时间:2023-08-21 17:23:06
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇人工智能教育现状,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
人工智能技术及其应用的发展历史虽然只有短短的50余年,但是它作为信息技术的前沿领域,对社会经济和发展的影响却越来越大。在基础教育课程改革的大潮中,许多国家意识到基础教育领域开展人工智能教育的必要性,努力把人工智能列入技术类教育的教学内容中。作为师范类院校,教授人工智能课是有必要的。?
(1)为部分优秀的学生将来做更深入的研究打坚实的基础。在面向知识经济的今天,研究获取、表示和使用知识的人工智能学科越来越受到人们的重视。目前人工智能研究被列为中国高技术领域的重点之一。以专家系统为代表的智能化系统在信息技术中也占有重要地位。因此在高等教育中开展人工智能教育和智能化系统的研发,不仅是计算机科学的应用,也是促进各学科服务于国民经济发展的必然趋势。为使人工智能的理论、方法和技术的研究与应用普及和深入,教育重心必须要下移,即从研究生教育向本科教育普及。开展本科层次人工智能普及教育的有效途径之一是在本科高年级开设相关选修课。开展人工智能教育,不仅能够更好地发挥高等院校的育人和科学研究功能,而且能为学生拓宽专业路径,扩大自主学习空间和发展个性创造条件,同时也为营造一个使学生不仅有宽厚、扎实的理论基础,且具综合分析和解决问题能力的环境。?
(2)为将来从教的学生积聚大量的知识。英国早在1999年,人工智能课程已经作为选修课出现在中学的信息与通讯技术(ICT)课程中。许多中小学还通过机器人竞赛活动来激发中小学生学习人工智能的兴趣,使学生不仅提高了用信息技术解决问题的能力,而且培养了多种思维方式,获得了更多的创新空间。美国现行的中学信息技术课程设置中,将人工智能的内容作为“媒体与技术”层面对12年级学生的要求。澳大利亚的部分中学开设的信息处理与技术课程,人工智能、信息系统、算法和程序设计、社会和伦理道德、计算机系统分别作为5个主题共同构成了该课程的教学内容。在该课程的大纲中规定,人工智能部分的教学内容在高中第3学期为12年级的学生开设,教学时间为10周。?
在我国,多年以来中学奥林匹克信息学竞赛中一直包含有人工智能相关的题目,涉及启发式搜索、博弈、智能程序设计等问题。2003年4月,我国教育部正式颁布《普通高中技术课程标准(实验)》,首次在信息技术科目中设立了“人工智能初步”选修模块,标志着我国高中人工智能课程的正式起步。?
我国的新课程标准颁布后,教育部评审并通过了分别由教育科学出版社、广东高教出版社、地图出版社、上海科技教育出版社和浙江教育出版社出版的5套高中《人工智能初步》教材,并开发了相应的教辅材料,包括教师用书和配套光盘等。为了配合中学人工智能课程的实施,国内也推出了一些适合中学生学习与体验的人工智能软件和网络资源。另一方面,一些高校的本科生、研究生也逐步关注中学人工智能教育的开展并将其作为毕业论文的研究选题。一些师范院校适应形势要求,已为师范生开设了与此相关的选修课程。?
2 人工智能的教育及教学条件现状?
通过对本人多年的教学过程进行总结,我校的《人工智能》课程教育现状可总结为如下几点:?
(1)理论知识充裕。但与实践相脱节,特别是在智能科学技术的教育教学方面。尽管知识面相当广泛,而人工智能理论的普及教育以及智能技术的开发与应用仍然十分滞后。?
(2)同其它普通高等院校一样,在本校,人工智能技术的研究与应用尚未普及,甚至比不上其它院校。这不利于培养学生的科研兴趣及创造精神。?
(3)缺乏配套实验教材,实验教学内容缺乏,无法培养学生的研究能力和创新能力。只有开设实验项目,才能使人工智能的相关知识具有研究性和综合性。?
(4)对中小学智能教育的深度及教学方式、教学特点缺乏研究。做为师范类院校,我认为在对学生进行基础知识教育的基础上,要紧抓中小学智能教育的特点对师范类学生进行相关的教育与培训。?
相对于教育现状,我校的《人工智能》课程教学条件现状要稍好一些,其状态如下:?
(1)教材使用国家级规划教材,此教材非常系统地介绍了人工智能的基本原理、方法和应用技术,适合本科及研究生使用。在我们的授课过程中,也会适当为学生提供相关的国内其他先进教材,如中南大学蔡自兴教授的《人工智能及其应用》等。?
(2)为了促进学生自主学习,我们准备了多种类型的扩充性学习资料,加强学生主动学习的意识,包括:课程相关杂志和书籍目录,以及部分重要的参考文献,与人工智能相关的网络资源如优秀BBS、新闻组、网址等。 它们包括了大量的文献资料、本领域研究的前沿动态等。 使用表明,学生非常乐于查阅这些资源。 使学生能通过使用这些资源进行一些人工智能程序设计,探讨一些问题,在课堂讨论中展示他们的收获。?
(3)校园网的普及与不断优化使本课程有优良的实践性教学环境,能充分满足教学需要。我们拥有较充足的多媒体教室和网络教室,为实现本课程教学提供了物质保障。在网络资源建设方面,全校办公室、教室、学生宿舍和教师宿舍都以宽带网相连,这些硬件设备对本课程教学发挥了重要作用,使本课程教学质量得以明显提高。?
3 人工智能教学方法及手段的改革?
针对我们现在所采取的教学方法,我认为存在许多不足,如教学方式比较单一,教学内容偏重理论讲解等,为此,提出以下教学方法的改革:?
(1)通过多种途径激发学生的学习兴趣。课程的学习效果,直接受到学生兴趣和参与意识的影响。一般来讲,《人工智能》作为一门前沿课程,开始学生学习兴趣很大,当开始接触到抽象理论知识及部分算法时,学生往往感到不易接受。 我们通过各种途径和方法, 激发和培养学生的学习兴趣,包括鼓励学生参与某部分知识的扩充性资料查找,预留一定时间请学生负责对此内容进行讲解,布置学生对某个基本成型的实验进行纠错及验证,降低问题解决的难度。学生因此产生兴趣从而做更深度研究。?
(2)进行启发式教学。 我们可以尝试在教学过程中不断提出问题请学生思考,启发学生求解这些问题,鼓励学生提出自己的猜想和解决方案,然后摆出教材中的解决方案,并与同学所提出的观点进行分析和比较,这足以加强学生学习的主动意识和参与意识,提高学生学习的积极性。?
(3)课堂辩论与交互式教学。 组织课堂辩论,讨论的议题可定位为譬如人工智能是否能超过人类智能等有争议的问题。学生通过对这些问题展开激烈争论,激发了学习潜能,明确了学习目标。当然师生间的交流方式还有很多,如邮件互发、QQ留言等,也可在课程网站中的互动平台进行交流。?
(4)分层次因材施教。 在授课过程中,通过对每个具体学生的学习进度、课堂作业情况进行及时评估,对学生提出进一步的学习建议和指导, 实现个性化的教学。 对优秀学生探讨,可以在教学设计和实验设计中要求其选作部分探索性、创新性的功课和实验,以发挥学生个性优势。对于有意于将来从事中小学教育的学生可以在机器人及人工智能技术发展现状等知识层面对其做问题讲解。而那些看似缺乏兴趣的学生,我们可以用多媒体手段如播放人工智能相关电影及科学小片引起其兴趣,实行逐步引导的教学过程。?
另外,我们可以尝试双语教学。 采用中文教材和讲授的同时,注重在课程中的关键词同时用英文表示,并适当指定英文参考短文和英文参考书。使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。我们也可以在教学内容安排上,注重理论联系实际,将一些人工智能网络上的虚拟实验给学生进行课外上网练习,从而使学生了解算法的具体运行过程, 通过参与达到知识的理解,掌握基本方法和技术。?
根据现有的条件,我们在教学中可以采用多媒体教学和网络课程教学相结合的方法,充分利用多媒体的丰富表现形式,利用网络课程的交互性、情景化等特点,构筑以学生为主体的《人工智能》课程现代教学模式。 对于抽象知识,可通过动画和视频演示,通过声音和图像展示人工智能的历史、人物和前景,做到学生直接而深刻地看到知识的内涵外延。网络课程能较好地实现交互并使学习过程情景化,通过网络课程的课堂练习和章节练习,教师可以评价学生的学习情况,并给学生提出学习建议,从而提高学生的研究力和创新力。我们也可以给学生播放中学《人工智能》课程课堂教学录像,以使学生看到初高中学生的知识范围及深度;同时给学生播放现有的《人工智能》科学成果,让学生看到理论背后的实践;也可以播放科幻片,激发学生想象的翅膀从而有兴趣把人工智能作为将来深造的方向。《人工智能》是一门较新的课程,改进教学方法和手段不仅要靠教师,也应增加硬件设备的投入。如果人工智能能采用智能辅助教学系统或机器人辅助教学过程逼真、形象,一目了然,这样可大大提高学生的学习效率,尤其是提高学生的观察判断能力、发现问题和解决问题的能力。?
4 人工智能实践教学设计的探讨?
我们可以在教学过程中,适量开设一些实验和设计,提高学生的动手能力,并加深他们对理论知识的理解,降低理论的抽象度,提升理论的实用性。在近两年的教学过程中,我们会适量加入一些人工智能语言的教学过程。例如,在讲解了“野人与传教士过河”等问题后,我们可以让学生使用Visual Prolog或者C ?++?对算法进行实现;在讲解 TSP 问题的遗传算法解决案例后,指出编码方案、初始种群大小、进化代数、交叉率变异率等因素对求解结果的影响,并要求学生通过实验的方式来分析、理解这些问题,并提出“寻找更有利的解决方案”等问题。把学生的兴趣激发后,为解决这些问题,学生会在课外主动查阅相关文献、相互讨论以实现他们所设计的方案,这样既培养了学生善于钻研和勇于创新的精神又提高了学生的实践与创新能力。?
参考文献:?
[1] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1).?
[2] 何元烈,汪玲.“Visual C ?++?”在“人工智能”教学中的应用与探讨[J].广东工业大学学报:社会科学版,2008(8).?
关键词:人工智能;教学改革;教学方法
引言
人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。
1、教学现状与问题
作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。
2、管理类人才的人工智能课程教学改进策略
课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。
2.1教学方法改进
教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。
2.2教学内容设置
世界一流大学在人工智能课程内容设置根据不同国家的教育体系设置,肯定会有不同,但颇有共通之处。本文借鉴世界顶尖大学经验,针对管理类专业人工智能课程教学内容进行研究,结合中国教育体系设置,认为应从以下几方面进行改进。(1)核心内容设置为避免学生因为知识点过多而出现杂而不精的问题,势必要精化教学内容。在互联网时代,我们可以使用云计算和其他方式来实现数据信息的传输、存储和处理,通过在线收集和整合网络课程相关数据,挖掘和丰富教学资源,并在整合课程资源的基础上,进行研究方法和前沿知识的扩展。在核心内容设置方面,可以通过收集到的数据资料,选择人工智能领域具有代表性且难易程度适中的知识作为重点,使学生能够在有限的学时内掌握人工智能的知识脉络。例如,编写针对管理类人才的人工智能教材,内容涉及绪论、知识表示与推理、常用算法、机器学习、神经网络等方面的同时,重点增加相应知识点在管理上的应用案例,加强学生对知识点的理解。同时,根据管理类专业偏向领域,开设关联程度较大、应用较广泛的人工智能选修课程,以便学生根据自己的兴趣与需求选修具体方向的课程。(2)注重学生的数理及编程基础良好的数理及编程基础是学习人工智能的前提。只有具备了这些基础,才能搞清楚人工智能模型的数量关系、空间形式和优化过程等,才能将数学语言转化为程序语言,并应用于实验。管理学院人才的数理及编程基础相对薄弱,因此,在安排学生学习人工智能课程之前,建议开设面向全体管理类专业学生的微积分、线性代数、概率论等专业基础数学课程以及C语言、python等编程基础课程,使学生具备数学分析的基础与一定编程基础,为学习人工智能课程打下坚实的基础。另外,可以推进MOOC平台建设,在平台上开设人工智能网络课程,帮助学生掌握人工智能知识基础及专业技能。(3)实验建设为了加强学生对于人工智能知识点间的关联性理解,可以基于不同的应用模块,设计具有前后铺垫、上下关联的综合性实验,设计不同层次的项目要求,同时基于相同的实验课题,让学生分组对实验课题进行攻克,并设置多元化的实验评价体系,通过实验教学过程中反映出的不同进度,让教师能对学生的学习水平做出准确评判,及时进行教学反思,以便更好地开展下一步工作。例如,针对人工智能课程应用中很广的遗传算法,在某一管理规划的具体应用上设置理解-实现-参数分析-具体应用-尝试改进-深度拓展的不同层次的项目要求,在这些项目层次中规定必做项与可选项,让学生基于同一实验课题进行合作学习,然后通过个人自我评价、小组成员互相评价以及教师评价的方式进行打分,对小组整体能力以及个人能力进行综合评估,以期培养学生的自主思考能力。
关键词:智能;智能科学与技术;语义分析;知识体系;课程体系
中图分类号:G642 文献标识码:A
1 引言
“智能科学与技术”专业教育意指将“智能科学与技术的知识体系”传授给本科生或研究生。构建智能科学与技术的知识体系通常有两种途径:(1)经验归纳法,从社会实践和科学研究已经获得的知识集合中选择出若干,认为这些知识应该归属于“智能科学与技术”,且将其结构化与系统化。(2)概念演绎法。追问“智能科学与技术”的确切含义为何,由此联想其涉及的主要方面,概念推演形成的轨迹即是知识体系。两种方法的结论应是一致的。就实际操作而言,前者的主要环节是“选择知识”和“搭建体系”,而“选择什么”和“搭建成何样”就与研究者的偏好相关,常出现观点相左的情形;后者的主要环节是“明确语义”和“语义延伸”,能被称为概念的东西总是成熟的,即已有大量的先前研究,对此人们的分歧较少,而从概念出发的语义延伸又是遵循演绎逻辑的,由此而得的知识体系就易被公认。
本文的研究采用概念演绎法,具体的讨论依层次递进展开,首先明确“智能科学与技术”的中文语义,其次讨论该语义涉及的关键概念之内涵,进而合成这些关键概念的具体内容,继之概括“智能科学与技术的知识体系”,最后设计“智能科学与技术专业教育的课程体系”。
2 “智能科学与技术”的语义
尽管有逻辑上的先后,“科学”与“技术”通常被认为是并列的两种人类文化活动。“智能科学与技术”就应被分为“智能科学”与“智能技术”。
智能是某种行为主体所具有的能力和所表现的行为。这种具有智能的行为主体目前(也许永远)只有两类:生物(其中主要是人类)和机器。若以人类代表生物,智能就有两种表现形态,人类智能(human intelligence)和人工智能(artificial intelligence),后者是对前者的模仿与延展。
科学是为了获得所考察对象的知识体系,技术则是依据某种原理设计制造各种人工系统。由此,“人类智能科学”、“人工智能科学”、“人工智能技术”是无歧义的,而“人类智能技术”就不成立(确切地说,是间接地通过“人工智能技术”的方式表现出来)。
基于上述分析,“智能科学与技术”的语义由三部分构成,“关于人类智能的科学”、“关于人工智能的科学”和“应用人工智能的技术”。根据惯常的教育与研究分工,前者是心理科学领域的重点所在,后二者则是信息科学领域的前沿方向。目前国内所开办的“智能科学与技术”专业教育大多属于理工科本科,其侧重所在自然是“人工智能”。
支撑着“智能科学与技术”及其三部分构成的关键概念是“智能”、“科学”与“技术”,对其进行深入剖析有助于推演出“智能科学与技术的知识体系”。
3 关键概念的剖析
3.1 “智”对应于Intelligence
汉语中的“智”是“知”的后起字,而“知”是“出于口者疾如矢也”,意指认识的事物可以脱口而出。“知”添加了“曰”即为“智”,再清楚不过,“智,知而道出也”。智,就是人们日常口语中的“知道”。
英语中的Intelligence源于拉丁语的动词intellegere,意思是to understand。而intellegere是inter(interl与legere(to choose)的合成词,故它所表达的是“在推理基础上的理解”。
可见,汉语的“智”关注知识(识,知也。《说文》)及其共享;英文的Intelligence则强调知识及其可靠来源。有所差异并不妨碍将不同文化系统中的这两个概念对应起来。
3.2 “智”的派生词
尽管语义十分贴切,却不可将Intelligence直接汉译为“智”。在现代汉语中,单字形式的名词一般不用于表达抽象概念,因为单音节的高频率使用在言语交流中难以通畅顺口。通常都是采用双字形式的名词。“智”需要再添加一字。处理的办法无非两类,同义重复或附加意义。前者生成的是“智慧”,后者得到的是“智能”和“智力”。
智慧之“慧”,一方面与“智”同义(知或谓之慧。《方言》),另一方面又与佛教名词“般若”(Praina)相连,在中国的文化传统中,佛是高深至上的,这样,智慧的真理性就毋庸置疑。作为汉语词汇的“智慧”固定下来之后,除了与英文的Intelligence相对应,还与英文的wisdom(wise“聪明的”+dom“性质或状态”)相一致。更重要的是,wisdom就是希腊语的sophy,由此构成了philosophia(英文philosophy)。“智慧”连接着中国的佛教(与中国哲学相通)和西方的哲学。智慧是哲学层面的。
“智能”和“智力”都是“智的能力”的简称。推敲其中的意味饶是有趣。作为物理学概念的“能”和“力”,二者是一种源流关系,因而在汉语的习惯中,“能”更本质,“力”则外显,暗含着有高下之分。这样,智能有“智能人”、“智能机器”、“智能科学”等,智力则是“智力游戏”、“智力玩具”、“智力商数”等。层次的感觉是明显的。智能和智力是科学层面的。
“智”的派生词最常用的有三个:智慧、智能和智力,它们均可英译为Intelligence,但在汉语中分别属于三个层次,即哲学领域、科学领域(较高层次)和科学领域(较低层次)。
3.3 关键概念的文化比较
将与“智”相关的中文概念和与Intelligence相关的英文概念进行对比,可看出中西方文化的相通与差异,有助于更深刻明晰地理解“智能”的语义。表1是基于英语概念的文化比较。从中可见,“智能”较高于“智力”在西方文化中表现为对现在分词的偏爱。
表2是基于汉语概念的文化比较。英语的Intelligence可以笼统地表示汉语的“智、智慧、智能、智力”。现限定“构建智能科学与技术的知识体系”是一项科学研究(即不考虑“智慧”),再用“智能”作为“智能”和“智力”的统称,这样,“智能”就成为将要继续讨论的唯一概念。
3.4 智能之“能”
前已阐明,智能就是“智的能力”。这种能力究竟为何,学者们曾有过大量的讨论。其中一种通俗简洁的表述 被包含于后者之中。在人工智能中将二者分开,缘于它们的对象不同,前者针对的是自然界,后者则面向人类已有的知识积累。“推理”是生命体存在的基本前提。所以,关于人工智能的科学只有两个分支:机器感知/发现理论(派生于人的认识论)和机器推理理论(基于人脑推理理论的讨论)。
(4)应用人工智能的技术。第3.6节说明,技术就是应用手段、技能和方法设计与制造人工系统。图4模型所示意要设计与制造的人工系统只有专家系统和机器人。所以,应用人工智能的技术主要有两个:专家系统技术和机器人技术。
(5)基于现状的人工智能科学与人工智能技术的内容调整。前面将“机器感知”和“知识发现”归于科学范畴,其根据就是因为它们均是客观存在。然而,现在的“机器感知”还非常简单,对于诸如表情、语气等稍微复杂的客观现象就无能为力:“知识发现”也主要依赖于基于语法的关键词匹配,而对于如何有效地理解语义特别是语用还差得很远。鉴于如此现状,将“机器感知”和“知识发现”归于技术更合适一些。
(6)智能科学与技术的知识体系。集成上述的观点可得图5所示的知识体系。理论是概念、原理的体系(《辞海》),本身就是知识体系。技术包括手段、技能和方法,也是知识或知识指导下的操作。所以,智能科学与技术的知识体系由两个理论和四种技术构成。
图5的表示是粗线条的。正是因为它没有将与“智能”有关的科学理论和技术方法全部罗列出来,才有了一个简洁的框架,以便在此基础上进一步细分和添加,最终形成一个系统的图景。
6 “智能科学与技术”专业教育的课程体系
“智能科学与技术”专业教育的使命就是将图5所示的知识体系教授给本科生或研究生。学校教育总是以课程方式进行的。智能科学与技术的知识体系必须转化为课程体系。基于图5所示模型、兼顾目前大学课程设置的现状、特别是参照国内学者的研究成果和国内率先开办智能科学与技术专业的大学的探索性经验,提出“智能科学与技术专业教育的课程体系”的一种方案,见表3。
如表3所示,“智能科学与技术”专业的课程设置对应于智能科学与技术知识体系的主要内容(见图5),共六门主干课程:
(1)“脑与认知科学”。包括“脑科学”与“认知科学”。
(2)“机器学习”。推理是学习过程中所采用的主要方法,机器学习包含机器推理,在一般意义上可以认为二者同义。目前讲授机器学习的大学课程主要有:“机器学习”、“模式识别”(是实现机器学习的一种方法)、“计算智能”。后者包括“模糊计算”、“神经计算”、“进化计算”,讲授一些具有前沿性的理论与方法。
(3)“机器感知”。包括“机器视觉”模仿人类的视觉、“计算机语音技术”模仿人类的听觉、“自然语言理解”模仿人类对语言与文字的理解。
(4)“知识发现”。包括“信息检索”和“数据挖掘”,前者在数据库中进行关键字匹配、在万维网上进行关键字匹配、在语义网上进行语义匹配以获取所需要的信息,后者将信息组织到数据仓库中以便寻求信息之间的规律性关联即获得知识。
(5)“专家系统”。该课程所讲授的内容包括管理信息系统、专家系统、决策支持系统、多Agent系统。它们是人工智能为人类提供的实用型信息产品。
(6)“机器人”。利用机器来获得身心的解放与扩展是人类的梦想和永远的追求。拟人机器的设计与制造涉及诸多学科,在大学的专业教育中只能讲授一些基础概念。
可以将整个“智能科学与技术的知识体系”看作是一个对知识进行“输入一加工一输出”的结构。由表3可见,与知识输入有关的是“机器感知技术”和“知识发现技术”;与知识加工有关的是“脑科学理论”和“机器推理理论”;与知识输出有关的是“专家系统技术”和“机器人技术”。在智能科学与技术学科中,分工专门研究知识输入、知识加工、知识输出,就构成了其三个主要的研究方向:知识处理、智能理论与方法、智能系统与应用(如表3所示)。
7 结论
(1)智能科学与技术是人类智能科学、人工智能科学和人工智能技术的总称。技术的标志是用于设计与制造人工系统,因而“人类智能技术”并不直接存在。
(2)“智能”是“智的能力”的统称。中文的“智”之本义是“知而道出”,与英文的Intelligence(本义“推理基础上的理解”)尽管侧重不同,仍被认为语义相等。现代汉语不习惯单字形式的概念,“智”便有了三个常用派生名词“智慧”、“智能”和“智力”。前者属于哲学概念:后二者属于科学对象,是“智的能力”的两种不同简称,亦有层次高下之分。在科学领域,“智能”通常涵盖“智能”和“智力”。
(3)智能科学是指,认知智能事实、归纳智能规律、总结智能理论。
(4)智能技术是指,设计与制造人工智能系统的手段、技能和方法。
(5)智能(intelligence)应该是“能智”。即能知、能日、能推理、能理解、能应用。
(6)智能是以知识为主线的三个环节的序贯过程。智能表现为知识在知识获取、知识推理、知识应用三类活动中的定向流动和逐级提升。
(7)智能首先遇到的问题是知识表示。人类智能的知识表示是在文化传承中自然实现的,而人工智能的知识表示则依赖于专门的人为规定。这样,智能的内容就有四个部分:知识表示、知识获取、知识推理、知识应用。
(8)智能最简明最本质的定义是:知识+推理。人类智能的特征是,知识用自然语言表示、推理在人脑中进行;人工智能的特征是,知识用机器语言表示、推理用机器实现。
(9)人类智能的内容主要有五个:感官感知、信息检索、人脑推理、实际问题解决方案、实际问题解决方案的执行。
(10)人工智能是对人类智能的模仿与延伸,其主要内容也相应有五个:机器感知、知识发现、机器推理、专家系统、机器人。
(11)智能科学与技术的知识体系由两个理论和四种技术构成。智能科学与技术的知识体系涉及关于人类智能的科学、关于人工智能的科学、应用人工智能的技术,具体有脑科学理论、机器推理理论、机器感知技术、知识发现技术、专家系统技术、机器人技术。
关键词:人工智能;本科高年级教学;教学改革
中图分类号:G642 文献标识码:B
1 引言
人工智能是计算机科学与技术学科类各专业重要的基础课程,在信息类相关的许多高年级本科和研究生都开设了人工智能课程。人工智能是一门前沿性的学科,它主要研究计算机实现智能的基本原理和基本方法,同时人工智能也是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域。广义的人工智能涵盖了模式识别、机器学习、数据挖掘、计算智能、神经网络、统计学习理论等众多研究方向。人工智能作为计算机学科的重要分支,已成为人类在信息社会和网络经济时代所必须具备的一项核心技术,并将在未来发挥更大的作用。
由于人工智能课程的学习难度较大,内容更新比较快,也繁多,使得教学有一定的难度。特别是针对本科高年级的人工智能教学,由于本科生的研究意识相对较弱,而人工智能比较强调科研性,所以如何教好本科高年级的人工智能课程是一项非常具有挑战性的任务。
本文通过分析本科高年级的教学特点和人工智能课程的自身特点,在如何提高教学质量这一问题上提出了几点思考。
2 本科高年级的教学特点
中国的本科教育,由于历史和经济发展水平等诸多原因,目前的定位还是培养某方面专业人才的专才教育。本科高年级学生在完成了低年级公共基础课程和部分专业基础课程的学习之后,迫切希望了解本专业的应用领域和发展前景,所以在教学过程中要注意内容的应用性和专业性。另一方面,本科高年级学生也是研究生教育的储备人才,在教学过程中要适时的进行科研引导,这样能够让毕业生保持对科学的兴趣,从而为研究生阶段进一步深入研究打下基础。本科生一般于4年级的10月份开始着手毕业设计,在本科高年级的教学过程中还要注意与毕业设计的内容相结合,这样可以让学生提前做好准备,选择适合自己的方向。
3 人工智能课程的学科特点
与信息类其它专业课程相比,人工智能具有应用性、研究性和发展性三个重要学科特点。首先,人工智能是一门应用性很强的学科。人工智能学科的主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。人工智能技术广泛应用于模式识别、数据挖掘、智能控制、信息检索、智能机器人等领域,在日常生活中,随处可见人工智能技术的应用实例;其次,人工智能技术具有很强的研究价值,是计算机科学领域中重要的研究方向。技术进步无止境,研究者们不断追求开发出效率更高、更智能的人工智能技术:最后,人工智能是一门正在发展中的学科。随着信息化、计算机网络和Internet技术的发展,人类已步入信息社会和网络经济的时代,它们为人工智能提出了许多新的研究目标和研究课题,人工智能的应用领域以及技术算法都在不断发展。
4 人工智能教学的三点思考及对策
4.1 注重应用性和介绍性
在教学实践中,笔者发现,本科高年级学生一般比较关心各种人工智能技术的应用领域和使用方法,而对基础性理论和技术细节不是很感兴趣。他们一方面希望能学到很多较新和较实用的人工智能算法,并且最好可以看到使用效果;另一方面又希望老师的教学主要停留在介绍性层面,不想花太多时间在复杂的理论理解上。这也比较符合本科高年级的教学特点,本科阶段主要是培养具备较强应用性和基础科研素质的专业人才。传统的人工智能教学主要讲授知识表示和搜索推理技术,大部分实例都是解答式或推证式的。由于其知识的抽象性,又加之其应用实例较少,所以往往教师感觉难讲,学生在学习过程中也感觉乏味,对讲授的内容大多都是死记其方法和步骤,因此影响了教学效果。针对这一问题,笔者认为,在设计人工智能教学时,要注重内容的新颖性、实用性和介绍性。除了讲授那些仍然有用的和有效的基本原理和方法之外,要着重介绍一些新的和正在研究的人工智能方法和技术,特别是近期发展起来的方法和技术,如支持向量机、决策树、模糊集、遗传算法、蚁群算法等。这些内容的理论部分可以不必过分深究,教学重点主要放在介绍每种技术的产生背景、发展状况、应用领域和具体实现上。此外,要注意理论与实际应用密切结合,在教学过程中加入一些与课程内容结合的、可以用计算机实现的实际应用内容。考虑到目前应用最广泛的人工智能领域之一是模式识别,而研究模式识别的主要计算机工具是Matlab,所以笔者在教学过程中以手写数字识别作为教学实例,针对所介绍的每一种人工智能技术,都将其应用于手写数字识别当中,并讲解了这些技术的Matlab实现方法。学生在掌握了基本理论之后,可以按照实现步骤的指导,立刻上机见到算法的实际效果,加深对算法实现思路和方法的认识。
4.2 注重科研引导性
本科教学不仅要培养学生的应用能力,还要培养学生具备基本的科研素质。本科教育一方面为社会培养了大批应用型人才,另一方面也要为我国的科研事业培养后备力量。特别是近几年来我国对科研的投入不断增加,研究生招生规模逐年增大,本科高年级学生打算继续读研的也不在少数。而人工智能是计算机相关学科非常活跃的研究课题,其涵盖的分支非常广泛,如模式识别、机器学习、数据挖掘、计算智能、统计学习理论等,都是目前国际和国内热门的研究方向。针对这一特点,在本科高年级的人工智能教学中,还要注意对学生适时适度的科研引导。这样可以激发学生的研究兴趣,树立目标意识,找准研究方向,为未来的科研工作打下基础。在教学过程中,可以引导学生思考每种人工智能技术的优点是什么?缺点是什么?有没有改进的办法?比如BP神经网络是计算智能中较为成熟的技术,具有强大的非线性学习能力,在模式识别、经济数据分析、生物信息学、数据挖掘等众多领域都取得过成功应用。然而BP神经网络算法自身也存在着一些缺点,如会有局部最小解、解受初值影响较大、理论解释不完善等。近十年来,研究者逐渐把目光转移到另一种新的非线性学习工具――支持向量机上。同神经网络相比,支持向量机具有泛化能力强、不受局部最小问题困扰、理论背景完善等显著优点。在给学生讲解BP神经网络算法的时候,一方面可以通过手写数字识别实验展示其强大的非线性分类能力,另一方面也要告诉学生,BP神经网络并不是完美的,其缺点同样明显。然后引导学生对这些问题进行思考,讨论有没有更好的解决办法。此时,顺势引出支持向量机的内容,并且介绍支持向量机的研究现状和研究方向。通过两者的对比,学生不但了解到了较新的人工智能技术,又对人工智能研究中如何去发现问题、解决问题、人工智能技术的进化历程有了直观的印象。
4.3 教学内容与毕业设计相结合
本科毕业设计是对本科生用所学知识来解决实际问题和进行专业研究能力的检验,是本科高年级学生将要面临的一项重要任务。由于人工智能学科具有应用性和科研性的特点,人脸识别、网页检索、经济预测、基因数据处理等应用领域都离不开人工智能技术,所以人工智能方向为学生提供了丰富的毕业设计选题。针对这一特点,在本科高年级的人工智能教学中,可以适当穿插介绍有关毕业设计的内容。告诉学生哪些应用领域是目前人工智能研究的热点方向,哪些人工智能技术可以用来解决这些问题。通过向学生介绍具有一定应用价值和研究意义的题目,然后引导他们查找阅读相关技术文献,分析问题,解决问题,最后编写代码和撰写论文。比如笔者给学生提供的选题包括:(1)基于支持向量机的上市公司信用评价;(2)正则化回归在股票预测中的应用;(3)基于肤色的人脸检测;(4)基于内容的网页图像检索等。这些题目应用性强,具有一定科研深度但是难度又不至于太大,学生选择这些题目的积极性很高。通过将教学内容与毕业设计相结合,不但加深了学生对课程的理解,又使其找到了合适的毕业设计题目,可谓一举两得。
关键词:人工智能;全英文教学;教学内容改革;教学模式改革
1 实施全英文教学的必要性
随着国际学术交流的日益活跃以及国际化办学的趋势发展,借鉴国外著名大学的办学理念和管理模式,利用世界优质教育资源,提升教育教学水平,造就具有国际竞争能力的复合型创新人才,正成为我国教育改革与发展的新方向。
智能化是人类社会技术发展的必然趋势。作为计算机科学与技术专业课程体系中的核心课程之一,人工智能的地位正随着该学科的不断发展和其技术的广泛应用迅速提高,而且在非计算机领域,具有不同专业背景的学者也通过这个年轻的领域发现新思想和新方法。由于人工智能课程内容涉及计算机科学以及边缘学科的新理论、新方法与新技术,因此在该课程中开展全英文教学不仅可以让学生充分了解人工智能日新月异的发展,还可以促进本科教学与国际接轨,在培养国际化创新人才方面具有十分积极的现实意义。
2 当前国内全英文教学存在的主要问题
笔者对当前国内高校人工智能课程全英文教学的现状进行调查分析,调查对象为软件工程专业本科三年级学生,调研问卷共58份。调查项目、内容及结果见表1。
从项目1和2的调查结果看,大部分学生认为开展全英文教学有必要,其在提高英语应用能力、增强自己的就业竞争力以及了解国际前沿等方面有很大帮助。然而,由于全英语教学在我国尚处于起步阶段,进行全英语教学的效果并不十分理想,其教学试点与实践尚存在一些亟待解决的问题,主要表现在如下几个方面。
(1)对全英文教学的理解存在偏差。从项目3~5的调查结果看,教师不能正确处理好全英文教学与专业英语课教学的关系,使全英文教学变为纯英语课教学或专业英语课的翻版。大部分学生还是希望教学授课语言以双语为主或以中文为主、英文为辅,多媒体课件形式为中英文相结合。
(2)全英文教学达不到预期的教学效果。从项目6和7的调查结果看,虽然一些大学花了很大代价邀请国外一流教授专家讲授课程,但由于人工智能课程理论性强、难度大,学生很难适应全英文课程教学。
(3)缺乏内容全面和难度适中的教材。从项目8和9的调查结果看,一些大学在实施人工智能课程全英语教学时直接引进原版英文教材,但这对本科生来说,原版英文教材内容偏多、难度较大,学生学习时不免有诸多畏难情绪。
(4)师资匮乏。从项目10的调查结果看,学生对承担全英文教学教师的满意程度普遍不高。实际上,全英文教学对承担课程教学的教师要求很高,他们不仅需要具备专业知识,而且还要掌握英语应用技能,而现阶段国内高校中能承担全英语教学的师资仍然十分匮乏。
综上所述,如何改革全英文教学模式,讲授哪些教学内容,采用何种科学的教学方法与手段,是值得我们思考和关注的教学改革重点和难点。
针对以上这些问题,我们深入研究人工智能课程的特点,对现有教学模式、内容及方法进行全方位探索和改革,制订全英文教学计划,对促进教学工作、提高教学质量、培养国际创新型人才起重要作用,其重要意义具体体现在以下3个方面。
(1)探索如何将理论知识传授、综合能力培养与英语交流运用三者有机结合,建立全英文教学的新型模式,这将对更新教学理念和探索适合于计算机软件人才培养的教学方法产生深远影响。
(2)全英文课程教学能够让学生掌握最先进的人工智能国际前沿技术,开阔国际视野,有利于培养复合型、实用型、具有国际竞争力的高层次创新人才。
(3)全英文教学改革的探索与实践能够促进国内教育向国际教育迈进。
3 全英文教学内容改革
建立完善的全英语教学体系,需要有系统而完整的教学内容。我国计算机科学与技术本科专业人工智能课程课时一般只有36学时,因此我们需要考虑从什么角度组织教学内容,才能让学生比较容易地理解、熟悉和掌握人工智能的原理、方法与技术,从而显著提高教学效果。
与国内教学内容相比,国外教学更注重分析问题的思维方法和解决问题的应用能力,对提高学生的学习兴趣以及培养学生的创新能力十分有益,但是原版内容过多,且大多以国外政治、经济、文化、社会和生活为背景,对于我国学生来说,理解某些内容和背景比较困难。因此直接套用原版教学内容往往存在一定问题,我们需要在引进、消化和吸收国外经典教材内容的基础上,有选择性地挑选合适内容。国外经典教材编写思路不尽相同,一些经典人工智能教材及主要内容见表2。
人工智能的基本思想和主要内容是研究人类智能活动规律和用于模拟人类某些智能行为的基本理论、方法和技术。从表2中可以看出它们的共同点,即人工智能应围绕“智能”这个核心,但由于智能本身非常复杂,难以用单一的理论与方法描述,需要从不同的抽象层次刻画智能这个主题。我们认为,人工智能的主要内容可按图1所示划分为不同层次并确定讲授顺序。
在最底层,神经网络与演化计算(适应性原理与仿生机制等)辅助感知以及与物理世界的交互;抽象层反映知识在智能中的角色和创建以及围绕问题求解的知识的抽象、表示和理解;更高层则提出学习、规划、推理的模型和方式;应用层构造智能化智能体以及具有一定智能的人工系统,让计算机实现以往需要人的智力才能完成的工作。除了将人工智能课程的教学内容划分为这4个层次,为保证教学内容的循序渐进性,还可按照抽象层更高层最底层应用层顺序安排教学内容。
4 全英文教学模式改革的实施关键
针对以上国内全英文教学中存在的主要问题,我们提出人工智能课程全英文教学模式改革的实施关键,包括全英文课堂教学模式的重定位,“二三二”模式教学方法的改革,集先进性、前沿性和实用性为一体的教学内容创新以及全专业英语教学团队的打造。
4.1 全英文课堂教学模式的重定位
人工智能课程教学以培养学生掌握专业基础知识、培养实践动手与应用能力以及提高英语交流水平三者相结合为主要目标,分两个阶段进行,国内教师与国外教师共同授课。首先,国内主讲教师讲授人工智能课程的基础原理、模型和方法,可采用集中授课、案例教学和课堂实践等教学方式,使学生掌握人工智能的一般基础知识;在此基础上,再邀请国际知名外籍教师为学生讲授人工智能国际前沿技术,包括集中授课和专题研讨。经过基础学习,学生一般已掌握人工智能基础知识,因此对于外籍教师所讲授的学科前沿等内容能够准确理解和把握。与单纯采用全英文教学或单纯邀请外籍教师授课相比,该模式能收到较好的预期效果。“1+1”全英文双课堂教学模式如图2所示。
4.2 “二三二”模式教学方法的改革
实行全英语教学后,由于使用英文教材及中外教育背景存在差异等因素,我们在教学过程中对教学方法进行一定程度的调整和改进,包括全英文授课形式、案例教学、教学内容以及教学手段等方面;配合“1+1”全英文双课堂教学模式,提出图3所示的“二三二”模式教学方法,培养学生成为具有综合能力、创新能力、国际视野和英语技能的复合型人才。
该教学方法模式包括:(1)过渡式全英文与沉浸式全英语两大英语教学方式;(2)激励自主式、启发互动式、体验学习式三大学习法,激发学生学习兴趣,使学生牢固掌握人工智能基础理论与方法;(3)参与学习式和自我展示式两大学习法,培养学生综合运用知识的能力和创新能力。
在全英文课堂授课过程中,我们需要注重把握英语与专业的比例。首先,不能一味地追求全英文授课的形式而忽视教学效果;其次,还需要为学生提供一个良好的语言学习环境,在实际教学中注重培养学生良好的英语思维习惯,从根本上提高学生的英语水平。
人工智能课程包含大量概念,内容抽象,算法复杂,学生往往难以理解与掌握。将案例教学方法引入课程教学能有效提高学生的学习兴趣,获得较好的预期教学效果,但要达到理想的教学目标,仅仅靠课堂教学远远不够,还需要拓展第二课堂。有计划地邀请国外人工智能专家和教授到大学进行专题讲座,鼓励学生参加相关的课外科研/科技活动,使得学生能够体验式地、自主地学习,更好地了解人工智能新技术,从而进一步激发学生的学习热情。构建案例教学和课堂实践的双课堂教学模式,不仅能够丰富教学内涵,而且可以充实学科前沿知识并拓宽学生的国际视野。
4.3 集先进性、前沿性和实用性为一体的教学内容创新
除了引进、消化和吸收国外经典教材内容以外,我们还需要逐步建立起具有自身特色的教学内容,以保证教学内容集先进性、前沿性和实用性为一体。
(1)先进性。我们提出教学与科研相结合,以科研带动教学发展的新思路。教师可结合自己的人工智能及其相关领域的科研项目,将科研最新研究成果以及学科前沿知识进行梳理与优化并有机融入课程教学中,确保教学内容的先进性,有效提高教学改革的质量。
(2)前沿性。对人工智能发展较快的领域,如智能计算、数据挖掘等,还需更新和补充全英文教学内容,同时可以邀请国际知名大学教授共同研究与探讨教学内容,保证课程内容具有一定的前沿性,通过实现全英语教学保证课程与国际接轨。
(3)实用性。在讲授基础理论知识的基础上,还应注重实践的应用,增强学生的动手操作能力,以符合素质教育必须注重实践的要求。教师可结合教学中的基本理论知识,适当补充案例与实例,使得教学内容与实际相联系,丰富课程内涵并提高教学效果。
4.4 全专业英语教学团队的打造
师资力量直接影响教学效果。师资的匮乏是现阶段全英语教学面临的主要问题之一。虽然一些教师具有较扎实的人工智能学科功底,但不能熟练地运用英语进行授课,而有些教师则知识结构单一,缺少人工智能及其相关学科间的交叉与融合,因此我们需要多渠道、多层次地打造既具备专业知识,又具有学科交叉与融合能力,同时掌握英语技能的全英语教师队伍。将科研与教学相结合,利用与国外人工智能及相关领域学术带头人建立的合作关系优势加强交流与合作,争取申请国际合作科研项目,利用科研提高教师的教学质量、专业水平和英语技能。
5 全英文教学的具体实施
我们在软件工程专业本科三年级学生的人工智能课堂上实施全英文教学,具体实施过程如下。
(1)国际软件学院成立教学主管部门领导小组、从事教学研究的骨干教师组成的全英文教学工作小组以及由教学督导组成的监管小组,三者之间相互配合并共同促进,保障全英文教学工作的顺利推进与落实。领导小组对全英文教学的师资培训、人才引进、多媒体网络资源开发、实验室建设、教材编写等予以政策支持;教学工作小组制订全英文教学工作规划和年度计划;监管小组定期对工作小组的教学完成情况进行评估。
(2)在课程教学中,打破国内常规教学方式,建立开放式全英文教学模式,教学形式多种多样。教学方式以“1+1”双课堂教学模式为核心,以讲授与专题讨论相结合的方式,围绕基本原理、方法与技术展开教学,激发学生自主学习与创新学习的热情。
(3)国际软件学院在人工智能相关领域承担并完成了一批国家与省部级科研课题,而且取得了一些有影响的研究成果,形成了自己的学科特色和优势。2006年,国际软件学院聘请被誉为世界“人工大脑”领域先驱的美国犹他州州立大学计算机系Hugo de Gaffs教授担任武汉大学全职教授和学院国际人工智能研究室主任。
(4)聘请与国际软件学院有合作协议的国立首尔大学计算机科学与工程学院Bob McKay教授专职来校为本科生讲授人工智能技术前沿。同时,利用国外学者来武汉大学顺访的机会,请其为学生作学术报告,使学生了解国际最新人工智能技术,如邀请曾经在麻省理工学院从事过7年博士后研究的宋森研究员进行“理解大脑与仿制大脑”的讲座等。
(5)国际软件学院在遴选教师到与学院有教学和科研合作的国外大学进修时,优先考虑给本科生授课的全英文教师,并将全英文教学能力作为选拔条件,以教师的学术进修带动全英文教学建设,使学科和专业建设与全英语教学队伍打造相结合,全面推进全英语教学工作的开展。
6 结语
人工智能是计算机科学与技术专业的重要课程,目前正面临着知识更新和教学改革的紧迫任务。笔者以实施全英文教学为契机,针对目前国内全英文教学中存在的亟待解决的主要问题,提出人工智能全英文教学内容与教学模式改革的新思路。
(1)以智能为核心,从不同抽象层次刻画智能主题,构造人工智能最底层、抽象层、更高层以及应用层4大模块内容。
(2)突破传统教学模式,对全英文教学模式进行重定位,提出“1+1”全英文双课堂教学模式。
(3)提出“二三二”模式教学方法的改革方案,培养具有综合能力、创新能力、国际视野、英语技能的复合型人才。
(4)提出教学与科研相结合,以科研带动教学发展的新思路,进行集先进性、前沿性和实用性为一体的教学内容创新。
对于中国而言,人工智能的发展更是一个历史性的战略机遇,对于缓解未来人口老龄化压力、应对可持续发展挑战、以及促进经济结构转型升级至关重要。
那么目前,人工智能在中国的发展条件如何,中国距离成为真正的人工智能强国还有多远?7月13日,《中国人工智能发展报告2018》在清华大学主楼接待厅。
报 告中称,目前中国人工智能的发展已经具备非常优越的条件,然而要成为真正的人工智能强国,中国还任重道远。中国在论文总量和高被引论文数量上都排在世界第 一,但中国在人才总量,以及杰出人才占比偏低。在产业上,中国的人工智能企业数量排在全球第二,不过,中国人工智能领域的投融资占到了全球的60%,成为全球最“吸金”的国家。
报 告指出,中国必须加强基础研究,优化科研环境,培养和吸引顶尖的人才,在人工智能的新基础领域实现突破,保证人工智能发展的根基稳固。同时,要大力鼓励产 学研合作,让企业成为人工智能创新的主导力量。积极参与到人工智能全球治理机制的构建中,在人工智能未来的技术发展、风险防范、道理伦理规范制定等领域发 挥中国独特的作用。
这份报告由清华大学中国科技政策研究中心、清华公共管理学院政府文献中心、北京赛时科技有限公司、科睿唯安、中国信息通信研究院和北京字节跳动科技有限公司联合。
论文总量世界第一,杰出人才占比偏低
报告中称,在论文产出上,中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从1997年4.26%增长至2017年的27.68%,遥遥领先其他国家。
高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现十分出众。
不仅如此,中国的高被引论文呈现出快速增长的趋势,并在2013年超过美国成为世界第一。
但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球20。
从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文中国通过国际合作而发表的占比高达42.64%。
专利申请上中国专利数量略微领先美国和日本。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,三国占全球总体专利公开数量的74%。
全球专利申请主要集中在语音识别、图像识别、机器人、以及机器学习等细分方向。中国人工智能专利持有数量前30名的机构中,科研院所与大学和企业的表现相当,技术发明数量分别占比52%和48%。
企业中的主要专利权人表现差异巨大,但中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。
中国的专利技术领域集中在数据处理系统和数字信息传输等,其中图像处理分析的相关专利占总发明件数的16%。电力工程也已成为中国人工智能专利布局的重要领域。
虽然在论文总量和高被引用论文数量上中国排名领先,但在人才投入上,中国表现并不突出。
根据该报告,截至2017年,中国的人工智能人才拥有量达到18232人,占世界总量8.9%,仅次于美国(13.9%)。高校和科研机构是人工智能人才的主要载体,清华大学和中国科学院系统成为全球国际人工智能人才投入量最大的机构。
然而,按高H因子衡量的中国杰出人才只有977人,不及美国的五分之一,排名世界第六。企业人才投入量相对较少,高强度人才投入的企业集中在美国,中国仅有华为">华为一家企业进入全球前20。
中国人工智能人才集中在东部和中部,但个别西部城市如西安和成都也表现十分突出。国际人工智能人才集中在机器学习、数据挖掘和模式识别等领域,而中国的人工智能人才研究领域比较分散。
中国人工智能企业数量全球第二,但投融资规模最大
报告称,中国人工智能企业数量从2012年开始迅速增长,截至2018年6月,中国人工智能企业数量已达到1011家,位列世界第二,但与美国的差距还非常明显(2028家)。
中国人工智能企业高度集中在北京、上海和广东。在全球人工智能企业最多的20个城市中,北京以395家企业位列第一,上海、深圳和杭州也名列其中。中国人工智能企业应用技术分布主要集中在语音、视觉和自然语言处理这三个技术,而基础硬件的占比很小。
风险投资上,从2013到2018年第一季,中国人工智能领域的投融资占到全球的60%,成为全球最“吸金”的国家。但从投融资笔数来看,美国仍是人工智能领域创投最为活跃的国家。
在国内,北京的融资金额和融资笔数都遥遥领先其他地区,上海和广东的人工智能投资也很活跃。从2014年开始,国内人工智能投融资活动的早期投资的占比逐渐下降,投资活动日趋理性,但A轮融资还是占主导地位。
中 国人工智能市场增长迅速,计算机视觉市场规模最大。2017年中国人工智能市场规模达到237亿元,同比增长67%。计算机视觉、语音、自然语言处理的市 场规模分别占34.9%、24.8%、21%,而硬件和算法的市场规模合计不足20%。预计2018年中国人工智能市场增速将达到75%。
在教育信息化飞速发展的时代,经常会听到某高校建成了“智慧教学环境”或“智慧校园”,甚至有些高校进行了简单的信息化教学设施的改造,也冠名为“智慧教育环境”建设。是技术发展太快,还是概念炒作呢?或者是人们对“智慧教学环境”的内涵理解有偏差呢?带着这些问题,笔者对智慧教育的概念进行了深入研究,并对现阶段已经建成的智慧教学环境进行了实地调研。希望通过开展此项研究找到当前智慧教学环境建设中存在的问题与漏洞,为今后智慧教学环境的建设提供建议。
一、智慧教学环境的内涵
今天我们所说的智慧教育源于IBM提出的“智慧地球”,智慧地球的核心是以一种更智慧的方法通过利用新一代信息技术来改变政府、公司和人们交互的方式,以便提高交互的明确性、效率、灵活性和响应速度。智慧地球具有三个明显的特征:①对环境透彻的感知力,通过利用物联网等实现随时随地感知、测量、捕获和传递信息;②更全面的互联互通,在有线和无线网络支持下,利用先进的系统协同工作实现全面互通;③深入的智能化,利用人工智能技术获取智能化的洞察并付诸实践,进而创造新的价值。[1]
《2015中国智慧学习环境白皮书中》指出,智慧学习作为一类学习系统,是通过物联网技术、大数据系统和人工智能技术等现代高科技来全面感知学习情境、识别学习者特征,提供合适的学习资源与便利的互动工具,自动记录学习过程和测评学习结果,有效支持人们的终身学习、职业发展和自我价值的实现。从而可以实现人们能够在任意时间(Any time)、任意地点(Any where),以任意方式(Any way)和任意步调(Any pace)(简称4A)进行学习,这类学习环境能够支持学习者轻松地(Easy Learning)、投入地(Engaged Learning))和有效地(Effetive Learning))(简称3E)学习。[2]
我国学者祝智庭教授认为:智慧教育的真谛就是通过构建技术融合的学习环境,让教师能够施展高效的教学方法,让学习者能够获得适宜的个性化学习服务和美好的发展体验,使其由不能变为可能,由小能变为大能,从而培养具有良好的价值取向、较强的行动能力、较好的思维品质、较深的创造潜能的人才。[3]
通过对上述概念的分析可以看出,智慧教学环境的基本条件是对环境的感知、全面的互联互通和深入的人工智能;智慧教学环境中主要用到物联网、大数据和人工智能来感知学习环境和学习者特征、营造学习情景,主动提供学习资源、自动记录和评价学习结果;智慧教学环境建设为培养具有良好的价值取向、较强的行动能力、较好的思维品质、较深的创造潜能的人才,提供环境保障。
智慧教学环境主要具有如下特征:①?ρ?习者和环境的感知,比如,通过一些传感设备(物联网)实时控制教室的温度、湿度、亮度等,为学习者提供最为舒适的学习环境;②个性化资源的推送,在智慧教学环境中,可以实时感知学习过程,并主动推送个性化的学习资源;③对学习结果的记录与分析。智慧教学环境通过对学习者学习过程的记录与分析,可自动分析学习者的特征和学习情况,并产生相应的学习报表或者学习建议;[4](4)智慧教育最根本的特征是要实现教育信息化的终极目标。
二、智慧学习环境的建设现状
当前智慧教学环境的建设正在如火如荼的进行,部分高校已经建成了智慧教学环境示范区。为深入研究智慧教学环境的建设与应用情况,笔者对部分高校的智慧教学环境示范区进行了实地考察,发现当前的智慧教学环境可分如下几类:
1.普通多媒体教室的改造升级
在已经建设成功的“智慧教室”中最为初级的是普通多媒体教室的升级版,此类教室只是对普通多媒体教室进行了装修和改造,使得教室中的座位灵活、舒适,其多媒体设备配置更加先进。当前改造成功的多媒体教室中基本都安装了高清投影、交互式电子白板或互动式大屏幕、无线扩音系统等。
2.课堂互动工具应用型
当前智慧教室中的互动系统种类繁多,比较常见的主要包括:利用台式电脑通过局域网进行互动、利用Internet进行远程的互动教学、基于手机或平板电脑的互动系统:
(1)基于台式电脑的互动系统。这种类型的教室中,每个学生座位上配有一台台式计算机,通过相关的互动软件,可实现师生之间、学生之间在网络环境下的实时互动交流,包括教师单独辅导,下发、上传资料等。
(2)基于网络的远程直播、互动系统。为实现跨校区之间、跨区域之间的教学直播互动,部分院校建设了“远程直播”教室。在此类型教室中通过高清摄像机、直播管理系统,可实现远距离直播、互动等功能。此外,通过录播控制系统,也可以实现对教师授课过程的自动录制和保存。
(3)基于智能手机或平板电脑的课堂互动系统。有些学校的“智慧课堂”可以看到基于手机或平板电脑的互动系统,此类互动系统可以让师生之间通过智能手机或平板电脑进行互动,下发、上传资料,也实现了学生实时投票、抢答等功能。另外,此类课堂互动系统已经初步实现记录课堂教学过程,并对授课情况可进行初步分析与统计。
3.教学资源库及社会化软件应用型
(1)有些地区或学校建设了相应的资源库或学习平台,便称之为智慧教育环境。
(2)还有些学校可利用微信、QQ等社会化软件实现新生注册、宿舍查询等功能,他们把这些社会化软件的简单应用说成了智慧校园。[5]
4.环境友好型
(1)教学环境的提升
部分智慧教学示范区中教室颜色鲜艳、明亮,走廊和学习区温馨、清爽,桌椅板凳舒适、灵活,教室里面配置了中央空调、电动窗帘等,整个示范区使学生能感受到愉悦、清新。但在信息化智能技术的应用方面,很少看到大数据分析系统、物联网、云计算等新型技术的应用,因此,这些环境也难以称为智慧教学环境。
(2)物联网的初步应用
有些学校建成的“智慧教室”中开始使用一些初级的物联网设备,比如,显示温度、湿度、照度等参数设备。仅仅使用一些物联网设备也难以称之为智慧教学环境。
5.综合应用型
一些学校智慧教室中综合了各种前沿技术,我们似乎看到了智慧教育的影子。此类教学环境中:教室实现有线和无线网络的全覆盖;教室外安装了人脸识别系统和RFID考勤机,这些系统采集的数据可直接传送到教务系统;可以感知教室的温度、光线等,并可实现自动控制;开发了基于云计算的教育资源库和移动学习管理系统;此外,还有智能控制系?y、增强现实的互动演示和视频会议系统、自动录播系统等。[6]
三、现阶段高等院校智慧教学环境“智慧”的缺失
通过对智慧教育内涵的研究,结合智慧教学环境的建设现状,发现现阶段“智慧教学环境”的建设与传统教学环境相比已经有了很大的提升,但还没真正实现“智慧教育”。下面笔者对照智慧教育的概念与特征,从环境建设、技术的运用以及对人才培养的支持等方面对现阶段的“智慧教学环境”加以分析:
1.对环境和学习者的感知
感知学习情景涉及学习者特征分析、传感器技术和自动推理等方面的应用,通过信息采集、动态建模和情景推理三个模块来实现[7],要感知学习情景,物联网和人工智能技术是必不可少的。目前,智慧教学环境中对物联网技术的应用还处在最初级的对基本环境的感知方面,比如,温度、湿度和光线的感知,缺乏对物联网的深入应用。要实现对学习者特征的自动识别,必然用到人工智能、学习分析等技术,但在目前的智慧教育环境中还没有看到成功案例。
2.智慧教育资源的提供
智慧资源是指以培养具有21世纪生存技能的智慧创造者为目的,支持智慧学习和智慧教学活动的有效开展,具有泛在性、情景感知性、联通性、进化性、多维交互性和个性化智能推送等核心特征的新型数字化学习资源[8]。在智慧教育资源的建设和应用过程中:首先,用到大数据分析技术,对学生的学习特征和学习情况进行全面的分析;其次,通过人工智能等技术实现向学习者进行优质教育资源的精准推送;第三,可通过物联网、大数据和人工智能来全面感知学习环境,利用VR技术营造更为真实的学习情境。在当前建设的“智慧教学环境”中,虽然可以看到丰富的学习资源和互动工具,但它们并没有达到智慧资源的标准。
3.对学习结果的记录与分析
Siemens认为学习分析是:“关于学习者以及他们的学习环境的数据测量、收集、分析和汇总呈现,目的是理解和优化学习以及学习情境”[9],学习分析必然会用到学习科学、人工智能、大数据等方面的理论和技术。目前我们看到的是一些授课软件对课堂的记录与初步的数据统计,并不能达到学习分析的标准。在对教学过程的记录过程中,通过自动录播系统,可以实现对教学过程的自动录制,但这种记录只能是机械的记录,缺少智能成分。
4.对教育目标的实现
智慧教育最根本的特征是要实现教育信息化的根本目标,即“要破解制约我国教育发展的难题,促进教育的变革与创新;要对教育发展具有革命性影响”[10]。要对教育发展产生革命性影响,智慧教学环境应做到如下几点:首先,要改变知识产生、传播和管理的方法和模式,让知识变得触手可及;其次,要支持学习者的终身学习、职业发展和自我价值的实现;第三,要营造良性的教育生态环境,使学习者能随时、随地开展所需的学习。显然目前的“智慧教学环境”还不能支持实现教育信息化的根本目标,因此还难以称之为智慧教学环境。
四、智慧教学环境建设建议
通过上述分析可以看出智慧教学环境的建设还处在初级阶段,目前建设的很多“智慧教学环境”只能说是现代教育环境,还不能称之为智慧教学环境。要真正实现智慧教学环境,还需要在教育理论、技术和方法等方面大幅提升。结合上述分析,本文对智慧教学环境的建设提出如下几点认识:
1.强化顶层设计,准确定位,系统规划
智慧教学环境的建设是一个系统工程,它包括校园环境、教室环境、硬件设施、软件系统,甚至还包括教师的教学理念、方法,学生的学习习惯、方式等方面的内容。因此,智慧教学环境的建设首先需要明确目标,强调顶层设计,对我们将要实现的目标进行系统的规划。
2.遵从事物发展规律,循序渐进,稳步推进
智慧教学环境的建设是一个长期的过程,不可能一蹴而就。在智慧教学环境的建设过程中还伴随着教学方法、理念的转变。因此,智慧教学环境的建设应该在系统规划的基础上分阶段开展,循序渐进地做好每个阶段的工作,最后才有可能实现真正的智慧教育。
3.明确智慧教育本质,平心静气,不忘教育根本
智慧教育的本质是利用信息化手段,为学习者的学习提供更优质的环境、更人性化的服务。智慧教学环境的建设必然用到云计算、物联网、大数据和人工智能等技术;智慧教学环境必然能给师生提供更便捷的教与学支持,让学生可以开展任何时间、任何地点、任意方式的学习;智慧教学环境必然给师生提供丰富的、个性化的资源和及时的教与学的分析报告;智慧教学环境可以支持实现教育信息化的根本目标。满足了上述条件才可称之为智慧教学环境,切不可将简单的环境改造、软件应用和资源建设冠名为智慧教学环境。
【摘要】计算机辅助教学的实际需要应用人工智能技术及复杂的程序,如自然语言理解、知识表示、推理方法等,一些人工智能技术的特殊应用成果,同时以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学技术被应用于建立学习模块。这种方法能控制调练策略并给出适合学生的学习内容。
【关键词】人工智能计算机辅助教学教学与控制
一、人工智能的定义
人工智能也称机器智能,它是计算机科学、控制论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统角度来看,人工智能是研究如何制造出智能机器或智能系统,实现模拟人类智能活动的能力,以延伸人们智能的科学。人工智能是一门交叉科学,逐渐形成一门涉及心理学、认知科学、思维可循、信息科学、系统科学和生物学科等多学科的综合性技术学科。
二、计算辅助教学体系和现状
计算救助教学是利用多媒体计算机的功能与特点,利用计算机辅助教师完成各个教学环节,并通过与计算机之间的交互活动,激发学生的学习积极性和主动性,帮助学生更有效地学习。实用计算机辅助教学,有利于认识主体作用的发挥,它所提供的图像、声音、动画等信息由利于学生知识的获得与保持,达到提高教学教学的目的。
目前为止,所实用的绝大多数传统以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学将全部教学信息以编程方式预置于课件中,这样的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。因此现有的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学系统面临许多挑战,它主要存在以下几个方面的问题。
1.计算机辅助教学系统的闭塞性
不具有开放性是目前以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。其弊端在于固定内容的局限性使课件的适用面狭窄,而且设定的运行路线使授课缺乏自主性;授课的针对性不强;无法利用新出现的资源在较高起点上进行二次开发。
2.智能性的欠缺
现有的计算机智能辅助课件系统不能对不同何曾度的学生进行有针对性的教育,学生的学习是被动的,不能由系统自动提供助学信息而使学生有选择地学习。。
3.人机交互能力较弱
现有计算机智能辅助大多以光盘作为信息的载体,将材料中的内容以多媒体的形式展现出来,教学信息是按预置的教学流程机械式地提供给学者,学习者使用计算机智能辅助课件学习是完全被动的。
4.教师与学生的互动在教学中的缺乏
现有计算机智能辅助课件在学生自学以及进行操作使用时,如何学习都是学生自己的事。教师不能全完了解学习者的情况,学生在蹦到问题时不能向教师求教,师生之间互相封闭,谈不上师生互动,因此课件所起的效果大打折扣。
5.课程特点没有突出
各门课程在教学上有不同的要求,但现有课件对于这些不同要求完全不予理会。例如很多课程都要涉及到大量的曲线或曲面,对有些课程来说,将这些曲线或曲面给出了一个简单的展示就足够了,而有些课程这样的展示不能达到教学目的的要求。
6.教学计划的欠缺
在课件的开发过程中实际上离不开教学策略的设计,但课件的制作者往往并未意识到这一点。例如:现有的绝大多数课件都是单一的展播式,这样的可见制作“精美”,但它不可逆、不能互动。实际上运用课件教学只是手段而不是目的,应该在教学设计理论的指导下讲求课件的实效性,着眼点在于学生学习新知识、掌握新技术、培养各种能力有帮助,而不是表面上的制作“精美”。
综上所述,现有的计算机智能辅助存在许多问题,随着新技术的不断出现,这些问题将使计算机智能辅助越来越不能适应新的要求。因此以智能计算机智能辅助为代表的心的计算机辅助教学系统将成为教育技术上需要不断探求、努力实现的发展方向。
三、智能计算机辅助教学系统
智能计算机辅助教学系统(IntelligentComputerAidedInstruction),简称ICAI。教学过程是一个复杂的教与学的思维过程,它需要教师以专门知识和经验为依据,经过吸取、讲解、推理、示例、综合等多个步骤才能较好地完成。计算机辅助教学实际上是一个由计算机系统辅助教师进行教学以及学生进行学习并得以实现的系统。在智能ICAI中,教学思想、方法、学习内容可用知识形式表示,如何解决知识的形式化表示以及知识的访问与调用问题,是人工智能的核心技术之一,也是将ICAI引入教育技术领域中所要面临的一个问题。知识库是实现知识推理与专家系统的基础,可以用知识库作为智能ICAI的构建环境。在知识库中,教学内容等的有关知识可以用事实与规则表示,并存储于知识库内,教学与学习过程既是对知识库中知识进行推理,并最终得出所需结果的过程。ICAI系统的一般包括以下几个模块:
1.知识库。知识库是关于教学内容的模块,解决“教什么”问题。知识库中的教学内容有待于教学与控制模块和学生模块进行选取、调用。
2.学生模块。学生模块是用于记录学生的学习情况,对学生学习的各个环节信息进行搜集,以便系统对学生的学习情况进行自动评估,提出具有针对性的学习建议和个别化的辅导。学生模块描述学生对教学内容理解、掌握的程度,系统可以根据学生模块的具体情况调整教学策略并提供适当的反馈。
3.用户接口模块。这是系统与用户交流的界面。整个系统依靠用户接口模块把教学内容呈现给用户、接受用户输入的信息、并向用户提供反馈。
关键词:智能控制;教学策略;卓越工程师;模糊控制;神经网络
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)23-0029-02
智能控制作为自动化类专业的一门专业课程,要求学生了解控制学科发展的方向和前沿,熟悉智能控制的主要理论分支、数学基础以及发展趋势等,掌握基本智能控制方法的结构和算法,为未来实际工程应用奠定一定的基础。当前,在国内外备受关注的CDIO模式即把“构思(Conceive)―设计(Design)―执行(Implement)―运作(Operate)”作为工程教育的环境背景,按照产品生命周期构建课程体系,以课堂和项目相结合的方式进行主动学习,使学生达到预想的学习目标。
考虑到安徽工程大学(以下简称“我校”)自动化专业被确定为教育部“卓越计划”试点专业,如何通过智能控制课程教学改革来提高教学质量,充分借鉴CDIO先进的教育理念,推行卓越工程师培养计划,提高大学生的创新技能、实践技能,协调课程体系对培养目标支撑力不强以及与我国产业发展和结构的调整不相适应的矛盾,创建适应新形式发展需要的课程教学体系,同时促进我国智能控制学科发展,是我校授课老师所面临和亟待解决的问题。
一、智能控制课程分析
1.智能控制发展历程
智能控制是一种新型自动控制技术,代表了自动控制的最新发展阶段。[1]20世纪90年代中期之后,智能控制日益成熟,在工业、农业、家用、军事等领域得到了广泛的应用,据统计,2012年全球智能控制市场规模接近6800亿美元,而我国智能控制行业规模也已经达到4200亿元。
智能控制思潮第一次出现于20世纪60年代由Leonaes等人首次正式提出,[2]到了1987年,IEEE控制系统学会和计算机学会在美国费城联合召开了智能控制国际学术讨论会,智能控制正式作为一门新学科,登上历史舞台,而“智能控制”课程是在智能控制学科建立之后开设的。
国内首部“智能控制”教材,是在1990年由中南大学蔡自兴教授编写电子工业出版社出版,蔡教授把递阶控制、专家控制、模糊控制、神经控制、学习控制作为智能控制课程的初步框架和主要研究分支。[1]随后,王耀南、李士勇、李人厚、孙增圻等专家也编写了智能控制相关教材。这些教材出版对我国智能控制课程教学发挥了积极的作用,为智能控制学科建设和人材培养做出突出贡献。[3]
近年来,国内学者对智能控制的研究十分活跃,举行各种与智能控制有关的学术讨论会,如全球智能控制与自动化大会(World Congress on Intelligent Control and Automation,WCICA)、中国智能自动化会议(Chinese Intelligent Automation Conference,CIAC)、中国控制会议(Chinese Control Conference,CCC)、中国控制与决策会议(Chinese Control and Decision Conference,CCDC)等,这标志我国智能控制作为独立学科已正形成。[2]
2.智能控制理论体系
随着科学技术的发展,智能控制理论和技术得到不断的发展和完善,受到越来越多科研工作者的关注。常规的智能控制方法主要包括:模糊控制、神经网络控制、分级递阶控制、专家系统控制以及其他仿人智能控制等。[3,4]
(1)模糊控制:将人类专家对特定对象的控制经验,运用模糊集理论进行量化,转化为可数学实现的控制器,从而实现对被控对象的控制,其主要包括输入模糊化、模糊规则库、模糊推理以及输出逆模糊化四个部分。
(2)神经网络控制:是人工智能、认知科学、神经生理学、非线性动力学等学科的交叉热点,它利用大量的人工神经元按一定的拓扑结构互连,构建具有仿人控制的功能。神经网络虽然不善于显式表达知识,但具有很强的学习能力和自适应能力,能够任意逼近复杂的非线性系统,对高度非线性和严重不确定性系统的控制方面具有良好效果。
(3)分级递阶控制:是从工程控制论的角度总结人工智能与自适应、自学习和自组织的关系之后逐渐形成的,主要由组织级、协调级和执行级构成。其中组织级起主导作用,涉及知识的表示与处理,主要应用人工智能;协调级在组织级和执行级间起连接作用,涉及决策方式及其表示,采用人工智能及运筹学实现控制;执行级是底层,具有很高的控制精度,采用常规自动控制。
(4)专家系统控制:是指具有模糊专家智能的功能,采用专家系统技术与控制理论相结合的方法设计的控制策略,它是人工智能应用领域最成功的分支之一,由知识库、推理机、解释机制、知识获取系统以及综合数据库五个部分组成。在工业过程控制中主要呈现直接专家控制和间接专家控制两种形式。
二、智能控制课程教学改革
1.理论教学
UNESCO在2010年的工程学报告中指出,工程是人类面临的最大挑战和机遇,为了满足卓越工程师培养计划要求,我校重新修订课程教学大纲,调整了各知识点的学时分配,扩大了知识面的覆盖范围,并提高了实验内容所占学时比例,注重实践环节内容设置。在课程建设考虑理论与实践的均衡,避免理论与实践用脱节,教材选用为王耀南主编、机械工业出版社出版的《智能控制理论及应用》,[5]总共设计30个学时,具体如图1所示。概述部分为2个学时,主要讲解智能控制理论的历史背景、研究现状以及未来的发展趋势;模糊控制与神经网络控制是本课程主要讲解部分,分别安排9个学时;分级递阶控制与专家系统控制部分要求学生以了解为主,因此分别安排4个学时;最后,剩余2个学时讲解当前最新的一些智能控制方法,目的为扩展学生的视野。
考虑到“智能控制”课程涉及的知识面较为广泛,因此,在教学过程中,教师主要担负组织者、引导者的职责,课堂上注重采用启发式的教学模式,并增加案例讲解,让学生明确课程教学服务于国家战略需要和行业需要,如:液浮陀螺仪温控系统的模糊控制策略设计、单级倒立摆系统的神经网络PID控制器的设计、数控机床专家系统设计等。鼓励学生自由探讨,实现教学环节中的互动,提高学生的认知能力。
2.实践教学
本课程专业性很强,学生缺少对智能控制方法的感性认识,且受学时数的限制,因此鼓励学生自主学习,充分利用课余时间。[6]每次课后,有针对性地预留课外作业,引导学生复习、预习,这有利于老师教学内容的精练讲解,学生对智能控制的熟悉掌握,引导学生注重工程能力和自主学习能力的提高。
另外,在“智能控制”教学计划中,安排6个学时作为实验课,让学生独自设计相关智能控制器,培养学生的实践动手能力,增加对模糊控制系统、神经网络控制系统分析和设计的熟练程度。实验采用先讲解、后实验、再总结的方式进行。为了保证实践教学质量,每20位学生安排1名指导教师。实验前,要求学生实验之前完成预习报告;实验中学生每人一台机,独立记录实验过程和实验结果,教师全程答疑辅导;实验后学生及时上交实验报告,其内容包括:实验名称、内容、方法、步骤、结果及个人心得、体会。
3.教学手段
为了适应时代的发展,授课借助先进的教学软件。在相关理论知识点展开前,可通过实例模拟让学生初步了解相关方法,再切换到理论知识的讲解,以帮助学生做到思维的自然过渡。
课堂还采用多媒体教学,以提高学生获取信息的效率。多媒体课件制作过程中,力求图文并茂,能吸引学生的注意力,这有利于实现情景式的教学,充分调动学生的主观能动性,变被动教育为主动教育,使学生加深对知识的理解。[7,8]
4.考核方式
本课程理论性较强,为避免“一张试卷定乾坤”带来的弊端,课程成绩采用多元化考核制度,主要包括:平时成绩(30%)、实验成绩(30%)和期末考试成绩(40%)。
三、结束语
综上所述,我国的智能控制教育已取得了可喜成绩,我校在研究专业培养目标和现有教学资源基础上,借鉴国内相关高校成功教学经验,并不断完善智能控制学科教学的方法、手段、策略,研究制订新的大纲,开发设计多媒体课件,与时俱进,紧密围绕“卓越工程师培养计划”的重点和目标,为培养敢创新、会创造的高质量人才不断努力。
参考文献:
[1]蔡自兴,张钟俊.智能控制的理论与实践[J].中南矿冶学院学报,1989,(6):644-650.
[2]陈爱斌,肖晓明,魏世勇,等.智能控制的学科发展与学科教育[J].现代大学教育,2006,(3):102-105.
[3]涂象初.关于智能控制的几个问题[J].科学通报,1991,(7):481-485.
[4]张德江.智能控制技术现状与展望[J].长春工业大学学报,2002,
(S1):58-61.
[5]王耀南,孙炜.智能控制理论及应用[M].北京:机械工业出版社,2011.
[6]朱建红,张蔚,顾菊平,等.基于卓越工程师目标的教学策略改进研究[J].中国电力教育,2013,(5):90-91.
[7]林健.卓越工程师教育培养计划专业培养方案研究[J].清华大学教育研究,2011,32(2):47-55.
关键词:智能科学与技术;交叉学科;相关学科
我国智能科学与技术本科专业(简称智能专业)已经历了10年的发展历程,而且越来越多的高校经教育部批准,加入智能领域的人才培养行列中,对智能专业的教育教学已有一定的实践经验与成果。如今,社会已经步入信息智能化时代,如何更好地适应智能化社会的人才需求,应在已有基础上对智能专业及相关学科的发展作进一步探讨。
1 智能专业的发展基础
人类社会从农业社会、.工业社会到信息社会,发展到今天,在越来越多的领域,人工智能工具都能够根据不断出现的新情况来调整自身的规则系统,需要人工的产业也越来越少,但却苦于信息与机器无智能的问题,因此有了以信息智能化和机器智能化为目标的智能科学与技术研究领域的出现。我国也非常重视其发展,在国家863项目指南中,智能化人机交互与中文处理平台已被列为计算机软硬件主题的重点项目,并将智能机器人纳入863计划长期支持的重要领域;国家中长期科技发展规划纲要(2006—2020年)强调发展认知科学、智能交通管理系统、智能信息处理技术、智能感知技术、智能服务机器人等智能科学技术。智能科学与技术将在未来国家科技发展规划和重大科研课题中扮演重要角色,也将成为智慧地球、智慧城市和智慧生活的引导者。我国智能科学技术教育已走出了一条星光大道,争取在我国学位体系结构中增设智能科学与技术博士和硕士学位授权一级学科,同时把我国智能科学与技术本科专业建设和人才培养推向一个更高的阶段。
近年来,信息领域学科的热门专业也开始面临不同程度的就业压力,作为信息领域的一支新生力量,智能专业便成为高等学校进行专业结构调整的着眼点。继2003年北京大学首个提出并成立智能专业后,众多高校把握先机,申请并建设了智能专业。
智能科学与技术本科专业是一门融合了电气、计算机、传感、通讯、控制等众多学科领域,多学科相互合作、相互研究的跨学科专业。它涉及机器人技术、微机电系统、以新一代网络计算为基础的智能系统,以及与国民经济、工业生产及日常生活密切相关的各类智能技术与系统等。
经调研,大部分高校的智能专业是基于自动化、通信与电子系统、计算机科学与技术、电气工程、人工智能、机器视觉、数据挖掘、信息检索及知识工程等领域发展而来,并且具有雄厚的师资力量,为智能科学与技术未来的发展做好了充足的准备。部分高校智能科学与技术专业的师资队伍所属学科的比例如图1所示。
2 智能科学与技术专业学生的继续深造方向
智能科学与技术专业涉及非常多的专业领域,就其中的一个领域而言,就可以进行更深一步的研究,成为其继续深造学科,例如智能专业本科后可以从事控制工程与科学、计算机科学与技术、智能科学与技术等学科,本文只列举其中几个例子。
2.1 控制科学与工程
控制科学与工程是研究控制的理论、方法、技术及其工程应用的学科。
经调研,以湖南科技大学为例,该学科特色研究工作主要体现在群机器人协作控制技术、故障智能诊断方法研究与应用、非线性系统分析与综合、煤矿安全监控系统应用技术等方面:其中群机器人协作控制技术借鉴昆虫的群智能行为,利用人工智能等技术使多个个体机器人完成一系列合作任务,面对未知环境搜索定位等复杂任务;故障智能诊断方法研究与应用运用智能检测、智能故障诊断、传感器融合等技术研制大型机电设备与其复杂的运动控制及诊断系统,该研究成果已成功应用于“机车走行部在线故障诊断系统”。群智能、智能检测、故障诊断等技术的运用证明了智能科学与技术在此学科中起到重要的作用。
以北京信息科技大学为例,智能科学与技术系的4位教授分别在控制科学与工程学科的控制理论与控制工程、检测技术与自动化装置、模式识别与智能系统、导航制导与控制二级学科指导研究生,从事的相关研究为专家系统、智能检测系统、服务机器人、智能系统与智能导航。以其导航制导与控制二级学科为例,现设方向1——自主导航与控制,方向2——惯性仪表与惯性基组合系统,方向3——微/纳机械传感器,方向4——多自由度电动伺服定位技术。方向1在研究机器学习在导航与控制中的应用、智能伺服技术、新概念飞行器等方面,方向2在信息融合与估计理论、多模组合导航技术、新型机器人的自然感知和运动机理、自主式初始对准等方面,方向3在研究性能稳定可靠、敏感灵敏度高和准数字输出的声表面波惯性传感器方面,方向4在研究基于模型和基于数据驱动的无模型自适应控制方法方面,都离不开智能理论与方法,并促进智能理论与方法的发展。
2.2 计算机科学与技术
计算机科学与技术学科主要是围绕计算机的设计与制造,以及信息获取、标识、存储、处理、传输和利用等领域方向,下设计算机应用和计算机软件与理论两个二级学科,其中包括智能信息处理、人工智能与嵌入式系统等方向。信息时代的信息处理要求更高,当前信息处理技术逐渐向智能化方向转变,以图像、视频、音频等多媒体信息为研究对象,从信息的载体到信息处理的各个环节,都模拟人的智能来处理这些信息。人工智能学科与认知科学的结合,会进一步促进人类的自我了解和控制能力的发挥。目前,我国自主开发的“特定图像内容监控系统”已通过上海移动公司的实地测试。通过研究具有认知机制的智能信息处理理论与方法,探索认知的机制,建立可实现的计算模型并发展应用,可以带来未来信息处理技术突破性的发展。
2.3 智能科学与技术
经调研,以厦门大学为例,智能科学与技术作为硕士点一级学科包括认知逻辑学、计算语言学、智能计算方法、艺术认知与计算、脑高级功能成像这5个研究方向。其重点科研平台之一的“智能信息技术福建省高等学校重点实验室”的主要研究方向有中文信息处理、中医信息处理、数字化中国人器官建模仿真及其临床应用。在中医信息处理中,主要围绕着如何构建信息化中医诊断的智能方法体系展开研究,涉及中医诊断认知逻辑、中医智能专家系统的构成技术、中医海量知识的数据挖掘技术、中医四诊信息的获取与分析技术、实用中医信息系统的开发等。此方向的研究可赋予计算机以人的智能,从而实现对病人的症状诊断与治疗。除此之外,智能机器人也是学习智能科学与技术的一个良好平台,为了更好地学习智能,研究机器拟人化,FIRA世界杯于1995年被提出,其远景目标之一是使机器人足球队战胜人类足球队。此平台大大拓宽了人工智能技术的应用领域。
3 智能科学与技术专业培养方案与专业发展前景分析
从智能专业的发展基础分析可知,智能科学与技术专业是一个紧跟时代潮流的专业,涉及的知识面和学科领域非常广。但是,智能专业作为一个全国普通高等学校本科专业,有其不同于其他专业的知识内核。中国人工智能学会教育工作委员会提出智能专业培养方案的核心课程应有:智能科学与技术导论、智能数学基础、脑与认知科学基础和机器智能,这是各高校智能专业培养方案的共性部分,是基础模块。其他基础模块、专业特色模块,目前阶段应在各高校智能专业建立和发展的专业学科基础上设置,例如,侧重控制系统的、侧重计算机软件的、侧重知识工程的等。智能专业再发展一段时期后,各高校的智能专业的共性部分应越来越多,个性部分也越来越独立于源头专业,例如,独立于计算机科学与技术专业、自动化专业、电子工程专业等。这样,在智能专业上层自然就形成智能学科,从而独立于计算机科学与技术学科。这是专业发展的必然结果。
另一方面,专业的良性发展离不开社会的就业或创业需求。智能专业的本科生,需要了解掌握计算机、电子、控制等各领域的知识和技术,而且在本科生4年课程的教学中融入相关学科的前沿知识,这使得在这个专业学习的学生不仅可以拥有较为广阔的知识面,对专业知识的理解也有一定深度。可以说这样一个既有广度又有深度的专业具有广阔的就业前景。社会中也有新生的行业,近些年来,有关智能系统开发的公司相继出现,涉及机器人、交通、楼宇、信息系统等多方向的智能系统开发,为本科毕业生创造了更恰当更明确的就业方向与途径。
【关键词】人工智能;计算机;辅助教学;应用
计算机辅助教学是一种新兴的教学手段,帮助课堂进入到一种更加智能化和现代化的环境与条件中,将传统的教学模式和方法与多媒体和网络结合起来,为学生营造更好更有趣的教学氛围。但是由于技术的不成熟以及经验的不充分,导致其依旧存在问题和不足。
1计算机辅助教学开展现状和发展困境
1.1缺少开放包容的特性
近年来,计算机辅助教学的开发和应用已取得了一些较好的成绩,但由于我国计算机网络工程和相关领域的技术革新起步较晚,对于计算机教学的发展与改革依旧存在较多的不足和缺陷。首先是在开放包容性上的缺失。这一缺失的原因主要来自于两个方面,第一个方面是思想上的落后和闭塞,人们对于计算机辅助教学的态度依旧存在负面和抵触的情绪,这是由于害怕计算机的加入让课堂和教学秩序失控,所以并没有充分开发和展现出计算机在教学中的优势。第二个方面是技术层面上的限制,我国对于计算机辅助教学的课件和软件技术都只是按照一种最传统和安全的方式进行,缺少探索和冒险的精神、开放和包容的态度[1]。
1.2缺少人机交互的能力
计算机辅助教学过程中,计算机不仅仅是一个信息的载体,更应该将其当作课堂的一份子,能够充分参与到整个课堂的活动和教学工作中。但是大多数的智慧课堂在使用计算机时,仅仅利用其多媒体的播放功能,教学的主体和主要角色依旧是教师,只是把课本和板书照搬到了多媒体课件中。教学的内容仍然是枯燥和单一的,学生依旧带有一种被强迫的学习心理。这种教学缺乏人机之间的交互,机器不能自主获取学生学习的状态和对知识的掌握情况,学生也无法通过计算机主动地得到反馈和解答,让人机之间仅仅是流程化的配合和交流。在这种刻板的学习模式下,甚至会让一部分学生丧失学习的乐趣和兴趣。
1.3缺少课程教学的特点
不同的课程有着不同的教学重点和偏向,这就对教师的教学工作提出了更高的要求,计算机的加入,本来应该能够为教师提供一个新的教学方向和思路,但是由于计算机的便捷性导致一部分教师产生偷懒和敷衍的教学心态,在教学过程中全程使用多媒体播放课件,丧失了课程自身的特性和特质。尤其是一些对实践能力要求较高的课程,教师过度使用计算机只会导致教学趣味性的流失。
1.4缺少师生互动的乐趣
教师作为课堂教学的主要角色,不仅仅是要把知识以一种通俗外化的形式传递给学生,更是应该做学生心理特征的发掘者、学生学习习惯的纠正者和帮助者。教师的鼓励和赞许都会对学生起到重要作用。但是计算机辅助教学之后,教师将更多的精力放到了如何制作精美的教学课件上,而忽略了与学生之间最直接的感情和语言交流,丧失师生互动的乐趣。
1.5缺少有序的教学策略
教学策略是保证一节课是否能够有序开展和进行的重要条件与因素。但是计算机参与和设计的教学环节,只是一个程式化的展示,在课堂上会遇到多种多变的教学情况,一旦在某一个环节出现问题,就有可能导致计算机设计的教学步骤全部打乱,陷入一种无序的状态中[2]。1.6缺少灵活的智能性能计算机技术的开发和应用在我国已经逐渐形成了一套完善和成熟的体系,但是计算机在教学中的应用与引进时间并不长,导致当前多数计算机辅助下的课堂并不具备充分的灵活和智能性,大部分的教学工作和考核评价工作依旧是由教师人工完成,对于不同学生的学习状态掌握也有所偏差。
2人工智能在计算机辅助教学中的应用
2.1建立知识库
人工智能在计算机辅助教学中应用的主要原则,就是将深度学习与认知学的理论知识作为整个程序模块设计开发的基础,通过建立一个知识库,将收集到的知识案例进行分类,训练机器进行自动识别,从而提取和分析出不同学生在不同的知识中所表现出来的学习能力与掌握熟练程度,进而可以有针对性和有选择性地进行复习与巩固,达到机器代替部分人工教学、缓解教师压力的目的。第一步就需要进行知识库的建立,主要包括了专家决策的核心系统对所输入的知识进行判断与筛选调取。同时知识库还可以实现共享的功能,对知识进行简化与提炼,做到精益求精。知识库的搭建应该要尽量简单和易修改[3]。
2.2打造专家模块
在建立了知识库之后,就需要围绕人工智能教学的主要目的进行专家模块的打造,专家模块存在的意义在于能够将其比喻为整个学习系统中的推理机。在需要和使用的情况下,由专家模块自动随机地生成问题,并且可以通过知识库的相关内容调取形成答案并充分解释。其次,专家模块的另一个作用就在于能够帮助评价和考核学生的学习情况,实现一种更加公正透明的评价过程。在进行专家模块打造时,通常使用的是两种方法,一种是固定算法,即根据题库的问题模板,循规蹈矩、规规范范地进行问题的设立和解答的编写。而另一种就是启发策略,这种专家模块更多的是引导学生通过简单和有限的提示信息,自己推理摸索找寻正确的答案和解决方案。除此之外,专家模块还可以自动匹配,依据学生能力分配问题。
2.3建立学生模块
与专家模块相互配合相互辅助的就是学生模块。学生模块的本质其实也属于专家系统,模块内部所存储和容纳的是学生的不同学习习惯和学习行为特征。这个模块建立的目的主要是两个,一个是为了让学生在学习的过程中可能出现的错误习惯和方法被快速识别,并且能够通过机器语言进行记忆与编译,从而建立一个比较完整和全面的错误类型数据库,进而深层分析找到错误的原因。第二个目的就是为了帮助学生对错误学习行为和习惯进行解释,从更加深层次的角度挖掘学生由于知识理论掌握不充分而导致错误的原因。学生模式的建立一般依靠的就是人工智能的自我学习和接受训练让系统能够建立起模型对学生的学习习惯进行模拟。这样在上一步打造的专家模型就可以为学生模型提供一个对比的样本,专家模型的两种运算和教学方式可以分别评估学生的学习能力和学习错误[4]。
2.4优化教学模块
教学模块是人工智能在计算机辅助教学模式中必不可少的一个环节,教学模块的内容是基于传统教学设计和规划之上的。在计算机与人进行交互的过程中,教学策略主要是由教学的不同分支来体现,能够达到较好的发散性和综合性的效果。但是其不足的地方也比较明显,那就是只能按照某一类型或者某一个的教学方法进行,系统不能快速地根据不同内容识别和选择最适合最有效率的教学模式。具体的应用和实现过程就是将专家模块和学生模块的内容进行连接和合并,将专家模块生成的问题及答案与学生模块中上传和学习到的进行对比,选择覆盖或者是分析提取,能够比较客观地发现学生学习中存在的理解性偏差和实践性错误。之后再将结果传回到知识库中,调用相关的知识内容,形成一个完整的反馈链,帮助教师做出教学决策,调整教学进度和教学规划。但是这个模块的设计也应该充分考虑到诸多情况和因素,因此在条件判断时应加入更多的循环。
2.5开发智能接口模块
人工智能在计算机辅助教学模式中的应用和融合最后一步就是要开发出一个稳定和高效能的智能接口模块,主要作用是为了连接学生和计算机之间的信息交换和沟通,即进行信息的输入与传出。在接收到学生传递的学习信号后,接口模块要及时调动起教学模块、专家模块和学生模块,把信息传递给不同模块处理,之后再由教学模块所作出的教学决策和结果论证信息输出反馈给人,实现了机器语言与人类语言之间的转化。一个能够正常运转并且具备较高实用性和参考性的教学系统,一定融汇了思想教学、策略和心理学等多方面的因素和知识内容体系,所以智能接口模块的设计与开发,一定要全面考虑这些成分,开发出更加灵活多变的接口模块[5]。
3结语
人工智能在近年来获得了快速的发展和进步,成为我国当前各个行业领域之内炙手可热的先进技术。对于计算机辅助教学的开展和改革来说,人工智能的融入与应用有着重要的价值与意义。
参考文献
[1]张镒麟.关于计算机辅助教学中人工智能技术的应用研究[J].当代旅游,2019(1):239.
[2]刘荫.人工智能在计算机网络技术中的应用研究[J].科学与信息化,2019(2):20-21.
[3]孙玉梅,赵骏,王美春,等.基于人工智能技术的《单片机原理及应用》课程CAI软件研制[J].教育教学论坛,2016(45):268-270.
[4]张园.人工智能技术在计算机辅助教学中的应用研究[J].科技资讯,2007(34):108-109.
关键词:“互联网+”;应用型人才;过程化考核;立体化考核;应用能力
中图分类号:G642 文献标识码:A 文章编号:1009-3044(2016)34-0179-03
Abstract: In the “Internet +” environment, application-oriented introduction to computer teaching in the teaching content, teaching mode, teaching methods and evaluation model on the need for reform. First, the teaching content closely combined with the development of the current computer technology, and adapt to the characteristics of the application oriented personnel training requirements in teaching introduction to computer course. Then, the use of a variety of teaching models and teaching methods are adopted in the course, so that students can better understand the computer science and knowledge of the application. Finally, the use of process assessment and full aspect assessment contribute students to understanding and application of introduction to computer course.
Key words: internet+; applied talents; process assessment; full aspect assessment; application ability
1 概述
作为信息共享和交流沟通的平台,“互联网+”推动各行各业的快速发展,在当今时代中起着越来越重要的作用。随着“互联网+”时代的来临,教育事业的发展也发生着翻天覆地的变化,教学的形式、教学的内容、教与学之间的相互融合等都得到深入的发展。
应用型本科院校计算机学科专业的人才培养目标是学生既能掌握计算机学科的基本理论,又具有较强的系统开发与维护、软件开发与测试、网络规划与管理以及数据库开发与应用等能力,能够从事计算机科学以及各个领域中计算机开发与应用的工作。
计算机导论是计算机学科相关专业的一个入门课程,对学生的专业学习起到承上启下的作用,引领学生步入计算机学科领域的学习和研究。随着计算机技术的高速发展,计算机方面新的技术、新的应用也在不断涌现,应用型本科院校计算机导论的教学也应顺应时代的发展做出相应的调整。
因此,计算机导论的教学在“互联网+”平台的助推下,通过科学规划教学内容、采用多种教学模式和教学手段,使得学生能够在全面了解学科知识的前提下,加强动手能力培养,提升专业素养。
2 丰富教学内容,跟踪学科最新发展、突出应用型人才培养特点
计算机导论的教学内容在保持全面介绍计算机学科基本知识的基础上,结合“互联网+”平台上计算机各种新技术、新应用,并且根据应用型人才的特点适当拓展以下教学内容。
2. 1 云计算
云计算通过虚拟化技术实现资源的按需分配,提高了资源利用率,增强了计算机系统的服务功能,方便了用户的使用。云计算还可以通过多种方法对计算机资源进行分配,比如通过拍卖的方法分配资源,云资源的拥有者可以通过不同的拍卖机制实现资源的合理分配。此外,不同企业和组织构建的云可以组成联邦云,通过联邦云实现资源的协同利用。
这部分内容主要向学生讲解云计算的实现思想、系统架构、主要的云计算系统以及云计算的最新应用等[1],引导学生建立合理、高效、协同使用计算机资源的思想,了解计算机技术的最新发展和应用。
2. 2 大数据
大数据是通过网络实现数据实现共享,对大数据进行分析可以获得潜在的有价值信息,对大数据的合理使用还可以提高生产效率。比如,医疗大数据可以通过不同医院诊治某种疾病的分析,得到诊治这种疾病的有效方法,提高诊疗效果;通过大数据系统,还可以实现远程诊疗。对交通大数据进行分析,可以针对不同的交通情况合理设置交通管理方法以及提高公共交通安全等。大数据系统的应用,推动了各个领域的快速发展[2]。
因此,通过大数据的基本原理、主要应用的讲解,可以进一步开阔学生的视野,使得学生认识到计算机学科与其他学科进行交叉研究能够进一步促进计算机学科发展、提升计算机的应用能力。
2. 3 人工智能及其最新l展
人工智能是计算机学科的一个分支,通过研究人类感知、思维与推理能力特点,构造出模拟人类智能的机器和系统推动社会的发展。人工智能综合计算机科学、信息论、神经科学等学科知识,其中计算机技术在人工智能中起到了重要作用。人工智能的发展异常迅速,从简单的智能家电向应用于社会生活的各个方面发展[3],虚拟现实更是成为当下最为热门的高新技术之一。人工智能改变了人们的生活方式,机器设备的越来越智能化使得人们可以从各种艰苦和繁重的劳动中解脱出来,智能机器人也可以弥补人工劳动力的不足,智能机器人逐步升级到通过情绪感知与人类进行心灵的沟通和交流。
通过人工智能的学习,使得学生对本专业的发展前景有一个很好的展望和期待。
2. 4 计算机应用技能
计算机学科的大学新生和其他专业大学新生知识背景相同,在进入大学之前只有部分学生学习过简单的办公软件和程序设计语言,很多学生对办公系统软件和程序设计软件了解不多。办公软件是计算机学科学生学习的一个必备工具,要求学生能够深入理解和熟练运用。而程序设计语言是计算机学科学生将来主要的开发工具,在学科入门阶段的学习中要求学生掌握程序设计语言的相关知识,并能够进行简单的程序设计,加深对本学科的理解。
因此,在授课过程中可以采用课内引领和课外指导多种形式对上述计算机应用技能方面的知识进行学习,使得学生能蚨源瞬糠种识很好地掌握和运用。
3 教学模式和教学手段多样化
“互联网+”环境下,教育资源得到了最大程度的共享,教学模式和手段得到了不断创新。根据当前教育的时代特点,应用型本科计算机导论的教学要在教学模式和教学手段上不断创新,提高学生学习的积极性和主动性,主要包括以下方面。
3. 1 课堂教学与课外实践相结合
应用型人才要求具有较强的动手能力,因此在计算机导论的教学中加强实践环节的培养。比如,学生在课内学习了操作系统的知识后,在课外指导学生对具体的操作系统进行实践。这样通过学生课外自学、教师辅导等多种措施,提高学生的实际动手能力,加深对课内理论知识的理解。
3. 2 知识学习与探索相结合
通过引导,组织学生参加到教师相关的大学生创新小组、竞赛小组以及科研开发小组中去,鼓励学生参加计算机学科前沿讲座。通过这些活动,可以进一步提高学生的学习兴趣,激发学生独立思考、勇于探索的精神,使得学生能够更为深入地了解本学科的知识体系和发展方向,提高动手能力。这些活动的组织和实施可以充分利用互联网平台,使得活动的参与方便和快捷。
3.3 教师教学与企业专家相结合
对教学任务进行模块化教学,理论部分内容学校教师授课为主,实际应用相关部分聘请企业专家进行授课。在校教师具有扎实的专业理论,而企业专家具有丰富的实践经验,从专业入门课程开启校企联合的人才培养模式[4],真正做到理论知识学习和实际应用实践传授相结合,提升教学效果。
3.4 课堂教学与互联网教学相结合
互联网可以作为学生的第二课堂。首先,教师可以将计算机导论课程学习相关资料放到网络上供学生下载学习,比如上课的课件、视频以及探讨题目等;其次,学生可以通过微课、慕课等形式进行学习[5,6];再次,师生可以通过网络和学生进行实时沟通和交流,做到及时解疑释惑。
4 考核过程化和立体化,促进学生的深入理解和运用
“互联网+”环境下,加强过程考核,在教学过程中考核学生的实际分析问题、解决问题的能力,培养学生深入研究、坚忍不拔的精神。传统考核手段是期末考试,属于一卷定终身的考核方式。对于计算机导论来说,试卷的题目往往趋于知识浅层次的考核,对于学生知识的运用能力考核不够,特别是对学生学习过程缺乏考核,部分学生期末通过课本知识的死记硬背也能取得好成绩。
在教学过程中进行考核,可以督促学生及时掌握授课内容、并且达到熟练运用。过程考核中,既要进行理论知识考核又要进行实际动手能力考核,体现出应用型人才的培养特点。在过程考核中可以将授课内容设置为不同的知识单元,每个知识单元结束后进行相应的考核,每次单元考核成绩纳入总评成绩,期末进行综合考试。
此外,课外学习小组的学习情况也纳入考核范围,使得学生在课外学习中真正投入精力,取得收获。鼓励学生考取行业内国际知名企业相关应用能力证书,获得证书也可以得到相应的分数。通过上述措施,既对课内学习进行了考核又对课外学习进行了考核,既对理论学习进行了考核又对知识的运用进行了考核,实现了学习考核的立体化。
5 结论
“互联网+”不仅仅提供了一个信息交流的平台,更重要的是改变了传统的思想观念和行为方式。 “互联网+”时代,应用型本科计算机导论课程教学一方面将计算机学科相关的最新技术和应用融入到课程教学,开阔学生的视野;另一方面改变传统的教与学的方式和方法,采用多种教学模式、多种教学手段提高学生学习的积极性和主动性,提高学生的学习能力和知识应用能力,引领学生步入计算机学科的知识殿堂。
参考文献:
[1] 徐保民,倪旭光.云计算发展态势与关键技术进展[J].中国科学院院刊,2015,30(2):170-180.
[2] 李学龙,龚海刚. 大数据系统综述[J]. 中国科学:信息科学,2015(1).
[3] 韩冯飞. 人工智能现状和发展[J].电脑知识与技术,2016,12(24).183-184.
[4] 朱光俊,杨治立,杨艳华.校企联合应用型本科人才培养机制探析[J].教育与职业, 2012(26):39-40.