HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 人工智能基础教学

人工智能基础教学

时间:2023-08-21 17:23:18

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇人工智能基础教学,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

人工智能基础教学

第1篇

人工智能即将进入高中课堂。近日,我国第一本面向中学生的AI教材——《人工智能基础(高中版)》正式。

为什么要在中学开设人工智能课程?这本教材有什么特点?对于中学教师和学生而言,应如何准备才能应对人工智能的教与学?记者对此进行了调查。

全国已有40所学校引入教材

据了解,该教材是华东师范大学慕课中心和商汤科技合作,联合全国多所知名中学教师共同编写,由新闻出版总署批准出版并备案。目前,全国已有40所学校引入该教材作为选修课或校本课程,成为首批“人工智能教育实验基地学校”。

“与其他教材不同,该教材以‘手脑结合’为主要学习方式,不仅关注对人工智能原理的介绍,更加重视这些原理在生活中的运用。”华东师范大学教授,博士生导师陈玉琨介绍说,“作为教材的编者,我们特别希望学生能发挥独特的想象力,设计一些在高中阶段有可能完成的项目,并动手将其转化为独具特色的作品。”

记者看到,该教材共分9个章节,以基础普及性的知识为主,分别介绍了图片识别、声音识别、视频识别、计算机写作和深度学习等人工智能技术的原理和应用场景,每一页都配有彩色图表,并引入了大量科普内容和实例。此外,该教材还配套了一个教学实验平台。

香港中文大学教授林达华表示,目前,人工智能人才面临着全球性短缺,在人工智能和基础教育结合方面,各个国家都还处在探索的过程中,该教材的出版,是人工智能教育的一次重大突破,意味着人工智能将由此走出“象牙塔”,进入高中生的知识范畴。

“今天,技术更迭速度太快,谁也无法预计未来的职业选择,我很乐意让我的孩子在中学阶段就了解掌握一些人工智能方面的知识技能。”一位家长这样告诉记者。

目的在于普及原理引发兴趣

作为一门兼具学术含量和技术含量的学科,对高中学生而言,应该怎样去了解人工智能这门学科;对于高中教师而言,又该如何教学呢?

“大多数中学生的最终职业道路都不会是成为人工智能研究者或工程师,但是未来很多行业都将在不同程度上受益于人工智能的赋能。因此,该学科在中学阶段的教学目标应该定位让学生了解掌握人工智能的基本思想、基础知识以及常用算法和工具。”林达华说。

在陈玉琨看来,人工智能的教学和研究经常要用到高等数学的知识,这已经超出了高中生的知识范围,因此,在中学阶段,教师应注重对相关概念、算法、原理进行定性介绍,“定量的部分,可以留待以后再学。”

多位专家表示,教师在教学过程中,要特别重视对人工智能应用场景的介绍,这不仅会让课堂变得更加生动,学生学习的兴趣更加高涨,同时也会提升师生的思维与创造能力。

“总体而言,在中学阶段开展人工智能课程的主要目的在于普及人工智能的原理与技术,引起学生对人工智能学习的兴趣。当然,也期望能为高等学校培养人工智能领域的拔尖人才奠定相应的基础。”

“校企合作”解决人才缺口

也有专家指出,人工智能是一门新兴技术,中学教师在该领域的知识储备是不足的。

“师资是课程的基础。”上海师范大学教授岳龙表示,“开设人工智能课程对教师的知识结构也提出了新的挑战,因此组建专门的师资培训团队非常重要。”

据记者了解,为帮助教师克服知识储备不足的问题,华东师范大学慕课中心与商汤科技将联合举办多期“人工智能教师研修班”——培养一批人工智能的种子教师,在他们带领下,逐步提升我国教师总体的人工智能素养,从而改善中学教师开展人工智能教育教学面临的困难和挑战。

第2篇

>> 研究生人工智能系列课程教学改革 研究生人工智能课程教学探索 研究生“人工智能”课程教学改革探索 人工智能实验课教学改革研究 人工智能课程全英文教学改革 创新型人工智能教学改革与实践 《人工智能》硕士课程教学改革的研究与实践 落实科学发展观,深化“人工智能”课程的教学改革 面向人工智能的信息管理与信息系统专业教学改革 人工智能课程教学方法研究 人工智能的应用研究 日本巨资扶持人工智能研究 人工智能系列课程研究 高中人工智能教学初探 《人工智能》双语教学初索 人工智能双语教学建设 人工智能实验教学探讨 “人工智能”之父 人工智能 AI人工智能 常见问题解答 当前所在位置:l(美国人工智能协会)、caiac.ca/(加拿大人工智能协会)等,它们包括了学科前沿动态、讨论交流及大量的代码资源等。通过使用这些资源,学员可及时了解人工智能最新发展动态,进行人工智能程序设计的交流及对一些问题进行较为深入的探讨。

2教学方法研究

研究生教学应更突出学生的主体地位,注重发挥其学习的主动性和自觉性,为此,课程组结合课程特点,在教学方法进行了如下探索。

2.1加强教学设计

教学设计就是对教学活动进行系统计划的过程, 是教什么(课程内容)及怎么教(组织、方法、策略、手段及其他传媒工具的使用等)的过程[2]。在教学过程中,每节课授课前,坚持集体备课的原则,由课程组集体讨论选定授课内容,补充阅读文献,根据授课对象与课程内容特点,确定课堂组织方式,采用的授课方式以研讨式教学为主,给合讲授、实验、自学等。

2.2抓好课堂教学环节

教学方法与教学手段是保证课堂教学效果的关键。本课程授课对象主要为硕士研究生,他们的接受能力较强,有一定的求知欲。由于学员人数较少,授课方式可灵活组织。教室有完备的多媒体设备,基本的软件实验环境,教学过程可采用灵活教学方法、多种教学手段,提高教学效率,保证授课质量。

1) 以研讨式为主的教学方式。研究生教学应坚持学术研究为导向,发挥学员在学习过程中的主动性和自觉性。由于研究生学员有一定的学习基础与自学能力,教员可以在课前给学员布置预习内容,学员通过查阅资料、分析整理进而形成自己的观点,使在课堂教学中师生互动交流成为可能,改变传统的教员讲,学员听的灌输式教学方式。研讨式教学也有力于培养学员积极思考、创新思维的习惯与能力。

2) 教学手段的信息化。人工智能原理教学一个突出矛盾是知识点多、内容抽象、理论性强,但学时较少,因此,必须发挥现代教学手段的作用,提高教学效率。为此,课程组对每节课都精心设计了教学课件,课堂教学中以课件为主,辅以板书,充分利用多媒体信息量大、直观等优点,改善教学效果;引入教学声像资料,便于学员课下学习;设计演示程序,使部分比较抽象、不易于理解的内容,如子句归结、搜索策略更形象直观,易于学习和掌握。

3注重培养学员学术研究能力

学术能力是指专门对某一学问进行系统的哲理或理论研究的能力,它不仅包括思辨的方面,还包括实践及感性的敏感力等方面。研究生阶段学习的一个突出特点是要求学习的主体――研究生必须具备研究的能力[3]。论文写作是培养、锻炼、提高研究生的学术能力的重要途径,在教学实施过程中,要求每个专题学习结束后,都要提交一份格式符合期刊发表要求的总结报告,题目可自行选定,也可由教员指定;内容既可以是人工智能该专题某一算法的实现,也可以是对某一问题的进一步研究,或者是对该专题最新研究进展的综述。教员重点在以下几个方面予以指导。

1) 选题准确。要求选题不能过于宏大,应以小题目反映大问题,具有一定的可研究性为宜。

2) 研究内容。研究目标明确,方法恰当,能够提出自己的见解,所提观点正确。

3) 论文结构。结构清晰、完整,论述严谨,表达规范。

4) 占有文献丰富。撰写过程中要有意识培养学员查阅科技文献的能力,要求查阅反映最新研究成果的权威文献。

4加强实验环节教学

人工智能教学在进行各种理论知识讲授的同时,还应重视实践教学,把抽象的知识转化为形象、直观的实验,让学员真正理解人工智能的概念、本质、研究目标,从而提高学员多角度思维的能力和逻辑推理能力,进一步了解信息技术、计算机技术发展的前沿,培养他们对人工智能研究的兴趣,激发对人工智能技术未来的追求。为此,课程组借鉴国内外知名大学人工智能实验教学经验,编写了《人工智能原理实验指导书》,围绕问题表示、经典逻辑推理、不确定推理、搜索策略及简单专家系统实现等教学内容提供了7组实验供学员选择。

例如,在状态空间搜索一节教学过程中,先完成理论部分的教学,使学员对状态空间基本概念、问题表示及求解方法有一个准确的认识,然后进行实验教学。由学员自主完成重排九宫问题求解的程序,初始状态和目标状态如图1所示,调整的规则是,每次只能将与空格(左、上、下、右)相邻的一个数字平移到空格中[4]。实验过程重点指导学员掌握状态空间进行问题求解的关键步骤:问题表示和搜索策略。问题表示就是要确定该问题的基本信息及程序实现的数据结构,基本信息有初始状态集合、操作符集合、目标检测及路径费用函数,数据结构可采用向量、链表等形式;搜索策略可分为盲目式搜索和启发式搜索,可按照先易后难的原则,先实现盲目搜索中的广度优先及深度优先搜索,在此基础上再定义估价函数实现启发式搜索。而在启发式搜索实现过程中,又可以通过定义不同的启发函数:如某状态格局与目标节点格局不相同的牌数、不在目标位置的牌距目标位置的距离之和等加以比较,准确理解启发函数的意义。通过实验,学员加深了对课堂讲授的理论知识的理解,能够熟练地将状态空间法运用于实际问题的求解,提高了工程实践能力。

实验教学组织方式可根据具体的实验内容特点,采用上机编程实验、演示程序验证、模拟平台开发、分组讨论等多种形式进行。

5适度开展双语教学

研究生的英语基础普遍较好,基本都通过了国家公共英语四级考试,部分学员通过了六级考试,加之在本科阶段还开设了专业英语课程,因此,在培养研究生人工智能知识的同时,我们要提高学员阅读原版英文资料、用英语进行简单科技写作及对外学术交流的能力,适度开展双语教学,对此,我们可采取以下基本方式。

1) 专业术语全部用英语表示。

在教学过程中用英语表达人工智能原理中的专业术语和主要概念,如Knowledge Representation(知识表示)、Depth-First Search(深度优先搜索)、Breadth- First Search(广度优先搜索)等。

2) 以英文原版教材为教学参考书。

选定机械工业出版社出版的《Artificial Intelligence Structures and Strategies for Complex Problem Solving》为参考书,该书“是人工智能课程的完美补充。它既能给读者以历史的观点,又给出所有技术的实用指南[5]。”

3) 加强英文文献的阅读。

在课程论文撰写时,要求阅读一定数量的外文文献;在讨论课中,鼓励学员使用英语进行讨论。

经过课程学习,学员都能准确掌握人工智能学科专业词汇,英文运用能力得到一定提高,能较自如地阅读原版英文专业资料,为进一步用英文进行学术交流及学术论文写作打下基础。

6考试与成绩评定改革

考核方式采用传统的试卷与课程论文、实践环节等三部分组成,全面考查学员对基础理论知识掌握情况以及理论联系实际的能力,其中试卷占70%,课程论文占10%,实践环节占20%。课程论文题目不作限制,由学员在课程学习阶段结合某一专题选定题目,课程论文以选题意义、研究内容、论文结构、参考文献及撰写规范等指标为评价依据;实验成绩采用实验过程考查、实验结果验收和实验报告评阅相结合的考核方法,综合评定。这样做不但考核了学员人工智能基本理论掌握情况,也反映了学员的学术研究能力和工程实践能力。同时,考核结合实际教学进程,改变了单一课终总结性考核的弊端。

7结语

经过课程组近两年的教学方法研究与教学实践,研究生人工智能原理课程教学收到较好的效果,但仍存在一些问题,如在课堂讨论环节,个别学员准备不充分、讨论不够深入;课程论文撰写选题随意,文献综述不够全面、准确,论文格式不够规范等。在今后的授课中,课程组将根据授课研究生人数较少的特点,采取明确每名学员预习重点、加强课程论文交流等方式予以改进,力求取得更好的教学效果。同时,进一步充分利用便利的校园网平台,开展“人工智能原理”网络课程建设,购买或自主开发网络教学资源,引导学员利用网络资源进行个性化自主学习,增强教学过程的信息化程度。

参考文献:

[1] 王永庆. 人工智能原理与方法[M]. 西安:西安交通大学出版社,2002:1.

[2] 李志厚. 国外教学设计研究现状与发展趋势[J]. 外国教育研究,1998(1):6-10.

[3] 肖川,胡乐乐. 论研究生学术能力的培养[J]. 学位与研究生教育,2006(9):1-5.

[4] 周金海. 人工智能学习辅导与实验指导[M]. 北京:清华大学出版社,2008:204.

[5] George F.Luger.Artificial Intelligence Structures and Strategies for Complex Problem Solving[M].北京:机械工业出版社,2009:754.

Reform on Postgradrates Artificial Intelligence Course Teaching

TAN Yuehui, QI Jianfeng, WANG Hongsheng, LI Xiongwei

(Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)

第3篇

关键字:人工智能;案例教学;学科分支;双语教学

中图分类号:G642 文献标识码:B

1 引言

人工智能是计算机科学的一个重要分支,是当前科学技术发展中的一门前沿科学,它的出现及所取得的成就引起了人们的高度重视,被认为是计算机发展的一个根本目标。

人工智能课程作为计算机科学与技术专业课程体系中的核心课程之一,其地位正在随着该技术的不断发展和广泛应用而得到迅速提高。目前,国内外重点大学都非常重视该门课程的教学和研究,许多重点大学都有自己独立的人工智能研究所。

本文通过多年的人工智能教学实践,对人工智能教学的方法进行了初步的实践和探索。中央民族大学在人工智能课程建设和教学过程中,针对计算机学科的发展趋势,提出摈弃传统讲、学、考模式,注重学生能力培养的措施。在教学和实践过程中,不断进行探索,既从计算机学科本科的教学理念出发,从人工智能这门学科特点出发,以计算机学科分支的角度认知人工智能,组织教材的知识架构并进行教学。用计算机学科的观点分析人工智能的基本原理与方法时,重点强调的是这些基本原理与方法与其他的计算机分支的共同点和不同点。共同点是强调计算机学科的本质,不同点是强调人工智能的本质。本文就针对我校人工智能课程教学的一些基本问题加以初步总结。

2 从计算机学科分支的角度认知人工智能

人工智能属于计算机科学分支的学科,同时又是一门涉及控制论、信息论、语言学、神经生理学、数学、哲学等多学科交叉的课程。我国高等院校计算机学科的本科教学所设置的人工智能课程一般只有40课时左右,以什么角度组织教材内容,提高教学效果,才能使学生较容易地理解和掌握人工智能的原理与技术,是我们值得探索的问题。

人工智能处理的对象是知识,知识处理则需采用知识表示。因此,若以计算机分支的角度也就是用计算机学科的观点看待人工智能,人工智能课程的教学内容应以知识为主线,以知识表示和搜索为基石进行组织。反映到实际教学中,就是人工智能的各个分支的介绍,这包括知识库系统、自然语言理解、规划、机器人等。总之,教学内容可分成两个部分,第一部分是基础理论和基本方法,包括:逻辑表示与归结推理方法、搜索原理,知识表示(包括产生式系统、语义网络、框架)、推理(包括不确定性推理、非单调推理)、机器学习。第二部分是实用技术,包括知识库系统、高级搜索、自然语言理解。

3 优化和更新教学内容、加强双语教学

人工智能作为一门新学科,在1988年前,国内外均未见有教学大纲和教材,开设本课程面临的首要问题就是确定教学内容,包括人工智能的知识表示和推理以及人工智能的应用两个部分。前者是人工智能的重要基础,后者讨论几种人工智能应用系统,包括专家系统、机器学习、自动规划和机器视觉等系统。这些内容只是给出了人工智能课程的初步框架。

随着人工智能研究的进一步深入, 到20世纪90年代中期,人工智能也从符号(逻辑)主义一枝独秀发展到符号主义、连接主义和行为主义多家争鸣的新局面, 模糊计算和神经计算作为新内容列入到人工智能课程,充实了人工智能课程的内容。进入21世纪以来,人工智能学科又有了新的发展。为了及时反映人工智能研究和学科的最新进展,我们及时对教学内容进一步优化和更新:把人工智能分为基础部分和扩展应用部分。

在教学和实践过程中,考虑到本课程的多学科交叉性以及相关信息学科的快速发展, 在目前高校提倡双语教学的环境下,将《人工智能》教材逐步改为全英语教材,这样可以更快地掌握学科的发展动态, 掌握最先进的技术, 与国际发展趋势接轨。Nils J.Nilsson教授所著的《人工智能》教材是美国Stanford大学计算机系本科教材,该教材体系比较符合学生的认知规律,便于学生接受、理解、掌握和巩固所学知识;同时这本书内容丰富、取材新颖,适合作为该课程的英文教材。

4 注重案例教学、改革教学方法

案例教学首创于哈佛大学商学院,在经贸、管理、法学等学科领域的相关专业得到应用并取得显著绩效,然而目前工科专业还较少运用案例教学方法。人工智能的每一部分内容均包含大量概念,内容抽象,算法复杂,学生往往被动“听讲”;并且涉及很多的数理逻辑知识,有些显得难以理解,并且往往让学生感到比较枯燥,学生的学习兴趣就渐渐淡薄,难以获得预期的教学效果。鉴于这一现实问题,我们将案例教学方法引入到该课程的教学之中。

例如在逻辑推理技术和搜索技术这两方面的教学过程中,我们使用参考教材《人工智能:一种现代方法》,并利用其中基于JAVA的教学开发工具包AIMA进行案例设计和实验教学,在教学过程中结合AIMA中的案例来讲解,使比较枯燥的知识以有效、实用和具体的形式表现出来,做到理论与实践相结合。在讲解搜索技术时,以“八皇后”问题为案例,结合AIMA中的设计实现,以讲解和讨论相结合的方式,学习盲目搜索、启发式搜索等算法,使学生不仅能理解状态空间的产生方法,而且能设计算法、实现算法,提高了学生的学习兴趣和实践能力。在学习神经网络、模糊逻辑、进化计算等方面的内容时,我们主要借助于Matlab提供的相关工具箱。

5 加强教学队伍建设、改革考核方法

建立一支爱岗敬业、富有战斗力的教学队伍是出色完成教学任务和提高课程教学质量的根本保证。教学人才资源是教学的第一资源。在学校有关部门的领导和学院的支持下,我们组成一支知识结构和年龄比较合理的教师队伍。

在教师队伍的建设过程中,积极引导鼓励教师对考试方法的改革。一方面这样可以打破以往应试教育的弊病;另一方面,也可以使学生从繁重的死记硬背中解脱出来。结合这门课的特点,我们加强平时思维能力的考核,注重学生实验能力和动手能力的培养,在学习中大量采用写读书报告的形式。在此基础上加大平时成绩的比例,使得平时成绩占到总成绩的40%左右,杜绝依靠一次考试决定成绩的状况。这样,既迫使学生重视平时的学习思考,也减轻有些学生想通过考试作弊完成学习任务的侥幸心理。

第4篇

人工智能作为一门课程[1],开设时间距今只有40多年,但发展极为迅猛。人工智能课程的内容涉及计算机科学、数学、系统科学、控制科学、信息科学、心理学、电子学、生物学、语言学等等,几乎所有科学工作者都可以在人工智能中找到自己感兴趣的问题。目前,国内外已有众多高校指定人工智能为计算机科学与技术及其相关专业的主修专业基础课程,它在拓展计算机和自动控制的研究和应用领域方面有着极其诱人的学科发展前景。自2003年起,国内诸多高等院校陆续开设“智能科学与技术”本科专业,同时也有更多高校在传统信息类专业中加大了人工智能课程的课时比重,因此如何提高人工智能课程的教学质量显得尤为重要。? 

本文结合人工智能课程的特点以及自己教学与研究的实践,对本课程的教学进行一些探讨,以期改进人工智能课程教学方法,达到提高本课程教学质量的目的。?? 

一、兼顾课程内容的统一性和差异性?? 

人工智能课程的核心内容主要集中在对基本概念、基本原理、基本方法和重要算法及其应用的认识和理解上,尽管各种基本概念、原理、方法和算法在一定程度上自成体系,但是它们之间又存在着许多内在联系和规律。从这一点来看,人工智能课程与其他很多计算机课程是不同的,这就要求人工智能课程的授课要具有自己的特色。? 

知识表示、知识推理、知识应用是人工智能课程的三大内容,解决任何一个人工智能问题都离不开两个步骤,即知识表示和问题求解。由此,人工智能课程从总体结构上就有了一个比较清晰的脉络,即首先必然要学习各种知识表示方法,然后是利用这些知识进行推理,进而实现知识应用,最终达到问题求解的目的。问题求解又分为基本的问题求解方法和高级问题求解方法。图搜索策略、启发式搜索、消解原理以及规则演绎系统等都属于基本的问题求解方法。计算智能、专家系统、机器学习、自动规划等属于高级问题求解方法。? 

同时,人工智能课程某些章节或者某些方法算法在一定程度上又自成体系。例如,各种不同的知识表示方法不管是数据结构还是表示形式都完全不相同。又例如,人工智能有许多不同的学派[2],本课程往往同时会介绍不同学派的算法,这些学派在人工智能的基础理论和方法、技术路线等方面是完全不同的,甚至是对立的。? 

这些都要求我们在教学过程中不仅要强调人工智能课程理论的统一性和完整性,又要兼顾各学派的特点,尊重甚至调动学生们对不同人工智能学派及其方法的兴趣。在编写和选用教材时也要注重这一点,我们选用的是蔡自兴教授编写的《人工智能及其应用》系列教材[1,2],该教材以逻辑主义学派为主线,兼顾引进其他学派的精华内容,具有较强的科学性。 

??二、实施分层次教学?? 

各高校一般同时为计算机相关专业的本科生和研究生开设了人工智能课程,甚至有的非计算机类专业也开设有人工智能课程。不同层次的学生对人工智能课程要求掌握的程度不同,我们首先明确本科生和研究生以及非计算机类专业学生的教学目的和教学内容,做到分层次设计人工智能课程教学?过程。? 

本科阶段的人工智能课程课时量较少,本科层次只需要做到对大部分人工智能概念和算法了解、认识,少部分达到理解层次。本科生一般都是在高年级(三年级下期或者四年级上期)开设人工智能课程,这时已有不少学生准备继续读研或者已经被保研,因此在兼顾全体学生教学层次的同时,要注意给这部分学生足够的相关参考书目,让他们能够利用课余时间广泛深入了解人工智能相关算法,老师在课后还应和他们进行充分讨论,培养他们对人工智能的特别兴趣。? 

非计算机类专业的学生往往需要学习如何利用人工智能知识解决该专业领域内的问题,因此在教学中要尽量有专业针对性地进行教学。例如针对农科类专业,在教学专家系统过程中,我们要求学生参考北京农业信息技术研究中心开发的农业专家系统开发平台(paid5?0)理解并开发与本专业领域相关的简易农业专家系统。? 

给研究生开设人工智能课程要求做到概念理解,基本算法精通,即要求全面、系统地掌握人工智能的基本概念、基本原理、典型方法和若干应用实例,并且能灵活运用所学知识阐述解决实际问题的方法和途径。课程教学中要致力于培养学生分析问题与解决问题的能力,要求研究生将人工智能方法与自己的研究方向相结合,用人工智能方法解决所研究课题中的实际问题,并撰写相关的课程论文,以小型研讨会的形式进行报告交流。实践证明,我们的研究生的人工智能教学效果明显提升,成效突出。 

??三、案例驱动,寓教于乐?? 

采用案例教学是为了充分调动学生的学习兴趣,增强学生学习的自觉性[3]。通过案例教学能把枯燥的人工智能理论知识具体化、形象化,可以使学生更加感性地理解课堂教学内容。这些案例都是以教师所从事的科研项目中的实际应用环境为背景进行阐述的,让学生能在实际环境中理解概念和知识,学会利用人工智能知识去分析和解决实际问题。在教学过程中要选择学生容易接受的案例,体现理论联系实际的特色,激发学生的兴趣。? 

例如,在讲授“计算智能”内容时,我们结合黄河三门峡和小浪底水库水沙联合智能调度系统[4]进行讲解。综合三门峡水库和小浪底水库防洪运用的基本原则、历年调度方案、专家的经验、历年数据和现有的调水调沙数学模型,分别利用模糊决策、神经网络、遗传算法及综合集成方法来实现三门峡、小浪底水库水沙联合调度。? 

又例如为了让学生走近机器人,我们进行了一场机器人展示课,将研究所现有的MOROCS?1(中南一号智能移动机器人)、ASR(广茂达)、AmigoBot(自主移动机器人)、CanDroid(罐头机器人)、MD?375 Rover(人控漫游车)、Fokker D7(人控飞机,1:72)、Rockit OWI?769K(声按、压控火牛机器人)、Hexapod Monster(六足爬行机器人)、Hubo(多机能歌舞机器人)等各类机器人全部拿出来给学生做了功能演示[5]。亲眼看到这么多机器人,同学们都非常兴奋,对人工智能课程的兴趣高涨。? 

在进行案例教学时,引导学生带着问题和求知欲望深入理论的学习,让学生在案例中寻找问题的答案并获取知识。在讲授利用神经网络进行水库调度时,引导学生分析如何确定神经网络的输入端数据,什么是泛化能力以及如何提高神经网络的泛化能力。? 

为了巩固所学内容,可以让学生组成讨论小组对教师提出的论题进行讨论,分小组阐述自己的观点,这样有助于提高学生学习的主动性,还有助于培养学生思考问题的能力和提高理论教学的效果。案例教学的关键在于引导学生利用所学到的理论知识去解释、分析和解决现实案例中的问题,以达到训练学生理论运用和深入理解理论知识的目的。? 

此外,我们挑选了机器人足球、拖拉机扑克牌、中国象棋、五子棋等普遍受人喜爱的智能游戏,让学生亲手设计小型智能游戏软件,在设计的过程中掌握高深的人工智能理论知识,让学生学得会、用得上、记得牢。 

??四、结语?? 

以上谈到的一些教学方法是我们在教学过程中总结体会比较深刻的方面,以供探讨。事实上,要进一步提高人工智能课程的教学质量,还有很多方面需要改革和加强。如不断强调人工智能教师的专业素质,要求他们在讲授好人工智能课程的同时,努力提升出自身的专业素质,给学生一个良好的专业素质导向。其次,在人工智能课程教学过程中还需要有培养实用型人才的教学理念,特别是注重培养有创新意识的实用型人才。注重培养学生的质疑能力,只有通过质疑和提出问题,学生的创新意识才能够得到不断强化,创新思维能力才能够得以不断提高。? 

人工智能学科是一门非常年轻、又非常前沿的学科,有其自身的突出特点,人工智能课程教学必然与其他计算机专业课程教学不同,需要更多的从事人工智能教学的教师在自身的教学实践中不断积累经验,进行广泛的教学交流。 

 

参考文献? 

[1] 

蔡自兴, 徐光祐. 人工智能及其应用(第三版)(研究生用书)[M]. 北京: 清华大学出版社, 2004(8): 1-4.? 

[2]蔡自兴, 徐光祐. 人工智能及其应用(第三版)(本科生用书)[M]. 北京: 清华大学出版社, 2003(8):288-290.? 

[3]雷焕贵, 段云青. 中美案例教学的比较[J]. 教育探索, 2010(6): 150-151.? 

第5篇

关键词:人工智能计算机技术

一、人工智能的定义

“人工智能”(ArtificialIntelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。

二、人工智能的应用领域

1.在管理系统中的应用

(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。

(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。

2.在工程领域的应用

(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。

(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。

3.在技术研究中的应用

(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。

(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。

三、人工智能的发展方向

1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。

2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。

3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息,2007.

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).

[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2005,(4).

第6篇

关键词:人工智能;会计软件开发技术;翻转课堂;知识库;会计信息化

一、引言

近年来,随着云计算、人工智能、大数据和移动计算等新技术的发展与应用,知识管理理念的日趋成熟,新兴技术对高等学校教育教学模式的改革与创新带来了良好的机遇。2012年3月13日,教育部印发的《教育信息化十年发展规划(2011-2020年)》,旨在推进信息技术与教育教学的深度融合,实现教育思想、理念、方法和手段全方位创新。2016年6月7日,教育部颁布实施的《教育信息化“十三五”规划》,以期加快推动信息技术与教学教育的融合发展。这些政策的出台为高校翻转课堂教学模式的发展提供了明确的实施导向和政策支持,也为重庆理工大学会计信息化国家级精品课程之《会计软件开发技术》(AccountingSoftwareDevelopmentTechnology,以下简称为ASDT)课程实施翻转课堂教学模式改革与创新带来了良好的契机。知识库采用知识表示方式来存储、组织、管理和使用互相联系的基础学习知识、学习过程沉淀的知识和学生自我搭建的知识。基于人工智能技术的翻转课堂知识库构建与应用,不但可以调动学生的积极性和主动性,让课程教学延伸到网络平台,还能够在很大程度上提高课程的教学质量和教学效果。大数据、人工智能、知识库等技术的发展为翻转课堂教学模式的有效开展提供了良好的技术支撑,引起了教育界的广泛关注。周宇等人(2016)提出了一种面向关联数据的机构知识库构建方法,该方法能够覆盖机构知识库构建的整个过程,并支持机构知识的资源整合、语义检索、知识推理和关联数据。钟晓流等人(2013)信息化环境中基于翻转课堂理念的有效教学设计模型,对翻转课堂产生的背景与缘起、含义与特征、当前的研究进展与实践案例、相关的技术工具等进行了系统分析。曾明星等人(2014)阐述了翻转课堂的内涵、应用与研究现状,分析了软件开发类课程实施翻转课堂的可行性,探讨了软件开发类课程翻转课堂教学模型及其构成要素。刘清堂等人(2016)分析了机器教学、计算机辅助教学、智能导师系统的基本设计理念、关键技术以及代表性系统,提出以学习分析为核心的智能技术整合、融合人工智能和人类智能的自适应学习。综观上述文献,现有研究主要从翻转课堂的可行性和模型等方面去思考翻转课堂的教学模式改革问题,而利用人工智能、大数据等现代信息技术去改革与创新翻转课堂教学模式的研究文献还相对比较匮乏。基于人工智能技术的翻转课堂知识库构建与应用,通过全程记录课上和课下的教学互动过程,可以改善翻转课堂在教学方式、学生学习方式、评价体系等诸多方面的不足。鉴于此,本文基于大数据、人工智能等技术,探索改进与提升翻转课堂教学模式改革与创新的新技术与新方法。

二、基于人工智能的春秋战国翻转课堂知识的表达

人工智能(ArtificialIntelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,主要包括机器人、语言识别、图像识别、自然语言处理、智能监控、智能搜索等核心技术。ASDT课程将语音识别、语义识别、图像识别和智能搜索等人工智能技术融入翻转课堂教学改革的同时,导入春秋战国时期的七国争霸作为教学情景,将班上所有学生平均分成七个小组,分别对应齐、楚、燕、赵、韩、魏、秦等七个国家,每个小组的学生进行角色扮演,实施“春秋争霸”翻转课堂教学。在ASDT教学过程中,在讲授会计软件开发技术和会计数据业务处理流程的同时,让学生充分参与课程教学活动,强化互动学习,培养学生的团队协作能力、沟通能力、PPT制作与演讲能力、知识消化吸收及应用等能力。基于人工智能翻转课堂知识库构建的基础是将ASDT课堂的课堂教学活动和学生自主学习活动过程中形成的知识符号化的一个过程,通过对知识的映射转化为可供描述的事实和推理事实的数据结构。在构建知识库的过程中,知识的表达方式是构建知识库的关键。知识表达方式主要包括描述性、直接性、过程性等表达方式。其中,描述性的知识表达方式是客观和完整地反映相关专业领域的理论知识,具有准确性和逻辑性的特点。直接性的表达方式是以专业理论知识为基础,以图片、视频、音频和图形等方式直接表达知识的本质。过程性的知识表达方式是在教学过程中的积累和总结的经验知识。以下具体阐述在课堂教学活动和学生自主学习活动中知识的表达方式。

(一)课堂教学活动课堂教学活动由教师围绕各小组在完成作业的过程中遇到的实际问题,引导学生进行小组作品展示和组织小组间互动讨论。在课堂教学活动中,各小组通过PPT演示讲解本组作品中所涉及的知识点,运行程序进行作品展示。其他小组针对展示的作品轮流提问,小组回答问题以后,教师对作品进行综合性点评并打分。最后,教师根据知识库中的记录的学生自主学习活动中遇到的问题引导学生互动讨论,解决问题,针对学生不能解决的问题,进行重点讲解。在整个课堂教学活动中,教师对知识点的讲解、评价表现为描述性的知识,而教师和学生的角色高频切换,教师和学生评价、引导和提问不停迭代的探究式教学过程,表现为过程性的知识。通过语音识别、语义识别等人工智能技术的运用,自动识别和理解学生作品展示、各小组提问、教师综合点评等教学活动中的语言,转换为相应的文本,按照知识的表达方式自动分类,并实时传送到网络平台,更新知识库。

(二)学生自主学习活动将ASDT课程的教学目标和教学内容按主题进行任务分解,根据教学计划逐步推进,学生根据小组任务在重庆理工大学精品课程网上观看教学视频进行自主学习,小组成员合作完成小组任务。学生在学习过程中产生的疑问,可以借助智能搜索技术检索知识库,知识库推送相关知识点,帮助学生解决问题。在学生的自主学习过程中,学生在网页中通过简单检索、组配检索、限制检索等手段,进行交互式的访问,最终获得所需的知识信息,表现为过程性的知识。学生观看教学视频对相关知识点进行学习表现为直接性的知识。

三、基于人工智能的翻转课堂知识库的构建

在知识的直接性表达、描述性表达和过程性表达等多种方式下,多角度获取教学活动中的各种知识以构建知识库。基于人工智能的翻转课堂知识库包括教师编辑维护的知识库、学生自我搭建的知识库以及课堂学习过程中沉淀积累形成的知识库三部分,在教学活动中不停地进行动态更新,形成一个翻转课堂知识库的生态循环。其中,老师编辑维护的知识库是根据教学计划和教学任务按规则生成课题所需的知识点;学生自我搭建的知识库是根据学生在网络平台上提出的问题,生成的答案和解释;课堂学习过程中沉淀积累形成的知识库是自动记录和存储学生在课堂上的各种学习行为。基于人工智能的翻转课堂知识库,

(一)教师建立维护学生基础学习知识库教师首先根据教学总任务和总目标规划具体小组任务,按照教学大纲小组任务,同时在网络平台上编辑学生完成小组任务所需的基础知识和教学视频。此环节对课程的翻转和构建基础学习知识库具有重要的指导意义。建立基础学习知识库要和小组任务相匹配,并且具备合理性、科学性和可操作性,尽量涵盖完成小组任务所涉及的知识点。否则学生将无法完成小组任务,也无法有效建立基础学习知识库。学生根据小组任务和本小组实际情况,观看教学视频和学习资料,满足基础知识储备,完成小组作品。教师根据学生在自主学习过程中提出的问题不断更新维护基础学习知识库。

(二)学生自主学习形成知识库学生根据教师在网络学习平台上的任务,进行自主学习,完成小组的学习任务。当学生提出疑问时,网络平台会自动检索知识库,找到相应的知识点和教学视频对学生进行智能推送,学生解答问题。并且在人工智能技术的应用下,会自动记录学生在网络学习平台上的问题,形成并更新知识库,把学生的学习记录反馈给教师,帮助教师及时调整教学计划。

(三)课堂教学活动中形成知识库在学生的课堂学习中,小组成员进行PPT讲解和作品展示,在语音识别、语义识别和自动计分等人工智能技术下,自动记录和分析小组的作品展示情况、个人发言情况和积分情况。并且自动记录老师的总结点评和答疑,通过图像分析技术,自动归集学生个人的学习资料。同时,把课堂过程中的学生提问、教师答疑所涉及的知识,自动对接到网络平台,更新知识库。

四、知识库在翻转课堂教学活动中的具体应用

基于人工智能的知识库在翻转课堂教学活动中的具体应用主要包括自主学习、课堂教学和效果评价等三个方面。自主学习是指学生在翻转课堂的网络学习平台上进行课前的基础知识学习和基础知识自测,并且借助知识库解决疑问;课堂教学是利用基于人工智能技术构建的知识库,帮助教师和学生解决教学过程中的问题;效果评价是在翻转课堂的教学模式下,建立的适合现行教学模式下的学生评价体系,教师根据基础学习情况,在线统计问题,制定教学计划。下面将详细阐述人工智能的知识库在翻转课堂教学活动各中的具体应用,如图2所示。

(一)自主学习在自主学习过程中,学生首先了解教师的小组任务,在人工智能技术的应用下,根据老师的学习任务,智能化地制定学习目标。学生根据细化的学习目标进行自主学习,明确自主学习的课程内容,并根据课程内容和自身情况选择合适的学习内容。学生通过网络平台观看教师提供的教学视频或其他形式的学习材料开展学习,对学习收获进行记录,最后在网络平台上进行知识检测。同时,应用智能监控技术可以实时监控学生在网络上的学习情况和发言情况。学生可以根据自己的预习情况,在线提出问题,网络平台会根据学生提出的问题自动检测知识库,知识库推送相关知识点和学习资源,帮助学生分析和解决问题。利用智能监控技术,可以收集学生频繁在网络平台上搜索的所有问题。同时,学生也可以将问题进行拍照或者录制成视频发送给教师,利用图像分析技术可以自动识别图片或者视频中的问题并且推送给教师,根据问题调整教学内容和教学计划。

(二)课堂教学教师根据知识库中记录的学生自主学习情况,全面系统地了解学生的基础知识学习情况。知识库汇总学生在网络平台上的发言和提问情况,教师根据汇总的问题在课堂上进行重点讲解,使课堂学习更加高效。在学生作品展示、小组互动提问、教师综合点评等教学活动中,学生和教师可以借助知识库智能推送相关知识点,帮助解决教学活动中的问题。同时可以智能推理出合适的教学计划给教师进行选择。在学生提出问题和解答问题的过程中,智能收集问题和答案,形成知识,更新知识库。

(三)效果评价效果评价包含教学质量评价和学生评价两个环节。其中,教学质量评价是全面、系统的了解学生的学习情况和知识储备情况下,合理、客观地评估教师的教学质量。学生评价是考核学生的知识掌握情况、交流与沟通能力、演讲能力、协作能力、PPT制作能力、课堂参与程度和小组展示情况等。在基于人工智能的翻转课堂教学模式下,学生评价包括课堂教学活动和学生自主学习活动两个部分。通过语音识别和语义分析技术等人工智能技术,详细记录每一位学生在课堂上的发言情况、小组展示情况和教师对作品的点评情况。通过大数据分析技术,可以全面地了解学生在课外观看教学视频的情况和自测情况。因此,这种学生评价方式更加具有合理性和精准性。

五、结论

与传统的ASDT课堂相比,基于人工智能下的翻转课堂知识库的构建促使教学逐步从静态走向了动态,实现了以学生为主题,教师为主导的课堂教学理念,是适应新时期ASDT课程教学改革的必然。在基于人工智能的翻转课堂教学模型下,一定程度上改进了翻转课堂中的课堂教学、学生自主学习和效果评价等模块,有效督促学生自主学习,帮助学生在线答疑,同时更加综合地对学生进行考评,让老师教学更加高效。人工智能技术的广泛应用对于解决翻转课堂教学当前所面临问题的是较为理想的方案,它有助于提升翻转课堂整体的教学水平,促进翻转课堂的快速发展。

参考文献:

[1]周宇、欧石燕:《面向关联数据的高校机构知识库构建方法研究》,《图书情报工作》2016年第1期。

[2]刘清堂、毛刚、杨琳等:《智能教学技术的发展与展望》,《中国电化教育》2016年第6期。

[3]曾明星、周清平、蔡国民等:《软件开发类课程翻转课堂教学模式研究》,《实验室研究与探索》2014年第2期。

[4]钟晓流、宋述强、焦丽珍:《信息化环境中基于翻转课堂理念的教学设计研究》,《开放教育研究》2013年第1期。

[5]胡立如、张宝辉:《翻转课堂与翻转学习:剖析“翻转”的有效性》,《远程教育杂志》2016年第4期。

[6]王红、赵蔚、孙立会等:《翻转课堂教学模型设计》,《现代教育技术》2013年第8期。

[7]余燕芳:《基于移动学习的O2O翻转课堂与应用研究》,《中国电化教育》2015年第10期。

第7篇

关键词:智能科学基础;系列课程;国家级教学团队;改革;建设

在国家教育部质量工程的支持下,中南大学信息科学与工程学院对国家级精品课程人工智能[1-2]和智能控制[3]、全国双语教学示范课程人工智能和国家级智能科学基础系列课程教学团队[4]等进行持之以恒的改革与建设,取得一些成果。

“智能科学基础系列课程教学团队”的教学队伍是一支由国家级教学名师领衔[5],知识结构、梯队结构和年龄结构比较合理,具有明显的学科优势、课程优势、人才优势和教学科研优势的颇具特色与影响力的教学团队。该团队以中南大学智能科学研究中心为核心,主要承担人工智能基础、智能控制导论、机器人学、专家系统等本科基础和专业基础课程,硕士学位课程人工智能、智能控制和机器人控制技术以及留学生硕士学位课程Artificial Intelligence和博士生学位课程智能系统原理与应用的教学。

教学团队在建设过程中,注重教学改革,加大课程建设和教材建设力度,不断改进教学方法,在课程改革、教材建设、教学手段、队伍建设以及交流合作等方面取得一些进展。本文拟就教学团队的改革与建设的相关理念与实践问题加以总结,谈谈我们的见解。

1创新教学方法

教学是教师的本职和核心工作。本教学团队一直致力于教学方法与教学模式的改革与创新,虚心学习国内外先进教学经验和方法,积极探索教学新路,形成了“以趣导课、以疑启思、以法解惑、以律求知”的教学模式和教学方法[6-7]。充分激励学生的学习积极性和主动性,发挥独立思考和创新思维,多方位培养学生发现问题、分析问题和解决问题的能力。我们在教学过程中应用了课堂演示、课堂互动、课堂辩论、课后网络教学、网络实验等一系列现代化全方位的教学新模式。此外,为提高学生的动手能力和理论水平,让学生直接参与部分教师课题,理论联系实际,为毕业后的工作学习打下良好基础。具体措施如下:

1) 举行课堂讨论会,营造自由探索氛围。

为调动学生的积极性,我们在授课过程中多次开展课堂讨论会和辩论会等活动,让学生自己查阅资料,分析整理,提出自己的观点,使学生全方位地接触所学课程,培养学生的研究能力,真正实现师生互动,并鼓励学生用英语讨论。学生对有些问题展开了激烈的争论,激发了学习潜能,明确了学习目标。课程中还经常请来在科研工作中担任主要任务的教授和博士生来给学生介绍最前沿的科学动态,激发学生们对所学知识和科学研究的兴趣。在研究生教学方面,我们更进一步通过举办课程课堂学术研讨会,让学生在一年级就开始接触学科前沿,自己查阅资料和动手写科技论文,并在研讨会上宣读讨论,培养独立工作能力和从事学科前沿研究的能力,为将来的高层次研究打下基础。

2) 倡导启发式教学,培养学生学习能力。

注意采用面向问题的启发式方法进行教学,启发学生求解问题能力,强化学生的参与意识,提高他们的学习积极性。教学中还注意采用了多种交互式策略,如课堂教师提问、鼓励或指定学生用英语提问、学生就某个知识点进行主题发言后老师点评等。此外,师生通过互联网进行交互,方式包括Email、BBS和QQ谈和交换文件等。

根据学生的兴趣和创新潜力,对有专业特长的本科生,在自愿情况下,挑选2~3名参与国家级项目研究工作,进行中长期培养试点,实现本科培养过程与硕士、博士研究生培养过程的衔接。

3) 增强课程实验教学环节,筹建智能专业实验室。

智能科学基础课程的概念性较强,初学者感到比较抽象,而实验教学又是薄弱环节。因此,结合学生实际情况,我们对实践教学环节十分重视,设计了一些新的实验项目,探索新颖的实验方法。新开实验项目包括人工智能实验、智能控制实验、专家系统实验、机器人学实验、人工智能课程设计等。对相关课程的原有实验,我们也进行了一些改革,增设了个性化的实验,使得学生的实验数据和实验结果分析既有格式要求,又给学生报告自己研究的过程和结果留有空间。这些做法能够鼓励学生进行独立性研究,满足他们学习的需求。通过实验教学,学生能够理论联系实际,验证所学理论知识和概念,加深理解,充分调动了学生的学习积极性,培养了他们的创造能力。

除课堂实验外,我们还充分发挥虚拟实验的优点,设计了网络虚拟实验,让学生在课外上网练习。通过虚拟实验,学生可以了解算法的具体运行过程,调整参数和过程,并进行验证以加深对知识的理解,提高学习兴趣,从而达到教学目的。

结合科研,购进和自制部分新设备、新系统,计划建设智能专业实验室,为教学提供更多的优良实验设备。例如,已研制“中南移动一号”和“中南移动二号”自主移动机器人共7台,已购进RCB-1型教学机器人20套等。

教学团队教师还指导学生参加全国大学生“飞思卡尔”杯智能汽车竞赛活动、大学生创新性实验计划及创新教育计划项目等,取得优秀成果。

2推进课程改革

教学改革是课程建设和学科发展的生命线。我们把国家级精品课程和全国双语教学示范课程放在优先建设的位置,并以它们带动其他课程建设,完善系列课程建设,同时新办了智能科学与技术专业。

2.1搞好精品课程建设,改进双语示范课程教学,稳步推进系列课程建设

本团队着力搞好已有的2门国家级精品课程、1门全国双语教学示范课程,更新精品课程网站,丰富课程内容。为了及时反映上述课程中相关科学技术的最新进展,我们调整了教学体系和教学内容,修订了教学大纲,并对教学内容进一步优化和更新,极大充实了各课程教学内容。同时,通过校际教学活动和网上资源共享对精品课程、双语教学示范课程进行交流和推广,起到较好的辐射作用[8-9]。

为加强精品课程建设,完善和拓展课程体系,在总结现有精品课程的建设经验的基础上,又建成省级精品课程1门,校级精品课程1门。

为提高学生的专业英语水平和学习兴趣,使得学生能够开拓眼界,追踪国际前沿科学研究,本团队长期对双语教学进行研究和实践。除改进人工智能双语教学示范课程外,团队承担的其他课程,如智能控制、机器人学、专家系统、数据结构等也实行了双语教学,并为该课程引进英文辅助教材。例如,对人工智能课程,我们先后采用Nilsson和Russell等编著的国外影响较大的英文原版教材作为主要教学参考书[10-11],供学生学习参考。在双语教学中,一般以汉语讲授为主,英语为辅,并对一些关键词同时用汉语和英语表示。对部分章节或某个专题,采用纯英语教学或以英语为主汉语为辅的教学。对PPT课件的编写分为纯汉语、纯英语和英汉混合几种方式。英语教学比例要根据教学内容和学生英语水平而定,其检验标准是学生的接受程度与学习效果,根据这一点来适时调整双语教学中英语对汉语的比例。

通过教改实践,我们承担的智能科学基础课程逐步形成为具有明显特色的课程体系。我们讲授的课程从智能科学的基础课程到专业基础课程,再到专业实践课程,形成了配置合理、特色鲜明、循序渐进、优势互补、协调发展的智能科学与技术学科从基础到应用的系列课程体系。

2.2新办智能科学与技术专业

智能科学与技术是当代科技发展的前沿学科和重要组成部分,其人才需求日益增加,超出了目前高校的培养能力[12]。我校的智能科学与技术学科方向经过近20年的发展,已形成了具有自身优势和特点的学科,在国内具有一定的知名度和优势。为了促进智能科学与技术学科的发展,经过多年积极准备,我们于2009年申报了智能科学与技术专业并获得教育部批准。通过向兄弟学校学习调研,了解该专业人才需求、专业建设规划,设定适应培养目标的教学计划与课程设置方案。虽然我们开办“智能科学与技术”专业较晚,但我们从2002年开始,就一直关注和积极参与国内智能科学的学科的讨论与新专业筹备工作[13]。

我校于2009年申报获准,在自动化专业增设了智能科学与技术专业方向,目前已招收2届学生共84人。我们为选读智能科学与技术本科专业方向的每个学生选定指导老师。每个学生都可以参加指导老师的课题,指导老师也可以利用自己的学识、经验和责任心来更好地管理呵护学生。这一做法取得明显效果,不仅受到同学们的普遍欢迎,也得到了学校的肯定。我们还多次召开师生见面会并通过指导老师走访宿舍,了解每个人的情况。为了消除代沟,努力融入同学当中,学习熟悉他们的语境和思维想法。我们的目标就是不让一个学生掉队。

创建与建设智能科学与技术新专业,将为智能科学基础系列课程教学建设提供一个更加宽广的平台,并对计算机、自动化和电子信息等学科的专业建设和课程建设提供一个新的增长点。我们将以智能科学与技术专业建设为契机,虚心学习兄弟学校的专业建设的做法和经验,进一步规范智能科学与技术的基础课程教学,让智能科学基础课程教学建设登上一个新的台阶。

3加强教材建设

教材是教学的重要工具和资源,其水平直接影响教学效果和教学质量。在教学过程中,我们与时俱进,对教学内容不断优化与更新,精益求精地编写反映学科发展的教材[14]。

我们对原有编写出版的教材进行修订,反映新世纪学科发展水平和发展趋向,以适应教改需要。把这些最新内容用于教学,使学生了解到国际前沿动态和本学科的最新成果。

以相关系列课程为平台,注重教材配套,服务因材施教,着眼长远教材建设。仅2007年以来我们已出版的相关教材及专著如下:

《智能控制原理与应用》,国家级精品课程配套教材,2007;《智能控制导论》,国家级精品课程配套教材,2007;《未知环境中移动机器人导航控制理论与方法》,2008;《机器人学》,第二版,国家级教学团队配套教材,2009;《机器人学基础》,国家级教学团队配套教材,2009;《人工智能及其应用》,第四版,国家级“十一五”规划教材,国家精品课程配套教材,2010;《人工智能基础》,第二版,国家级“十一五”规划教材,国家精品课程配套教材,2010;《移动机器人协同理论与技术》,2010。

4优化队伍结构

师资队伍建设是团队建设的源头,没有一流的教师队伍就没有一流的教学团队。在师资队伍建设上,我们一直采取引进优秀人才和在职培养相结合的做法。对于人才的引进主要通过办专业和办学科点等方式吸引人才,还通过创造教学和科研条件,稳定教师队伍,解决个人的发展问题。

采取有效措施,提高主讲教师的学术积累和教学水平。一是教研组教师,特别是中青年教师积极参加重要科研项目,提高学术水平。二是派中青年教师赴国外研修访问,了解和学习发达国家同类课程的先进教学经验、相关课程设置情况与发展趋势,将国外教学思想引入课程教学。

教学始终是教师的第一要务,为了提高青年教师的教学素质,我们实施并完善了一系列管理措施和制度。

1) 设立名师工作室,实现名师资源共享形成多元化的带教制度,安排高年资的教师对年轻教师进行传、帮、带,可以有业务方面的指导,也可以有认识方面的交流。通过老教师对年轻教师全方位的指导,使老教师的教学理念和经验得以继承,加快了年轻教师的成长。

2) 有计划地安排年轻教师虚心旁听有经验教师的讲课。通过听课,不仅使年轻教师进一步掌握课程的内容,更重要的是使年轻教师学到了老教师的教学方法和经验,对其今后从事教学工作起到了积极的指导作用。

3) 对于第一次上课和第一次上某门新课程的年轻教师,团队都要在课前组织他们试讲。试讲前,安排老教师进行指导,传授教学经验。试讲时,由团队的教师参加听课并对其进行讲评,肯定其优点,指出其不足,帮助青年教师尽快掌握课程的重点,找到更合适的讲授方法。此外,我们还备课,统一基本教案,帮助年轻教师成长。

近两年来本教学团队获得的主要教学奖励就有徐特立教育奖、茅以升教学专项奖等。

5扩大交流合作

我们在做好自身团队建设的同时,增进与全国相关高校和教学团队的交流,学习兄弟团队的建设经验,在课程示范、教材推广、网络资源辐射等方面发挥积极作用。我们还开展校内合作,联合不同院系进行教学和精品课程的申报与建设,在校内推广改革成果;发表了一系列教改论文;发起筹备《全国智能科学技术课程教学研讨会》;邀请企业界科技精英做本科生就业指导相关报告。

1) 增进校际交流,发挥辐射作用。

我们经常以讲座报告形式在许多兄弟院校进行教学与教改交流。例如,最近一年来就应邀先后到上海交通大学、同济大学、东华大学、东南大学、国防科技大学、中国矿业大学、北京科技大学、清华大学等校就智能科学技术课程的教学、教改和建设问题作专题报告,在兄弟院校师生中引起热烈反响。已有数以百计的高等院校采用我们编著的教材和网络课程进行教学,国内已有众多的从事人工智能课程和智能控制课程教学的教师,来信来函索取我们开发的课程教案、课程演示和网络课程相关资料等,我们一直尽力地搞好推广和服务工作。

2) 撰写课程改革论文,进行国内外交流。

本团队成员仅近一年多来,就在中国教育开放资源网、中国人工智能学会13届年会、计算机教育、高等理科教育、计算机与现代化等会议及刊物上发表10篇教改论文,在国内外进行交流,起到介绍情况,交流信息和经验的积极作用。

3) 筹备全国相关课程教学研讨会。

为了更好地交流经验,扩大影响和辐射作用,我们发起并联合中国人工智能学会教育工作委员会、中国计算机学会人工智能与模式识别专业委员会、中国人工智能学会智能机器人专业委员会、中国自动化学会智能自动化专业委员会、中国人工智能学会人工智能基础专业委员会,筹备召开了首届《全国智能科学技术课程教学研讨会》[15]。围绕各个学校在智能科学与技术本科专业的课程改革与建设、课程和专业教学计划制定和未来发展设想等方面进行交流研讨。通过交流研讨,认真学习兄弟学校的经验,并尽可能汇报我们的经验。我们相信,在与会全体代表的共同努力下,本次课程教学研讨会一定能够取得积极的成果。

注:本研究获得教育部国家级精品课程人工智能(2003年)和智能控制(2006年)、全国双语教学示范课程人工智能(2007年)、国家级智能科学基础系列课程教学团队(2008年)等项目支持。

参考文献:

[1] 中国高等教育学会. 中国高校国家精品课程,工学类,(上册),2003-2007[M]. 北京:北京大学出版社,2008:433-436.

[2] CAI Zixing,LIU Xingbao,LU Weiwei,et al. Comparative Study on Artificial Intelligence Courses Between CSU and MIT[EB/OL]. [2010-5-1]. CORE (China Open Resources for Education),.cn/.

[3] 中国高等教育学会. 中国高校国家精品课程,工学类,(上册),2003-2007[M]. 北京:北京大学出版社,2008:426-429.

[4] 国家教育部和财政部关于立项建设国家级教学团队、国家级精品课程、全国双语教学示范课程的通知[EB/OL]. [2010-5-1]. http///转高等教育司.

[5] 中华人民共和国教育部高等教育司. 名师风采,第一届高等学校教学名师奖获奖教师集锦[M]. 北京:地质出版社,2006: 152-153.

[6] 李广川. 丹心育桃李,妙手谱春秋[M]//名师颂.北京:教育科学出版社,2007:397-401.

[7] 及立平. 笃定平和:访国家级教学名师蔡自兴[M]//春风化雨:中南大学教师风采. 长沙:中南大学出版社,2006:119.

[8] 蔡自兴,肖晓明,蒙祖强,等. 树立精品意识,搞好人工智能课程建设[J]. 中国大学教学,2004(1):28-29.

[9] 陈爱斌,肖晓明,魏世勇,等. 智能控制的学科发展与学科教育[J]. 现代大学教育,2006(3):102-105.

[10] Nilsson N J. Artificial Intelligence:A New Synthesis[M]. New York:Morgan Kaufmann Publishers,1998.

[11] Russell S, Norvig P. Artificial Intelligence:A Modern Approach[M]. London:Prentice Hall Publishers,2005.

[12] 王万森,钟义信,韩力群,等. 我国智能科学技术教育的现状与思考[J]. 计算机教育,2009(11):10-14.

[13] 蔡自兴,贺汉根. 智能科学发展的若干问题[C]//中国自动化领域发展战略高层学术研讨会论文集. 自动化学报,2002, 28(增刊1):142-150.

[14] 蔡自兴,谢斌,魏世勇,等.《机器人学》教材建设的体会[C]//2009年全国人工智能大会(CAAI-13). 北京:北京邮电大学出版社,2009:252-255.

[15] 2010年全国智能科学技术课程教学研讨会征文通知[J]. 计算机科学,2010,37(6):封3.

Construction of State Teaching Group of Series Course for Intelligence Science Basis in CSU

CAI Zi-xing, CHEN Bai-fan, LIU Li-jue

(Institute of Information Science and Engineering, Central South University, Changsha 410083, China)

第8篇

关键词:应用型人才;人才培养;人工智能;交叉教学

目前,我国高等教育已经进入大众化阶段,需要用分类发展理念指导高等教育人才培养[1]。从人才培养类型看,高校培养的人才大致可以分为3种:研究型人才、应用型人才和技能型人才。这3类人才主要分别由研究型高校、应用型本科院和高职高专培养[2]。应用型人才主要从事生产实际问题和工程实践问题的探讨和解决,完成从产品的设计到开发的过程,为企业经营的管理和决策提供支持[3]。这类人才的数量最为庞大,他们既要掌握相应的专业理论知识,又要具备娴熟的实践技能,具有解决工程实践的专业水平。但在目前的应用型人才培养中,既定的教学方法、教学考核手段等在很大程度上导致理论教学和实践性技能教学脱节。

在几年的教学实践中,笔者对此深有体会。对学生个人来说,他们经过十几年寒窗苦读考进大学,选择自己喜欢或者感兴趣的专业,非常渴望能够在大学四年期间打下坚实的理论基础并且掌握相应的应用技术,使得在四年之后走出学校时得到社会和用人单位的认可。作为大一新生班主任,我们都能感觉学生对知识的渴望,对未来的憧憬,以及对老师那一份沉甸甸的期盼。但经过对几门课程的学习之后(一般是经过一个学期之后),学生的期盼逐渐变成了茫然,因为他们“发现”学习的课程好像并无用处,不知道学习这些课程对他们今后走入社会有什么帮助。任课教师通常只强调本课程的重要性,最后的结论是“必须学好这门课程”。但学生并没有从“学好这门课”中获得有用的体验而是枯燥。在经过大约一年的学习以后,他们会从师兄、师姐那里“调查”得知,这种枯燥很正常,因为往届学生也是这么过的(恶性循环),于是,学生对课程学习就变成麻木了。如果这种情况得不到及时纠正,大三的时候麻木就变成无所谓。其结果就是在大四后就进入了“毕业即失业”的怪圈。

可见,深入挖掘此类问题产生的深层原因、探讨有效的应用型人才培养方法是十分紧迫和必要的。实际上,造成这种局面,除了学生自身的自觉性等主观因素以外,另一个重要的客观原因是目前高校各门课程的教学几乎都是“平行的”,学校没有很好地提供一种有效的培养方式,使得在这种培养方式下各门课程的教学可以在有效范围内实现有机的“交叉”,并在这种交叉的基础上提供进一步升华的途径,本文正是对后者的一个探讨。

1改变传统的平行教学模式,实现强相关课程中理论和理论之间的交叉和融合

以离散数学[4]和人工智能[5]的教学为例,说明课程中理论和理论交叉教学的基本原理。

离散数学是计算机基础课程,理论性很强,其涉及的知识不易于在具体应用中直接体现,但它是其他很多课程的理论基础,是让学生形成相应的“计算机”思维方式的基础。这种类型的课程没有可以动手操作的实验和课程设计,但是我们要让学生在学习本课程时就意识到它与具体应用的关系,并即时插入实践性课程中相应的内容进行教学,即理论课程和实践性课程中理论知识点的交叉教学。

相对离散数学而言,人工智能是实践性、技能性较强的课程。但这两门课程的理论部分很多是强相关的。例如,人工智能中的消解原理和规则演绎部分实际上是离散数学中命题逻辑和谓词逻辑的重复和部分深化,不同的主要是使用的术语不同,是形式上的不同。在离散数学中,数理逻辑部分已经将命题逻辑和谓词逻辑讲得十分透彻,几乎比任何一本人工智能教材都讲得系统、精确。但遗憾的是,从教学实践中我们发现,在学习消解原理和规则演绎部分时,很少有学生能够联想到他在离散数学中曾学过的相应内容,更是没有学生能够将这两门课程的这两个内容融合到一起。实际上,人工智能中的消解原理就是离散数学中的等值演算,只不过前者介绍得“技能性”一点而已,而后者已经讲得十分清楚了,但对人工智能中的消解原理,很多学生仍然难以接受。可见,同样的一种理论知识,现有的教学模式已经使学生截然将它们分开了,造成教学内容的严重脱节。

显然,如果实现人工智能和离散数学的交叉教学,可以在很大程度上将相关的内容紧密结合起来。一方面可以有效发挥离散数学的理论基础作用,另一方面(也是更为重要的一面)可以将抽象的理论知识具体化为实践技能,使学生感到他们所学的理论知识是有价值的、不是枯燥的,从而激发学生产生对抽象理论知识浓厚的学习兴趣,并形成基于深厚理论知识的良好实践技能。这对培养应用型人才是至关重要的。

2实现强相关课程中理论和实践的交叉教学

理论基础课程主要以理论介绍和理论探索为主,涉及的理论知识都相对抽象和枯燥。应用型本科院校学生的高考文化成绩相对较差,这决定了他们单纯学习抽象理论存在相当大的困难,这是造成他们学习枯燥的主观因素。因此,如何使他们走出枯燥的学习环境是应用型人才培养的又一关键问题。

我们认为,理论部分仍然需要具体化、应用化,这才能激起他们的学习兴趣,培养他们的探索精神。理论基础课程大多是没有实验部分,也没有相应的课程设计。即使有的基础课程有实验部分,但由于缺乏具体的应用目标,也使他们觉得索然无味。因此,需要教师在教学活动中创造必要的应用背景,使学生时刻感觉到他们所学的理论是有应用价值的。但人为地创造应用背景无疑极大地增加了教学工作量,使得在有限的教学学时内无法完成既定的教学任务,而交叉教学却能很好地解决这个问题。

以离散数学中的带权图和人工智能中的计算智能为例。离散数学给出了从带权图中寻找哈密顿回路的枚举方法,并指出了这种方法的缺点,但不能进一步介绍克服这种缺点的现有方法(否则超出了此课程的教学范围);而人工智能中的计算智能部分恰好是介绍克服这种缺点的几种方法(如遗传算法、免疫计算等)。如果讲授了带权图部分以后,接着讲授人工智能中的计算智能部分,并要学生编程实现一个启发式算法,这既可以看成是离散数学的一个实验课,又可以完成人工智能相应的教学内容,而整个教学活动都是在既定的教学学时内完成,并无增加其他的负担。

3实现强相关课程中相关知识点的交叉教学

“举一反三、知己知彼”是启发式教学的一种重要策略。知识点的孤立教学不但是枯燥学习的根源,也是造成教学内容分割的“罪魁祸首”。同样,在有限的教学学时内,过多地展开相关知识点的关联教学,会造成教学活动的“超负荷运载”;但是在两门强相关课程中展开相关知识点的交叉教学同样可以避免这种“超负荷运载”,更重要的是它可以使学生建立起良好的知识结构,举一反三。

以数据结构[6]中图的广度优先搜索和人工智能中的宽度优先搜索为例。两者讲的都是图的遍历方法,它们的实现原理似乎是一样的,然而在本质上它们是区别的。这种区别应该让学生深刻领会,而这种领会也只有在交叉教学中才能有效实施。

实际上,数据结构中图的广度优先搜索是人工智能中宽度优先搜索的基础。如果上了数据结构中图的广度优先搜索部分以后,接着上人工智能中宽度优先搜索部分,这时只需引导学生掌握两个关键问题:1)人工智能中宽度优先搜索涉及的OPEN表对应数据结构中图的广度优先搜索的哪一个数据结构?2)CLOSED表有何作用?并在这个基础上,指出两种搜索方法所搜索的对象的区别:人工智能中的搜索方法所搜索的图是未知的(已知的只是图的局部,像是在大雾中寻找要走的路),数据结构中的搜索方法所搜索的是已知的图(图的全局信息是已知的,像是在可以俯瞰的、没有雾的地形上行走)。通过这样的引导和总结,让学生深刻领会两门课程中这两个紧密相关的知识点的本质联系和区别,从而加深他们对课程知识的理解,提高他们对知识探索的积极性。

4加强教师的教学水平,为实现交叉教学奠定技术基础

“要给学生一杯水,教师要有一桶水”。为实现交叉教学,教师应该具有相关交叉课程的坚实理论基础和良好的实践应用技能,并拥有理论-理论、理论-实践和强相关知识点交叉的教学组织能力。为此,需要教师进行以下几方面的基本技能训练。

1) 纵向加强课程所涉及知识的理论学习和实践技能的训练。以离散数学为例,作为教师,我们不能仅仅盯住离散数学教材的内容,而是需要对数理逻辑、集合论、代数系统、图论等有系统、深入的学习,其范围和深度远比离散数学教材的内容大得多;又如对人工智能而言,我们应该在启发式搜索、计算智能、机器学习等方面有很深的造诣;再如,对数据结构而言,我们应该在算法设计、算法分析等方面有坚实的理论基础,并拥有丰富的代码编写经验。

2) 加强科学研究,促进产、学、研结合。我们注意到,教师在“充电”的过程中,实际上已转变了角色,成为学习者――学生。作为学生,我们同样遇到学习枯燥等问题。一般来说,老师不再是老师了(狭义上),那么我们的动力来自哪里呢?那就是科研。教师从事科研不但可以实现理论成果的实用化,而且可以提高教师自身的教学水平,从广度和深度拓宽教师的教学视野。因此,做科研不但不防碍教学,而且可以极大地促进教学,良好的科研基础是教师在教学活动中游刃有余的知识源泉。

3) 根据人才培养目标,完成对课程知识点的准确划分。这是实现课程交叉教学的基本保证。教师根据既定的人才培养目标,并在充分运用自己知识结构的基础上,为实现交叉教学,准确完成对各门课程的知识点划分。在对两门或多门课程的知识点进行划分时,教师应该做到:同一门课程中的知识点应该相对独立;确定同一门或不同课程中知识点之间的拓扑关系,确定哪一个知识点是哪个或哪些知识点的基础,哪一个知识点是另外一些知识点的深化或实例化。只有准确划分了知识点并确定知识点之间的拓扑关系以后,才能有效付诸实施。

5结语

应用型人才占全体学生人数的大多数,他们毕业后将直接走上工程实践性工作岗位,担负着重要的社会责任。但从目前应用型人才培养方式看,普遍存在着理论教学和实践教学相互脱节的情况,严重影响应用型人才培养的质量。为此,本文从课程交叉教学的角度探讨应用人才培养的方法,并认为课程交叉教学在应用人才培养过程中可以发挥积极的作用。课程交叉教学可以考虑从以下4个方面展开:1)改变传统的平行教学模式,实现强相关的理论性课程和实践性课程中理论和理论的交叉和融合;2)理论和实践部分的交叉教学;3)相关知识点的交叉教学;4)加强教师的教学水平,提高教师的理论水平和实践技能。通过课程交叉教学,提高应用人才培养的质量,最终培养以丰富理论内涵为支撑、具有娴熟计算机操作技能的应用型人才。

参考文献:

[1] 鲍洁,梁燕. 应用性本科教育人才培养模式的探索与研究[J]. 中国高教研究,2008(5):47-50.

[2] 王恩华,王莲英. 论我国一般本科院校人才培养目标的多元化[J]. 长春工业大学学报:高教研究版,2008,29(2):64-66.

[3] 齐平,朱家勇. 应用型本科院校人才培养目标调整及其实现之策略[J]. 高教论坛,2010(6):51-53.

[4] 屈婉玲,耿素云,张立昂. 离散数学[M]. 北京:高等教育出版社,2008:1-74,303-305.

[5] 蔡自兴,蒙祖强. 人工智能[M]. 2版. 北京:高等教育出版社,2010:106-122,74-104.

[6] 严蔚敏,吴伟民. 数据结构(C语言版本)[M]. 北京:清华大学出版社,1997:169-170.

Practical Exploration of Course Intersect-teaching in Applied Talent Training

MENG Zu-qiang1, CAI Zi-xing2, HUANG Bo-xiong1

(1. School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China;

2. Institute of Information Science and Engineering, Central South University, Changsha 410083, China)

第9篇

关键词:人工智能;信息素养;信息技术

中图分类号:TP18文献标识码:A文章编号:1009-3044(2008)35-2417-02

Artificial Intelligence Education and Middle School Students Information Literacy

WU Wen-tie

(Mathematics and Computer Institute of Mianyang Normal University, Mianyang 621000, China)

Abstract: Information Literacy in the Information Age is a national basic literacy, artificial intelligence represents a cutting-edge information technology. Based on the analysis of information quality and substance of the definition on the basis of exploring the field of artificial intelligence research, as well as in education, put forward the theory of artificial intelligence and technology courses in secondary education should be in a more systematic, comprehensive Improve the information literacy of students.

Key words: artificial intelligence; information literacy; information technology

1 信息素养的定义及其内涵

“信息素养”一词最早产生于信息技术和信息产业发达的美国, 是随着现代信息社会的逐渐形成而对国民提出的一种兼跨人文和科学范畴的综合性个人素养要求的描述。随着研究的深入,人们对信息素养的认识也在不断深化。

1974年美国信息产业协会主席保罗・泽考斯基最先提出信息素养的概念, 他认为信息素养是“利用大量的信息工具及主要信息源使问题得到解答的技术及技能”。1992年美国图书馆协会提出:“信息素养是人能够判断何时需要信息, 并且能够对信息进行检索、评价和有效利用的能力。”同年, 道尔在《信息素养全美论坛的终结报告》中给出了一个较为全面的定义:一个具有信息素养的人, 他能够认识到精确和完整的信息是作出合理决策的基础, 他能够确定对信息的需求, 能够形成基于信息需求的问题, 能够确定潜在的信息源, 能够制定成功的检索方案, 从包括基于计算机的和其他的信息源中获取信息、评价信息、组织信息用于实际的应用, 将新的信息与原有的知识体系进行融合以及在批判性思考和问题解决过程中使用信息。

综上所述, 虽然研究人员从不同的视角界定了信息素养的定义, 但可看出, 信息素养既包括认知态度层面上的内容, 也包括技术层面、操作层面和能力层面上的内容。概括起来讲, 信息素养主要包括信息意识、信息能力和信息道德三个方面:

1) 信息意识。信息意识是信息素养的首要因素, 主要指人们对信息及其交流活动在社会中的地位、价值、功能和作用的认识, 换句话说, 就是指人们对信息的判断、捕捉的能力。信息意识的强弱将直接影响人们利用信息的程度和效果。人们只有有了信息意识,才有可能有信息的需求, 进一步去寻找信息和利用信息, 并主动学习与信息处理有关的技术。

2) 信息能力。信息能力是信息素养的重要方面, 是指人们获取信息、处理信息、利用信息、创造信息、交流信息的技术和能力。人们只有掌握一定的信息技能, 才能有效地开展各种信息活动, 有效地利用信息和创造信息, 充分发挥信息的价值, 变信息为动力和优势。

3) 信息道德。信息道德是指人们在整个信息交流活动过程中表现出来的信息道德品质。它是对信息生产者、信息加工者、信息传播者及信息使用者之间相互关系的行为进行规范的伦理准则, 是信息社会每个成员都应该自觉遵守的道德标准。

2 人工智能的研究领域

人工智能的研究领域非常广泛, 而且涉及的学科也非常多。目前,人工智能的主要研究领域包括:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、智能决策支持系统及人工神经网络等。下面主要介绍在网络教育环境中常用的智能技术。

2.1 专家系统

所谓专家系统就是一种在相关领域中具有专家水平解题能力的智能程序系统, 它能运用该领域专家多年积累的经验与知识, 模拟人类的思维过程,求解需要专家才能解决的困难问题。

2.2 机器学习

“学习”是一个有特定目的的知识获取过程, 其内在行为是获取知识、积累经验、发现规律; 外部表现是改进性能、适应环境、实现系统的自我完善。所谓机器学习, 就是要使计算机能模拟人的学习行为, 自动地通过学习获取知识和技能, 不断改善性能, 实现自我完善。机器学习主要研究学习的机理、学习的方法以及针对相应的学习系统建立学习系统。

2.3 模式识别

所谓模式识别,是指研究一种自动技术。计算机通过运用这种技术,就可自动地或者人尽可能少干预地把待识别模式归入到相应的模式类中去。也就是说,模式识别研究的主要内容就是让计算机具有自动获取知识的能力,能识别文字、图形、图像、声音等。一般来说,模式识别需要经历模式信息采集、预处理、特征或基元抽取、模式分类等几个步骤。

2.4 人工神经网络

人工神经网络是指模拟人脑神经系统的结构和功能, 运用大量的处理部件, 由人工方式建立起来的网络系统。它是在生物神经网络研究的基础上建立起来的,是对脑神经系统的结构和功能的模拟, 具有学习能力、记忆能力、计算机能力以及智能处理功能。其中学习是神经网络的主要特征之一, 可以根据外界环境来修改自身的行为。学习的过程即是对网络进行训练的过程和不断调整它的连接权值, 以使它适应环境变化的过程。学习可分为有教师(或称有监督)学习与无教师(无监督)学习两种类型。对神经网络的研究使人们对思维和智能有了进一步的了解和认识,开辟了另一条模拟人类智能的道路。

3 人工智能技术在教育中的应用

3.1 智能搜索引擎

随着互联网站点和页面的激增以及网络用户队伍的不断壮大,信息检索成为人们利用Internet的重要途径。但是在浩瀚的网页海洋中寻找有用的信息并不容易,需要借助有力的检索工具如搜索引擎等等。目前一些著名的搜索引擎有:GOOGLE、YAHOO、EXCITE、INFOSEEK等,他们各有特色,但仍存在不足之处,如检索到的无关信息过多以及检索结果排序较混乱。智能化信息检索是信息检索的新分支,它是人工智能和信息检索的交叉学科。它在对内容的分析理解、内容表达、知识学习等基础上实现检索的智能化,这样可以节省学习者在检索中花费的时间,帮助学习者提高检索效率。智能化信息检索所用到的人工智能技术有专家系统、自然语言处理和知识表示。

3.2 智能体(agent)

agent技术早在70年代出现在人工智能领域,通过感知、学习、推理以及行动能够基于知识库的训练模仿人类社会的行为。随着其进一步发展,它在远程教育领域发挥着越来越重要的作用。一套完整的远程教育系统中包含许多子系统,如答疑、作业、考试、交互等等子系统。这些子系统都有各自的数据库用来存储信息。为了提高整个系统的智能性,可以引入智能技术,把众多子系统的数据库链接起来,实现信息资源的共享。通过分析这些信息,智能技术可以发现学习者的个别特征(如兴趣爱好信息、点击知识点信息统计、交互日志等等),并根据这些特征量身订做出适合学习者的学习方案,也有助于教师及时掌握学习者学习过程中的动态信息。

3.3 智能CAI(ICAI)

随着计算机技术的飞速发展,计算机辅助教学(CAI)已受到教育界的重视,成为学科教学改革的一种重要手段。许多学校都在开发CAI课件,但大多数CAI课件只是机械地按照教学设计者事先设计好的教学模式和内容向学生传授知识,并没有体现出个性化学习,无法做到因材施教。

智能CAI是以人工智能技术为核心,使CAI系统能够根据学生的学习情况等因素分析学生的特征,合理安排教学内容、变化教学方法去满足个别教学的需要。使用智能CAI进行教学能够克服传统CAI的不足,显著提高教学效果,是CAI课件发展的趋势。

3.4 智能教学系统ITS

智能教学系统(intelligent tutoring system,ITS)是涉及人工智能、计算机科学、认知科学、教育学、心理学和行为科学的综合性课题,其研究的最终目标是由计算机负担起人类教育的主要责任,即赋予计算机系统以智能,由计算机系统在一定程度上代替人类教师实现最佳教学。我国ITS的研究起步较晚,但近几年随着计算机的普及和教育软件需求增大,ITS的发展较快。ITS按照功能分为四个模块:专家知识模块、学生模块、教师模块、人机接口模块。

4 人工智能教育对学生信息素养的作用

人工智能(ArtificialIntelligence,AI)是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科。换言之,它研究如何用计算机模仿人脑所从事的推理、证明、识别、理解、设计、学习、思考、规划以及问题求解等思维活动,来解决需要人类专家才能处理的复杂问题,例如咨询、诊断、预测、规划等决策性问题。人工智能也是一门涉及数学、计算机科学、控制论、信息学、心理学、哲学等学科的交叉和边缘学科。与一般的信息处理技术相比,人工智能技术在求解策略和处理手段上都有其独特的风格。人工智能研究处于信息技术的前沿,它的研究、应用和发展在一定程度上决定着计算机技术的发展方向。同时,信息技术的广泛应用也对人工智能技术的发展提出了急切的需求。今天,人工智能的不少研究领域如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果已经进入人们的生活、学习和工作中,并对人类的发展产生了重要影响。

综上所述,作为信息技术一个不可缺少的重要组成部分,人工智能的基本内容在中学信息技术课程中是不能不专门提及的,以往某些教材中用一两页篇幅作个简单介绍的方法根本不足以反映人工智能学科的全貌。因此,十分有必要在高中阶段的信息技术课程中专门设立人工智能选修课。我们认为,高中阶段开设人工智能课程可以在以下几个方面对学生的信息素养培养产生积极作用:

1) 多种思维方式的培养和信息素养的综合锻炼。

现实世界的问题可以按照结构化程度划分成三个层次:结构化问题,是能用形式化(或称公式化)方法描述和求解的一类问题;非结构化问题,难以用确定的形式来描述,主要根据经验来求解;半结构化问题则介于上述两者之间。一般说来,中学阶段开设的传统意义上的信息技术课程中所介绍的信息技术,例如多媒体技术、网络技术、数据库技术、算法与程序设计等,都是求解结构化问题的基本技术。而人工智能技术则是解决非结构化、半结构化问题的一类有效技术。

把人工智能课程引入我国现行的高中信息技术教育,可以让学生在体验、认识人工智能知识与技术的过程中获得对非结构化、半结构化问题解决过程的了解,从而培养学生的多种思维方式,达到提高信息素养的目的。通过人工智能课程的学习,学生还将了解人工智能语言的基本特征,学到智能化问题求解的最为基本的策略。

2) 体验人类专家解决复杂问题的思路,提高学生的逻辑思维能力。

这里以人工智能学科中“专家系统”技术的体验、学习与应用过程为例进行说明。在专家系统的应用过程中,一个实际的专家系统不仅能够为用户给出相关领域的专家水平建议或决策,而且能够通过解释机制,以用户容易理解的方式解释专家系统的具体推理过程。学生可以向专家系统提出诸如“为什么(Why)”、“如何(How)”、“如果……会怎么样”等问题,系统接受用户的问题指令后,可以根据推理的逻辑进程,即时将答案呈现给用户,整个过程如同教师与学生在进行面对面的教学。在该过程中,学生可以充分体验人类专家的求解思路和推理风格,有助于提高他们的分析、思维与判断能力。

另一方面,在专家系统的教学过程中,可以要求学生自行构建由产生式规则组成的知识库,或进一步利用工具软件来开发简单的实用型专家系统。为了完成该项工作,学生一开始就要编制开发规划、制定知识获取策略,并具体付诸实施,这是一个不断深化的过程。学生还得明确与系统有关的所有变量或相关的因素,并且将这些变量和因素转化为问题求解,得出相应的结论。在进行一系列问题求解分析之后,运用产生式规则来表示知识,以此建立起来的专家系统还可以让其他学生去运用和体验,具有一定的实用价值。

由于专家系统中的知识组织与推理过程是对人类专家思维方式的一种模拟,因此上述知识库的组织和系统的推理过程能够较好地体现学生的思维过程。在建造知识库过程中,学生需要将原来零碎的未成型的知识概念化、形式化和条理化,从而内化为学生自己的东西。所以,建造知识库的过程不但能反映学生的学习过程,而且有助于学生对该领域知识的深层思考并有利于长久记忆,同时也学会了专家系统的基本开发技术。正如美国著名的学习论专家Jonassen所指出的:那些自行设计专家系统的学生将会在这种活动中受益匪浅,因为这是一个对所学知识进行深度加工的过程。

3) 了解信息技术发展的前沿,激发对信息技术未来的追求。

人工智能技术在一定程度上代表着信息技术的前沿,通过人工智能知识、技术的学习与体验,高中学生能够对信息技术发展的前沿知识有一定程度的了解,这样有助于他们开阔视野,培养兴趣,激发对信息技术美好未来的追求,从而为今后进入大学或走向社会奠定良好的基础。

5 结束语

中学生的信息素养的培养是当前信息技术课的一个重要目标,而在现有的中学信息技术课程中,关于人工智能的知识只作了简单的介绍,学生们对于人工智能研究的广大领域不能有详细的概念,这对于中学生的信息化认识和信息素养的培养不够全面。因此在中学信息技术课中加大人工智能的知识介绍是信息技术课改革的重要内容。

参考文献:

[1] 雷晓庆.网络环境下大学生的信息素养及其培养[J].太原大学学报, 2004(2):38.

[2] 杜玉霞.美国信息素养教育与研究的启示[J].电化教育研究, 2005(10):42.

[3] 王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,2002,1-53.

[4] 潘瑞玲,余轮.Agent技术在远程教育系统中应用的研究[J].微型电脑应用,2002,18(4):28-30.

[5] 吴战杰,秦健.Agent技术及其在网络教育中的应用研究[J].电化教育研究,2003(3):32-36.

[6] 张剑平.关于人工智能教育的思考[J].电化教育研究,2003(1):24-28.

第10篇

随着信息技术的不断发展,计算机科学渗透生活的各个领域,改变了人们的生活方式和学习方式。其中,人工智能作为计算机科学中迅猛发展的一部分,正在以其独特的魅力走进人们的视野。“人工智能”(Artificial Intelligence),顾名思义,即通过应用计算机来模拟人脑的信息接收、思考、判断以及决策等思维行为过程,进而扩展人脑的思维和行动,帮助人们高效智能化地解决特定问题。近年,人工智能在教育领域中发挥的作用越来越显著[1],其与众不同的特点决定了其在教育培训中的地位,将人工智能应用在农业知识培训中的可行性也成为教育界热议的新话题。

1我国农业发展背景和农业培训必要性分析

11我国农业发展背景

我国是传统的农业大国,农业对我国的经济发展具有极其重要的影响,一方面是由于我国人口基数大;另一方面是由于我国进出口贸易主要依靠农产品,农业发展成为影响我国经济发展最重要的因素之一。但由于各方面原因,我国农业发展还比较落后,尤其与发达国家的现代化农业相比,依旧有较大差距。

12开展农业知识培训的必要性

反思其他发达国家在?r业发展上实施过的举措,包括重视农业教育、科研和技术推广,注意提高劳动者素质;推广现代农业机械和高技术,重视农场管理;经营集约化、产业化;生产专业化;服务社会化;市场机制与政府扶持相结合;加强农业基础设施建设等,可以看出,我国在农业知识培训、素质教育、技术推广方面与发达国家差距明显。为发展我国农业,培养一批高素质、懂技术、会经营的农民以及一批愿意为农业发展做出自己贡献的高学历人才成为关键。农业的发展离不开农民的发展和进步,也离不开受过高等教育的精英人才的共同努力,而开展农业知识培训,则是为他们的发展奠定了一条夯实的道路。

2人工智能在教育中的应用与发展

近年来,伴随着人工智能在各行业的应用和发展,人工智能在教育领域中发挥的作用也越来越显著。例如,智能化的作业批改可以大大减轻教育工作者的沉重负担,在线学习等网络教学模式可以让人们更灵活地接受教育。从人工智能诞生伊始,其就与教育产生了密不可分的联系,延续发展至今,人工智能在教育领域中的应用主要包含以下几个方面。

21基于人工智能的计算机网络课程

计算机网络教育是对传统教育方式的一次革新,而人工智能对网络教育的渗透,又将其推向了新的发展高度。[2]学生可以自主地登录网络平台进行在线学习,根据智能导学系统制订学习计划,进行在线测试。例如近年来大为流行的MOOC课程,学生可以便捷地通过网络获取全球最高质量的教学资源,并可以量身打造自己的学习计划。

22基于人工智能的教师辅助系统

近十年来,智能传感器、语音识别、图像识别、深度学习、大数据等方面的蓬勃发展令信息的采集及处理越来越准确高效,这无疑使得人工智能与辅助教学系统的融合变得越来越深入。借助于语音识别、图像识别等技术,学生可以将学习过程中遇到的问题上传至系统,借助于数据库系统对信息准确的搜素和整合能力,实时地为学生提供答案或相关信息,答疑解惑。目前此类应用软件的应用广泛,例如小猿搜题、百度作业帮等。

23基于人工智能的教育数据库系统

随着信息化时代的到来,如何高效地搜集、分类和检索碎片化的教育信息和教学资源,无疑是一项巨大的挑战。为了更有效地分配和管理信息,在教育中引入智能化的数据库系统势在必行。现如今数据挖掘和深度学习的研究成果不断深入,依托知识库系统对教育信息的整合与构建,学生可以将已习得的零星的知识点进行扩充,由点至面的不断学习新知识;依托教育资源管理系统中来,教育管理工作者可以合理分配教学资源,让人们从爆炸式的高密度信息中解放出来,真正做到物为己用,因材施教。

3人工智能与农业知识培训的结合

新时代社会经济的发展为国家农业产业的发展翻开了新的篇章,如何加快社会主义农业现代化,促进农业转型,这为新时代的农业知识教育提出了新的要求。另外,近年来劳动力转型的趋势日益显著。随着农业劳动人口数量的减少,为了提高农业生产效率,需要有素质、懂知识的农民投入农业生产中来。因而,对于农业知识培训的革新作为农业现代化建设的重中之重,已被提上日程。

人工智能技术和教育领域融合的不断完善成熟,基于人工智能的农业知识培训正如雨后春笋般涌现,在农业教育培训领域崭露头角。

31人工智能应用于农业知识培训的优势

从我国农业发展的现状看,较之于发达国家,我国农业从业者的基数巨大但是整体受教育程度偏低,农业专业领域的知识匮乏,农业知识教育的推广不仅薄弱,而且效率低下。因此,伴随着信息化时代“互联网+”的新型教育模式对传统教模式的强有力革新,基于人工智能的农业知识培训展示了其强大的威力和优势,具体可以总结为如下两个方面。

311个性化教育针对性强

相比于课堂教学的传统模式,基于人工智能的网上在线教育模式能够为学生个性化地制订学习计划,灵活安排学习时间。这有力地解决了学生参加农业知识培训的时间成本问题,农业从业者可利用闲暇时间自主安排学习。另外,针对于培训者的当前知识水平和培训需求,培训平台可以个性化地安排教学相关领域的专业知识和操作技能。

312教育资源利用率高

我国当前的农业知识培训,教育教师需求数量和实际在岗教师资源极不匹配,具备丰富农业专业知识和农业生产经验的教师数量缺乏,这是导致农业知识培训推广速度缓慢的重要原因。而人工智能为这一问题的解决带来了福音,智能化的教学进程得以让教师从繁重的教学负担中解放。同时,基于网络的课程资源共享可以让先进的农业技术走进千家万户,让学生与优秀农业知识的距离不再遥远。

4平台开发的系统架构

基于人工智能技术,一个合理的农业知识培训平台能够像一个优秀的教师那样具备完备的农业专业知识和优良的教学技能知识,并且能够模拟及扩充教师的教学过程。除此之外,该培训平台还能够准确实时地与学生进行信息交互,有针对性地开展个性化教学,并可以自适应地完成教学效力评估和反馈,不断更新和完善教学内容和教学策略。基于以上分析,该开发平台的系统架构分为学生模型、教师模型、综合数据库模型和人机交互接口四个组成部分,结合下图对每一部分分别进行详细阐述。

41学生模型

学生模型应针对不同的学生,准确地评估学生当前的学习水平,对学生的学习背景、知识水平、知识架构进行诊断和评定,以便有针对性地制订教学方案,进而实施个性化教育。

另外,学生模型需要对学习过程中的学生的学习情况进行记录入库,对教育效果进行评定,从而诊断出当前教学计划是否合适,以便下述教师模型中对教学内容和教学策略的灵活调整。

42教师模型

教师是教学工作开展过程中的主体,一个合理的教师模型应该包括如下三个部分。

教师模型首先完成教学内容的选择,这要根据学生模型中对学生当前的学习水平的评定,并且针对学生既定的学习目标,并从下述知识库中调取对应的内容,为教学的开展做好准备。

在确定了教什么的问题之后,教室模型要确定如何教的问题,即选取合理的教学策略开展教学。教学方式的选择依附于学生模型,而又能根据学生学习情况记录进行反馈动态,不断完善和调整教学策略。

另外,在传统教学模式中,教师传授知识,并能为学生答疑解惑。当学生在学习过程中遇到问题和疑惑时,教师模型应该实时地提供信息支持,为学生提供针对性的帮助。因而教师模型要实现与人机交互接口的实时连接,在问题到来时控制模块驱动应答部分为学生答疑解惑。

43综合数据库模型

综合数据库模块为农业知识培训系统提供数据库支持,主要包括以下三个模块。

知识库模块中分类别地存放着农业领域的专业知识,包括文本、图像、自然语言、多媒体等多个类型的学习知识。一旦教师模型中完成了教学内容的选择,便由此模块中调取相对应的文件开展教学。

专家评估模块用于处理教学过程中的教学效果评价和经验总结,为教师模型中的各个环节的反馈和更新迭代提供数据支持。在一个完善的教学过程,教师需要根据学生的学习效果进行总结和反馈,以此指导下一步的教学内容和策略的更新。

为了对学生阶段性学习的效果进行评估,还需要引入测试考核模块对学生的成绩进行量化考核。测试考核模块中包含学生答题库和成绩测评库,准确检测出开展农业知识培?的作用与效果。

44人机交互接口

基于人工智能的农业知识培训的过程是学生和系统进行交流的过程,所以一个友好的人机接口是系统必不可少的组成部分。在这一模块中,友好的图形用户界面的设计能够帮助学生流畅地接收信息,提高学习效率。同时,借助于人工智能中对语音和图像信号的先进识别技术,人机交互接口可以智能化地接收分析和理解学生的自然语言信息和动作信息,进而为系统提供宝贵的输入信息。

第11篇

1 引言

近年来,任务驱动教学法越来越受到信息技术教师的青睐。教育部于2003年的《普通中学信息技术课程标准》在实施建议中指出:“‘任务驱动’教学强调让学生在密切联系学习、生活和社会实际的有意义的‘任务’情境中,通过完成任务来学习知识、获得技能、形成能力、内化伦理。因此要正确认识任务驱动中‘任务’的特定含义,使用中要坚持科学、适度、适当的原则,避免滥用和泛化;要注意任务的情境性、有意义性、可操作性;任务的大小要适当、要求应具体,各任务之间还要互相联系,形成循序渐进的梯度,组成一个任务链,以便学生踏着任务的阶梯去建构知识。”然而在教学实践中如何设计出恰如其分的任务,如何在任务驱动中更好地落实三维目标,是要解决的问题。

“用智能工具处理信息”是湛江市第二中学许淼淼老师执教的一堂示范课,该课在2010年第六届广东省信息技术优质课评比活动(高中组)中获得一等奖。本课例以“忆上海世博,探智能奥秘”为主线,进行任务设计,是一堂“任务驱动”教学法的典型课例。

2 任务驱动教学的设计

2.1 教学内容分析

教师必须以课标为依据,对教学内容进行认真细致的分析,在充分分析教学内容的基础上,确定一个单元或一个部分要求学生掌握的知识点。“用智能工具处理信息”是粤教版必修1《信息技术基础》第四章“信息的加工与表达(下)”第二节的内容。课标要求学生通过部分智能信息处理工具软件的使用,体验其工作过程,了解其实际应用价值,提高对信息智能处理内容的学习兴趣,从而为选修“人工智能初步”指引方向。对于本节内容,应以体验为主,最后在体验的基础上进行认知和理解。

2.2 学生学习特征分析

本课教学对象是高中一年级的学生,这个阶段的学生已经具有一定的逻辑思维能力和学习的自觉性,但还需要教师及时、合理、周详地引导。通过前面阶段的信息技术课的学习,他们已初步掌握一定的操作技能,能够根据任务的需求,利用工具软件处理信息。但是他们在自主思考方面还不主动、合作与探究的意识和技能等方面还比较欠缺。

鉴于本节课内容的前沿性和新颖性,教师完全可以放手让学生自己去实践,让学生动手动脑,培养他们自主探索、勇于实践的能力。通过合作交流,激发学生学习的兴趣,提高学习效率。

2.3 确定教学目标

教学目标是指导教学过程设计与教学效果评价的依据。根据教学内容与学生学习特征,确定当前教学内容所要达到的目标水平,这是进行教学设计的首要环节。“用智能工具处理信息”中的教学目标如下:

1)知识与技能目标:①了解信息智能处理的方式;②感受信息智能处理的基本工作过程;③初步了信息解智能处理的工作原理;④体验信息智能工具的应用价值。

2)过程与方法目标:①掌握简单智能信息处理工具的使用方法;②通过完成任务,体验人工智能的独特魅力;③掌握分析问题、呈现观点和交流思想的方法。

3)情感、态度、价值观目标:①感受智能信息处理的魅力,形成对人工智能这一前沿技术的探索愿望;②体验人工智能技术的实际应用价值。

2.4 教学重点、难点

1)教学重点:体验信息智能处理工具的应用。

2)教学难点:理解模式识别和自然语言理解的工作原理。

2.5 任务设计说明

本课中,许老师以“忆上海世博,探智能奥秘”为主题,变人工智能由抽象到具体,任务探究活动贯穿整课堂,调动学生的学习热情,使学生能主动参与、积极探索,掌握技巧的同时培养各种能力。本课中任务的设定由探究任务、继续探究任务和拓展任务组成,层层递进,体现了分层任务的概念,并且环环相扣,设计巧妙。

2.6 教学设计流程图(图1)

3 任务驱动教学模式的实施过程

3.1 创设情境,引入课题

【情境设置】播放视频“世博会海宝博士与杨澜的对话”。

【教师引入】大家思考一下,海宝博士是真人么?他是如何跟主持人交流的呢?

【学生讨论】海宝博士不是真人,而是机器人,它植入芯片,有语音识别系统,是一台高级的电脑……

【教师引申】我们大家说的这些都是人工智能的范畴,今天我们就共同学习如何用智能工具处理信息。(课件展示课题“用智能工具处理信息”)。

【设计意图】通过智能机器人的演示,创设一种人工智能的神奇氛围,使学生对智能处理信息有一个全面的认识,还可营造课堂氛围和激发学生对智能技术的兴趣。

3.2 感知体验,启发探索

探究活动一:体验机器翻译的乐趣

【活动背景】对于英语水平不好的学生来说,翻译句子是件非常头疼的事情,现在出现了翻译软件,可以帮助人们进行翻译,但是它翻译得好不好呢?就让我们来体验一下。

【活动任务】将学生分成两组,分别打开Google在线翻译和雅虎在线翻译,分别将“城市,让生活更美好”译成英文再译成中文然后再译成英文。

【活动探究】是谁在给我们翻译?为什么两种翻译软件两次翻译的中文和英文会有这么大的不同?这些网站又是如何进行双向翻译的呢?

探究活动二:体验手写输入的乐趣

【活动背景】用键盘录入汉字对于同学们来讲已经不是什么难题,但对于电脑初学者,汉字录入是他们感到非常头痛的一件事情。手写板的出现令输入汉字不再是一般人使用计算机的关卡,语音输入更是手疾人士应用计算机时的必需。这里我们借助“微软拼音2003输入板”来体验手写板的神奇功能。

【活动任务】打开微软拼音2003手写输入板,在桌面上建立记事本文件,内容为“城市,让生活更美好”。

【任务探究】怎样书写汉字可以提高识别率?导致识别率不高的原因有哪些?

3.3 层层深入,探究新知

新知一:自然语言理解

回顾活动一:体验机器翻译的乐趣

【教师引申】很显然,几秒钟之内就给出翻译结果,不可能是人类,给我们翻译的应该是机器。那为什么一般的工具又不具备翻译功能呢?

【原理探讨】机器翻译智能工具,它属于人工智能领域中的自然语言理解,但计算机不是人类,不能理解字里行间的意思,翻译起来比较生硬,有时候翻译得荒谬可笑。

【得出结论】下面请大家结合自己的英语知识对“城市,让生活更美好”进行翻译,并根据自己翻译的过程推测出翻译软件的工作过程(如图2所示)。

【概念理解】自然语言理解主要是指研究如何使计算机能够理解和生成自然语言的技术。自然语言的理解过程可分为3个层次:语法分析、句法分析和语义分析。

【设计意图】通过活动一的开展,使学生感受自然语言理解技术应用的魅力和价值,激发学习兴趣。在已有体验的基础上提出概念,加深学生的理解。

新知二:模式识别技术

回顾活动二:体验手写输入的乐趣

【教师引申】在刚才的活动中,同学们体验了手写输入汉字的神奇效果,但是如果我们的书写不规范,或我们写的字字库里还没有,也是不能输入的。

【原理探讨】智能手写输入是人工智能技术的研究领域之一,它所采用的是模式识别技术。

【牛刀小试】接下来我们玩一个游戏“掌中写字”:两人一组,甲闭眼伸手,乙在其手心写字,甲猜字,然后互换角色进行。思考人脑是怎样猜字的?经历了怎样的过程?

【得出结论】根据人脑猜字的过程推断手写输入软件的工作流程,如图3所示。

【概念理解】模式识别是利用计算机对物体、图像、语音、字符等进行自动识别的技术。它的一般过程包括:样本采集、信息的数字化、预处理、数据特征的提取、与标准模式进行比较、分类识别等。

【设计意图】通过游戏时猜字过程的对比,加深学生对模式识别过程的理解。

3.4 总结提升,共享交流

【共享交流】请大家就自己所实践的活动过程及结果发表意见,并结合教材简单分析其工作流程及原理,了解人工智能的两个研究领域:模式识别和自然语言处理。

【总结提升】人工智能(AI,artificial intelligence)是研究、开发利用计算机来模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术学科。

【设计意图】通过学生共同讨论交流,进一步加深巩固本节课的知识。

3.5 课外延伸,展望未来

【课后探究】利用飞信与网络机器人“海宝博士”聊天,试图发现网络机器人的语言破绽。

【得出结论】机器不能完全代替人,我们不能完全依赖机器。在现实生活中,同学们应该学会举一反三,并懂得在适当的情况下选择合适的智能信息处理工具为自己的学习、生活和工作服务。

【展望未来】人工智能对我们的生活正起着越来越大的作用,它是人类智慧的结晶。作为一名中学生,我们还没有足够的知识和能力参与到人工智能的前沿研究当中,但我们可以利用学习到的初步知识,积极探索,多些创意,也许未来就有你想实现的更智能的处理工具,更好地为人类服务。(观看世博短片《2020年老王的一家》,畅想未来生活中的智能工具。)

【设计意图】在学生的心中埋下美好的种子,激励他们探究未来世界的勇气。

4 结束语

用智能工具处理信息这一课,许老师很好地发挥了“任务驱动”教学法的作用,注重学生的参与体验,活动设计环环相扣,启发学生自主探究并总结规律,体现了新课程以教师为主导、学生为主体的教育理念;通过设置几个活动,层层深入带领学生研究探讨,顺利实现预定的目标,同时也有效培养了学生自主学习的能力。

“任务驱动”教学法在信息技术教学中备受关注有其一定的道理,但怎样使其发挥更大作用,还需要在实践中继续探讨和研究。

参考文献

第12篇

关键词:教学改革;智能科学;精品课程群;人才培养

智能科学精品课程教学团队长期坚持“严肃对待教育工作、严格要求学生、严密组织教学过程”的先进教育理念,履行“严谨教学改革是教育发展的动力”的指导思想[1]。本教学团队围绕“人工智能”和“智能控制”国家精品课程、“人工智能”国家级双语教学示范课程、“人工智能PK人类智能”国家级精品视频公开课、“智能控制”国家级精品资源共享课程、“智能科学基础系列课程教学团队”(国家级)、“人工智能网络课程”教育部国家新世纪网络课程建设工程以及“智能控制”、“人工智能”、“机器人学基础”和“智能系统原理与应用”等省级和校级智能科学系列课程群建设,潜心教学改革,建立了以师生互动、多维交叉、强化实践为特点的创新型人才培养模式,取得一些获得同行首肯的教学改革成果[2-7]。

本文着重介绍教学团队在智能科学精品课程群建设方面的基本情况。

一、智能科学精品课程群的建立

该团队逐步推进智能科学精品课程群建设,不断积累教学改革成果。首先,利用颇具特色的优秀教材群,建立起国内首个立体交叉的智能科学教材体系。其次,把多元智能理论和本体论的知识组织方法用于课程群建设,并建立了智能科学课程群之间的内在联系,建成国家级智能科学精品课程群。再次,增强实验教学,整合多元资源,创建开放式软硬件训练环境,促进智能科学精品课程群的进一步建设与发展。

(1)率先建设立体交叉的智能科学教材体系

智能科学具有高度交叉、多学科融合的特点,结合这些特点研究了不同课程、不同学历层次、不同学科门类之间的交叉链接关系。建设以信息学科类本科生教育为主,兼顾硕士和博士研究生的教材体系,并辐射到管理类、机械类等专业。教学团队与时俱进,对教材不断更新,自1987年以来共出版人工智能、机器人学、智能控制等教材共20个版本[8-13]。例如,《人工智能及其应用》、《机器人原理及其应用》和《智能控制》均为我国相关课程的第一部具有自主知识产权的著作,被誉为“智能三部曲”,为国内高等院校广泛使用。

(2)建立多层次智能科学精品课程群

团队把多元智能理论和本体论的知识组织方法运用于课程群建设,并依据个性化元素特征和个体差异构建模块化课程体系及系列化课程设置,并据此设计课程群及课程相关的实践环节。

设计出各课程间的横向关系和专业间的纵向关系,即建立智能科学课程群之间在知识、技能、素质三个维度上的横向联系,以及在本科生、硕士研究生、博士研究生三个学历层次与专业基础课、专业课专业层次上的纵向关系。

经过长期建设,10年来共获准12项各级质量工程等立项,建立与形成了国家级智能科学精品课程群。其中包括国家级精品课程、全国双语教学示范课程、国家级教学团队、全国优秀网络课程、国家级规划教材、国家级精品视频公开课和国家级精品资源共享课程以及省级和校级精品课程等。

(3)整合资源,加强实验,创建开放式训练软硬件教学环境

教学改革没有最好,只有更好。教学团队不断增加与逐步完善智能科学精品课程群的实验和实践环节,开设智能科学相关培训课程和专题讲座。注重整合各种资源,增强智能学科与其他学科的交叉,创建开放式训练环境和训练中心,建设智能科学与技术创新实验室、大学生程序设计竞赛训练中心、大学生智能移动机器人科技创新平台等。此外,还积极参与智能类学科竞赛,如“飞思卡尔”大学生智能车竞赛、全国大学生智能设计大赛、ACM/ICPC程序设计大赛,以及多种智能机器人和智能小车大赛等。

经过多年精品课程建设与积累,目前,教学大纲、教学日历、教案或演示文稿、重点难点指导、作业、参考资料目录和课程全程教学录像等教学必需资源均进行了持续建设与更新补充。其中一些特色资源得到建设与共享。首先,共享国家级教学名师积累的丰富教学资源。通过建立名师工作室、名师示范项目实验室和名师图书室,形成多元化的带教制度,使老教师的教学理念和经验得以传承。这样就能够加快年轻教师的培养与成长。其次,共享网络课程资源。各门网络课程均采用智能技术中的知识推理和智能算法来实现编程、答疑和虚拟实验,具有智能化、个性化、情境化和形象化等特色,以及导航系统多样化、向导学习个性化和情景化学习等功能。促进了各课程教学改革,提高学生培养质量,深受学生欢迎。再次,共享实验资源。教学实验从无到有,从弱到强,逐步建立教学实验室和科研实验室,全面向学生开放,使广大学生共享实验资源。通过实验,学生发挥了主动性,提出并积极验证和探索自己的思路,从而更好地掌握知识,培养学生的理论联系实际能力和创新能力。

二、改革课程教学,建设精品课程群

着力课程教学改革,建立以精品课程群为核心、以课堂教学为基础、以实践训练深化教学效果的课堂教学与实践教学创新体系。为了实现教学目标,保证课程群的教学和教改的顺利进行,加强了教师队伍建设和教学管理,建立教学质量评价系统,保证课程群的教学质量。

(1)建立以精品课程群为核心,以课堂教学为基础,以实训深化教学效果的课堂教学与实践教学创新体系。

提出“以趣导课、以疑启思、以法解惑、以律求知”的“四以”教学方法。建立“课堂讲授+启发互动+创新实践”三位一体的教学模式,探索出“项目驱动教学”(Project-orientedlearning)和“做中学、趣导思”的主动教学方法和学生培养途径。开发双语教学平台,改进与强化双语教学模式,完善双语教学的方法和手段,提高教学质量。

(2)加强教师队伍建设,改进管理,改革考试,促进课程群的教学和教改的顺利进行。

总结并推行“严肃对待教学工作,严格要求学生,严密组织教学过程,严谨施行教学改革”的“四严”教育思想,指导教师队伍思想建设[1]。注重对青年教师的业务培养,提高他们的授课水平。改革考试制度和方法,培养学生思维、分析能力和创造创新能力。

(3)建立教学质量评价系统,监控课程教学全过程,保证课程群的教学质量。

将控制论(Cybernetics)中的闭环控制信息反馈和故障诊断理念引入教学质量评估过程,建立教学质量的诊断、分析与校正评价系统DIACES (Diagnosis,Analysis and Correction Evaluation System)。

(4)利用教师试讲、督导听课、网上评教、同行评议、讲课竞赛、质量评优、师生座谈、公开示范课等一系列措施,反映教学中的存在问题和成功范例。然后通过集体讨论分析,提出对存在问题的纠正措施或对成功范例的推广意见,实现评估监控过程的自动化、智能化与常态化,保证教师授课技能、教学效果和人才培养质量的提高。

三、经验与结论

在智能科学精品课程群建设过程中,取得了丰硕成果,探索与积累了丰富经验。主要体会如下:

(1)在该精品课程群建设中,始终贯彻“以人为本”的育人理念,把多元教学理论和本体论的知识组织方法用于课程群建设,创建因材施教和探索性的学习环境。以“教书育人”为根本任务,坚持“严肃对待教学工作,严格要求学生,严密组织教学过程题,严谨施行教学改革”(“四严”)教育指导思想,奠定创新型人才培养的理论基础。

(2)注重“课程核心”教育定位,总结出“以趣导学、以疑启思、以法解惑、以律求知”(“四以”)的教学方法和“做中学、趣导思”的综合素质培养方法。做到师生互动,理论联系实际,深化教学,摸索出创新型人才培养的有效途径。

(3)建立覆盖多层次、多专业、多语种、立体配套的智能科学精品课程群系列教材体系,实现课程群系列教材的“精品化”。建立网络化、个性化、智能化的多维教育网络课程体系。建立一种教学质量评估系统,即质量诊断、分析与校正闭环评价系统。这些措施为课程教学和创新型人才培养提供了有力保障。

参考文献: