化工生产工艺进行全面的分析。希望对相关技术人员有所启发。

关键词:化学工程;化工生产工艺;化工技术

目前,化学生产工艺在化学生产中的发展一直处于开发阶段,而化学工艺的研发在近几年却变得逐渐火热起来,其护腰原因还是因为化工生产在一定程度上对我们的自然环境造成了污染。随着节能环保和低碳生活理念的持续火热,人们对环境的关注度也越来越重,因此,化工生产就应该及时做出改变。在过去,化工生产的污染排放问题一直得不到科学合理的解决,化工废料污染的排放,给我们的生活环境造成了较大的污染。

1我国化工生产的现状

机械工业、煤矿工业和化学工业是我国三大工业主体。之所以化学工业能够成为三大工业中的一部分,其主要原因就是因为化学工业能够生产出大量我们生活所需的物件,能够最大限度的满足人们的生活需求,进而推动了我国农业和工业的进一步发展。肥料是支撑我国农业不断发展的基础要素,在很多程度上维持这我国的经济水平稳定。但是,在化学生产过重,势必会产生一定的化学废料并对周围环境造成一定范围的污染,尤其是化工企业所排放出来的“三废”。

1.1化工生产效率较低

我国三大工业存在一个相同的问题,那就是整体生产效率较低。而在化学工业这方面,其主要的原因就是因为生产环境较为恶劣,再加上化工生产设备存在质量问题。例如,在生产化学肥料时,反应器皿往往不能达到正常化学反应所需的温度,进而导致化学反应不充分,最终导致废气问题出现。另外,如果化学反应不充分,那么最终形成的化学产品合格率就比较低,难以满足人们生活的使用需求。

1.2对自然环境污染较为严重

化工生产可以说是我国目前最为严重的污染源之一,尤其是重金属和化学废料的污染。从化工厂附近的水源当中抽取检测发现,水中的污染物严重超标,进而导致水源受到污染,间接影响到周围的土质,导致范围内的环境出现失衡问题。另外,化工企业为了节约生产成本,违反国家的环保法律,直接将一些化工废料排入到自然环境当中,进而造成大范围严重的化工污染。而在化学反应过程中,化学生产的连续性较低,进而导致整个化学工程反应迟缓,工程的进度受到严重的影响,进而导致整个生产环节出现脱节现象,这就会导致化工生产受到较大的影响。而导致脱节问题出现的主要原因还是应该化工生产工艺不合格所导致的。简单来说,我国的化工生产主要存在生产效率低、企业环境保护意识差“、三废”处理不科学和化工生产技术低下等问题。也正是这些问题的存在,严重阻碍了我国化工生产的发展。

2降低我国化工生产污染的措施

从分析我国化工生产现状发现,我国的化工生产技术和环境还不是很完善,各个工作环节都还存在缺陷。而针对这些问题的特点,我们就应该对化工工艺进行改进,而从化工工艺角度来看,我们又应该从哪几个方面做起呢?笔者经过实践工作总结了解,要想降低化工生产中的污染问题就必须做好以下几点:

2.1优化反应环境,强化反应条件

反应条件是化工生产中最为重要的环节,为了达到最高效的化工反应,提高生产效率,降低废料的出现量,反应条件就必须做到最好。所以,提升化工生产质量的关键点就在于提高化工生产中的反应条件。所使用的催化剂必须在一定反应时间之后才能够使用,进而保障生产过程中的高效性,降低化学废料的产出量。

2.2做好废料环保处理工作

目前,我国法律明文规定,化工生产中产生的重度污染物不能直接排放到自然环境当中。另外,还有我们常见的废气,这些化工生产废料都应该在经过处理之后才能够进行排放。化工生产废水的排放必须采用化学综合的方式来对其进行处理。其工作原理非常简单,就是通过化学反应的原理,将废水中的重金属物质通过沉淀的方式过滤出来,进而降低废水的污染度。

2.3从化工生产技术入手

只有从化工生产技术入手,才能够从化工生产根本上解决环境污染问题。例如,生产氧气的方式有很多,那么哪一种生产方式才是最有效和最环保的呢?因此,我们应该针对生产环境的不同,选择科学的生产方式,对于原料的选择更是应该灵活应对。

3结论

化工生产中的工艺问题还有待进一步的研究,更多的技术点还有待进一步的强化,自然和化工生产之间的平衡点我们还未找到,因此,则应该更加努力的加强研究,对传统化工工艺进行优化。

参考文献

[1]李积云.化学工程中化工生产的工艺解析[J].中国石油和化工标准与质量,2013(2):22.

[2]王杲,吴晶.关于化学工程中化工生产的工艺的分析[J].化工管理,2015(18):167.

[3]刘伟,李霞.化学工程与工艺专业煤化工特色建设浅谈[J].河南化工,2014(5):61-63.

第2篇

一、生物质化学工程人才的需求分析

能源是人类社会赖以生存和发展的基础。随着经济的飞速发展,我国能源消耗快速增长,已跃居世界第二大能源消费国。我国能源总量和人均占有量却严重不足,石油供需约缺口1亿吨,天然气供需约缺口400亿标准立方米。而且,由于清洁利用的技术难度较大,化石能源在使用过程中引发了诸多的环境问题。生物质能是第四大一次能源,又是唯一可存储和运输的可再生能源。发展生物质能将缓解能源紧缺的现状和减少化石能源造成的环境污染。我国幅员辽阔,又是农业大国,生物质资源十分丰富。据测算,我国目前可供开发利用的生物质能源约折合7.5亿吨标准煤。国家“十一五”发展规划明确提出“加快发展生物质能”。同时,随着化石资源日益枯竭,化学工业的原料也将逐步由石油等碳氢化合物向以生物质为代表的碳水化合物过渡。目前,世界各国纷纷把发展生物质经济作为可持续发展的重要战略之一。以生物质资源替代化石资源,转化为能源和化工原料的研究受到普遍重视。政府、科研机构和道化学、杜邦、中石油、中石化、中粮等大型企业争相研发和储备相关技术,并取得了一系列重大进展。海南正和生物能源公司、四川古杉油脂化工公司和龙岩卓越新能源发展有限公司,依托我国自主知识产权的生物柴油生产技术,相继建成规模超过万吨的生产线,产品达到了国外同类产品的质量标准,各项性能与0#轻质柴油相当,经济效益和社会效益俱佳。我国对以生物质为原料生产化学品(即生物基化学品)极为重视,已列入科技攻关的重点。例如,生物柴油生产过程中大量副产的甘油是一种极具吸引力的非化石来源的绿色化工基础原料。从甘油出发生产1,2-丙二醇、1,3-丙二醇和环氧氯丙烷等大宗化工产品,已经实现或接近产业化。新兴产业的发展,最根本的是靠科技的力量,最关键的是要大幅度提高自主创新能力,其核心是人才的竞争。浙江是经济大省和能源小省,能源资源低于全国平均水平,一次能源消费自给率仅为5%;而气候条件优越,是我国高产综合农业区,森林覆盖率达60%,生物质资源居全国前列。浙江省乃至全国的生物质能源产业和生物质化学工业的蓬勃发展,对生物质化学工程人才的需求十分迫切。

二、生物质化学工程人才的知识结构

生物质化学工程(专业)模块是一个新生事物,并未包含在《全国普通高等学校本科专业目录》之中。在《专业目录》中与之接近的是生物工程专业。生物工程专业培养掌握现代工业生物技术基础理论及其产业化的原理、技术方法、生物过程工程、工程设计和生物产品开发等知识与能力的高级专业人才。生物工程专业重点关注围绕生物技术进行的工程应用,而生物质化学工程重点关注通过化学工程技术(包括生物化工技术)对生物质资源进行加工利用的工业过程。可见,生物质化学工程(专业)模块与生物工程专业的人才培养目标和知识体系存在着明显差异,其人才培养模式仍处于探索之中。生物质的组织结构与常规化石资源相似,加工利用化石资源的化学工程技术无需做大的改动,即可应用于生物质资源。但是,生物质的种类繁多,分别具有不同的特点和属性,利用技术远比化石资源复杂与多样。可见,生物质化学工程人才必须具有扎实的化学工程基础,并熟悉各类生物质资源的特点、用途和转化利用方式。因此,浙江工业大学将生物质化学工程人才的培养目标定位为:既能把握和解决各种化工过程的共性问题,胜任化工、医药、环保和能源等多个领域的科学研究、工艺开发、装置设计和生产管理等工作;又能将化学工程的基础知识灵活运用于生物质资源的转化利用和生物质化工产品的生产开发等领域,胜任生物质能源和生物质化工等新兴行业的工作。

三、生物质化学工程人才培养的探索与实践

(一)组织高水平学术会议,营造人才培养氛围

2007年4月,浙江工业大学与中国工程院化工、冶金与材料工程学部和浙江省科技厅共同主办了“浙江省生物质能源与化工论坛”。中国工程院学部工作局李仁涵副局长分析了我国能源技术的发展状况,强调了发展生物质能需注意工艺过程的绿色化。浙江省科技厅寿剑刚副厅长介绍了浙江省能源消费状况和新能源技术研发动态,鼓励省内外的科技工作者为改善浙江省能源紧缺现状而努力工作。浙江工业大学党委书记汪晓村回顾了浙江工业大学的发展历程,介绍了浙江工业大学化学工程学科在生物质能源领域的科学研究特色和人才培养思路。浙江工业大学的计建炳教授和石油化工科学研究院的蒋福康教授主持了学术交流与讨论。闵恩泽、李大东、舒兴田、岑可法、沈寅初、汪燮卿等六位院士分别从我国发展生物能源的机遇与挑战、我国生物质能源产业发展状况、生物质燃料(清洁汽柴油、生物柴油)利用技术、生物柴油联生产物利用技术和以生物质为原料进行化工生产等几个方面进行了精辟论述。2009年4月,浙江工业大学承办了“中国工程院工程科技论坛第84场———生产生物质燃料的原料与技术”。浙江工业大学副校长马淳安教授在开幕式上致辞,介绍了浙江工业大学化学工程学科在生物质能源领域开展的科学研究和人才培养工作。浙江省可再生能源利用技术重大科技专项咨询专家组组长、浙江工业大学化工与材料学院生物质能源工程研究中心主任计建炳教授主持了学术交流与讨论。国家最高科学技术奖获得者、两院院士闵恩泽做了题为“21世纪崛起的生物柴油产业”的报告,重点阐释了我国发展生物能源和生物质化工的机遇与挑战。在两次会议上,来自石油化工研究院、清华大学、浙江大学、浙江工业大学、浙江省农业科学院、中国林业科学研究院和中粮集团等单位的专家学者分别介绍了生物质原料植物的选育、生物质原料的收储运物流供应体系、生物质原料的梯级利用、生物质液体燃料的制取技术、生物柴油的生产实践及其副产物综合利用和生产生物柴油的反应器技术等方面的研究进展。会议期间,闵恩泽院士等人应邀参加了浙江工业大学化学工程与工艺专业建设暨生物质化学工程专业方向建设研讨会。闵恩泽院士指出,迈入21世纪以来,针对日趋严峻的能源危机和环境危机,国家高度重视能源替代战略的发展和部署,新能源代替传统能源、优势能源代替稀缺能源、可再生资源代替非可再生资源是大势所趋;因此,化学工程与工艺专业根据国家发展需求调整学科设置、进一步促进交叉学科的发展也势在必行。闵恩泽院士认为,在降低能耗和保护环境的时代背景下,生物质能源和生物质化工的产业发展为生物质化学工程人才提供了广阔的发展空间,生物质化学工程(专业)方向的建设思路符合当今化工产业的发展趋势。近距离接触学术泰斗,聆听专业领域的前沿进展,极大地激发了学生们的学习兴趣。通过组织高水平学术会议,浙江工业大学营造了培养生物质化学工程人才的良好氛围。

(二)理论与实验课程体系

根据人才培养目标定位,浙江工业大学将生物质化学工程(专业)模块的主干学科确定为化学工程与技术,针对生物质资源加工利用过程的特点,对化工原理、化学反应工程、化工热力学、化学工艺学、化工设计、分离工程和化工过程分析与合成等主干课程的教学内容进行了梳理。此外,增设了生物质化学与工艺学和生物质工程两门专业课程。生物质化学与工艺学重点讲授糖类、淀粉、油脂、纤维素、木质素、甲壳素、蛋白质、氨基酸等生物质的结构、性质、用途,以及加工转化为化工产品的生产工艺。生物质工程从原料工程学、转化过程工程学和产品工程学等角度出发,为学生讲授生物质资源转化利用过程中的工程原理、工程技术和生产实例。化学工程与工艺国家特色专业综合实验室在中央与地方共建高等学校共建专项资金的资助下,为生物质化学工程(专业)方向增设了酯交换法制备生物柴油和生物质热解制备生物原油两个实验,并在积极筹备开设生物柴油品质测定、淀粉基两性天然高分子改性絮凝剂的制备和易降解型纤维素-聚乙烯复合材料的制备等实验。

(三)实习、实践和毕业环节

生物质化学工程模块依托化学工程省级重点学科和生物质能源工程研究中心建设,师资力量雄厚,拥有专职教师14人。其中,正高职称5人,副高职称7人,11人具有博士学位,7人具有海外留学经历。生物质化学工程模块教师的科研成果成功实现产业转化,与企业建立了良好的合作关系。生物质化学工程模块不断加强产学研合作,与宁波杰森绿色能源科技有限公司、温州中科新能源科技有限公司等企业签订了共建大学生创新实践基地的合作协议,设立了企业专项奖助学金,拓展了实习实践渠道;还依托化工过程模拟基地,引入计算机模拟实习、沙盘模拟等方式,丰富了生产实习环节的教学手段。同时,生物质化学工程模块修订完善生产实习教学大纲和教学计划,根据实习厂和仿真软件编写实习手册,强化对实习的质量监控与反馈,建立科学合理的考评体系;增加“内培外引”师资的力量,加快实习指导师资队伍建设;从实习方式、实习内容、考核办法和师资队伍等多个角度出发,确保生产实习教学质量的全面提高,强化学生的工程意识和实践能力,培养学生的创新意识和创新能力。生物质化学工程模块教师承担了国家自然科学基金、浙江省自然科学基金、浙江省科技厅重大招标项目、浙江省科技计划项目和企业委托开发项目数十项。从这些科研和工程开发项目中选取的毕业环节课题,更加贴近科学研究、工程设计或工业生产的实际情况,能够全面检验学生所学的理论知识及其综合运用能力,全方位增强学生结合工程实际,发现问题、分析问题和解决问题的能力,为学生步入工作岗位打下良好基础。依托实践教学平台,从“产品工程”的理念出发,选取若干个恰当的产品,串联实验、课程设计、实习、毕业环节和课外科技活动等教学内容,帮助学生理顺知识体系,建立起绿色化学和节能环保的基本理念。以生物柴油为例,核心反应是酯交换反应,可以采用水力空化等技术强化反应过程;产物需要采用精馏方法分离,生产废水需要采用电渗析等方法加以分离;生产过程中还涉及流体流动和传热等问题;生物柴油这一产品可以将多个实验内容组合成一个有机整体,有效降低实验原料的消耗。教学可以选取其中部分内容作为单元设备设计进行,可以将生物柴油生产车间作为化工设计的教学内容,可以选取部分内容作为学科课外科技项目或毕业环节的研究内容,还可以将生物柴油生产作为创业大赛的竞赛内容。学生可以到生物柴油生产企业进行实习,将工艺革新、过程强化和产品工程融为一体,并通过实验室规模与工业化规模的对比,强化工程意识。

第3篇

关键词:化学生产;化工生产工艺;化工技术

化学工程通常就是指为达到一定效果在理论基础上进行的一系列化学生产活动,它是将理论应用于实践的一个过程。现如今化工行业除了包括石油化工、催化制造等传统化工,还囊括了生物制药、纳米技术等现代化工。但目前化工生产行业还是主要以化石燃料等传统化学工业为动力,但是燃烧化石燃料不仅使得不可再生资源的减少,更对自然环境造成重大的污染。很显然,这和人们日渐追求绿色环保的观念产生矛盾。因此,面对化工生产过程中产生的环境污染问题,及时地做出科学合理的改进措施已经变得至关重要。

1化工生产行业当前现状

1.1对环境造成重大污染

化工行业是目前当今世界最主要的污染源之一。首先,化工生产过程中会产生很多的废水。废气和固体废弃物,如果不加以合理处理直接排放到水源里,那么对当地的地下水生态系统造成的后果将不堪设想。其次,化工行业在生产大量日常生活品为人们带来便利的同时,也带来了大量的生活垃圾,由于很多生活垃圾都是高分子化学材料,处理起来非常困难,如果将它们直接采取填埋的方式处理,将很长时间难以降解,这会对土壤造成严重的污染。化工生产过程中不仅会对当地的土质、水源造成污染,而且对空气也会有很严重的影响。化工行业主要以燃烧化石燃料为主。燃烧化石燃料会生成大量的二氧化碳、二氧化硫和固态颗粒物,不仅会造成温室效应加剧的后果,还会形成雾霾、酸雨等恶劣现象,给人们经济和健康带来巨大的损失。

1.2化工生产效率太低

随着人们生活水平的提高,传统的化工生产工艺已经无法最大限度地满足人们的日常需要了,这是由于化工生产工艺本身的缺陷造成的。化工生产工艺是将理论的化学反应放大应用在实际生产过程中,因此在具体工艺中会遇到很多问题。例如化学反应过程中转化率太低,化工生产过程中连续性较低等。这些问题都可能导致化学反应不充分,最终造成化工生产效率比较低。另外,反应设备的效率太低也是造成化工生产过程中效率比较低的一个重要原因。

2化工生产行业改进措施

2.1优化化学反应环境

每一个化工工艺都是化学反应的放大过程,但是又要比简单的化学反应复杂得多。就像化学反应的各个参数一样,反应条件也是化工生产中最为重要的环节。而每一个化学反应都会有其最佳的反应温度、反应时间等参数,同理,化工生产过程中的最佳反应条件决定着化工生产过程中的质量。因此,要想实现提高化工生产过程效率的目的,也应该最大限度地创造一个最佳的化工反应环境,同时应该尽可能避免各种副反应的出现。另外,在适当的情况下,也要使用恰当的催化剂以提高化工生产过程中的速率。

2.2改进化工生产工艺

在化工工艺的改进方面,不仅要提高反应生产过程的效率,更应该注重化工生产工艺的绿色安全环保。通过调整化学反应的反应参数和条件可以实现对化工生产过程中效率的改进。而化工工艺要想实现绿色环保,就需要寻求一些新的途径,例如,更加绿色环保的化学反应,使用最少的生产原料,生成对环境友好的产物等。在日趋崇尚绿色环保的当今社会,化工生产工艺走向绿色安全是大势所趋,而绿色安全环保的生产工艺也能带领化工行业走上新的辉煌。

2.3合理处置生产废料

化工生产过程中会产生大量的废水、废气和固体废弃物,而这些废料通常都是对自然环境和人体有严重危害的。所以在处置这些化工生产过程中的废料时应该格外注意。通常处理这些废料主要采用物理法和化学法,但是二者各有利弊,物理法较为环保,而化学法较为彻底,具体是由废料的种类来决定采用哪种方法处置。另外,生物法处理化工废料也逐渐受到科学家们的关注,生物法处理化工废料既绿色环保又反应彻底,是一种较为理想的处理办法。综上所述,无论采取何种方法处理化工废料,都应该秉持绿色安全的原则,将其对环境和人类的危害降到最低。

2.4寻求化工新能源

当今化工生产行业仍然是主要以燃烧化石燃料为主。但是化石燃料作为不可再生资源已经面临很多的问题,而且大量燃烧化石燃料也会对自然环境和我们人类的健康带来巨大影响,因此寻求别的能源来替代不可再生的化石燃料已经迫在眉睫。新的可再生能源不仅保障了化工生产的长久稳定发展,也避免了传统化工行业对人类和自然环境带来的恶劣影响。而科学家们也在这一方面取得了较好的成果,例如,电化工、生物化工、纳米技术等。我们有理由相信在科学家们的不懈努力下,将新能源大量普及并应用于化工领域指日可待。

3结语

通过对我国当前化工生产行业现状的了解和分析,我们发现化工生产过程中还存在很多的问题正待我们去研究和解决。我们要想改良化工工艺就需要对科学进行不断探索,要想维持自然环境的不被污染,就需要找到更加科学环保的办法保护自然环境,这是考验人类生存和自然环境共同长久发展的重大课题。而现在的我们要做的就是认真探索,寻求突破创新,对传统化工工艺中存在的问题进行研究并改进,最终保障化工行业的绿色健康可持续发展,这样我们才能稳定的推动社会建设。

参考文献:

[1]李珺瑶.化学工程中的化工生产工艺[J].化工管理,2017,(06):90.

[2]罗泽鹏,刘森,都颖,刘思乐.浅谈化学工程中的化工生产工艺[J].黑龙江科技信息,2016,(02):76.

第4篇

关键词:化工专业;卓越工程师;实践教学;体系构建

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)41-0145-02

化学工业在国民经济中占有重要的地位,由于化工行业的特殊性,化工人才需求特别强调学生工程素质的培养,要求学生具有较强的实践能力和创新能力。2010年教育部在天津大学启动了“卓越工程师教育培养计划”,其宗旨就是要联合有关部门和行业协(学)会,共同培养适应经济社会发展需要的高质量各类型工程技术人才[1-2]。化学工程与工艺专业实施“卓越工程师教育培养计划”,为高素质化工人才的培养搭建了良好的平台。桂林理工大学化学工程与工艺专业在2011年入选了教育部第二批“卓越工程师教育培养计划”,并于2012年招收了本校第一批化工卓越工程师班的学生。经过几年的实践,对化工专业如何实施“卓越计划”,如何构建化工专业实践教学平台,培养学生的实践能力和创新能力,有了一定的思考,下面谈谈笔者的认识与体会。

一、当前化工专业实践 教学面临的问题

桂林理工大学化学工程与工艺专业建立于1986年,当时名称为工业分析专业,1998年更名为化学工程与工艺专业,专业方向包括化学工程、电化学工程、石油化工。经过近30年的发展,专业建设取得了长足的进步,2006年被确定为广西高校优质专业,2008年获国家级高等学校特色专业建设点,2011年入选教育部卓越工程师培养计划,2008年专业所属的化学化工教学团队成为广西区教学团队,拥有的《普通化学》课程在2008年评为国家级精品课程,在2013年评为国家级精品资源共享课程,1人获得广西区教学名师奖,2人入选广西高校优秀人才资助计划。在长期专业办学实践中,我们深感化工专业实践教学存在的诸多问题,阻碍了学生实践能力和创新能力的提高,也对实施“卓越计划”造成了一定程度的困扰。这些问题主要体现在以下几个方面:

1.大多数化工企业,由于担心学生的安全问题,对学生进企业进行生产实习,表现得不是很积极。各校多采取让学生自己找单位实习,回来交一个实习报告解决实习难的问题,导致生产实习教学环节存在“放羊”现象。

2.化工专业普遍生产实习时间较短,一般为4――5周,企业很难给予一个真正的岗位让学生进行生产实习,更无法给予学生动手,进行实际操作的机会,导致学生的生产实习轮为“参观式实习”。

3.实践教学内容比较陈旧,综合性、工程设计性实验项目偏少,没有建立一个完整的给予学生进行工程实践的教学平台,没有将学生实践能力和创新能力的培养,贯穿于整个大学教育的实践教学体系中,另外各类实验(基础实验、专业实验),各类实习(认识实习、生产实习、毕业实习)有机衔接不够,需要进行深层次的改革。

二、基于卓越工程师培养的化工专业实践教学体系的构建

1.学生实践能力和创新能力构成要素。深入认识学生实践能力和创新能力构成要素,是有效的构建专业实践教学体系的基础。创新能力就是创造新的思想,将新的思想付诸实践,创造一个新的事物的能力[3-4]。创新能力主要由创新思维能力、非智力因素和创新实践能力三个要素构成,而实践能力则表现为基本实践能力、综合实践能力、创新实践能力三个由低到高的层次。很明显创新实践能力的培养,对提升学生实践能力和创新能力意义重大。影响创新实践能力的主要因素有学生的创新实践品质、创新实践技能和创新实践环境[5]。作为高等学校的教育工作者,在对学生创新实践品质培养时,既要注重开发和培育学生的共性,也要尊重学生个性的差异,要因材施教,促进多样化人才的发展,同时要将创新实践技能的培养融入人才培养方案中,根据学生在不同阶段的特点,开设不同类型的实践课程;要尽量依托学科优势平台,打破教学实验室和科研实验室壁垒,将重点实验室的优质资源和教师的科研成果融入教学中,构建良好的创新实践环境。

2.多层次立体化化工实践教学体系的构建。在入选了教育部“卓越工程师教育培养计划”后,我们及时对化工专业人才培养方案进行了修订,构建理论(Theory)课程体系和课程内容、验证(Test)体系、创新(Try)体系的“3T”化学工程与工艺专业课程体系,特别是形成以“工程实践与工程应用创新”为亮点的实践教学体系,其核心是体现了对学生创新实践能力的培养。该实践教学体系由“基本技能层次”、“综合应用能力与初步设计能力层次”、“工程实践与创新能力层次”三个层次构成。“基本技能层次”由大一、大二开设的无机化学实验、有机化学实验、物理化学实验、分析化学实验、化工原理实验、以及由大三开设各专业方向的综合实验等组成,通过课程实验、上机等实践环节,学生加深了对理论课基本概念、基本理论的理解,培养了学生基本实践技能;“综合应用能力与初步设计能力层次”则由化工设计、精细化学品配方工程师实训、工业分析技能实习实训、电化学工艺技能实训,以及认识实习、生产实习、毕业实习组成,通过课程设计、综合实训、在企业进行的各类实习等环节,实现对学生综合应用工程能力与初步设计能力的培养;“工程实践与创新能力层次”通过开设应用研究型选修课、“工程实践与创新”自选实验项目和暑期到企业“顶岗实践”,同时通过组织学生参加全国大学生化工设计竞赛、各级“挑战杯”大学生学术科技作品竞赛、各级大学生创新创业训练项目等方式,培养学生的工程实践与工程应用创新能力,通过雁山大讲坛的引导,开展各种形式的讲座、研讨会,丰富校园化工科技文化生活。

几年来,为了使化工实践教学体系能够获得良好的教学效果,我们对实践教学内容和教学方法进行了改革。一方面鼓励教师在教学中立足先进性、前沿性更新充实课程内容,将化学化工学科最新科研成果及个人的科研成果有机融入到课程教学中,如电化学工程方向教师利用广西区科技进步奖的“高性能二次电池电极活性材料合成的新方法”和电镀新工艺研究的科研成果以及发明专利,设计并开设了“锂离子电池的装配及性能测试”、“电镀镍的工艺设计及性能测试”等电化学工程专业实验,并出版教材《电化学实验》,化学工程方向教师利用绿色化学科研成果,出版《有机化学实验绿色化教程》、《精细化工工艺学》教材,并在教学中使用。另一方面在开设的各种技能实训中,努力开发具有中试规模的实训项目,尽量确保学生能在真实工作岗位环境条件下进行实训,如与东莞金赛尔科技有限公司合作,从企业引进了软包装锂离子电池小试生产线,开设了与生产实际接近的电化学工艺技能实训项目,精细化学品配方工程师实训项目所采用的配方及工艺,均来自生产实际。在2014年,学校加大了对校内实践基地的投入力度,打造校内化工生产仿真实训装置平台。该化工生产仿真实训装置采用真实的化工企业生产工艺流程,运用仿真技术,结合化工生产真实设备、仪表及工业控制系统进行构建,全面模拟生产工艺过程。化工生产仿真实训装置平台的建立,弥补了学生在化工企业不能动手的,只能参观的缺陷,提高了实训实习质量。

三、实践教学体系教学效果

1.新的实践教学体系的实施,在一定程度上解决了当前化工专业在企业实习效果不理想的问题,提高了实践实习教学质量。

2.实施新的实践教学体系,极大提高了学生的创新实践能力,多年来本专业毕业生一次性就业率保持在90%以上。近三年来,化工专业全体学生(约200人)均参加了全国大学生化工设计竞赛,5人获得全国一等奖,18人获全国二等奖,33人获全国三等奖,其余学生获优秀奖,在广西同类高校名列前茅;同时化工专业各班级约有一半的学生参加导师课题组的科研活动,在导师指导下参加包括大学生创新创业在内的科研项目近30项,并获得不少科技成果奖,其中获广西区级“挑战杯”二等奖1项(2012年)、三等奖1项(2014年),广西高校化学化工类论文及设计竞赛,11人获一等奖,3人获二等奖。本科生以第一作者发表学术研究论文每年在2~3篇左右,申请国家发明专利2~3项。

3.“化学工程与工艺特色专业建设与实践”成果在2012年获广西区级优秀教学成果奖一等奖,其中对学生实践创新能力的培养,引起了同行们广泛关注,起到了很好的示范作用,弥补了学生在化工企业不能动手的,只能参观的缺陷,提高了实训实习质量。

参考文献:

[1]林健.高校“卓越工程师教育培养计划”实施进展评析(2010-2012)上[J].高等工程教育研究,2013,(3).

[2]陈启元.对实施“卓越工程师教育培养计划”工作中几个问题的认识[J].中国大学教学,2012,(1).

[3]张晶.我国大学生创新能力发展现状与培养研究[D].安徽大学硕士学位论文,2014.

第5篇

1构建完备的工程设计内容体系

在人才培养中,遵循工程“实践、集成与创新”的特征,将工程设计贯穿整个大学四年,其内容包括:产品设计、工艺设计、单元设计、设备设计、工厂设计,即要实现从分子到产品,从烧杯到工厂的整个过程。其中产品设计是工程设计的源头,处于产品链的顶端;工艺设计是工程设计的灵魂,是产品竞争力的源泉;单元设计、设备设计是工程设计的基石,是生产实现的重要保障;工厂设计是工程设计的最终体现,是所有设计的系统集成。

2构建完善的工程设计课程体系

以强化学生的工程设计能力、实践能力与创新能力为核心,重新修订教学大纲,整合相关课程,对应工程设计内容体系,构建完善的工程设计课程体系。大一为工程设计启蒙阶段,以激发兴趣为主,课程为生物工程(化学工程)概论;大二为单元设计和工程设计技能培训阶段,包含:化工原理、化工热力学、化工制图、化工仪表自动化;大三为产品设计、工艺设计和设备设计阶段,包含:生物工程(化学工程)设备、分离工程、化工设计与模拟、工艺学课程(化工工艺学、发酵工程、制药工艺学、酿酒工艺学等);大四为工厂设计和综合实训阶段,主要进行生物工程(化学工程)工厂设计和毕业设计。为适应行业的需求和时展,在各课程教学中突出工程思维和工程方法学的同时,着力介绍行业规范、标准以及新产品、新工艺、新技术、新设备,并将计算机辅助制图、计算机仿真模拟、计算机辅助设计作为主要技能进行培养。

3构建完整的工程设计实践环节

工程设计是面向对象的综合性实践活动,只有突出实践环节才能让学生锻炼能力、积累经验、有所感悟。整个工程实践环节包括化工AutoCAD制图、化工原理课程设计、化工设计Aspen仿真模拟、生物工程(制药工程)创新综合性大实验、湖北省化工设计大赛、全国“三井杯”化工设计大赛、全国大学生制药工程设计竞赛、生产实习、工厂设计项目、毕业设计。工程设计以校企组合的校内生产性实训基地(如尿素仿真实训平台、啤酒发酵实训基地、药物制剂实训平台)和校外企业实习基地(如安琪酵母生物工程专业国家级工程实践教育中心)为依托,注重选题的针对性(面向地方企业)、设计的规范性(符合行业标准)、操作的可行性(绿色、经济与安全),并将化工设计竞赛、制药工程设计竞赛融入人才培养的教学体系中,大力提高实践教学环节的实效性。

4构建合适的工程设计评价体系和管理模式

工程设计的系统性、协作性较强,因此在工厂设计和毕业设计中采用小组制、导师制、课题制进行管理、操作和评价,以培养学生的团队合作精神,即每小组5~7名学生和1~2名指导老师,每个学生完成每组设计项目下的一项子课题,最后采用学生答辩与互评、教师评价、企业专家点评等构成综合评价体系。另外,建立健全激励约束机制,考虑给予竞赛获奖和设计达优秀等级的学生相应的创新实践学分,代替相关选修课的学分,以此激发更多的学生参与工程设计的学习。

5结语

面向生物与化学工程产业人才的工程设计能力培养,是以“工程设计”为突破口,以“产品设计、工艺设计、单元设计、设备设计、工厂设计”为主线,以工厂设计、专业设计大赛、实习实训和毕业设计为主要训练平台,重点提升学生综合工程应用能力。通过“工程设计”为核心的工程教育培养模式的改革,学生参与设计类课题的积极性大为提高,工程素质明显提升,参加并获得湖北省化工设计大赛一等奖、全国大学生化工设计大赛一等奖、全国大学生制药工程设计竞赛二等奖,毕业设计论文近三年连续获得湖北省优秀学士论文,相关教改项目“校企一体化•四共同培养生物类应用型人才的研究与实践”获得2013年湖北省教学成果一等奖。另一方面,学生在工程设计训练中不仅掌握了各项技能,而且对行业的现状、规范、需求以及发展前景有了深入的了解,接了地气。学生进入企业后很快成为技术骨干,深受用人单位好评,学校2014年也跻身进入“全国就业50强高校”。

作者:罗华军龚美珍胡滨龚大春邹坤单位:三峡大学生物与制药学院

第6篇

【摘 要】以服务浙江及周边地区经济为导向,基于CDIO工程教育理念对化学工程与工艺本科专业的教学进行初步改革探索。建立了“华峰班”、请企业的专家来讲学、让学生到企业去等教学模式,使学生在工程实际环境中学习学科知识,得到了一些正面的结果,并初步尝试建立了化学工程与工艺专业CDIO工程理念的考核制度,为CDIO工程教育理念在化学工程与工艺专业的应用型人才培养方案改革提供一些思路。

【关键词】华峰班 CDIO 工程教育

20世纪的工程教育课程主要是提高学生的动手实践,使学生掌握相关的专业知识和解决工程实际问题的能力。然而,随着世界经济全球化以及科学知识的发展,工程教育课程的教育偏向了“厚基础、宽专业”的工程科学的培养模式,从而削弱了对学生解决工程实际问题的能力培养。这种培养方式导致了学生缺乏对现实工程情况应有的认知程度。为了解决这个难题,2000年由麻省理工学院Crawley等人通过4年的探索创立了CDIO工程教育理念。CDIO作为一种新的工程教育理念,主张以产品研发的CDIO全过程,即构思(Conceive)、设计(Design)、实施(Implement)和运作(Operate)为载体,以工程项目生命周期全过程为载体培养学生的工程能力、学生的职业道德、学术知识和运用知识解决实际问题的能力,以及具备终生学习和团队交流能力。

化学工程与技术作为化学工业的主要学科领域,担负着促进化学工业及相关行业发展与进步的重要使命,因此培养出具有解决实际化工过程问题能力和创新能力的人才是非常重要的。本文以温州大学化学工程与工艺专业的学生作为教学改革培养对象,将CDIO工程教育理念与化学工程与工艺的专业教育有机地结合,探索适合于以服务浙江及周边地区经济为导向的化学工程与工艺专业教学模式的改革与实践。

一 工科人才教育培养现状

我国传统的教学模式是以教师为中心、以课堂讲授为主,以理论考试成绩来评价学生的模式。当前,我国工程教育是通识教育模式和苏联教育模式的结合体。解放前,我国的先进高等工科教育主要是来自西方一些教会式的大学教育。建国后,由于化学工业发展的需要,我国效仿苏联搞起了专业教育。这种专业教育培养模式为我国的现代化建设作出了较大的贡献。其缺点是过于强调教材和教学大纲的统一,影响了教育工作者的思维活跃性,也阻碍了对工科学生创新能力的培养。因此,教育家们对苏联教育模式进行了回顾和反思,制定了通识教育和专业教育相结合的工科通识教育模式。然而,随着我国产业的进一步升级以及高校的持续扩招,导致了大量的工科毕业生找不到适合自己的工作,这可能是因为通识教育过于强调基础科学理论,而弱化了专业内容和工程实践,导致了工科毕业生只了解一些表面的理论,缺乏工程应具备的实践创新能力。

在办学机制上,一方面,高校过于强调科研业绩考核,许多具备丰富工程经验的老师很少参与到实际的教学过程中,而参与教学的教师又与企业的联系不紧密。负责教学的教师缺乏产业经验,工程教学过程又缺乏与企业的有效沟通,造成了工程教育和社会需求的严重脱节。另一方面,虽然在教学上安排了生产见习、毕业实习等环节,但是不少学校在实践教学环节上是比较薄弱的,这是因为见习、实习的时间一般比较短,相应的考核制度也不健全。

综上所述,我国工科教育从教学模式、办学机制等众多方面都存在着与产业发展脱节的问题,严重影响了人才培养的质量。尤其是理论脱离实际、实践环节薄弱、产学脱节的问题直接导致了学生找不到适合自己的工作岗位以及企业有岗位找不到合适的人才。由此可见,我国的工科人才培养模式已经不能满足产业升级的需求。为了更好地培养适合产业升级所需的人才,我们从培养模式上进行了改革探索。

二 化学工程与工艺专业CDIO工程教育改革探索

CDIO工程教育模式改革旨在培养学生系统工程技术能力,尤其是项目的构思、设计、开发和实施能力,以及较强的自学、组织沟通和协调能力。CDIO模式以工程项目全生命周期的要求来组织教、学、做,学生需要掌握各门课程知识之间的联系,并用于解决综合问题。因此,课程体系的建设要突出课程之间的关联性,这就必须打破教师单打独斗的传统教学方法,而围绕CDIO工程项目的实施进行教学计划和课程关联工作。

1.化工核心课程群的组织与教师队伍建设

核心课程群由化工热力学、传递过程原理、化学反应工程、分离工程、化学工艺学、化工设计6门课程组成,构成了化学工程与工艺核心专业课的主体。化工设计以其他五门课程为基础,对提高学生分析问题、解决问题的综合工程能力起到非常重要的作用。化工原理是讲述单元操作的基本原理,是学好其他专业课程的基础;化工热力学则建立在分离工程的基础之上,阐述工业条件下各种流体热力学性质的计算;化学反应工程以传递过程为基础,传递现象和化学反应工程利用数学的方法,从微观角度阐述化学反应过程、设备设计的共性科学问题;化工工艺是关于化学品生产方法的技术科学,它以自然科学和工程科学规律为基础,使化学反应达到工业化应用水平。由此可见,核心课程群的各门专业课是相辅相成的。

在课程群建设中,涉及专业课教学的老师主要通过进修、企业实践、参加会议三种方式提高业务水平,对化工专业工程教育模式做到整体的认识,同时要求参与指导学生的化工设计。利用校企合作的机会,与企业方面的人才进行专业知识和其他方面的交流与沟通。其具体的组织与实施过程如下:

第一,教学方法改革的探索。首先,按照CDIO的教育理念,要逐步形成教师引导和以学生为主体的思想,使教师从教育者转变为引导者,教师不再是简单地卖知识,而是引导学生学习知识,把主要任务放到教会学生学习方法上来。在教学方面的改革要得到全校上下的支持才可能顺利进行。温州大学为课程体系建设和师资建设提供了很好的平台,在化工核心课程群教改的过程中提供了强有力的物质基础和政策鼓励。在这种良好的环境下,教师也愿意投入更多的时间去听课评课,吸纳好的教学手段和方法。由于化工班都属于小班上课(30人左右),对部分课程如化工专业英语、精细化工工艺学实施角色互换教学模式,让学生参与到化工教学的过程中。这些课程的效果反映较好,对化工原理等课程中的部分章节,我们也将逐步展开开放式的教学方法。

为了达到各门课程的知识体系能够很好地衔接,通过教研室教师集体备课,相互切磋,讨论每门课程讲授的重点,个别章节内容的舍弃和补充,做到教学的知识体系完整、重点难点突出、学时合理分配,真正做到精选、精讲教学内容。摒弃了过去教学活动中的单打独斗,改为教学团队授课,使各门课程有机地衔接起来。通过相互听课并课后集体讨论,指出教师课堂教学中存在的问题与不足,相互交流教学经验,讨论改进的方法与策略,使教师的整体教学水平迅速得到提升。

第二,教师工程素质的培养。不少高校在引进人才方面主要考虑的是教师科研水平,其次关注人才的企业实践经验。鉴于科研压力,假期教师也不能到企业去参与实践或者工作。此外,许多教师只对与自己科研相关的专业课非常熟悉,对其他的专业课则非常生疏。因此,利用现有的教学资源,培养教学团队的建设是很重要的一环。温州大学化学工程与工艺教研所以化工设计为主线,基于地方化工企事业单位为依托,派遣年轻教师每年到相关的化工企业实践两个月,逐步培养教师的专业水平。

近几年,利用学习、调研以及下派科技特派员的方式,到杭州化工研究院、衢州巨化、瑞安华峰等不同类型的企业参观学习,不断地提高老师的业务水平。同时,为了让教师能够很好地参与到企业生产实践中,温州大学对担任科技特派员的教师提出教学科研任务减半、考核优先等政策鼓励。仅2010年,我们派年轻老师带队到衢州巨化学习15天,杭州化工研究院学习3天,华峰学习7天,温州本地化工企业实践1个月左右,有效地提高了教师的工程素质。教师工程素质的增强也使学生收益颇丰,在2010年省化工设计大赛和全国“三井杯”化工设计大赛中多次获奖。

2.学生工程能力和团队合作的培养

作为地方院校,温州大学化学工程与工艺专业的办学宗旨是以培养创新应用型人才为主,服务地方经济和社会的发展。经过对近两年该专业的毕业生调查的情况来看,目前该专业存在以下问题:(1)毕业生虽然掌握较多的书本知识,但实践能力不强,导致他们从学校到公司需要较长的“岗位过渡时间”;(2)毕业生普遍缺乏对现代企业工作流程和文化的了解,缺乏团队工作经验、沟通能力和创新能力;(3)工程职业道德、敬业精神等人文素质薄弱,责任感不强。具体体现在:工作不踏实、心浮气躁、做工程不细心、不愿承担责任,客观上他们的实践能力与企业要求存在较大差距,而主观上又不能沉下心来虚心向前辈学习。

从以上的调查结果来看,以目前的培养方案和评价标准来指导学生的专业教育经不起企业用人单位的考验。为了更好地培养适应地方经济社会发展的人才,实现对学生创新思维、创新方法和创新能力的培养,我们与温州地区最大的化工企业华峰集团实行校企联合培养本科生,实施“华峰特色班”战略。目前,“华峰班”的学生采用“3+1”模式培养方案(即学生前三年在学校集中学习理论知识并完成实践教学,最后一年到企业,接受企业的培训,并在企业盯班盯岗接受生产实践活动)。同时在工程专家的指导下,根据企业的需要对培养方案进行部分修改,增设华峰提出的部分课程,使得学生在校期间所学的基本知识和专业理论更贴近于华峰实际的应用。在这种战略方针下,学生在企业的环境中真正做到知识和能力之间的无缝连接,缩短了“岗位过渡时间”,增加了学生的工程实践能力,有效地推进了CDIO教学改革。在2010届的化工专业毕业生中,华峰集团招聘了7名华峰班学生。提升了学生的工程能力、团队合作精神以及专业素养。

3.逐步建立适合CDIO工程理念的考核制度

正确、公平、合理且科学有效的考核制度对本专业的健康发展起着至关重要的作用,它应当是对教学效果做出真实和客观的评价,同时有利于提高学生学习的积极性和主动性。现行的课程考核方法主要是通过期中和期末考试成绩来评定,它能在一定程度上反映学生掌握知识的程度以及教师上课的教学效果,但不能很好地促进学生学习的主动性。部分学生比较反感现行的考核制度,这是因为现行的考核方法存在比较单一、部分学生在学习上投机取巧也能获得高分而影响其他学生学习的积极性、不能全面反应学生的综合应用能力等问题。

CDIO教学模式以能力培养为目标,其主要培养的是学生的理论知识、职业技能、人际交流以及产品研发的CDIO全过程。采用CDIO教学模式,评价方法则应侧重能力的考核,能力本位的教学观贯穿课程设置和教学实践的全过程。我们进行教改,其目的是提高学生的工程实际能力,因此我们的考核将使用过程能力评测替代以往单一的成绩评定。

我们现阶段的具体做法是:(1)选题:在学生进入大三学习开始,从企业选出一些与本专业相关的课题以及近两年化工设计大赛的课题,让学生自动组成4~5人的小团队;(2)专业学习:上专业课的老师或工程师把握好主要的授课内容,然后将大部分时间留给学生,让他们针对自己的课题与本课程相关的知识点进行思考、提问、讨论;(3)阶段性测试:上完某些知识点后,老师或者企业工程师根据学生所做的课题和所学的专业知识进行评价,其中主要包括面试、答辩、自我评价、团队合作能力等方面;(4)中期成绩总结:这次总结是比较重要的,一般在大三上学期结束后,包括阶段性测试的成绩、平时的表现、专家化工设计大赛作品的评价、企业对学生课题的反馈等进行中期总结,由学校老师和企业专家对学生现阶段的学习进行方法论指导,提出下学期的目标;(5)最后专业课成绩评定:最后专业课成绩进行A、B、C、D四个等级进行划分,其中阶段性测试占40%、中期成绩总结10%、企业专家评价10%、课题完成情况10%、专业综合能力20%、化工设计大赛10%。目前,整个评价体系尚在完善中。

三 结束语

化学工程与工艺专业学生的工程概念、分析和解决工程问题的培养对我国高等工科教育可持续发展以及化学工业的产业化升级起着非常重要的作用。本文就温州大学化学工程与工艺专业的毕业生进行调研,发现学生在所学的知识和培养的能力和企业所需的人才具有一定的差距。本文以服务浙江及其周边地区的经济作为出发点,初步建立了温州大学化学工程与工艺专业的CDIO工程教育理念,获得了一些正面的成果,为将来进行深入教学改革奠定了基础。同时,我们的改革尝试也为CDIO工程理念在化学工程与工艺专业的教育改革提供了一些思路。

参考文献

[1]孙晓莹.德国职业教育对我国职业教育发展的启示[J].教学研究,2006(5):384~387

[2]查建中.工程教育改革战略“CDIO”与产学合作和国家化[J].中国大学教学,2008(5):16~19

[3]Edward F. Crawley, Johan Malmqvist, Sören Östlund, Doris Brodeur: Rethinking Engineering Education: the CDIO Approach[M]. Springer, 2007

[4]余国琮、李士雨.化学工程与工艺专业创新人才培养方案的制定与实践[J].天津大学学报,2004(1):1~4

[5]夏淑倩、张金利、傅虹、王保国.培养化工类专业创新人才的探索[J].化工高等教育,2010(3):10~12

[6]刘长久.适应经济社会发展需求的化工类人才培养改革探索与实践[J].高教论坛,2009(3):17~19

[7]吴洪达、李利军.化学工程与工艺专业实践性课程体系的构建[J].高教论坛,2007(6):105~107

[8]冯建军、李为忠.教育发展的根本之道在于尊重教育规律[J].教育纵横,2009(2):53~56

第7篇

当代化学工业对化学化工类人才的培养提出了更高的要求。如何培养基础理论知识扎实、工作适应性强、具有创新能力的人才,是综合性大学化学化工教学改革面临的重要课题。目前,综合性大学化学与应用化学专业每年都有相当一部分毕业生进入化学、化工和制药等企事业单位业从事研究开发或工程技术工作,这种趋势还会随着创新性国家的建设而逐年增长。化学工程基础是综合性大学化学专业的专业基础课,也是唯一的一门工程技术类课程,该课程的教学改革与实践对于理工学科交叉与学生综合素质的培养是综合性大学化学与应用化学专业其他课程所不能替代的。在充分发挥综合性大学基础理论研究优势的同时,通过对理科专业化学工程基础课程教学内容的更新、充实和调整,为化工类企事业单位培养和造就具有开拓创新精神、胜任科学研究与工程技术工作、适应性强的化学化工专业人才。

二、教学内容与教学方法的优化

以创新教育思想为指导,研究改革化学工程基础课程教学内容和教学方法,建立培养学生创新能力的化学工程基础课程内容新体系。动量传递、热量传递、质量传递与化学反应工程(“三传一反”)仍将是化学工程基础教学的核心内容,应不断充实更新才能反映学科发展现状和适应社会经济需求。化学和化学工程学是支撑物质转化相关工业的学科,前者研究分子之间发生反应的可能性、必要的条件和产物的结构,后者研究物质的流动、质能传递及其对反应过程与产物的影响。

1.优化更新教学内容,反映体现学科发展与技术进步。化学工程基础作为理科化学专业的工程技术课程,其教学内容除了动量传递、热量传递、质量传递与化学反应工程以外,还应当及时反映和体现学科的发展与技术进步。根据授课学时,突出教学重点,优化教学计划,精选教学内容。以化学工程学的基本观点、基本原理和基本方法为核心,结合典型化工过程,理论联系实际,使学生在有限的教学学时内,掌握本门课程的基本知识,熟悉研究与应用对象,为今后从事化学化工专业技术工作打下坚实基础。在其他科学技术的带动和社会需求的推动下,化工分离技术近年来取得了很大进步。新技术不断涌现,膜分离和超临界流体萃取等新型分离技术就是其中的代表。我们在教材的编写和课堂教学中,有意识地加入这些内容,便于学生从课堂上了解新的科学知识,拓宽学术视野。

2.引导学生建立工程技术与技术经济观点,提高学生综合素质。科学与技术的交叉和渗透,要求我们培养的学生不仅要掌握扎实的基础理论知识,还要学会运用所学的理论解决工程实际问题。综合性大学理科化学专业的学生基础理论知识比较扎实,在课堂教学中,我们根据教学内容,结合工程实际,启发学生从工程实际问题出发,强调工程实际的特点,突出工程实践的技术经济问题,灌输学生节能减排与绿色环保的理念,训练学生综合运用数学、物理与化学等多学科知识,综合分析化工单元操作与工业装置中涉及的复杂问题,培养学生的工程技术思维方法与工程设计等综合素质。

3.改进教学方法,提高教学效率。化学工程基础课程的课堂教学内容涉及化工单元操作与工艺过程。综合性大学化学专业的学生一般没有见过真实的化工设备,对化工厂与化工设备和装置缺乏感性认识,通过多媒体教学技术和传统课堂教学方法,可以促进学生感知与思维、理论与实践的结合,提高学生对化学工程基础的学习兴趣,激发他们的学习热情,使他们由不熟悉、不了解化工企业与装置转变为喜欢应用学科、乐于进入与应用密切相关的教师实验室开展业余科研。为此,我们一方面利用多媒体的优点,在课堂教学中放映一些设备的实物图像。另一方面,在有关课程中增加了实习参观环节,组织学生到石油化工厂、有机化工厂和精细化工厂等企业参观实习,增强学生对加热炉、精馏塔、泵、换热器等主要化工设备的感性认识。

三、教学团队与课程体系的建设

以先进的教学理念为先导,以高水平的教学团队为根本,以科学的课程新体系为核心,以优良的规划教材为保障,强化教学团队的建设,使所有主讲教师成为教学改革的高水平运动员和创新教育的优秀教练员。

1.建设高水平教学团队。从事课堂和实验教学的主讲教师也要承担高水平的科研项目,提高教师的科研水平。我们承担“化学工程基础”的主讲教师都具有教授职称并担任博士生导师,承担了一些科学研究项目。同时,也积极思考和实践课程的教学改革,奠定了学生创新能力培养的坚实基础。没有高水平的教学团队,不可能进行教学改革的实践,更不可能培养出具有创新精神的学生。

第8篇

关键词:添加剂 中试研究 油

油添加剂是油的灵魂,没有高质量的添加剂,就不能保证有高质量的油产品。当一种油添加剂产品从实验室被研究开发出来之后,往往不能够马上直接进行工业化生产,得到工业化产品。虽然油添加剂合成过程中的化学反应本质不会因实验或生产的不同而改变,但各步合成化学反应的最佳反应工艺条件,则可能随实验规模和设备等外部条件的不同而改变[1],一般都需要经过一个放大50~100倍规模的小型实验,以便进一步研究在一定规模装置中各步化学反应条件的变化规律,并解决实验室阶段未能解决或尚未发现的问题,为该种油添加剂的工业化生产提供各种设计依据,这就是油添加剂的中试研究[2,3]。

一、中试研究的条件

一种新型的油添加剂产品在实验室的研究进行到何种程度就可以进行中试研究呢?根据多年油添加剂中试研究的经验以及前辈们的总结,一种新型的油添加剂产品只有在实验室研究达到以下条件时,才可以开始中试研究,具体条件如下:

1.油添加剂实验室小试合成路线已经确定,操作步骤明晰;反应条件确定;产品收率稳定且质量可靠。

2.实验室已经取得多批次稳定翔实的实验数据,并且进行过多次小试试验,工艺稳定。

3.油添加剂产品的质量标准和检测分析方法已经确定。包括最终产品,中间产品和原材料的检测分析方法。

4.油添加剂合成进行了物料衡算。合成过程中产生的三废已有初步的处理方法。

5.油添加剂合成过程中对所消耗的原材料规格和消耗量提出了要求。

6.针对石油化工生产装置相关安全法律法规的有关规定,对油添加剂合成过程中的安全生产提出了相关要求。

二、目前中试研究的现状

由于历史等原因,目前油添加剂中试研究存在着各种各样的不足和缺陷,有些是由于油添加剂中试研究的手段和设备问题造成的,另外一部分是因进行中试研究人员的专业背景等自身条件的限制而造成的。

1.油添加剂中试研究目前基本上停留在对实验室工艺条件的验证上,没有进一步的对工艺条件开展优化研究。

2.实验室研究和中试研究的侧重点不同,实验室研究在于能够得到一种新型的油添加剂产品,要求工艺可行;而对于油添加剂的中试研究,仅工艺可行还远远不够,中试研究还必须确切地知道整个工艺过程中相关的化工热力学数据,为整个中试研究过程中的工艺条件的控制制定相应的方案,而目前油添加剂实验室研究没有提供相关的化工热力学数据,为油添加剂中试研究的工艺控制和能量衡算带来了一定的难度。

3.实验室研究所用的反应仪器多为玻璃制品,玻璃制品的抵抗各种化学腐蚀是比较优良的,可以不用考虑各种化工原材料对实验设备的腐蚀问题。一旦要进行中试放大研究,由于现有的中试研究装置材质多为不锈钢,对于某些强酸和强碱腐蚀的抵抗能力是非常弱的,因此进行一个油添加剂产品的中试研究的时候必须进行材质的选择和抗腐蚀试验。

4.每种油添加剂合成过程中添加的化工原材料都是不一样的,有些是液、液混合,有些是固、液两相混合,还有部分是气、液、固三相混合的反应,由于原材料的差异,为了达到充分混合,每种混合方式对反应釜搅拌器型式的要求都是不一样的。现有的油添加剂中试研究由于设备的限制,对中试研究过程中的搅拌器型式往往无法选择。

5.在一个化工合成过程中,化学反应所花费的工时在整个产品的生产周期里所占比重是比较小的,以前由于认识不足,对油添加剂合成的操作工时与生产周期的计算存在误区,没有充分考虑油添加剂合成的前期处理和后期处理,造成了操作工时和生产周期的缩短。

6.由于各种公用工程计量仪表的缺失,不能对水、电、汽、风等各种公用工程的消耗进行准确地计量,不能够为油添加剂的进一步工业化生产设计准确地提供各种公用工程数据。

三、未来的工作对策

针对油添加剂合成中试研究的现状以及结合本人的工作实际,主要从以下几个方面解决目前油添加剂中试研究中的有关问题。

1.采用基团贡献法估算油添加剂的物性参数,计算油添加剂合成的化工热力学。

2.考察油添加剂合成过程中各种原材料加入顺序及方式对油添加剂合成的影响。

2.1不同固体物料加入方式及顺序的影响;

2.2高粘度物质对加入设备及管线的要求;

2.3滴加物料加入速度对添加剂合成的影响;

3.搅拌器类型、设备形式等对油添加剂合成的影响;

4.针对不同的油添加剂合成过程,考虑合成过程中产生三废的不同处理方案,使之对环境的影响减小到最小;

5.对现有油添加剂中试装置进行自动化控制可行性研究的探讨。

四、结论

通过以上几方面的努力,希望在今后的油添加剂中试研究结束后能够提供一份满足《石油化工装置工艺设计包(成套技术工艺包)内容规定》SHSG-052-2003 规定的油添加剂生产装置工艺设计包[4],为油添加剂进一步的工业放大生产提供设计依据。

参考文献

[1]黄英,王艳丽. 化工过程开发与设计[M].北京:化学工业出版社,2008.

[2]刘兴龙,白彪. 浅谈概念设计在化工设计中的应用. 化工进展[J]. 2003,22(3):217-223.

[3]J.M.道格拉斯[著]. 蒋楚生,夏平[译]. 化工过程的概念设计[M] 北京:化学工业出版社,1994.

第9篇

关键词:高等教育;化学工程;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)33-0099-02

随着我国经济的不断发展,高等学校数量也呈现逐年递增的发展趋势,高等教育逐渐由精英教育向大众化教育模式转变。随之而来的是大学生就业形势的严峻和竞争压力的增大,特别是以化学工程为代表的工科专业,更是面临着严峻的考验。作为多种学科交叉的,应用型、发展型学科,化学工程与数、理、化等基础自然学科联系紧密,对我们的生产和生活有着重大的影响,为使我国化学工业得到更迅速的发展,必须努力提高我们高校化工类教育质量,努力培养优秀的专业化工人才。

一、高校化工专业现状

20世纪前叶,一批重大化学工艺出现使得化学工程这个学科在学术界崭露头角,而煤和石油迅速发展也要求有透彻的理论指导与专业知识,因此作为化学工程的一级学科应运而生。经过几十年的发展,化工学科逐渐走向成熟,目前国内各大地方院校中,绝大部分开设了化工工程专业及其类似专业,为我国化学工业培养了大批人才。但是随着时代的发展,高校化工教育也面临着一些问题和挑战,这也成为我们亟待改革教学模式的原因。

(一)化学工程与高新技术学科交叉发展

化学工程涉及面广,且涉及品种多、数量大,不仅关系到人们生活的方方面面,也是提高人们生活质量的“载体”和“桥梁”。而化工在学科上与材料、能源、化学等学科联系越来越紧密和深入,因此在人才的培养上也应该遵循学科发展规律,培养专业化、多样性复合人才。

目前,我国高校专业教育仍然停留在过去传统教学方式,与高新技术发展的现实有所脱节,学科交叉引起专业界限的淡化,因此在教学过程中不应在仅仅强调本专业知识的把握,更应着眼于未来,打造化工与生物技术、计算机技术等交叉发展的新型教学模式,培养多层次、复合型人才。

(二)人才就业观念和培养模式改革

这就要求高校化工教育人员转变教学模式,从化学教育深层理念创新入手,扩大学科内涵,改变教学设置和教学方法,开展以理论教学作为基础,以实践训练为载体的教学模式,努力提高化工学科教学质量。

就目前情况来看,“平台加方向”实为不错的选择。近年来,我们以主动适应经济社会发展需求的人才培养模式,以深化改革教学模式与实践等教学项目为依托,进行了人才培养模式改革的探索和实践。根据社会需求,调整学科专业,压缩冷门内容,采取专业互补的形式,拓宽专业发展方向,尽可能增加知识含量。此外,化学工程专业应紧密与生产实践相结合,通过建立不同种类的培训基地,在打好基础理论知识前提之外,尽可能增加实际操作的经验,以便毕业后很快适应工作环境。

(三)教育模式落后,学生创新能力不足

人才的竞争是一切竞争的核心。教学模式的落后直接导致学生创新能力不足,难以承担新领域开发和高新技术研发的重任。高校教学仍然遵循过去传统的教学模式,单一的授课模式容易导致学生缺乏学习化学工业的热情,进而导致学生缺乏创新意识。这也是目前高校教学中存在的主要问题之一。

针对上述情况,未来高校必须在人才培养以及课程教学方面有所改变,适应当今社会对化工人才的要求和化工产业未来的发展方向。具体说来,可从基础专业知识和课程改革入手,打造高素质专业人才。

二、高校化工类人才培养模式及课程改革探讨

(一)适应社会发展,拓展专业外延和内涵

1.重视新兴专业,与社会接轨。近年来,高新科技发展突飞猛进,与人们生活有关的各种新科技层出不穷,特别是生物化工与新能源等发展十分迅速,在日常生活与生产方面发挥越来越大的作用。我们高等教育院校应该抓住当前发展契机,重视新兴产业的出现和发展,努力调整专业课程,与社会发展接轨。特别是生物制药、节能减排、环境保护等作为人类的重要课题,近年来引起了人们的极大重视,这些都是当前化学工程未来的发展方向和重要领域。高校教育应及时了解行业最深动态,调整教学方案,以适应当前化工行业发展的现状。

2.把握发展趋势,发掘专业内涵。化学工程最早包括“化学工程”、“化工自动化”等几个板块,但就目前的形式看,仅仅围绕这几个传统板块展开教学已不能满足现在的产业发展现状,应在原有基础上发掘专业内涵,确保传统人才培养紧跟学科发展趋势,不断充实基础知识和专业知识。另外,根据信息技术在化工领域应用的愈加广泛的特点,一方面将其纳入传统课程体系,另一方面,与信息学院、生物学院等展开合作,探索和实践复合型人才培养模式,使化学工程焕发新的生机。

(二)深化教学改革,提升人才培养质量

美、英、德等西方发达主义国家早就将“通识教育”作为高等教育的核心内容,澳大利亚也明确指出到2020年高等教育的使命是输送符合国家和全球劳动力市场需求的、有知识、技能和适应能力的优秀人才。我国紧跟世界发展步伐,也将提高教学质量作为未来一段时间教育领域发展的重要领域来把握。尤其当前我国“世界工厂”的地位,导致对于人才需求的变化速度非常快,毕业生也面临日益严峻的就业压力,因此,深化教学改革,提升人才培养质量成为当前教育领域的重点。

1.变革课程体系,注重课程质量。本着务实专业基础,注重能力培养的原则,高等院校,特别是石油高校应认真梳理与优化传统化工课程,同时根据现代化工发展方向和发展重点,打造适应化工人才培养的专业课程体系,这不仅要求高校对传统课程进行整合,更要抓住重点,利用化工学科与其他学科的交叉点,拓展化工专业课程,与其他课程相互支撑,形成一个有机整理,以满足新形式下的化学工程技术发展要求。

努力提高课程质量也是当下高校发展需着重考虑的重要方面,如何将枯燥的原理课程讲得精彩、生动,培养学生对于化工产业的热爱并激发学生投身化工实业的热情,这是衡量课程质量的一个重要标准。根据一项研究调查显示,在化工专业毕业生对高校教学效果等评价中,与世界总平均值相比,中国化工教育只有教师优秀与敬业精神一项略高于平均值,而包括教师激励作用、就业所需课程深度、授业满意度以及课程组织优劣等其他四项评选,中国的得分全部低于世界平均值。这其中尤其需要警惕的是,中国学生学习化工专业愉悦程度仅仅为67%,这一成绩远远低于美国、澳大利亚以及英国等同类学生,这一调查结果也给我们化工教育从业人员敲响了警钟。

2.加强创新实践教学环节。“纸上得来终觉浅,绝知此事要躬行”。实践教学环节对于学生创新能力的培养非常重要,高校可利用自身资源和外部条件,从实验教学和实习教学两方面加强学生实践能力。高校可利用现有实验室,开设大量综合性、设计性、研究性等实验项目,将创新能力培养融入实验教学过程中,启发学生主动探索创新,增强学生的创新意识。

实习教学作为化工专业极为重要的一个环节,在培养学生实践能力的过程中也起到极为重要的作用。过于单一、落后的教学模式很难适应当前瞬息万变的就业环境,必须积极的组织实习教学,建立高效与高新技术企业之间的合作关系,通过人才输送等渠道加强学生与企业之间的联系,有效调动学生学习的积极性、主动性,并在实习教学过程中及时发现问题、解决问题。

3.构建优良育人环境。在我国高校教育领域,过去往往过分强调“教书”,而忽略了“育人”;过分强调“教学”,而忽略了“教育”。这种情况导致的结果就是,高校毕业生很多时候不能适应社会发展的需求,所学专业仅仅局限于课本知识,缺乏应有的动手操作能力,或者所学知识与社会脱节,最终不得不背弃自己所学专业。西方教育在之前的发展过程中也曾出现过类似情况,而中国目前这种情况则相当突出。我们如何吸取发达国家的经验教训,将可迁移性技能培养作为基础知识领域外的重要环节,努力培养学生可迁移性技能是高校教育的必由之路。

除了这些基础知识的培养外,更应该注重大学生心理健康与道德品质方面的培养,学生可通过良好的素质进行自觉地学习与提升,很快适应未来的就业岗位与就业环境,这是高校未来人才的培养方向。在高校课程设置过程中,以专业知识为主线,以可迁移性技能培养为辅线,增加学生团队合作的机会,进一步提高学生合作精神和交流理解水平,不断提高大学生解决实际问题的能力,使其成为社会与企业放心人才。

三、结语

我国高等教育正面临来自知识经济与新科技革命的冲击和挑战,科技与人文及其他学科的交融、渗透,使得学科与学科之间的联系日益紧密,特别是对高校化学工程专业人才的培养提出了更高的要求。以石油院校为代表的高等教育院校必须适应新的发展形势,遵循原有学科基础上,依托国内外化工产业发展大背景,结合本校本专业的特色以及社会需求,勇于探索,勇于实践,才能不断提高教学质量,并在激烈的人才竞争中取得先机,提高毕业生整体素质,从而保证高校在竞争中不断发展、壮大。

参考文献:

第10篇

    基于以上分析,我认为我校要培养满足市场需求的化工专业人才应该从下面几点来开展工作。

    1 调整培养计划,进行培养规范的整体设计

    专业规范对提高高等教育质量具有重要的现实意义,它是高等学校以专业人才培养模式改革研究为基础,在改革实践过程中对有关专业的课程体系、知识体系、实践教学体系和相应的参考指标进行整体设计,专业规范对专业人才设定培养规格,拟定培养目标。在高等院校进行教育教学改革过程中,对人才培养规范进行整体设计,是开展专业建设与深化改革的重要入手点[1]。

    应对当前的就业形势,制定化工专业的专业规范非常有必要。自1999年以来,高校外延发展迅速,新增高校、新增专业多了,人才培养难度更大,要求更高。另外,高等教育大众化阶段教育质量呈多元化,亟需制定专业规范,一般高校工科专业人才培养规格的定位决定了人才培养模式的基本框架。

    2 加速进行我校化学工程与工艺专业的认证工作

    化学工业是国民经济的支柱性行业,为了让高校能更好的为社会服务,高等院校为化工行业提供主要人力资源,教育部自2006年启动了化工专业认证试点工作,目前已有6个专业点进行了试点工作[2]。化工行业对人才的评价标准和要求,主要体现在以下几个方面:(1)有良好的职业道德,了解本行业的相关法律法规,体现出较好的人文素养。(2)数学、自然科学基础较好,工程基础知识扎实,掌握一定的经济管理知识;掌握化学工程、化学工艺学科的基本理论、基本知识,了解本专业的前沿发展现状和趋势;具备运用现代信息技术获取专业信息的能力。(3)具备化学与化工实验技能,有工程实践经历,具备计算机应用能力,接受过科学研究与工程设计方法的基本训练,能够运用所学知识和技术手段分析并解决工程问题。(4)具有较强的组织管理能力,表达流利,人际交往能力突出,有较强的团队协作精神。(5)具有终身学习能力和国际视野。与以上标准相对照,我校在培养化工人才方面还存在着明显的缺陷和不足。还有很多工作要做。结合行业要求分析,我校化工专业目前存在的问题主要有:(1)教师队伍中普遍经历单一,缺乏工程师经历。(2)实践教学环节不完善,学生工程实践能力较弱,创新创业能力不足,学校与工业界联系不够紧密。(3)缺乏对学生的团队精神的系统训练。(4)毕业生的调查与跟踪机制不够完善等。除此之外,缺乏科学的学生考评机制,缺乏毕业生跟踪与反馈体系。因此要针对这些问题,以专业认证为契机,有目的的开展工作。

    3 灵活设定培养方向

    专业方向的设置是高校人才培养的基础,开设什么样的专业方向,关系到培养什么样的专业人才,培养出来的人才是否符合社会的需求,这个问题关系到一个专业的前途命运。在充分利用我校资源的同时,在专业方向设置上体现差异,强化特色,做到以质量求生存,以特色求发展。在开设专业方向的问题上,要避免与周围同区域、同等水平的院校趋同,以减少资源的浪费,避免在人才培养上出现重复和过度竞争,充分体现差异[3]。

    4 优化各级结构,提高培养质量

    当前,大学生毕业后难就业已经成为社会主要关注的问题,也是每所高校所面临的最为严峻的挑战。要解决这个问题除了国家宏观上的一些制度和政策的支持外,高校还应该根据市场所需人才,有针对性的提高培养质量。提高培养质量,既要从宏观上把握高等教育的结构,明确学校、院系和学科的定位,满足地方经济社会的发展对高等教育的要求,另外,要从微观上、从学校本身把握高等教育的内部结构,理顺专业结构、学科结构与理论结构,使我们培养的人才和社会需求相一致[4]。

第11篇

【关键词】 隐晶质石墨 深加工 开发应用 性能

石墨最常见于大理岩、片岩或片麻岩中,是有机成因的碳质物变质而成。工业上将石墨矿石分为晶质(鳞片状)石墨矿石和隐晶质(土状)石墨矿石两大类[1-2]。隐晶质石墨矿物成分以石墨为主,主要成分为碳(C),伴生有红柱石、水云母、绢云母及少量黄铁矿、电气石、褐铁矿、方解石等。矿石呈灰黑色、钢灰色,一般光泽暗淡,具有致密块状、土状及层状、页片状构造。隐晶质石墨一般呈微晶集合体,晶体粒径小于1μm,只有在电子显微镜下才能观察到其晶形,碳含量一般为60%~80%,灰分为15%~22%,挥发分为1%~2%,水分为2~7%[3]。

隐晶质石墨是典型的层状结构,碳原子成层排列,晶体结构介于原子晶体、金属晶体和分子晶体之间,是一种属于六方或三方晶系的过渡型晶体的自然元素矿物。在晶体中同层的碳原子间以sp2杂化形成共价键,每个碳原子与另外三个碳原子相联,六个碳原子在同一平面上形成正六边形的环,伸展形成片层结构。层内的碳原子配位数为3,具共价金属键,间距0.142nm,层与层间以分子键相连,间距为0.340nm,此种特殊的晶体结构和化学键性使石墨具有一些特殊的工艺性能[4-6]。隐晶质石墨与晶质石墨因在结晶程度上不同而在物理与化学性能方面存在一定的差异,性能上隐晶质石墨均低于晶质石墨。但是,隐晶质石墨同样具有耐高温、导热、、抗热震性、化学稳定性好等良好性能。

我国隐晶质石墨矿主要集中在湖南、吉林和陕西三省,湖南郴州是隐晶质石墨的集中地,其隐晶质石墨占全国隐晶质石墨矿石储量的75%。隐晶质石墨矿石常常嵌布在粘土中,其原矿品位一般比晶质石墨高,在我国通常都是将开采出来的隐晶质石墨矿石经过简单的手选后直接粉碎成产品。一般流程为:原矿粗碎中碎烘干磨矿分级包装。随着技术的不断发展,普通的隐晶质石墨产品已不能满足各行各业的要求,现代工业对隐晶质石墨产品要求主要向两方面发展:一是要求粉体达到高纯(达到99.9%以上),二是要求颗粒达到超微细[7-8](如小于1μm或0.5μm)。

我国已在南墅、北墅、柳毛、兴和等石墨选厂建立了石墨提纯和微细粉加工生产线,提纯方法主要是化学提纯。各地的天然石墨所含杂质成分不完全相同,但大致成分却是相似的。这些杂质主要是钾、钠、镁、钙、铝等的硅酸盐矿物,石墨的提纯工艺,就是采取有效的手段除去这部分杂质。目前,国内外提纯石墨的方法主要有浮选法、碱酸法、氢氟酸法、氯化焙烧法、高温法等。其中碱酸法、氢氟酸法与氯化焙烧法属于化学提纯法,高温提纯法属于物理提纯法。在众多提纯石墨的方法中,虽然各有优劣,但碱酸法因生产工艺简单、生产成本较低、废液容易处理等特点而更有优势。碱酸法是利用苛性碱与石墨在700℃下熔融后,经洗涤到中性,再加盐酸处理、洗涤,使石墨含碳量达到98%~99%[9-11]。因此,在解决缩短焙烧和浸矿时间、改善提纯效果、妥善解决废水处理等问题后,碱酸法将不失为工业生产中提纯石墨的最好方法。

此前,由于隐晶质石墨深加工技术水平较低,产品多以原料和初级产品为主,主要应用于如下工业领域,(1)冶金铸造类工业:主要用于石墨坩锅、铸造模具和耐火砖,也用作炼钢的增碳剂。在铸造工艺中,利用石墨的涂敷性、耐火性、性和化学稳定性,作为铸模的涂料,可使铸模耐高温、耐腐蚀、模面光滑、铸件易脱模[11-13]。在高温电炉和高炉的耐火材料中加入石墨,可明显提高其抗热冲击性和抗腐蚀性。(2)电气类工业:石墨主要用于制作电极、电刷、电池及电影机、探照灯发光用的电碳棒、焊接发热用的碳精棒、电炉用的碳管等。(3)其它工业应用:化学工业中利用石墨具抗酸、碱和有机溶剂腐蚀的性能,制造管件、阀门和衬砌材料;轻工业中用石墨作玻璃、造纸的抛光剂,油漆、油墨、橡胶、塑料的填料,铅笔芯。

通过化学或者物理方法提纯后的隐晶质石墨具有许多优异性能,使用范围更加广泛,特别是高科技的开发,使隐晶质石墨材料在耐磨、节能、高速、防腐、超小型等领域中又迈入了一个新的领域,如石墨节能添加剂、石墨镶嵌、石墨高导涂料、石墨印刷电路、导电橡胶等。当今世界上已开发出电子管、通信管、液晶管、摄像管和计时管等专用石墨乳,胶体石墨已成为当代高导、高技术的基础材料,并渗透到各工业应用领域。由于国外对密封材料的无石棉要求,柔性石墨密封材料除了用作一般动、静密封材料外,还广泛用在自动化、宇航、热辐射防护、原子能工业以及火箭发动机的喷嘴上等[14-15]。此外,未来5~10年或再长一些时间,随着石墨烯应用技术的发展和成熟,石墨烯的制备和应用将可能成为一个快速成长的大市场,前景广阔。从目前的研发成果看,天然隐晶质石墨也是很好的制备石墨烯的原料之一。石墨烯材料的产业化,将会是天然隐晶质石墨的又一个大进展。因此,可以预见,隐晶质石墨将在更多领域得到重视和应用。

参考文献:

[1]尹丽文.世界石墨资源开发利用现状[J].国土资源情报,2011(6):29-32.

[2]M.Bonnissel,L.Luo,pacted exfoliated natural graphite as heat conduction-medium[J].Carbon,2001,39:2151-2161.

[3]唐维,邓应军,匡加才,等.碱洗条件对隐晶质石墨固定碳含量影响的初步研究[J].化学工程师,2013(03)1-3.

[4]高晓晴,郭全贵,刘朗,等.高导热炭材料的研究进展[J].功能材料,2006,37(2):173-177.

[5]王海旺,陈晓红,宋怀河,等.高导热石墨材料微观结构与其导热性能的关系研究[J].炭素,2008(3):31-35.

[6]Geon-Woong Lee,Min Park,Junkyung Kim,et al.Influence of Nano materials in Polymer Composites on Thermal Conductivity [J].Composites,2006,37:727-734.

[7]魏春光,张清岑,肖奇.隐晶质石墨超细粉体制备研究[J].非金属矿,2005,28(1):30-32.

[8]石涛,冯其明,张国旺,等.搅拌磨制备隐晶质石墨超细粉体的研究[J].IM&P化工矿物与加工,2004(4):14-17.

[9]唐维,匡加才,谢炜,等.隐晶质石墨纯化研究进展[J].化学工程师,2012(04):30-33.

[10]匡加才,徐华,谢炜,等.氟化铵_盐酸法提纯隐晶质石墨工艺研究[J].材料导报,出2013,27(5):9-12.

[11]唐维,邓应军,匡加才,等.碱洗条件对隐晶质石墨固定碳含量影响的初步研究[J].化学工程师,2013(03):1-3.

[12]孙小生,陈惠,刘洪波,等.天然鳞片石墨/环氧树脂复合材料的制备及导热性能研究[J].炭素技术,2012(4):11-15.

[13]Sumin Kim,Lawrence T,Drzal.Influence of Nano materials in Polymer Composites on Thermal Conductivity [J].Solar Energy Materials & Solar Cells,2009,93:136-142.

第12篇

关键词:工艺安全管理;发展现状;建议

中图分类号:TU714文献标识码: A

一、工艺安全管理的发展历程及关键要素

1.发展历程

随着科学技术的不断革新,新工艺、新产品的不断涌现,装置规模的日益扩大,给化工、石化等产业带来了巨大的变化。紧接着,由于涉及的化学品种的增多,处理、储存数量的增大,应用工艺技术的复杂化,操作条件的苛刻化,导致工艺系统的危害也更加多。在全世界范围内,化工和石化行业发生的一系列重大的工艺安全事故,引起了世人对工艺安全的注意,同时,孕育了一系列的相应法规。

1977年发生在意大利塞维索的有毒蒸气泄漏事故,促成了欧洲第一部对于工艺安全法规的颁布,即1982年欧洲的 «Seveso I指令》。1985年,发生在印度博帕尔的事故举世震惊,这也促使美国化学工程师协会成立了一个专门的化工工艺安全中心即为CCPS ,该中心的设立为化工、石化等行业提供工艺安全技术及管理的方面的全面支持,防范重大工艺安全事故的发生,同时,出版了一系列安全导则。1992年,美国职业安全健康局(OSHA),颁布了关于高度危险的化学品的工艺安全管理系统相关要求。1996年,欧洲的《Seves。I指令》修订为 《Seveso II指令》,它通过吸取博帕尔事故的教训教训, 更强调了对重大危害的控制,建立工艺安全管理系统的必要性。1996年,韩国政府也参考美国 0SHA的PSM体系,在韩国国内颁布了工艺安全管理系统要求。同时,1999年的美国环保局(EPA)在0SHA工艺安全管理系统的基础上,补充风险评价、应急预案的要求,颁布了《净化空气法案》。

工艺安全管理及技术自20世纪80年代以来,开始蓬勃发展。在进入20世纪 90年代以后逐渐发展成为一门独立的学科。目前的美国和欧洲非常重视工艺安全管理,强调运用系统方法、技术预防工艺安全事故的发生, 并且在高危险性的行业中强制推行工艺安全管理。

2.PSM基本要素

美国职业安全健康局(OSHA)、美国化学工程师协会化学工艺安全中心(CCPS)、美国化学协会 (ACC)和美国石油协会(API)均有为工艺安全管理系统定义的一系列不同的PSM组成要素。这些要素大多都是类似甚至相同的,都是为了预防重大的工艺安全事故并减轻后果。

其中,OSHA规定的PSM,主要应用于加工工业。它对“工艺”的定义是:使用、储存、加工、处理或在工厂范围内转移危险的化学品,或是上述综合活动。在PSM法规中,有一个危险化学品清单,其中包含130余种有毒或具有反应性的化学物品,同时对每种化学品进行一个数量标准的规定。如果工厂处理危险化学品的数量达到、超过表中的标准时,就需遵守PSM规定。但是PSM法规不适用于零售设施、油井设施、气井设施以及无人操作的设施。

二、国内外PSM实施情况

发达国家大型的化工、石化公司,均建立了完善的工艺安全管理系统并制订了相关法规及配套的实施指南,在工厂的各个时期严格执行。我国国内还在深入研究和积极推广的阶段。

1.美国PSM实施情况

在美国,这种管理系统是作为法规形式存在的,不仅有权威性,同时也说明工艺安全管理的必要性以及适用性。以陶氏化学为例。陶氏公司全球所有设施所执行的EHS管理体系 和标准均已达到OSHA PSM法案的绝大部分要求,在这些要素中,工艺危害的分析是陶氏化学的一个特色要素。

陶氏的工艺危害分析采用的主要是分级管理。这种方法的特点是将对工艺危害的分析按从简到繁、从定性到定量进行分级别管理,陶氏化学工艺的风险管理采用的是层进式风险分析方法,过程如图。

第1层,对所有的设施进行工艺危害分析,所采用的是火灾爆炸的危险指数、化学品的暴露指数 (CEI)、RC-PHA调查问卷、保护层(LOPA)的目标值等方法;第2层,对设施的特定单元操作采用因果成对鉴别、HAZOP、LOPA、建筑物的超压分析等方法,进行附加风险的检查;第3层,对目标工艺进行增强型的风险检查;第4层,选择少数的高风险活动场景进行QRA。根据分析的组合以及事故发生的频率来进行选择。

2.国内工艺安全管理的现状

在我国国内,只有很少的有关工艺(过程)安全管理体系的资料。还没有相关的法律法规标准。虽然,国内许多企业实施了 HSE 管理体系以及ISO体系,但这些体系没有相应法规的强制性要求,有些甚至还存在表里不一的现象。特别在这个化工和石化行业已经从引进成套技术逐渐转为自主设计、技术改进的阶段,问题显得尤为突出。近几年,国内的化工和石化行业中发生的重大事故,归根结底,都是工艺安全方面的问题。所以,现有项目以及新开发项目的整个生命周期的工艺安全管理已经成为了一个急需解决的问题。还有一个客观原因就是不同企业之间的工艺安全管理有较大的差异性,给政府的监管也带来了不便,同时也不利于同行业内关于工艺安全信息的交流,不利于安全水平的提高。总而言之,国内一方面缺乏工艺安全管理的有关研究,另一方面缺乏相关的法律法规。导致没有符合我国国情、与世界同步的工艺安全管理模式。因此,在国内化工和石化行业,建立、贯彻有效的工艺安全管理系统是十分必要的。

三 、工艺安全管理推行的建议

1.充分理解区别工艺安全管理与传统安全管理

工艺安全管理,是将技术、程序和管理实践整合在一起,形成以风险预防管理为重点的管理体系,主要对象是工艺介质本身以及涉及危险化学品的过程、厂站设施,通过控制工艺系统的动态变化,体现对工艺风险的“过程管理”。与传统的安全管理相比,在模式上更注重过程控制、与超前防范,对象上,不同于单纯关注人员作业风险的管理,更加强调了对工艺系统、设备设施的安全风险管理,在特点上,不再以经验管理为主,更重视了运用科学系统的分析方法,强调对风险的系统评估、合理控制以及响应程序等。

因为我国的多数化工企业还没有真正接触、了解工艺安全管理,因此,首先应该加强工艺安全管理的认识和培训,从转变理念入手,走出工艺安全管理第一步。

2.独立的组织机构支撑

在欧美等工业发达地区,工艺安全管理从20世纪80年代开始就已经发展成了了一门独立的学科,但我国国内最初并没有将工艺安全管理作为一门独立的学科。所以,我国国内企业应该从国外发达国家引进工艺安全管理的理念,在借鉴经验和做法的基础上,积极探索,形成具有自身特色的管理模式。

3.工艺安全管理人员的技能水平提升

工艺安全管理人员包括涉及实施所有工艺安全管理要素的专业技术、管理、操作人员、专业分析师等,工艺安全管理系统的有效运作,需要每个员工的参与。因此,在一定意义上,工艺安全管理人员的技能,往往决定着某个单位工艺安全管理工作的水平。

合理、有效的培训是提升工艺安全管理人员技能的主要途径,我国相应企业应该举办大量的包括风险评价方法以及专业技术知识在内的相关工艺安全的培训,可以用脱岗培训、在岗培训这两种培训方式,培养出一批高素质的工艺安全的管理人员。

4.工艺安全信息的有效利用

工艺安全信息产生于工艺装置使用的各个阶段,是进行危害辨识、风险控制的有效依据,是其它工艺安全要素推进的基础,同时工艺安全信息又是其它要素实施结果的“输入”终端。 因此,工艺安全信息的有效利用在某种程度上也反映了工艺安全管理的水平。

5.完备的技术标准支撑

工艺安全管理区别于传统安全管理的主要特征就是它具有的专业技术性,其管理目标 是实现工艺技术(设备)的本质安全。开展工艺安全的分析、工艺技术的变更、施工工艺安全的管理等要素活动,均与技术标准有千丝万缕的关系, 因此,要做好工艺安全管理,形成一套对企业适用性强、高标准的技术标准体系是很重要的。

6.定期开展评估审核

工艺安全审核可以有效评估和考核 各个工艺安全要素的落实情况,客观反映工艺安全管理水平,持续提高工艺 安全管理标准(制度)的执行力,对于工艺安全管理在整体深入过程中的不足,进行及时更正,制定有效的改进措施,不断提高工艺安全管理水平。

结语

我国国内与国外相比,不论在经济发展水平、运行方式、员工水平还是理念和文化等方面均存在差异,所以,不能直接照搬国外的工艺安全管理模式以及相关规定。而是需要根据我国的安全管理现状,积极借鉴国外的经验和做法,积极探索,不断努力,让工艺安全管理有更美好的明天。

参考文献

[1]粟镇宇.工艺安全管理与事故预防[M],北京:中国石化出版社, 2008