HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 化学工程原理

化学工程原理

时间:2023-08-17 18:04:57

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇化学工程原理,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

化学工程原理

第1篇

1环境工程与化学工程复合型人才的培养方式

目前许多院校广泛采用主辅修方式培养复合型人才,即学生在完成主修专业课程的基础上,再辅修第二专业的课程。辅修课程的上课时间经常与主修课程的上课时间相冲突,或者辅修课程的上课时间统一被安排在周末或晚上,这给辅修课程的学习带来不便。环境工程与化学工程复合型人才的培养可采用特色班级方式培养,即在招生时就用固定班集体招生、统一培养。这种培养方式便于课程体系的学习,尤其是便于实践课程的教学与管理。湖南城市学院化学与环境工程学院同时拥有化学工程和环境工程两个专业,这使得该学院在环境工程与化学工程复合型人才的招生、教学与管理有独特的资源优势。

2环境工程与化学工程复合型人才培养的课程体系

在课程体系设计上,不能简单地将环境工程专业与化学工程专业的课程“拼盘”。根据环境工程与化学工程复合型人才培养的特点和要求,我们在请教专家、调查学生的基础上对环境工程专业、化学工程专业的相关课程进行了有机整合,形成了培养环境工程与化学工程复合型人才的课程体系,该课程体系由5个课程模块组成。公共基础和素质课程模块。该课程模块包括中国近现代史纲要、思想道德修养与法律基础、基本原理、思想和中国特色社会主义理论体系概论、大学生心理健康教育、军事训练、大学体育、大学英语、计算机基础、大学语文。专业基础课程模块。该课程模块包括高等数学、工程制图及CAD、无机化学及实验、有机化学及实验、分析化学及实验、仪器分析及实验、物理化学及实验、化工原理及实验、波谱分析。专业核心课程模块。该课程模块包括环境化学、管网工程、环境微生物学及实验、环境生态学、环境监测及实验、水污染控制工程及实验、大气污染控制工程及实验、固体废物处理工程及实验、噪声污染控制工程、环境影响评价。特色课程模块。该课程模块包括化工环境保护、化工污染控制工程、化工污染控制设备、绿色氧化技术、突发性化工环境污染事故的预防与处置等课程。实践教学课程模块。该课程模块包括环境工程仿真实验、工程设计、工程实验设计与数据处理、PIDCAD工艺流程制图、认识实习、生产实习、毕业论文(设计)。该课程体系在保留环境工程专业的核心课程基础上,《无机化学》、《有机化学》、《分析化学》、《物理化学》、《仪器分析》、《化工原理》、《波谱分析》等专业基础课程内容和学时与化学工程专业一致,在课程设置上体现出环境工程专业与化学工程专业课程的复合;特色课程模块和实践教学课程模块体现出环境工程专业与化学工程专业课程的融合。

3环境工程与化学工程复合型人才培养的教学方法

对于环境工程与化学工程复合型人才,要求综合培养学生环境工程、化学工程两专业的知识和能力,达到综合培养的目标,这就要求其相应的教学不能采用灌输性的教学风格,而应采用渗透式教学、融合式教学、案例式教学和研究性教学等。(1)渗透式教学是指在上述专业基础课程模块中渗透环境工程专业知识的教学,在上述专业核心课程模块渗透化学工程专业知识的教学。例如,《物理化学实验》中动力学实验可以让学生动手做“Fenton试剂降解除草剂2,4-D反应速率常数和活化能的测定”。(2)融合式教学是指在上述特色课程模块和实践教学课程模块中将环境工程和化学工程中的知识、原理、技能融成一体进行教学。例如,《化工污染控制工程》中教师可结合工程实践进行“流化床化学反应器处理农药厂废水”的专题教学,将流化床工艺设计参数、原理、废水排放标准等融合在一起进行教学。(3)案例式教学就是指在环境工程与化学工程复合型人才培养的教学过程中结合教学内容运用工程中的实际案例进行教学。例如,《水污染控制工程》中教师可结合工程实践进行“电镀厂含铬废水的深度处理”的案例教学。(4)研究型教学是指在环境工程与化学工程复合型人才培养的教学过程中教师结合教学内容,通过创设学习情境,促进、支持和指导学生完成研究型学习活动,来综合培养学生能力与素质的一种教学方法。例如,在“Fenton试剂降解除草剂2,4-D反应速率常数和活化能的测定”实验中,教师可引导学生自己查阅文献资料,引导学生思考如何测定溶液中2,4-D的浓度?如何用计算机软件绘制2,4-D浓度的标准曲线?让学生自己确定实验中所需要的仪器和使用的方法,引导学生思考FeSO4和H2O2使用量对2,4-D降解速率的影响,如何求算该降解过程中的速率常数K和表观活化能Ea?

4环境工程与化学工程复合型人才培养的师资队伍建设

良好的师资队伍是实施环境工程与化学工程复合型人才培养的关键。要培养环境工程与化学工程复合型人才,首先必须有环境工程与化学工程复合型的师资。笔者认为,要改变目前环境工程与化学工程复合型的师资匮乏问题,可从如下几个方面加强环境工程与化学工程复合型人才培养的师资队伍建设。(1)引进、培养具有环境工程和化学工程双专业学位的高水平的博士或硕士,他们在学士、硕士或博士学位教育期间接受过环境工程、化学工程的专业教育,具备环境工程和化学工程复合的知识结构和科研素养,是环境工程与化学工程复合型人才培养的理想师资队伍。(2)教师交叉自学和资格认证。在学院内部要求有环境工程专业学位的教师参加化学工程的本科理论与实践教育,要求有化学工程专业学位的教师参加环境工程的本科理论与实践教育,教育期满后进行考试认证,达到认证资格的教师才能评聘为环境工程与化学工程复合型人才培养的师资。(3)聘请企业有工程实践经验,且有良好师范素养的工程师参与环境工程与化学工程复合型人才培养的教学和科研工作。

5学生自主学习是环境工程与化学工程复合型人才培养的重要手段

现代环境工程和化学工程日新月异,要培养环境工程与化学工程复合型人才,单靠教师的培养显然是不够的,必须充分调动学生自主学习的积极性。高等院校拥有丰富的中文、英文文献资料数据库,有丰富网络平台资源;高等院校图书馆拥有大量的纸质版和电子版书籍、期刊和报纸;高等院校实验室拥有大型的现代化仪器等。这些资源为学生的自主学习提供了良好的物质保障。教师在环境工程与化学工程复合型人才培养的教学中,以问题、专题为核心,引导学生自主学习、相互交流,从而优化学生的知识结构和能力结构。例如,教师可引导学生查阅相关网站,自主学习“离子交换树脂”专题,要求学生掌握离子交换树脂的分类、命名、合成、性能、工作原理、再生方法及在污水处理中的应用等,并要求学生要充分利用学校网络资源,构建自身交流的QQ群,进而广泛、深入、持续地交流。总之,在今后环境工程与化学工程复合型人才培养的研究与实践中,我们还需要不断地努力探索与实践,逐步形成科学、系统的环境工程与化学工程复合型人才培养体系,为环境工程与化学工程复合型人才培养提供启示和建议。

作者:孟秋冬肖谷清胡拥军单位:湖南城市学院图书馆湖南城市学院化学与环境工程学院

第2篇

关键词:化学工程专业实验室、改革、发展.

在当今科技飞速发展的时代,高校化学工程专业实验室作为培养高极科技应用型人才理论联系实际的重要实践性场所,已经显示出越来越重要的作用了。自从进入二十一世纪以来,纵观我国各地高校化学工程专业实验室的改革,不难发现各地高校化学工程专业实验室的改革有的已经初见成效,有的才刚刚起动, 各地高校化学工程专业实验室的改革发展水平有高有低,这就需要我们各个高校化学工程专业实验室之间加强交流与合作,互相学习,取长补短,尽快构建起一个资源共享、信息互通、有较高水平的化学工程专业实验室,以便更好的培养一大批用得上、信得过、提得起的新一代工程应用型人才及经济管理型人才[1]。

化学工程专业实验室是化工类院校成立的一个最老的专业实验室,一般具有相对雄厚的专业技术基础,比如我校的化学工程专业实验室经过近三十年的改革和发展,现已将其改造成一个拥有上千万资产,实验技术和仪器设备相对比较先进,能够同时开设石油化工、精细化工、化学工程、生物工程、制药工程、轻化工程、化工原理七个方向的专业和基础实验的大型的综合型实验室——石油化工工程实验中心。化学工程专业实验室的改革引起了国内许多相关的部门的重视,为此,对化学工程专业实验室的改革和发展进行必要的研究具有非常现实的意义.[2-3]。

化学工程专业实验室的改革发展要统一思想认识,明确发展方向和目标,否则,就会对化学工程专业实验室的改革和发展带来难以估量的困难和损失。从以往的经验来看,由于思想认识、发展方向和目标不明确、不统一而给化学工程专业实验室的改革发展带来很大损失。

化学工程专业实验室的改革发展初期会遇到思想认识、发展方向和目标不明确、不统一的问题。一种观点认为,化学工程专业实验室的改革发展应该向精而细的方向发展,根据各个专业建设需要建立相应的化学工程专业实验室,做到精而越精,多学科,全方位的进行改革和建设,形成本校自己的特色专业;另一种观点认为,化学工程专业实验室的改革发展应该根据本校实际情况,以培养大工程观的工程应用型人才为目标,紧紧依托石油化工行业和地方支柱产业,为培养学生的责任意识、实践能力、综合知识、系统思维、协作品质和创新精神而将现有的各个专业方向的化学工程专业实验室进行必要的整合,从而建立起一个资源共享、信息互通、有较高水平的专业实验中心,以便更好的培养一大批用得上、信得过、提得起的新一代具有大工程观的工程应用型人才。这个实验中心所服务的对象不仅仅是本专业方向的学生,它将对全化工系和整个学院的同学开放,在满足本院学生需求的情况下,并对兄弟院校的学生开放,从而达到实验资源共享、信息互通的目的,使我们的实验室产生综合的社会效益。例如,我院化学工程专业实验室的教师在主管领导的带领下,参观走访了多所兄弟院校,认真的实习和吸收兄弟院校化学工程专业实验室改革发展的经验成果,在征询本院各级领导和广大教师的意见的前提下,一致认为化学工程专业实验室的改革发展应根据本校实际情况,以培养大工程观的工程应用型人才为目标,紧紧依托石油化工行业和地方支柱产业,为培养学生的责任意识、实践能力、综合知识、系统思维、协作品质和创新精神而将现有的各个专业方向的化学工程专业实验室进行必要的整合,从而建立起一个资源共享、信息互通、有自身特色的、有较高水平的专业实验中心[4]。

在化学工程专业实验室的改革发展统一了思想认识、发展方向和目标后。化学工程专业实验室的改革于2000年开始在一定范围内展开,先将有机化工、石油加工和化学工程三个方向的化学工程专业实验室进行整合为一较大的实验室——化学工程与工艺实验室,将分散在各个实验室的仪器设备、实验维持费、实验技术人员集中统一起来,以求在一定范围内初步达到资源共享,信息互通、教学效果、经济效益最大化的目的。经过三年多的实践证明,这样的改革是有效果的,成绩是显著的。为此,2004年,对化学工程专业实验室进行大规模的改革和重组,并成立了以系主任、书记为领导,各化学工程专业实验室技术人员为骨干,对分散在各个教研室的化学工程专业实验室房间、仪器设备、实验维持费、实验技术人员改革和重组。并对化学工程专业实验室改革和发展所涉及的各项指标和内容进行了认真的讨论和充分的思考。由于化学工程专业实验室建设目标的思想认识的统一,使得化学工程专业实验室在抓住机遇的同时得到了快速推进和发展,现在一个新型、高效、集约的大型综合实验室已初具规模,其经济效益和社会效益也初步显现。由此可见,化学工程专业实验室的改革发展在发展方向和目标上思想认识的统一是非常重要的。同时化学工程专业实验室的改革和发展应着重抓好以下几方面的建设.

一、化学工程专业实验室的改革发展要着重抓好实验用房的基础规划建设。

实验室是广大师生直接从事理论联实际的实践教学和科研活动的关键场所,化学工程专业实验室的改革发展首先要着重抓好实验用房的基础规划建设,二十一世纪初,由于我院确定了在常州大学城开发新校区的计划,这一新的形势是对原有化学工程专业实验室进行改造的良好机会。改造前,化学工程专业实验室按专业发展方向分为有机化工、石油加工、化学工程、精细化工、生物工程、制药工程及化工原理七个实验室,实验室用房零星分布在老校区的化工一号楼、化工二号楼和化工原理楼三幢楼各个楼层当中,由于上述原因,每学期专业实验开始后,总有学生和老师反应我们的化学工程专业实验室非常难找,并不时的有学生因找不到化学工程专业实验室而延误了所做的专业实验,这对培养学生的精确守时的专业精神是很不利的,这个问题直到对化学工程专业实验室改造前一直都难以克服,为此,在对化学工程专业实验室改造时,就应充分考虑到这一因素,对原有的化学工程专业实验室用房进行统一规划和设计,将原来零星分布于多幢楼各个楼层间的化学工程专业实验室用房,统一规划设计,并对化学工程专业实验室用房的楼层和具体使用房间进行整合,将所有化学工程专业实验室用房统一规划在东区化工楼的第一层到第三层之间,其佘楼层统一规划为教师科研团队的科研用房,这样不仅仅能避免学生因找不到化学工程专业实验室而延误了所做的专业实验,这对培养学生的精确守时的专业精神也是很有帮助的,同时也能很好的避免化学工程专业实验室与其他实验室之间的互相干扰。通过对化学工程专业实验室这样的统一规划整合也能间接的培养学生今后工作学习的条理性,2006年初,在对化学工程专业实验室统一规划整合后,投入了实际运行,无论是教学效果,还是科研进展都收到了非常满意的效果,所以说,化学工程专业实验室的改革发展要着重抓好实验用房的基础规划和建设,这对广大师生充分高效地利用化学工程专业实验室进行教学和科研活动,为我国输送一大批技术过硬、实践能力强的学生有着非常重要的作用。#p#分页标题#e#

二、化学工程专业实验室的改革发展要着重抓好实验用仪器设备和实验项目的规划建设。

实验仪器设备是广大师生理论联系实际的必备武器,它是学生从事专业实验的可靠保证,实验项目则是学生做专业实验时理论联系实际所必需的结合点。因此,在对化学工程化学工程专业实验室进行的改革发展过程中,我们必需着重抓好实验用仪器设备和实验项目的规划建设,在实验项目的规划建设中,不能仅仅只考虑到学生所学的书本理论知识与专业实验项目内容的结合,同时也应该考虑到专业实验项目内容能尽可能的与实际工程应用的相结合,而且也应该考虑到专业实验的可行性、经济性和环保性,即将绿色实验的理念充分运用到对我们的专业实验的改造中。在对原有的专业实验项目内容进行必要的删减时,将一些简单的、与其它专业实验有重迭的、而且是有毒有害的专业实验进行了必要的删减,如将原有的专业实验精馏塔理论塔板数的测定进行了删减,因为该实验不仅仅是与化工原理的实验相重迭,而且,该实验所用的试剂苯等都是有毒有害的,耗用试剂量也比较多,不经济而且简单,所以在对专业实验项目进行改造时,应将该实验删减;在考虑对专业实验项目内容进行必要的增加时,可以将教师的在研科研项目进行必要的改造后引入到专业实验中,如将十柱模拟移动床分离果葡糖浆的科研项目引入到专业实验,这个实验项目,不仅能起到理论联系实际的作用,而且,该实验所分离的体系是果葡糖浆,它是无毒无害的,学生做专业实验时,每次所用的剂量也不大,既经济又环保,同时又能让学生充分体会到新型分离专业技术的重要性,起到很好的教学效果,所以在对专业实验项目内容进行必要的增加时,可以将此引入了专业实验当中。

在考虑对专业实验仪器设备进行改造时,由于在教学经费的投入相对比较紧张大形势下,要想将专业实验仪器设备投入改造一步到位是不可能的,因此我们必需在充分考虑满足现阶段学生专业实验教学所需的情况下,集中力量,下决心投入建设一批高精尖的仪器设备,以满足现阶段科学技术不断发展的需要。在对原有的一些老旧的仪器设备进行必要的改造后,其性能尚能满足现阶段学生专业实验需要的,就充分地利用起来,实在不好的就淘汰,同时,集中现有的教学投入经费,添置了一些新的、有一定前瞻性的、高精尖的大型仪器设备。如分子蒸馏,二氧化碳超临界萃取和核磁共振等仪器设备。为了节约经费,还可以发动教师自制专业实验装置,如超滤膜分离装置、反应精馏装置、模拟移动床装置等,并很快地投入了学生的专业实验,收到了比较满意的教学效果。

三、化学工程专业实验室的改革发展要着重抓好实验用教材建设。

化学工程专业实验室的改革发展要着重抓好实验用教材建设,专业实验教材的建设要在化学工程专业实验室改革的同时有计划、有步骤的及时的展开编辑和修改,这样就能避免学生上实验课时没有合适教材可用的尴尬届面的出现,同时专业实验教材的建设要有一定的前瞻性,也就是说,专业实验教材编辑和修改的内容,除了为了满足当前专业实验教学的要求之外,应当将化学工程专业实验室今后改革发展所涉及的内容编辑进去,以免今后增加一个实验就修改一次教材的情况出现,专业实验教材在改革前就时常出现这样的情况,这样不仅仅会造成直接的经济损失,同时也会对我们的专业实验教学带来不必要的麻烦。现阶段我们已着手对化工专业实验的教材进行有计划、有步骤的编辑和修改,所编辑和修改的专业实验教材内容与我们的专业实验的发展规划紧密的结合在一起,这本教材应当在一定的时期内能很好的满足我们专业实验教学和发展的要求,只要对教材的内容进行精心的规划、设计、编辑和修改,做到这一点是可能。

四、化学工程专业实验室的改革发展要着重抓好实验教师和实验技术人员队伍建设。

化学工程专业实验室的改革发展要着重抓好实验教师和实验技术人员队伍建设。专业实验教师和实验技术人员是我们专业实验教学的灵魂,一支优秀的专业实验教师和实验技术人员队伍是提高专业实验教学的必要保证,为了建设一支优秀的专业实验教师和实验技术人员队伍,必需从引进人材、吸引人材的制度上加以解决,也就是说,我们要建立科学合理、比较完善的化学工程专业实验室用人机制,要使我们专业实验教师和实验技术人员引得进、用得上、留得住,要彻底改变以往那种专业实验教师和实验技术人员用人制度,只有这样,才能使我们专业实验教师和实验技术人员引得进、用得上、留得住,可以将原来的实验教师和实验技术人员进行了整合,并通过人才引进的办法,将一批高学历、有经验、有潜力的年轻教师补充到一线实验教师的队伍中,从而形成职称学历高中低搭配比较合理的稳定的专职实验教师和实验技术人员队伍,通过近几年的运行表明,这样的改革组建方案是高效有益的. 因此,将化学工程专业实验建成环境一流、设施一流、有较高水平的现代化高校化学工程专业实验室是可行的。

总之,化学工程专业实验室的改革发展必需在发展方向和目标上有统一的思想认识,同时,应着重抓好实验用房的基础规划建设, 实验用仪器设备和实验项目的规划建设、 实验用教材建设和实验教师及实验技术人员队伍的建设,以适应当前高等院校实践教学发展的要求.

参考文献:

[1] 焦建军.高校体育改革与大学生终生意识的培养[J]. 四川体育科学,2004,(1):80-81

[2] 汪静华,何键.论学校体育与终生体育的接轨[J]. 嘉兴学院学报,2002,14(2):88-90

第3篇

生物化学工程基础课程结合现代分子生物学及传统生物技术,不仅有扎实的理论基础,而且结合典型产品的开发过程进行阐述,反映了现代生物技术的发展方向,体现了生物技术发展和应用的最新前沿。生物化学工程基础是随着生物科学的发展而不断更新的课程,需及时调研最新的发展方向及研究热点。该课程全面阐述了基因工程、细胞工程、酶工程、发酵工程和生化工程等课程的基础内容,其主要囊括以下几个方面。工业微生物工程:介绍微生物的特点、分类、生理、育种及培养等方面的技术和方法;代谢工程:介绍微生物次生代谢产物的代谢调控机制和方法;基因工程:介绍生物遗传的基本知识及应用现代基因工程技术改变微生物遗传特性的方法,并且介绍蛋白类药物的研发和生产过程;细胞工程:介绍应用植物组织培养和动物细胞培养生产高附加产值的花卉、药物等;酶工程:介绍工业用酶和药用酶的性质、结构、固定化及开发等方面的技术;生物反应器:介绍生物反应器的工作原理、设计方法以及应用;全面介绍生物技术的最新进展、应用以及生物技术应用过程中需要化工知识的范例。生物化学工程基础课程是在无机化学、有机化学、分析化学、生物化学基础上进行学习的。本课程对于非生物类专业学生进行了系统的生物学技术及最新研究进展的介绍,让学生了解生物学的基本思想及技术,同时将现代生物技术的应用与化学工程技术进行交叉讲授,重点说明了化学工程技术在生物工程领域可能的应用范围,使学生掌握现代生物技术的基本工艺流程及发展前沿。目前,化学工程与技术专业的学生普遍存在生物学基础知识薄弱的问题,如何在较短的学时内,将生物工程的关键基础问题讲解清楚,并且将生物工程技术和化学工程有机的结合起来,让学生充分感受到交叉学科带来的机遇和挑战,这无疑对授课教师提出了更高的要求,需要教师不断总结现有的教学模式,不断地改进教学过程和教学方法。

二、化工专业生物化学工程基础教学中存在的问题

鉴于该课程属于学科交叉,在教材选择、实验配套、讲解内容难易程度把握等方面,均需要不断地探讨和摸索。目前,该课程教学过程中存在的重点和难点问题主要有:如何在现有教材的基础上丰富教学内容,利用多媒体等手段,及时地更新课程内容并介绍最新的发展动态;如何把握教学过程中深度与广度的平衡;如何在现有基础上提高学生的学习热情,使他们能够主动深入地探讨生物工程与化学工程学科交叉所带来的机会与挑战;如何能够将课程讲解内容与生产实际结合起来,让同学们切实体会到化学工程在生物产品生产过程中的应用;如何鼓励学生在假期或平时寻找一切机会去生物制品生产企业进行实践,从中体会化学工程技术在生物产品生产中的具体应用。

1.教材很难在深度和广度间平衡

目前,本课程所选教材为化工出版社的《生物化学工程基础》(工科专业适用,李再资主编,2006年版本),该教材在国内高校化学工程专业有较为广泛的应用,具有简单明了、讲解清楚的特点,适合于生物工程专业以外的其他专业使用。但是该教材也存在诸多不足之处,如教材内容仍然没有摆脱理科教学的模式和框架,生物工程原理的讲解深度不足,同时,教材对于化学工程与生物工程如何结合方面的内容也讲解得太少。为了做好生物化工导论的教学工作,必需结合化学工程专业学生的特点和研究应用实例,选择相关学科的教材作为补充,以便在授课过程中增加相应的内容,进而提高学生的理解和吸收程度。

2.实验环节缺乏

现在的课堂教学仍然以教师讲授为主,学生处于被动接受的状态。由于生物化工导论是理论与实践紧密结合的课程,而教学实验环节缺乏,学生往往很难理解生化反应及其应用过程。所以,需要进一步改变传统的课堂教学模式,可以采用讲授与讨论相结合、课堂内外相结合、理论与实际相联系等多种教学形式,利用先进的多媒体技术和网络技术,丰富和活跃教学过程,激发学生的学习热情,提高整体教学质量。同时,也可以通过讲解学生身边的研究实例,调动学生的积极性,并且配备一些实验讲解及生产实习来提升学生的兴趣和理解程度。

三、生物化学工程基础课程教学的几点体会

笔者从2001年开始一直从事生物化学工程基础的教学工作,课程面向对象主要为化学工程与工艺专业、过程控制专业及分子工程专业的学生,每年选修人数在200人以上。在授课过程中,注重以产品为例,说明化学工程技术在生物产品开发过程中的重要性,从而加强了学生对于化学工程知识应用于生物工程领域的信心。另外,注重将理论内容与本校化工学院及兄弟院系的科研内容进行融会贯通地讲授,大大提高了同学们对于该课程的理解和热爱,也促进了学生对于生物工程与化学工程有机结合的全新认识。在教学实践中,结合介绍天津市著名生物工程企业大量需要化学工程的实例,力求让同学们明白,生物工程的下游产业化的实质就是化学工程的应用。教学实践也使笔者体会到,要完成好该课程的教学任务,需要授课教师熟悉生物化学、生物工程、化工原理等教学内容,更需要授课教师不断总结教学经验,以便逐步提高教学质量。

1.建设教学团队,认真调研学习

授课教师需要组织强有力的课程建设小组,对国内外工科类生物化工导论课程进行调研,包括其他院校的教改情况、已有的化工类的生物化工导论教材、学生本人对课程内容及授课方式的期望、相关专业对该课程的反馈信息等诸多方面。授课教师还需要吸收先进的教学思想、技术与内容,借鉴国内外其他院校教学情况,结合专业设置的特点和实际,总结教学经验与效果。针对面向21世纪的教学和培养要求,要认真总结化工类本科生生物化学工程基础课程的教学内容、教学计划及教学方式及教学中的注意事项,要通过对其他优秀或重点课程的学习观摩或邀请教学经验丰富的老教授亲临课堂指导等多种途径,进行教育素质训练,以提高教师的授课水平。

2.提供并选好主讲教材和高水平的辅助教材

针对现有的试用教材,及时引入前沿科学和技术的最新成果,筛选、引进配套的辅助教材(包括国外教材),编写与之相配的教学大纲。李再资老师主编的生物化学工程基础教材知识点全面,重点内容详尽。除此之外,我们还注重推荐国内知名的生物化学、生物工程、工业微生物学等相关教程以及国外英文原版教材作为课外辅助教材,建议学生每人手里都有一本英文原版教材。另外,在每次授课结束时,都提前告之下次课程内容的基本点和重点,要求学生提前做好预习或难点标注,注重发挥学生自身学习的主动性和积极性,使他们永葆学习的热情和动力。实践表明,学生通过使用英文教材独立预习课程,他们的专业英语水平也会得到快速提高,为今后使用英语完成相关工作任务打下良好的基础。

3.探索新的授课模式和教学手段

多媒体教学可以让学生通过图和动画直观地理解生物过程和反应机理,也可以直观地学习生物工程科学研究和生产的各个环节。为此,要完善多媒体系统,适时增加课堂教学信息量。同时,可以采用启发式、讨论式、研究式等教学方法,将课堂讲授与课外辅导相结合,培养学生的创新与自学能力。如果能够将课程讲解内容与生产实际结合,将课堂讲授内容与具体的实验相结合,加强与学生交流,深入探讨生物工程与化学工程学科交叉所带来的机会与挑战,必将会进一步激发学生学习的积极性,提高教学质量。

4.课堂讲授内容与前沿性专业知识紧密结合

在大学课堂里,让学生随时了解相关学科的前沿进展是一个重要的授课内容。因此,在每节课学习重点知识的过程中,需要用最新发表的相关研究进展信息丰富课堂内容,使学生了解学科前沿和发展方向。比如,在介绍酶的开发过程时,可介绍量子力学、分子动力学和计算机工具在研究酶的反应过程和机理中的应用,并且把研究中的困难展示给大家,激发学生探究和追寻科学发展的欲望,吸引他们投入到生命科学的研究和生物技术的开发中去。同时,也可以介绍酶的生产过程中所面临的问题和挑战,鼓励学生用化工知识尝试解决生产中的问题。

5.鼓励课堂教学和生产实践结合

生物化学工程基础偏向实际应用,课堂讲授内容需要与具体的生产实践相结合,因此,要让同学们切实体会到化学工程的知识在生物制品生产过程中的应用。另外,要积极联系生物工程方面的生产企业,组织同学们进行参观,结合课堂教学内容,让同学们充分体会到化学工程技术与生物工程技术学科交叉的意义和重要性,鼓励感兴趣的同学去相关的生物工程企业进行短期实习,了解生物工程产品的生产原理、生产流程和注意事项,体会化学工程技术在生物产品开发和生产过程中的重要地位。

6.培养学生良好的学习方法

第4篇

1、化学工程技术的产生于发展

19世纪的欧洲出现了化学工程,并且在20世纪在石油的开采中逐渐的兴起,先后在一战期间和二战期间有着重大的工程技术进展,相继研发出了许多化学武器以及原子弹的出现,该项技术在20世纪60年代进一步的开展,并且取得了突破性的作用,逐渐的从一些小型的化工产品迈向大型化工设备领域,并且研制出了许多大型的装置,这对于一些大型的生产有着重要的作用。之后在20世纪60年代,化学工程在计算机的应用中,展开了更广泛的应用和发展,之后再计算机的应用下出现了许多化学工程产品,能够为人类的生活提供日新月异的新产品。

2、化学工程技术在新世纪的发展趋势

由于化学工程能够带动新世纪的变化,它作为一项综合的学科推动者社会经济各个领域的发展,因此该项工程对于新世纪的发展趋势表现在:

2.1化学工程与其他学科的交叉存在

在化学工程中,它能够与高分子化学以及高分子的物理学科交叉的存在,因此这就推动了材料化学工程的进一步发展,能够根据化学工程的基本原理对材料的制造过程进行科学的生产,能够将自然的资源材料加工成比较精细的化学物质,在学科的交叉中,对于一些汽车器材的制造以及纤维技术都有着重要的推动作用;对于化学工程技术与生物学科的交叉来说:它能够将化学技术的手段应用于生物技术的研究中,在该项技术中的重要成果是:生物药品的产生、各种农药、氨基酸、以及酶制剂的出现,这些产品对于人类的生活都有着重要的作用;化学工程技术与有机化学、无机化学的交叉,由于化学工程是一门比较精致的学科,因此它与有机化学和无机化学的结合能够对化肥生产有重要作用,并且在石油的开采中能够指导正常的生产。

对于化学工程来说,与之交叉的学科还有,环境学和物理、微电子学。在环境中,通过化学工程技术的发展,对于环境学工程有着促进作用,保证了环境的质量,对于净化环境有进一步的改善意义;而在物理、微电子中,由于学科之间的交叉,产生了各种微电子以及线路板的进一步发展,这些产品给人类的生活带来了不少方便。

2.2化学工程与数、理、化相结合

在化学工程的发展趋势中,它与数学的结合表现在:该项技术能够在数学工具的使用中,积极的推广线性代数的使用。在与物理学的结合中,它能够在X光衍射、气相色谱程序以及电镜等一些高科技的产品中进行进一步的研发,方便了人们的日常生活。在基础化学的结合中,其主要的体现在人力参数的预测以及生物环境的治理工作中,二者相互结合,推动了高科技产品的发展,能够在不同的领域不断的进行突破。

3、促进化学工程技术的发展对策

对于化学工程技术的研究对策分别从以下几个方面进行研究,其具体的表现在:应该全面的提高化学工程的整体技术水平。这就需要做到:能够以全局的思想进行考虑,结合于化学学科交叉的学科进一步探究,能够做到统筹全局,整体的规划,并且要协调好各个学科之间的关系,相互配合、相互促进,为进一步推动化学工程技术的发展做充分的准备。

在发展化学工程的技术中,要不断的提高化学工程机械设备的研究水平。这就需要在发展的过程中要采用先进的机械设备,并且选用高科技的硬件设备进行,在提高技术人员的水平中,加大研发的力度,向世界化学工程逐渐的迈进。不断的更新研究的设备,在技术中逐日的提高。

在工程技术中还需要做好化学工程技术的基础教育工作以及要进行积极地拓展化学工程技术的应用范围。具体的措施是,能够根据技术的更新及时的对该项技术的人才进行培训教育,这就需要技术人员要在增强自身知识水平的同时要不断的提高自身的技术能力,通过相关的培训来加强各方面的理论知识和技术要领,在技术中增强实践的能力,为建设高水平、高质量的化学工程人才做充分的保障。除此之外,在化学工程技术的应用领域中还需要进一步的研究,对于一些新产品,新技术要增加研发的力度,这样才能够为寻求更大的技术市场做可靠的保障,进而促进化学工程技术的不断提高。

4、总结

第5篇

一、生物质化学工程人才的需求分析

能源是人类社会赖以生存和发展的基础。随着经济的飞速发展,我国能源消耗快速增长,已跃居世界第二大能源消费国。我国能源总量和人均占有量却严重不足,石油供需约缺口1亿吨,天然气供需约缺口400亿标准立方米。而且,由于清洁利用的技术难度较大,化石能源在使用过程中引发了诸多的环境问题。生物质能是第四大一次能源,又是唯一可存储和运输的可再生能源。发展生物质能将缓解能源紧缺的现状和减少化石能源造成的环境污染。我国幅员辽阔,又是农业大国,生物质资源十分丰富。据测算,我国目前可供开发利用的生物质能源约折合7.5亿吨标准煤。国家“十一五”发展规划明确提出“加快发展生物质能”。同时,随着化石资源日益枯竭,化学工业的原料也将逐步由石油等碳氢化合物向以生物质为代表的碳水化合物过渡。目前,世界各国纷纷把发展生物质经济作为可持续发展的重要战略之一。以生物质资源替代化石资源,转化为能源和化工原料的研究受到普遍重视。政府、科研机构和道化学、杜邦、中石油、中石化、中粮等大型企业争相研发和储备相关技术,并取得了一系列重大进展。海南正和生物能源公司、四川古杉油脂化工公司和龙岩卓越新能源发展有限公司,依托我国自主知识产权的生物柴油生产技术,相继建成规模超过万吨的生产线,产品达到了国外同类产品的质量标准,各项性能与0#轻质柴油相当,经济效益和社会效益俱佳。我国对以生物质为原料生产化学品(即生物基化学品)极为重视,已列入科技攻关的重点。例如,生物柴油生产过程中大量副产的甘油是一种极具吸引力的非化石来源的绿色化工基础原料。从甘油出发生产1,2-丙二醇、1,3-丙二醇和环氧氯丙烷等大宗化工产品,已经实现或接近产业化。新兴产业的发展,最根本的是靠科技的力量,最关键的是要大幅度提高自主创新能力,其核心是人才的竞争。浙江是经济大省和能源小省,能源资源低于全国平均水平,一次能源消费自给率仅为5%;而气候条件优越,是我国高产综合农业区,森林覆盖率达60%,生物质资源居全国前列。浙江省乃至全国的生物质能源产业和生物质化学工业的蓬勃发展,对生物质化学工程人才的需求十分迫切。

二、生物质化学工程人才的知识结构

生物质化学工程(专业)模块是一个新生事物,并未包含在《全国普通高等学校本科专业目录》之中。在《专业目录》中与之接近的是生物工程专业。生物工程专业培养掌握现代工业生物技术基础理论及其产业化的原理、技术方法、生物过程工程、工程设计和生物产品开发等知识与能力的高级专业人才。生物工程专业重点关注围绕生物技术进行的工程应用,而生物质化学工程重点关注通过化学工程技术(包括生物化工技术)对生物质资源进行加工利用的工业过程。可见,生物质化学工程(专业)模块与生物工程专业的人才培养目标和知识体系存在着明显差异,其人才培养模式仍处于探索之中。生物质的组织结构与常规化石资源相似,加工利用化石资源的化学工程技术无需做大的改动,即可应用于生物质资源。但是,生物质的种类繁多,分别具有不同的特点和属性,利用技术远比化石资源复杂与多样。可见,生物质化学工程人才必须具有扎实的化学工程基础,并熟悉各类生物质资源的特点、用途和转化利用方式。因此,浙江工业大学将生物质化学工程人才的培养目标定位为:既能把握和解决各种化工过程的共性问题,胜任化工、医药、环保和能源等多个领域的科学研究、工艺开发、装置设计和生产管理等工作;又能将化学工程的基础知识灵活运用于生物质资源的转化利用和生物质化工产品的生产开发等领域,胜任生物质能源和生物质化工等新兴行业的工作。

三、生物质化学工程人才培养的探索与实践

(一)组织高水平学术会议,营造人才培养氛围

2007年4月,浙江工业大学与中国工程院化工、冶金与材料工程学部和浙江省科技厅共同主办了“浙江省生物质能源与化工论坛”。中国工程院学部工作局李仁涵副局长分析了我国能源技术的发展状况,强调了发展生物质能需注意工艺过程的绿色化。浙江省科技厅寿剑刚副厅长介绍了浙江省能源消费状况和新能源技术研发动态,鼓励省内外的科技工作者为改善浙江省能源紧缺现状而努力工作。浙江工业大学党委书记汪晓村回顾了浙江工业大学的发展历程,介绍了浙江工业大学化学工程学科在生物质能源领域的科学研究特色和人才培养思路。浙江工业大学的计建炳教授和石油化工科学研究院的蒋福康教授主持了学术交流与讨论。闵恩泽、李大东、舒兴田、岑可法、沈寅初、汪燮卿等六位院士分别从我国发展生物能源的机遇与挑战、我国生物质能源产业发展状况、生物质燃料(清洁汽柴油、生物柴油)利用技术、生物柴油联生产物利用技术和以生物质为原料进行化工生产等几个方面进行了精辟论述。2009年4月,浙江工业大学承办了“中国工程院工程科技论坛第84场———生产生物质燃料的原料与技术”。浙江工业大学副校长马淳安教授在开幕式上致辞,介绍了浙江工业大学化学工程学科在生物质能源领域开展的科学研究和人才培养工作。浙江省可再生能源利用技术重大科技专项咨询专家组组长、浙江工业大学化工与材料学院生物质能源工程研究中心主任计建炳教授主持了学术交流与讨论。国家最高科学技术奖获得者、两院院士闵恩泽做了题为“21世纪崛起的生物柴油产业”的报告,重点阐释了我国发展生物能源和生物质化工的机遇与挑战。在两次会议上,来自石油化工研究院、清华大学、浙江大学、浙江工业大学、浙江省农业科学院、中国林业科学研究院和中粮集团等单位的专家学者分别介绍了生物质原料植物的选育、生物质原料的收储运物流供应体系、生物质原料的梯级利用、生物质液体燃料的制取技术、生物柴油的生产实践及其副产物综合利用和生产生物柴油的反应器技术等方面的研究进展。会议期间,闵恩泽院士等人应邀参加了浙江工业大学化学工程与工艺专业建设暨生物质化学工程专业方向建设研讨会。闵恩泽院士指出,迈入21世纪以来,针对日趋严峻的能源危机和环境危机,国家高度重视能源替代战略的发展和部署,新能源代替传统能源、优势能源代替稀缺能源、可再生资源代替非可再生资源是大势所趋;因此,化学工程与工艺专业根据国家发展需求调整学科设置、进一步促进交叉学科的发展也势在必行。闵恩泽院士认为,在降低能耗和保护环境的时代背景下,生物质能源和生物质化工的产业发展为生物质化学工程人才提供了广阔的发展空间,生物质化学工程(专业)方向的建设思路符合当今化工产业的发展趋势。近距离接触学术泰斗,聆听专业领域的前沿进展,极大地激发了学生们的学习兴趣。通过组织高水平学术会议,浙江工业大学营造了培养生物质化学工程人才的良好氛围。

(二)理论与实验课程体系

根据人才培养目标定位,浙江工业大学将生物质化学工程(专业)模块的主干学科确定为化学工程与技术,针对生物质资源加工利用过程的特点,对化工原理、化学反应工程、化工热力学、化学工艺学、化工设计、分离工程和化工过程分析与合成等主干课程的教学内容进行了梳理。此外,增设了生物质化学与工艺学和生物质工程两门专业课程。生物质化学与工艺学重点讲授糖类、淀粉、油脂、纤维素、木质素、甲壳素、蛋白质、氨基酸等生物质的结构、性质、用途,以及加工转化为化工产品的生产工艺。生物质工程从原料工程学、转化过程工程学和产品工程学等角度出发,为学生讲授生物质资源转化利用过程中的工程原理、工程技术和生产实例。化学工程与工艺国家特色专业综合实验室在中央与地方共建高等学校共建专项资金的资助下,为生物质化学工程(专业)方向增设了酯交换法制备生物柴油和生物质热解制备生物原油两个实验,并在积极筹备开设生物柴油品质测定、淀粉基两性天然高分子改性絮凝剂的制备和易降解型纤维素-聚乙烯复合材料的制备等实验。

(三)实习、实践和毕业环节

生物质化学工程模块依托化学工程省级重点学科和生物质能源工程研究中心建设,师资力量雄厚,拥有专职教师14人。其中,正高职称5人,副高职称7人,11人具有博士学位,7人具有海外留学经历。生物质化学工程模块教师的科研成果成功实现产业转化,与企业建立了良好的合作关系。生物质化学工程模块不断加强产学研合作,与宁波杰森绿色能源科技有限公司、温州中科新能源科技有限公司等企业签订了共建大学生创新实践基地的合作协议,设立了企业专项奖助学金,拓展了实习实践渠道;还依托化工过程模拟基地,引入计算机模拟实习、沙盘模拟等方式,丰富了生产实习环节的教学手段。同时,生物质化学工程模块修订完善生产实习教学大纲和教学计划,根据实习厂和仿真软件编写实习手册,强化对实习的质量监控与反馈,建立科学合理的考评体系;增加“内培外引”师资的力量,加快实习指导师资队伍建设;从实习方式、实习内容、考核办法和师资队伍等多个角度出发,确保生产实习教学质量的全面提高,强化学生的工程意识和实践能力,培养学生的创新意识和创新能力。生物质化学工程模块教师承担了国家自然科学基金、浙江省自然科学基金、浙江省科技厅重大招标项目、浙江省科技计划项目和企业委托开发项目数十项。从这些科研和工程开发项目中选取的毕业环节课题,更加贴近科学研究、工程设计或工业生产的实际情况,能够全面检验学生所学的理论知识及其综合运用能力,全方位增强学生结合工程实际,发现问题、分析问题和解决问题的能力,为学生步入工作岗位打下良好基础。依托实践教学平台,从“产品工程”的理念出发,选取若干个恰当的产品,串联实验、课程设计、实习、毕业环节和课外科技活动等教学内容,帮助学生理顺知识体系,建立起绿色化学和节能环保的基本理念。以生物柴油为例,核心反应是酯交换反应,可以采用水力空化等技术强化反应过程;产物需要采用精馏方法分离,生产废水需要采用电渗析等方法加以分离;生产过程中还涉及流体流动和传热等问题;生物柴油这一产品可以将多个实验内容组合成一个有机整体,有效降低实验原料的消耗。教学可以选取其中部分内容作为单元设备设计进行,可以将生物柴油生产车间作为化工设计的教学内容,可以选取部分内容作为学科课外科技项目或毕业环节的研究内容,还可以将生物柴油生产作为创业大赛的竞赛内容。学生可以到生物柴油生产企业进行实习,将工艺革新、过程强化和产品工程融为一体,并通过实验室规模与工业化规模的对比,强化工程意识。

第6篇

摘要:本文从生物化学工程及发展简述、天津现代职业技术学院概况、生物化学工程特色开放获取文献资源建设三个方面,对生物化学工程特色开放获取文献资源建设进行了探讨。

关键词:高职院校图书馆 生物化学工程 特色文献资源 开放获取

一、生物化学工程及发展简述

1.生物化学工程及发展简述

生物化学工程简称生化工程或生物化工,是生物化学反应的工程应用,是应用化学工程的原理和方法,将生物技术的实验室成果经过工艺及工程进行工业开发的学科。它既可视为化学工业的一个分支,又可认为是生物工程的一个组成部分。生化工程是一项重要的化学工业技术,是生物技术产业化的关键,也是化学化工技术的主要前沿领域。生物化学工程和生物医学工程是最初的生物工程学概念,基因重组、发酵工程、细胞工程、生化工程等在21世纪整合而形成了系统生物工程。发展生物经济正在成为许多国家应对金融危机的战略措施。生物技术是我国需求最迫切、技术与国外差距较小的领域之一,我国将把生物技术作为当前科技发展的重点,把生物产业作为新兴产业培育的重点,把生物经济作为引领新经济发展的重点。在我国的“十二五”科技战略规划研究中,生物技术和产业化将是“十二五”布局的重点,突出加强生物技术在农业、工业、人口与健康领域的应用,努力使我国成为生物技术强国和生物产业大国。[1]

2.食品生物技术及发展简述

食品生物技术是生物技术在食品原料生产、加工和制造中应用的一个学科。它包括食品发酵和酿造等最古老的生物技术加工过程,也包括应用现代生物技术改良食品原料加工品质的基因、生产高质量的农产品、制造食品添加剂、植物和动物细胞的培养,以及与食品加工和制造相关的其他生物技术。生物技术在食品工业中的应用以及最新的研究状况表明,食品生物技术作为一项高新技术,将为食品工业的发展起着重要的推动作用。展望21世纪基因食品的发展,未来生物技术不仅有助于实现食品的多样化,而且有助于生产特定需求的营养保健食品。[2]在与环境协调的粮食生产方式方面,生物技术将降低农用化学品的使用量,并使农作物更好地适应特定的自然地理环境。目前人们之所以对于转基因生物技术的发展存在争议(如对人类健康、环境及社会经济的影响等),主要原因在于公众对目前的基因食品管理体系不够信任,科学家与公众也缺乏必要的沟通。因此,政府应采取积极措施,随时公开基因食品的研究成果,以博取信任的方式与公众进行沟通。

3.生物制药技术及发展简述

生物制药技术是指运用微生物学、生物学、医学、生物化学等的研究成果,从生物体、生物组织、细胞、体液等综合利用微生物学、化学、生物化学、生物技术、药学等科学的原理和方法制造的一类用于预防、治疗和诊断的生物药物制品的技术。生物制药现状:生物药物的阵营很庞大,发展也很快。目前全世界的医药品已有一半是生物合成的,特别是合成分子结构复杂的药物时,它不仅比化学合成法简便,而且有更高的经济效益。我国的生物医药“十二五规划”确定了生物医药发展的重点,[3]包括基因药物、蛋白药物、单克隆抗体药物、治疗性疫苗、小分子化学药物等。同时,国家将拿出100多亿元来支持重大新药创制。将从100多个新药中遴选出10多个,作为重大新药创制重点支持对象,这些原创新药可能成为打入欧美市场的先锋。在这些新药品种中,生物药和化学药居多,其中疫苗、单克隆抗体、蛋白质药物、抗癌药物等均有。

二、天津现代职业技术学院概况

天津现代职业技术学院[4]是经天津市人民政府批准,教育部备案的集应用文科、应用理科、工科及艺术学科于一体的公办全日制高等职业技术学院,现有各类在校生6500余人。学院设有管理工程、电子工程、信息工程、生化工程、机械工程、印刷工程、应用外语7个教学系部,开设有会计电算化、电子商务、金融保险;应用电子技术、机电一体化技术、电气自动化技术、电子信息工程技术、低空无人机操控与应用、计算机信息管理、计算机网络技术、软件技术;水环境监测与保护、食品生物技术、食品营养与检测技术、食品加工技术、精细化学品生产技术、环境监测与治理技术、生物技术及应用、生物制药技术;精密机械技术、数控技术、计算机辅助设计与制造;商务英语、涉外旅游;印刷技术、印刷图文信息处理、包装技术与设计、装潢艺术设计、装饰艺术设计、影视动画等30个专业。“食品生物技术”等3个专业被评为市级教学改革试点专业,“食品微生物”、“食品分析与检测技术”等7门课程被评为市级精品课程。在我院的7个教学系部中,生物化学工程类专业占有重要比重,是我院的重点专业组群之一。其中开设的8个相关专业,占到全部专业的26.7%。因此,根据我院生物化学工程类专业教学的需要,学院图书馆建设具有生物化学工程特色的开放存取文

第7篇

“十一五”期间,中央作出了“稳疆兴疆、富民固边”的重大战略部署,明确新疆是西部大开发的重点,特别明确进一步加大对兵团的投入,支持兵团参与新疆油、气、煤炭等优势资源的开发,发挥兵团维稳戍边作用,为加快兵团发展提供了有力的政策支持和动力保障。利用新疆丰富的煤炭、盐和石灰石等资源,在石河子等地建设80至120万吨聚氯乙烯及系列产品基地,在大黄山等地建设120万吨煤焦化生产基地。依托新疆石油化工基地,创造条件参与上游、积极发展中游、大力开发下游石化产品。利用南疆天然气资源,建设以甲醇及下游产品为重点的天然气化工基地。发展精细化工、生物化工,延伸产业链,提高附加值。加大对铜镍等有色金属矿产资源的勘探开发力度,初步形成采、选、冶配套的生产体系。提高钾盐、膨润土和石棉等矿产资源开发利用水平,形成系列产品加工能力。为了跟进本地区化工行业的快速发展,大力培养具有地方特色的化工专业人才具有十分重要的意义。石河子大学化学工程专业是2005年经自治区教育厅批准开设的新专业,该专业依托地区产业煤化工、石油化工、天然气化工等迅猛发展优势,对具有地区特色的化学工程人才培养模式进行了探索与实践,构建了符合地方工科院校实际的、具有地域化工特色的人才培养方案和课程体系,基本形成了“地区优势产业+化工”的专业人才培养模式。

构建具有地域特色的化学工程人才培养方案

人才培养方案是实施人才培养工作的根本性指导文件,是开展各项教学活动的基础,是组织实施教育教学活动的依据,反映了学校人才培养的思想方针和教育理念,对提高人才培养质量具有重要的导向作用。石河子大学化学与化工学院化学工程专业是依托化工原理、传质与分离工程和化学反应工程等重点学科设立的工程类专业,专业人才培养方案分为第一课堂和第二课堂,第一课堂作为培养学生的主渠道,主要培养学生的基本素质,使学生掌握基本知识、基本技能和学习方法,保证培养的基本规格;第二课堂教学作为第一课堂的延伸和拓展,二者相互作用,构成培养体系。方案具有如下特点:

第一,体现国家教育方针,实现工科专业培养目标;

第二,遵循人才培养和学科发展规律,体现学院重点专业的办学特色;

第三,拓宽专业口径,加强基础教育和通识教育;

第四,坚持化学工程科学教育与工程实践训练并重,突出创新意识和实践能力;

第五,培养能把握化工技术发展方向和前沿目标,具有地域特色的化学工程应用型高级专门人才。

凸显化工和生物基础融合的课程体系

课程体系是实现专业培养目标,构建学生知识结构的中心环节,建立适应社会主义市场经济发展需要,体现化工学科内在规律和学校学科特色,科学合理的课程体系极为重要。我校化学工程专业的课程体系分为公共基础课、学科基础课、专业必修课、专业选修课、实践性教学、全校任选课等六大模块。课程体系凸显出化工与生物基础课程的融合。

第一,公共基础课重视人文、法律基础和外语、计算机综合素质培养,以适应现代社会对人才素质的要求。公共基础课包括数学、物理、外语、计算机、法律等。其中计算机、外语教学贯穿人才培养全过程。公共基础课共3分,816学时。

第二,学科基础课以基础化学为平台,凸显化工和生物基础,实现化工理论与地方特色化工生产的有机结合。学科基础课包括数理基础板块、工程技术基础板块、化工基础板块。数理基础板块包括概率论与数理统计、工程力学;工程技术基础板块包括工程制图、机械设计基础、电工与电子基础等;化工基础板块包括无机与分析化学、有机化学、物理化学、化工原理、化学反应工程、分离工程、化工过程模拟等;地方特色的化工板块包括石油加工工艺学、天然气加工工艺技术、煤化工、酶工程、生物反应工程等基础学科。学科基础课共38.5学分,846学时。

第三,专业必修课把握地区特色化工行业科学的发展方向与前沿,强化学生化工工程专业的背景与特色。专业必修课包括微生物工程、催化作用原理、绿色化学、分子生物学,化工分离过程等。专业必修课共38学分,720学时。

第四,专业选修课以地区优势化工产业为依托,形成化学工程与工艺和生物工程两个专业方向,专业选修课包括环境生物技术、高分子化工、聚氯乙烯工艺学、精细化工工艺学、材料化学导论、现代生物技术、环境工程等。专业方向选修课共41.5学分,756学时。

第五,实践性教学强化学生化工学科实验动手能力、实践能力和创新能力。实践性教学共35学分,计划35周完成。

第六,全院任选课要求学生至少选修4个学分72个学时的化学工程专业以外的其他学科课程,以培养综合素质。

完善化工双基础的实践教学和以实习基地为平台的实践环节教学体系

实践教学是巩固理论知识的有效途径,是培养具有创新意识、创新能力的高素质人才的重要环节。现代素质教育要求高等教育通过各种教育实践活动,大力加强学生动手能力、实践能力和创新能力的培养。化学工程是一门实践性极强的科学,实践环节教学体系由实验课程、实习课程、毕业论文(设计)组成。

1.实验课程教学体系

实验课程立足两个方面,即强化化工基础和专业实验学生综合动手能力培养。在化工基础实验方面,以基础化学为平台,强化基础化学实验课程建设,同时,开设化工原理课程设计,加强对学生工程实践能力的训练,使学生具有明显化工知识优势。在化工专业实验方面,增加设计型、综合型及自主实验型教学内容,以加强培养学生的实践能力。通过实验教学对学生进行实验思路、实验技术、实验设计、数据处理、观察能力、分析能力、表达能力的全面训练。

2.实习课程教学体系

实习课程包括化工过程状态仿真模拟实习、CAD上机实习、认识实习、生产实习和毕业实习。由于受条件和经费限制,校内实验室不可能完全满足学生的实习要求,因此必须以校内实践教学基地建设为核心,稳定和扩展校外实践基地,全面提升实习教学质量,提高学生的实践能力和创新能力。现在专业院系已经和新疆天业集团公司、新疆化肥厂、独山子炼油厂等疆内8家化工企业签订了定期实习合约,能够满足学生实践教学的需要。

3.毕业论文(设计)教学体系

毕业论文(设计)是实践性教学环节的重要组成部分,是对学生大学期间学习知识的总结和应用,因此组织好毕业论文(设计)环节对提高学生综合应用所学知识的能力有重要意义。提高大部分学生在校内进行毕业论文(设计)质量的基础上,开展校企共同培养毕业生进行毕业论文(设计)的工作,由校企根据企业生产科研实际选题,进行共同指导。

第8篇

一、能源化学工程专业定位与培养目标

新专业的定位决定了专业以后的发展方向,也决定了师资队伍的配置、实验室建设、课程体系的建立以及学生毕业后的就业等。专业人才培养目标的制定,首先必须在对专业深入分析和了解的基础上,结合国情和学校的条件,考虑专业发展与社会进步对人才的客观、合理的要求。所以本专业定位应以拓宽专业面、培养宽口径的掌握能源化学工程专业知识和技能,具备新产品、新工艺、新设备、新技术研究和开发的基本能力,能从事化石能源(包括石油、煤、天然气)、新能源(包括太阳能、氢能、生物质能等)化工过程工程的研制与开发、装置设计、生产过程的控制以及企业经营管理等方面的工作,具有创新精神和较强工程实践能力的高级应用型人才。

二、能源化学工程专业课程体系的构建

课程体系是否合理、课程内容是否先进直接关系到培养人才的质量。能源化学工程专业是一门内容丰富而又广泛的科学与工程,属交叉学科。专业按照东北石油大学“通识教育+学科专业基础+专业教育+实践教学”四个层面设置课程,构建了厚基础、宽口径、重视学科交叉的课程体系。通识教育主要包括两课、综合基础、外语、计算机、体育、公共艺术及跨学科门类修读课程;学科专业基础主要包括高等数学、大学物理、无机化学、有机化学等学科基础课程以及物理化学、化工原理、化工热力学、化学反应工程、线性代数、分析化学、工程制图等等专业技术基础课程;专业课程主要包括石油加工工程、基本有机化工工艺学、能源化工设计、能源转化催化原理(双语)等课程,同时开设了大量的专业选修课,注重学科交叉,拓展了学生的知识面;实践教学包括实验课程和实践教学环节两个部分,实验含课程实验和专业实验,所有的化学、物理类课程均设置了配套课程实验。

实验中增加了综合性、设计性实验以及创新性的比重。实践教学环节除了实习、实训、课程设计、毕业设计外,还开设了创新实践和科研训练等环节,在实践教学活动期间,学生可灵活选择在企业或校内完成。各教学环节学分分配情况如图1。能源化学工程专业构建的课程体系的特点是:注重各部分之间的系统性与协调性,充分强调理论教学与实践环节并重,基础理论与专业知识并重的原则,力求体现德、智、体、美全面发展。培养的学生既有丰富的基础理论和专业知识,又有较强的实验技能和实验设计能力,并了解所学专业方向的学科前沿及发展趋势。

三、师资队伍建设

没有高水平的师资队伍就无法建设高水平的专业,所以师资队伍是专业建设的根本保障。东北石油大学制定科学合理的人才引进政策,采用各种优惠条件吸引高层次人才来校工作,补充新专业建设所需的专业教师,重点引进高水平的学科专业带头人以及主干课程的专任教师,重视已有人才的培养提高,充分发挥老教师带青年教师的传帮带作用,提高教师队伍的整体水平和素质。目前本专业已有10名教师,全部具有博士学位,2名教授,4名副教授,同时还聘请了企事业单位、科研院所及其他高校等高水平的专业人员担任新专业的兼职教师。已经构建了年龄、职称、学历等结构合理、教学与科研综合水平高的具有发展潜力教师队伍,保证了新专业的建设顺利完成。

以上是针对战略性新兴产业相关的本科能源化学工程专业的学科特点和办学定位,从培养目标确定到课程体系、师资队伍等方面的建设进行了初步的探索与实践。为适应国家经济发展对战略性新兴产业相关人才的迫切需求,下一步我们将进一步创新人才培养模式、完善课程体系,形成科学的人才培养方案,建立科学的管理制度,从而有效地保证人才培养质量,为社会培养具有创新精神和较强实践能力的高素质能源化学工程专门人才。

作者:刘淑芝王宝辉陈彦广陈颖王鉴单位:东北石油大学化学化工学院

第9篇

关键词:化工专业;卓越工程师;实践教学;产学研

作者简介:胡萍(1962-),女,上海人,武汉理工大学化学工程学院,教授;谭淼淼(1989-),女,湖北宜昌人,武汉理工大学化学工程学院硕士研究生。(湖北 武汉 430070)

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)20-0096-02

创新型人才的培养是我国教育改革的核心问题。“卓越工程师教育培养计划”已成为我国高等工程教育改革和创新的突破口。

在美国、英国、加拿大等国家,工科大学毕业生在进入企业前都会进行必要的工程师岗位培训,德国应用科学大学的学生在入学前也需要具备相应的实践经验,其主要原因在于应用科学主要是基于科学实践的。[1]

然而,国内的工程教育仍存在着人才培养模式单一、缺少工程教育环节和实践教学薄弱等问题,大多数学生更愿意从事政策、理论研究而非工程领域的工作等。[2]武汉理工大学化学工程学院在此形势下推出的“卓越工程师产学研合作培养计划”,以社会需求为导向,以实际工程为背景,以工程技术为主线,尽量避免驱动机制不完善、约束机制不健全、调控机制不灵活等问题,[3]对于培养学生“严谨、求实、勤奋、创新”的科学作风,以及他们的团队精神、协调能力和适应环境的能力、实践创新能力有着深远意义。

一、“产学研合作”实践教学的基础

从新制度经济学的角度看,产学研合作实质上是一种交易活动,[4]但它以知识流动为特征。其内在机制是通过多种形式的交易实现大学和企业拥有的异质性知识系统的高效耦合。[5]只有当企业为学生所提供的不仅是参观的基地与基础实习的基地,企业与学校向更深层次的合作发展,且校企双方都具备优良的培养条件时才能保证产学合作的有效性。在此次“卓越工程师培养”计划中,武汉理工大学和相关合作企业具备以下培养基础:

1.良好的学企合作关系

目前“产学研合作(IUC)”的目的是缩小工业生产与学术研究中的差距,[6]因此良好的合作关系是决定差距能否缩小的关键性因素。研究表明,早期合作关系中的信任减少了“产学研合作”中的障碍。[7]化学工程与工艺专业充分利用行业与毕业生的资源优势,与汽车、交通、建筑材料、化工行业建立了长期的产学研合作关系。目前已经在相关企业建立了11个稳定的专业实习基地,2个研究开发基地,包括湖北兴发化工集团股份有限公司、中山大桥化工企业集团有限责任公司、武汉市橡胶工业总公司等15个大中型企业,这些企业为化学工程与工艺专业学生提供了良好的实习条件。

2.良好的校内学习环境

“产学研合作”为知识转化提供了重要渠道,并有力的推动了思维的创新。[8]如果大学已经做好了充足的准备,那么寻求创新的公司就会考虑在急需研究与发展(R&D)的项目中与之合作,否则,他们也会去寻求其他的合作者。[9]为了“卓越工程师培养计划”的实施,学校加大了化工学院在师资和实验设备上的投入。

在聘用教师时,优先评聘具有企业实践经历并且在工程项目设计、发明专利、产学研合作和技术服务等方面有贡献的教师,同时聘用企业工程师以企业教学顾问和企业兼职教师的形式参与教学,确保在4年内每届学生有6门专业课是由具备5年以上企业工程经历的教师主讲,同时学院定期选派专业课教师到相关企业培训,并鼓励专业课教师与企业合作,以此提高教师的实践教学水平,学校每年也加大了对青年教师校级研究经费的投入,使年轻教师尽快成长起来。目前,学院已基本形成了一支学缘结构、年龄结构、职称结构、学历学位结构合理的学术思想活跃的师资队伍。同时,武汉理工大学化学工程学院加大投资力度,改善专业实验和实践教学环境,有效提升专业实验教学手段。在教学中,学生通过教师指导和互动交流,在动手能力、创新思维、扩大视野等方面取得了较好效果,每年参与大学生创新训练计划、开放性实验的学生比例逐年加大,现已达到40%。

3.完善的实验教学体系

武汉理工大学化学工程学院重视实验室管理和实验教学,制订有《校级实验教学示范中心建设立项申请书》和《化学工程系化学工程与工艺专业实验室建设规划》等,按基础训练—综合设计—研究创新三个层次组织实验教学;实验独立设课比例大于90%,初步建立了开放式实验教学质量保障体系、评估制度和实验教学体系;以公共化工基础类实验课程的建设为突破口,初步构建了服务多学科、多专业的化工原理预约开放实验教学平台。

武汉理工大学化学工程学院面向全院二年级以上本科生开设了17门实验课,将实验教学分为三个层次,分别为:化工原理实验和化工原理仿真实验;涉及化学反应工程、化工热力学及分离工程的化工基础实验Ⅱ及化工基础实验Ⅱ仿真实验;涉及化工仪表自动化、化工机械基础及化工专业实验的专业综合实验、化工过程仿真实验及药物合成仿真实验和自主综合技能训练、大学生创新训练计划项目、大学生开放实验项目和教师科研课题(包括基础理论研究、应用基础研究和工程技术研究等)。实验项目设置合理、内容充实、时间到位,综合性、设计性实验课程总数的开设比例达到了100%,为学生提供了良好的实验条件。

二、“产学研合作”实践教学计划的推进

1.“产学研合作”实践教学中企业对学生工程能力的培养

大学推动了基础理论的研究,但它们并不能为企业提供既有的生产技术。在“产学研合作”中,我们所看重的不仅仅是理论知识,而是更注重其在工业上的应用。在“产学研合作”培养模式中,校外实践是培养学生实践能力更为重要的一个环节。

校外实践主要包含工程设计训练、生产实习、岗位实习和毕业设计四个方面。其中,在毕业设计阶段实施“双导师制”,学生直接使用企业实际生产课题或校内导师的项目,学校导师为学生选课、研究性学习提供理论指导,企业导师为学生实践和设计提供了技术指导或现场咨询。如果学生毕业后进入实习企业工作,毕业设计(论文)可以作为学生岗前培训内容。

在校外实践环节中,学生参与产品开发的各个程序,了解从实验室研究阶段、中间实验阶段到工业化阶段生产的各个步骤,在此过程中通过大量的训练,学习如何科学地组织实验,以求能用最少的人力和物力、花费最少的时间,取得尽可能多的结果。

2.“产学研合作”实践教学中学校对学生的培养

(1)本科阶段培养模式。本科阶段按照“3+1”模式进行培养,即3年在校学习,累计1年与企业联合培养。3年学校学习的主要任务是着重进行工科基础教育,1年企业培养的主要任务是进行与实际工程相结合的工程实践,通过直接参与企业的实际生产及工程项目研究学习企业的先进技术、先进设备和先进企业文化,增强大学毕业生对企业的适应能力。

学生完成培养方案规定的各教学环节的学习,修满规定学分,答辩合格,授予工学学士学位。达到见习(初级)化工工程师技术能力要求,获得见习(初级)化工工程师技术资格。

50%的本科毕业生通过保送直接攻读工程硕士。卓越工程师计划实施的全过程实行导师负责制。在企业学习阶段实行“双导师”制,部分工程实践性较强的课程放在企业进行教学,从而确保学生理论知识与实践能力的培养,使学生尽早适应企业环境。

(2)学校对学生实践能力的培养。据调查,实践性较强的专业——经济、企业管理、自然科学、工程和药学较之数学与物理对于知识技术的转移有更高的要求。[10]武汉理工大学化学工程学院为了在学生实践能力的培养中起到引导作用,以化工基础类实验为突破口,进行了一系列的实验教学改革,完善了集化工基础实验—上机实践—化工基础延伸实验—专业实验—研究创新型实验于一体的“大化工”实验教学体系。

主要举措包括:新增化工专业(化学工程方向)实验课,新增二元气液平衡数据测定实验、反应精馏实验、气液鼓泡塔气相特性测定实验、液液传质系数的测定和中空纤维超滤膜分离等实验项目;开发有网络学习的化工原理仿真软件;部分教师将科研课题和科研成果转化为设计性、综合性和研究创新型实验项目,如新编《化工原理综合性、设计性实验》中非均相催化合成氨基甲酸甲酯实验、水滑石的制备及其吸附性能、三颗针中小檗碱的提取与精制和甲醇生产过程模拟分析与集成四个实验项目;完善了“化工原理实验”精品课程和“化学反应工程”精品课程申报网站;建成了“化工原理实验”课程网站。

这些改革旨在提高学生的综合实验技能,为“卓越工程师”计划的推进提供更有效的保障。

3.鼓励学生积极参与研究项目

本着“厚基础、重特色、突出工程实践”的原则,学院积极鼓励本科生参与教师教学和科研工作,以提高他们的研究能力及对本专业的兴趣,自主进行研究。为了达到此目的,武汉理工大学化学工程学院在进行新生教育及讲授专业导论课程时,由各专业负责人向广大学生宣传卓越工程师培养计划,鼓励新生按照卓越工程师培养计划的要求,在进校后尽早选择导师,在与导师协商后便进入实验室参与导师的研究项目,进行基本的研究能力的培养,并大力提倡和鼓励学生参与实验中心的设备自制活动,如制作膜分离和离子交换树脂设备等。这一举措使广大新生在进入大学后能及时调整自己的学习方式,把握学习主动性,锻炼创新思维和实践能力,尽早了解并具备一定的工程应用能力。

在学生进入实验室后,要求他们参与从查资料—写大学生创新项目申请书—查资料—定技术方案—方案实施(包括原料、配方、工艺、性能及原理的研究)—工艺、配方优化—撰写论文—总结到发表研究论文的整个过程;而在企业的培训中,学生又了解了开发产品时从选择研究课题—课题的可行性分析和论证—实验研究—中间试验到性能、质量检测和鉴定的各项操作,这就使得学生在学习过程中既能加深对知识的理解、扩大知识面、培养动手动脑能力及团结协作精神,又可以对实验室研究、工业化生产的技术、管理有一个全面的了解及训练。

三、结语

“卓越工程师”计划旨在探索出有效培养“化工卓越工程师”的实践教学体系;建立一个面向全院化工学生的现代化实践教学公共支撑平台;建立一整套有效的关于实践教学的管理制度和相应的质量管理与评价规范;创立高校与企业联合培养人才的新机制;建立一支工程实践能力强的师资队伍;强化工程能力与创新能力的人才培养模式;完善实习基地与产学研基地并重的校外实践教学平台;建立一套健全的学生及教师考核方式。其成功与否,关键看高校培养出的学生是否能够成长为被企业认可的卓越工程师以及前期的合作能否为后期的发展起到推动作用。国内在这一方面需要进行深入探索。

参考文献:

[1]Douglas M,Ruthven.Chemical Engineering Education:A Personal View[J].Chemical Engineering Science,1996,51(18):3-4.

[2]Xu Kuangdi.Engineering education and technology in a fast-developing China[J].Technology in Society,2008,(30):265-274.

[3]马静.产-学-研合作模式存在的问题及策略探讨[J].西安科技大学学报,2010,30(5):633-636.

[4]柳洲,陈士俊.产学合作的知识耦合机制[J].科学﹒经济﹒社会,

2008,26(2):23-27.

[5]陈仁松,曹勇.产学合作的影响因素分析及其有效性测度——基于武汉市高校授权专利实施数据的实证研究[J].科学学与科学技术管理,2010,31(12):5-10.

[6]Wen-Hsiang Lai.Willingness-to-engage in technology transfer in industry–university collaborations[J].Journal of Business Research,2011,(64):1218-1223.

[7]Johan Bruneel,Pablo D’Este.Investigating the factors that diminish the barriers to university–industry collaboration[J].Research Policy,2010,(39):858-868.

[8]Alessandro MUSCIO, Davide QUAGLIONE.The effects of universities'

proximity to industrial districts on university–industry collaboration[J].China Economic Review,2012,(23):1-12.

第10篇

一、我国化学工程与技术专业学科集群现象

经过调查统计,我国共有100多所高校招有化学工程与技术专业硕士研究生,该专业研究方向过多,一个专业出现87个研究方向。研究方向的划分有的甚至是跨学科的。如化学工程与技术专业是属于工学的,应用化学专业是属于理学,可应用化学居然是化学工程与技术专业的一个研究方向。同属于一个研究方向,研究方向的名称也是多样化的,缺乏统一标准,如安徽大学、南昌大学的绿色化学工程,上海大学就称为绿色化学与工艺。为了解决上述问题,我们请教了化工领域的专家,给这87个研究方向做一个归类,分为9个大的方向(表1)。由表1可以发现我国化学工程与技术专业是存在学科集群现象的,表现在:专业的学科建设,已经不单是化学工程的问题,而涉及到了化学化工研究的所有领域,包括应用化学、环境化工、工业催化、资源与材料工程、新能源技术、生物工程与技术、过程系统工程、油气加工及石油化工等。我国化学工程与技术专业学科集群的力度较大,表现在:各个高校的研究方向基本上都比较多,如清华大学、中国矿业大学、北京工业大学、北京理工大学、华南理工大学、华东理工大学、上海大学等高校,其研究方向都是传统与现代并存,传统化学化工的研究方向所占比例较大,如化学工程,包含的研究方向较多。部分代表21世纪化学化工发展方向的研究方向,在很多学校都受到重视,如资源与材料工程,研究方向也比较多。

二、化学工程与技术专业学科集群的创新及竞争优势

本文选择山西省高校做研究,分析其师资力量情况,以分析化学工程与技术专业集群的创新及竞争优势。山西省作为我国化工3大生产基地,化学化工产业是山西省的支柱产业,化学化工专业是山西省高校、特别是工科院校的学科优势之一。选择山西大学、中北大学、太原理工大学的化学化工学院为样本(见表2),按照前文对学科集群的认识,这些学院都有9个以上相关专业和研究方向,已经形成了一定的学科集群规模。其中论文指该学院教师被SCI、EI、ISTP3大检索刊物收录的论文数。中北大学的数据包含了CA论文。山西大学的数据不包括ISTP论文。专著指该学院教师出版的学术专著数,不包括教材。项目及奖项指该学院教师申请的省部级以上项目、经费及省部级以上奖项。发明专利指:该学院教师申请并且授权的发明专利。3所高校的化学化工学院拥有一定数量的教授和博士生导师,博士学位的教师也占到了较大比例。3所学院教师的科研成果也较为可观,被3大检索刊物收录的论文数量较多,出版了一定数量的专著,申请了一定数量的国家自然科学基金项目。山西大学化学化工学院承担了国家自然科学基金的重大攻关项目,以及“863”项目,甚至获得了国家科技进步奖和国家技术发明奖二等奖各1项。中北大学化学与环境学院承担过“973”项目,获得过国家技术发明二等奖1项,三等奖2项,国防科学技术一等奖2项。中北大学和山西大学还拥有发明专利十几项。从师资力量来看,应该说学科集群让山西省高校化学化工领域的创新取得了一定的成就,使得山西省高校化学化工专业在全国具有了一定的竞争优势和影响力。

三、化学工程与技术专业学科集群的协同创新模式

山西大学至今已与国内20余所高校、科研院所建立了学术交流与合作关系;与日本岩手大学、香港浸会大学等国家和地区的高校及科研单位签订协议,开展交流。在校企合作方面,与山西三维集团股份有限公司、太原钢铁(集团)公司、天脊集团等大型企业,在产品研发、岗位培训等多方面进行了良好的合作。太原理工大学与山西化工研究所建立了山西省化学工程技术中心,还与山西焦化集团公司等6个企业建立了长期稳定的产学研合作关系。中北大学安全工程系与航天一院、航天三院、北京理工大学、南京理工大学、第二炮兵工程学院、西安近代化学研究所等科研机构和相关生产企业进行了卓有成效的科研项目合作。从产学研合作角度来看,三所高校都与国内外相关院校、科研院所和企业建立了良好的产学研合作关系。从企业合作的视角来看,在研发方面,与山西省的产业集群密切相关,合作领域主要为新能源技术、环境化工、生物工程与技术。3所高校的化学工程与技术学科集群与山西省的产业集群具有一定的协同关系,构建了学科集群与产业集群协同创新的模式,围绕着山西省的产业特色,为山西省地方经济服务。

四、我国化学工程与技术专业集群的路径

从以上3所高校的情况来看,基本上已经完成了单个高校某个学科的集群,在3所高校内部相关专业之间建立了学科集群,集群的方式是建立化学化工学院,统筹化学化工各个专业,从多学科、多专业、多研究方向的角度,进行学科集群。关于区域性学科集群,即单个高校与该高校所在地高校、研究所和企业之间的集群,3所高校都作出了一定的努力,也取得了一定的实效。集群的方式是产学研合作,与山西省高校、科研院所和企业建立合作关系,从而服务地方经济。关于跨区域性学科集群,即单个高校与该高校所在地之外高校、研究所和企业之间的集群,中北大学有一定的建树,却没有进一步深入。中北大学之所以能够有一定建树的原因是该校原来是部属院校,与其他部属院校具有一定的合作关系。因此,中北大学的跨区域学科集群,仅仅局限于与兄弟院校的合作,还没有进一步深入到与其他省份企业的合作上。

五、结论

第一,我国高校化学工程与技术专业有87个研究方向,扩散性较强,涉及到了化学化工的各个领域,表明该专业的建设具有学科集群现象,并且已经以建院的形式,完成了单个高校某个学科的集群。第二,学科集群有利于团队建设,从而能够产生一定的创新成果,与产业集群一样,使得高校学科建设具有一定的竞争优势和影响力。第三,学科集群与高校所在地产业集群存在一定的协同关系,也就是说,学科集群首先必须与高校所在地经济发展特色密切相关。只有这样,才能实现产学研结合,服务地方经济。第四,从学科集群的路径来看,单个高校某个学科的集群已经完成,区域性学科集群也具有了一定的规模,跨区域性学科集群还有待于进一步发展。当然,我们相信,在区域性学科集群发展到一定程度后,必然会走向跨区域性学科集群。

第11篇

【关键词】燃料乙醇;化学工程;探究分析

乙醇作为一种燃料,不管是在生产过程中还是在燃烧过程中均不会产生污染物,属于一种清洁能源。早期的乙醇主要是通过淀粉、纤维素等经过长时间的发酵而来,然而燃料酒精由于其需求大,在生产过程中需要大规模的生产,在生产中涉及到一定的化学工程,了解这些化学工程是燃料乙醇生产的关键,同时也是该调整我国能源结构的重点。本文主要就燃料乙醇工艺的化学工程问题分析如下:

一、燃料乙醇发酵分析

1、燃料乙醇发酵的多尺度

燃料遗传在发酵过程中涉及到的工程领域较多,其中包括微生物工程、化学工程以及生物化学工程等,因此在实际的发酵过程中化学反应相对复杂,正是由于其发酵过程中的复杂性,在研究中仅仅从单一的角度去研究与实际要求不符,因此在生产过程中应该注重多尺度问题,也就是说从多个角度对燃料乙醇的发酵过程进行分析,这样才能更加全面的将乙醇复杂的发酵过程显现出来,因此对于燃料酒精发酵的研究应该涉及到生物学以及化学两个重要方面,这样的研究才更加符合实际研究需要。

2、发酵中的动力学与放大

乙醇在发酵前期需要进行相关的准备工作,其中主要与偶乙醇原料的液化以及糖化等,然后在乙醇发酵过程中应该做好相关特性的控制,也就是动力学问题,动力学是乙醇发酵是否可以顺利发酵的基础,其中涉及到两个方面的问题,一个是本征动力学,也就是从早期的原料到发酵微生物固有速率的问题,另外一个就是宏观动力学,这个具体的就是在发酵阶段乙醇的能量传递情况,现阶段对动力学研究应用主要模型是酶催化反应。

3、发酵中的发酵罐多场

在遗传发酵过程中需要一定的设备,发酵罐就是主要设备,由于乙醇发酵的复杂性,同时在发酵中还会受到外界环境温度、湿度等各方面因素的影响。这些因素的影响会造成发酵速度缓慢,影响发酵进程,也就是溢出发酵进程的不同在发酵罐内形成了不同的反应场,不同的反应场对于发酵罐正常的发酵造成影响,最终发酵质量也会造成影响,不过这种发酵场也有有利的一面,那就是工作人员可以在发酵中采取措施进行干预,使发酵质量向更高的程度靠近。

二、燃料乙醇提纯分析

乙醇在经过发酵后在发酵液中实际含有的乙醇含量非常低,据有关资料显示,这种含量通常只能达到5.0%―12.0%,这种低含量的乙醇基本不能满足燃料的需求,所以在发酵结束后通常还需要进行提纯,当然提纯也是乙醇生产中必不可少的,对于乙醇提纯的技术方法较多,应用较为广泛的主要是蒸馏技术,蒸馏提纯乙醇主要是将乙醇中大量的水分排出,当然在具体的提纯中需要多次提纯才能保证乙醇的含量,不过乙醇通过蒸馏能达到的最大含量约为90.0%,因此想要进一步提出就需要采用其它的提纯方法。在实际对乙醇的提纯中通常是先通过蒸馏的方法将乙醇提纯到一定程度,在达到一定含量后可继续使用萃取、吸附等提纯方法进一步提升乙醇的含量,最终达到工业乙醇要求或者实际需要的浓度[1]。

三、发酵与分离的耦合

乙醇在发酵过程中其发酵过程与早期乙醇的发酵过程有较多的相同点,因此其工艺研究内容也是一些基础性的东西。在发酵反应和分离过程中进行的耦合同样是一个复杂过程,因此在技术水平以及操作水平上都应该有严格的要求。

如果通过直接的化学反应就可以得到最终的成品,那么这个过程就是一个简单的反应过程,而在这个反应过程中采用的干预措施、采用的设备等就属于反应工程,在乙醇提纯中采用一定的方法将乙醇中不需要的一些水分或者杂质清除,在这个过程中采用的试剂、设备以及提纯中遇到的实际问题均属于分离工程。因此乙醇发酵与乙醇分离的耦合在理论上是可行的,当然通过实验证明在实践操作中也是可行的。在这方面也有较多的报道,比如有学者将液体的萃取以及发酵过程结合到了一起,在进行连续发酵过程中将油烯基乙醇作为萃取剂,最终结果表明通过这种方法提取的乙醇质量相对于早期的提纯明显提高。也就是说将生物发酵技术可以简单地看成是反应与分离技术的耦合,这样在工业乙醇生产过程中可大大的提高分离效率,促进乙醇含量的提升,当然对于大范围的推广乙醇生产具有重要意义。在乙醇发酵中可以将反应工程学的原理以及分离学工程理论结合起来,然后研究整个耦合过程,这样的研究对于推动整个燃料乙醇的工业生产起着关键性作用,不过当前大多数学者的报道中报道的内容更多的倾向于工艺条件、生物萃取剂以及膜材料等,但是涉及到多场耦合、传递特性等化学工程的研究却很少,这些在一定程度上抑制了燃料乙醇的工艺生产[2]。

在未来乙醇生产中新型发酵设备以及分离设备都需要多场耦合的指导,当然在后期的乙醇发酵中将会实现反应、分离以及其其它多种分离技术设备的耦合,也就是说通过一个连续的设备可实现乙醇发酵到成品,这样的设备不仅提高了生产效率,同时乙醇的质量也会得到明显提高。当然这种设备同样的可加快燃料乙醇作为新型能源的步伐。

结束语

燃料乙醇生产中过多的涉及到流体流动、热量传递以及发酵生化反应等,这个过程是一个复杂的过程,同时也涉及到多学科,因此在燃烧乙醇工艺的化学工程分析中应该从多个角度对其进行研究,在后期较长时间内的研究目标应该集中在生物发酵反应与提纯分离过程的耦合,这样的研究可以推进乙醇工艺生产的发展,有利于尽早的调整我国能源结构,实现环保绿色可持续发展。

参考文献

第12篇

    从广义上说,分离强化首先是对设备的强化,然后是对生产工艺的强化,综合起来说就是只要能将设备变小、将能量转化效率提高的技术都是化工分离技术强化的结果,有利于实现可持续发展,这也是化工分离技术的主要趋势之一.古老的化工分离技术原理:利用沸点的不同,将不同的组分从分离塔里分离出来.随着科技的发展及国内外的分工合作共同研究除了大量新的分离技术,具有广阔的发展前景,但是这些在应用中同样也存在着很多问题,那就是:此项研究对相关分子蒸馏的基础理论探究比较少,没有在理论上充分说明和指导,对设计刮膜式分子蒸馏器也没有深入的研究.随着信息技术的不断进步,分离技术也不断得到改善,取得了长足的进步,逐渐信息技术引入到分离技术的研究与开发上,例如在研究热力学和传递的性质、多相流等方面,这些都是信息技术发生功效的主要分离技术,再如分子模拟大大提高了预测热力学平衡和传递性质的水平.对分子的设计加速了可以加速分离,因此对研究和开发新的高效的分离剂有深远的意义.信息技术的引进有利于新的分离过程的深入,提高工作效率.

    传热过程的一些新的研究进展和方向

    1微细尺度传热学研究进展

    微细尺度是从空间尺度和时间尺度微细的探讨和研究传热学规律,现在在传热学中已经自成一个分支,发展前景广阔.当物体的特征尺寸远大于载体粒子的平均尺寸即连续介质时假定依然会成立,但是由于尺度的微细,原来的假设的影响因素也会相对的发生变化,这就导致了流动和传入规律发生着惟妙惟肖的变化.目前,微米、纳米科学已经取得长足的进步,受到人们的广泛关注,诸多领域都是围绕微细尺度传热学进行研究的.其中高集成度电子设备、微型热管、多空介质流动传热等多项研究都是微热尺度传热学研究取得的丰硕成果.

    2传热设备研究进展

    通过近十年的研究,利用翅片可以达到促进和增强传热的效果

    3强化传热过程的研究进展

    这项研究主要是从改进换热器设备的形式入手,提高传热的效率,并想办法改进设备使其持续对外放热,这种改进包括发明新的传热材料和改进生产工艺,将过去的设计进行优化等方法.

    4传热理论研究进展

    近年来,传热研究者一直都致力于滴状冷凝在工业生产上的应用,但至今仍未能很好的实现,主要问题是如何获得实现滴状冷凝,并且使其冷凝表面寿命延长.改变冷凝界面的性质,将滴状冷凝应用到工业上进行传热改造是传播热学研究的主要热点之一.沸腾的传热方式不仅在机械、动力和石油化工等传统的工业之中广泛使用,而且在航空航天技术等高科技领域也广泛的应用着.长期以来,人们都在对液体发生核态沸腾的原因和具有高换热强度的机理进行着深入的探究.由于沸腾的现象是复杂和多变的,这些都导致了我们不能利用常规的计算方法来计算出沸腾所能传输的热量.到现在为止,加热器表面受到水沸腾时产生的气泡的影响,这一问题是最需要得到解决的,也是研究的重点所在,对沸腾传热进行计算大都采用机理模型,这种方法存在严重的缺陷就是计算的准确率很低,而且需要大量的实验做基础,所以目前应用的范围较窄,目前没有能较准确计算沸腾传热的计算式,因此我们有另辟蹊径,从新的角度来探究和研究问题,从基本理论出发,提出新的理论与计算方法或研究出新的模型,将数学与之相结合计算出沸腾所传出的热量,这将成为今后研究的重中之重.

    5与计算机技术相结合

    计算机技术的进步使化学中大量的计算问题和数据采集分析的问题得到了解决,同时解决了人力物力和财力,也增加了数据的准确度与精确度,主要表现在计算机技术对计算流体力学和数值传热学上的主要贡献,其主要的研究方法是数值模拟法.这种方法的特点是需要大量的数据计算,而且需要大量的实验作为补充,采用计算机进行分析和计算,有利于将数据直观的表现出来,方式更加灵活多变,费用更加低廉,并且得出结论的周期比较短,对于应对此类问题计算机技术是最好的选择.

    化学工程学科未来的发展动态

    1将化工过程与系统过程研究相结合

    化学变化是一个复杂的过程,这是因为性质决定的,其非对称性和不平衡性打破了人们的惯性思维,使其控制因素增多,结构尺度变多,其中结构是对过程工程研究的中心问题,主要解决办法是简化其结构,使复杂的结构变得简单,更具有使用价值;首先研究特殊系统,然后推理出一般性的结论,进而推而广之,这些都为解决结构问题打下了良好的基础,解决了复杂系统不容易被分析的问题,采用整体法和还原法研究复杂的系统有利于把握系统的主要变换方向,多尺度的思考问题的方式可以将过程问题转换成平时的时间和空间问题,对研究化学工程的复杂结构有好处.化学工程的这一转变趋势预示着化学正在向着应用领域进行扩张,更加注重其实用性和价值性,而非学科本身理论的研究.这也在化学课堂上出现了明显的改革,从只有实验和理论两个过程的化学转换成有实验、有计算最后才产生结论的过程,这就需要化学与数学物理等相结合,甚至与计算机技术相结合,进而实现化学过程的更好研究.

    2将化学工程与材料科学研究相结合

    科学的进步使大量新的技术和产品能源不断涌现,并且在先进技术的引导下得到了广泛的应用,这就为化学工程的研究提出了新的问题那就是如何为新的产业的形成和发展提供良好的服务并不断形成新的完整的理论,化学工程的发展就此进入老人一个新的发展阶段.在学科研究的方法上更多的注重学科的交叉,更多的研究材料其中包括信息和化学、生物与化学、能源与化学、环境与化学相结合的工程学科,这些都为化学工程的发展提出了新的发展方向和研究课题,为化学的发展做了良好的铺垫.

    3将化学工程与信息工程研究相结合

    化学工程技术的热点是将化学工程与信息工程研究相结合,随着信息技术的发展,信息技术已经深入各行各业,通过计算机技术可以收集大量信息,并对此进行精细的计算,随着大量的数据的统计和分析,可以得出很多重要的规律和结论,这些规律可以用来作为提高效率和生产效益的理论依据,同时可以预见,将化学工程和材料科学结合起来进行分析必将是化学工程领域的重点研究课题,必将成为引领化学研究的主要方向.