HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 人工智能的教育方式

人工智能的教育方式

时间:2023-08-23 16:58:18

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇人工智能的教育方式,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

人工智能的教育方式

第1篇

关键词:高职教育;人工智能;转型发展

一、高职教育现状

(一)客观层面

(1)社会面。当前社会发展处于转型关键期,高职教育迎来全新发展机遇,对人才培养质量不断提高。传统思想中,家长学生都带着有色眼镜看待高职教育。随着社会给技术技能型人才提供很多高薪岗位,部分学生主动选择高职院校进修学业,提高自身技能水平。高职院校必须以社会发展趋势为导向,及时调整自身发展战略。(2)政策面。在新课程改革视域下,政府高度重视高职教育的发展,出台了多项扶持政策,如《国家职业教育改革实施方案》《职业学校专业顶岗实习标准》《关于推进高等职业教育改革创新引领职业教育科学发展的若干意见》等,极大的推动了高职教育的稳定发展。

(二)主观层面

(1)教学理念。高职教师受传统思想影响,往往重视成绩和理论知识,亟需引进新的教学理念,并落实在实际教学中。高职院校已经意识到人工智能时代,自身转型创新的必要性,正积极将全新的教学理念贯穿在人才培养过程中。(2)教学方式。高职教育逐渐创新教学方式,将顶岗实习、校企合作、实训教学等应用在常规教学中,适应时展,彰显职教特色。但在实际教学中,教师理念未发生变化,能力无法满足新型教学方式需求,存在亟需改进优化的地方。(3)教学体系。只有完善的教学体系,才能为高职教育的改革创新提供依据参考。当前高职教育体系中含有诸多不足,如学科单一、理论与实践比重不协调、知识内容陈旧等。高职教育要想适应新时展趋势,应积极完善教学体系。

二、人工智能现状

(1)国家战略。近年来,国家高度重视人工智能发展,国务院《关于印发新一代人工智能发展规划的通知》(国发〔2017〕35号),提出科技创新的主要方向是人工智能,提倡积极构建全新的人工智能科技创新协同机制,进一步完善人工智能教育体系,实现人才储备和梯队建设的目标,推动智能经济的发展。各部委也积极颁布一系列政策,如《智能制造2025》《“互联网+”人工智能三年行动实施方案》《机器人产业发展规划(2016-2020)》等[2]。可见,国家为人工智能技术的发展提供了充足动力,人工智能已成为国家战略的一部分。(2)产业发展。多年的探索,人工智能技术有了明显提升,在问题求解、泛逻辑理论、不确定推理、拓扑学、图像处理、模式识别、专家系统等方面有了显著研究成果,一部分成果甚至领先世界水平。例如我国在模式识别领域的研究,文字识别、语言识别、虹膜识别都取得优异成果,被广泛应用在生物医药、机器人视觉研究、卫星遥感、自主导航、军事等领域。企业十分关注人工智能技术的发展应用,像360人工智能研究院、阿里人工智能研究院、百度人工智能研究院等。人工智能技术的深度研究,使应用和商业价值最大化。据不完全统计,2017年人工智能产业创造700亿元市场价值,预计在2020年产业规模超过1600亿元。

三、人工智能推动新时代高职教育转型发展的必要性

(一)技术技能型人才的需求

高职教育发展的目的是培养适合岗位需求的技术技能型人才。人工智能时代,先进技术的广泛应用,大部分岗位对人才的需求发生明显变化,逐渐形成了“机器换人”的局面。企业中简单、重复、劳动强度大的岗位,都由智能机器人予以代替。例如在京东电商的物流中,出现无人机配送方式,直接冲击了传统人工物流配送模式。相信在不久的将来,会有更多的智能机器人走向物流配送的工作岗位,形成全新的工作体系。此外,在生产制造的质检环节,由于传统人工监测方式存在诸多不足,应用人工智能的图像识别技术,可以实现对产品质量的动态检测。可见,人工智能时代会有大批岗位“消失”,取而代之的是智能化机器人。高职教育必须转变以往的教育模式,顺应时展趋势,结合社会岗位对技能人才的需求,调整高职教育方向,实现高职教育价值。

(二)国家发展战略的要求

以往的发展致力于“中国制造”,但新时代“中国制造”已无法提升综合国力,国家必须调整发展战略。人工智能时代将“中国制造”转变为“中国创造”“中国智造”。这一发展战略的转变,能看出先进科学技术在国家发展中的重要地位。为了2025年实现“中国智造”的目标,高职院校创新人才培养模式,顺应国家发展战略的调整。同时,高职教育转型过程中,转变以往以理论、成绩为主的思想观念,对人才进行更加系统的培养,调整理论知识、实习实践之间的关系比例。人工智能时代的高职教育转变与创新,可以加大对学生创新意识的培养力度,使人才综合素养得到更好提升,满足“中国创造”的需求。

(三)学生自身价值实现的需求

时代的发展使高职学生的思想发生变化,传统的高职教育虽能提高学生专业能力,但并不满足当前企业对工作岗位的需求,学生无法实现自身价值。曾经的学生,没有认识到自身与社会的关系,存在“得过且过”等不良思想。新时代,高职学生逐渐认清自身地位,意识到自己与国家民族是“命运共同体”,是实现伟大复兴“中国梦”的主要力量。高职教育转型创新,根据时展要求、学生需求,合理调整教学方案与计划。

第2篇

人工智能技术及其应用的发展历史虽然只有短短的50余年,但是它作为信息技术的前沿领域,对社会经济和发展的影响却越来越大。在基础教育课程改革的大潮中,许多国家意识到基础教育领域开展人工智能教育的必要性,努力把人工智能列入技术类教育的教学内容中。作为师范类院校,教授人工智能课是有必要的。? 

(1)为部分优秀的学生将来做更深入的研究打坚实的基础。在面向知识经济的今天,研究获取、表示和使用知识的人工智能学科越来越受到人们的重视。目前人工智能研究被列为中国高技术领域的重点之一。以专家系统为代表的智能化系统在信息技术中也占有重要地位。因此在高等教育中开展人工智能教育和智能化系统的研发,不仅是计算机科学的应用,也是促进各学科服务于国民经济发展的必然趋势。为使人工智能的理论、方法和技术的研究与应用普及和深入,教育重心必须要下移,即从研究生教育向本科教育普及。开展本科层次人工智能普及教育的有效途径之一是在本科高年级开设相关选修课。开展人工智能教育,不仅能够更好地发挥高等院校的育人和科学研究功能,而且能为学生拓宽专业路径,扩大自主学习空间和发展个性创造条件,同时也为营造一个使学生不仅有宽厚、扎实的理论基础,且具综合分析和解决问题能力的环境。? 

(2)为将来从教的学生积聚大量的知识。英国早在1999年,人工智能课程已经作为选修课出现在中学的信息与通讯技术(ICT)课程中。许多中小学还通过机器人竞赛活动来激发中小学生学习人工智能的兴趣,使学生不仅提高了用信息技术解决问题的能力,而且培养了多种思维方式,获得了更多的创新空间。美国现行的中学信息技术课程设置中,将人工智能的内容作为“媒体与技术”层面对12年级学生的要求。澳大利亚的部分中学开设的信息处理与技术课程,人工智能、信息系统、算法和程序设计、社会和伦理道德、计算机系统分别作为5个主题共同构成了该课程的教学内容。在该课程的大纲中规定,人工智能部分的教学内容在高中第3学期为12年级的学生开设,教学时间为10周。? 

在我国,多年以来中学奥林匹克信息学竞赛中一直包含有人工智能相关的题目,涉及启发式搜索、博弈、智能程序设计等问题。2003年4月,我国教育部正式颁布《普通高中技术课程标准(实验)》,首次在信息技术科目中设立了“人工智能初步”选修模块,标志着我国高中人工智能课程的正式起步。? 

我国的新课程标准颁布后,教育部评审并通过了分别由教育科学出版社、广东高教出版社、地图出版社、上海科技教育出版社和浙江教育出版社出版的5套高中《人工智能初步》教材,并开发了相应的教辅材料,包括教师用书和配套光盘等。为了配合中学人工智能课程的实施,国内也推出了一些适合中学生学习与体验的人工智能软件和网络资源。另一方面,一些高校的本科生、研究生也逐步关注中学人工智能教育的开展并将其作为毕业论文的研究选题。一些师范院校适应形势要求,已为师范生开设了与此相关的选修课程。? 

2 人工智能的教育及教学条件现状? 

通过对本人多年的教学过程进行总结,我校的《人工智能》课程教育现状可总结为如下几点:? 

(1)理论知识充裕。但与实践相脱节,特别是在智能科学技术的教育教学方面。尽管知识面相当广泛,而人工智能理论的普及教育以及智能技术的开发与应用仍然十分滞后。? 

(2)同其它普通高等院校一样,在本校,人工智能技术的研究与应用尚未普及,甚至比不上其它院校。这不利于培养学生的科研兴趣及创造精神。? 

(3)缺乏配套实验教材,实验教学内容缺乏,无法培养学生的研究能力和创新能力。只有开设实验项目,才能使人工智能的相关知识具有研究性和综合性。? 

(4)对中小学智能教育的深度及教学方式、教学特点缺乏研究。做为师范类院校,我认为在对学生进行基础知识教育的基础上,要紧抓中小学智能教育的特点对师范类学生进行相关的教育与培训。? 

相对于教育现状,我校的《人工智能》课程教学条件现状要稍好一些,其状态如下:? 

(1)教材使用国家级规划教材,此教材非常系统地介绍了人工智能的基本原理、方法和应用技术,适合本科及研究生使用。在我们的授课过程中,也会适当为学生提供相关的国内其他先进教材,如中南大学蔡自兴教授的《人工智能及其应用》等。? 

(2)为了促进学生自主学习,我们准备了多种类型的扩充性学习资料,加强学生主动学习的意识,包括:课程相关杂志和书籍目录,以及部分重要的参考文献,与人工智能相关的网络资源如优秀BBS、新闻组、网址等。 它们包括了大量的文献资料、本领域研究的前沿动态等。 使用表明,学生非常乐于查阅这些资源。 使学生能通过使用这些资源进行一些人工智能程序设计,探讨一些问题,在课堂讨论中展示他们的收获。? 

(3)校园网的普及与不断优化使本课程有优良的实践性教学环境,能充分满足教学需要。我们拥有较充足的多媒体教室和网络教室,为实现本课程教学提供了物质保障。在网络资源建设方面,全校办公室、教室、学生宿舍和教师宿舍都以宽带网相连,这些硬件设备对本课程教学发挥了重要作用,使本课程教学质量得以明显提高。? 

3 人工智能教学方法及手段的改革? 

针对我们现在所采取的教学方法,我认为存在许多不足,如教学方式比较单一,教学内容偏重理论讲解等,为此,提出以下教学方法的改革:? 

(1)通过多种途径激发学生的学习兴趣。课程的学习效果,直接受到学生兴趣和参与意识的影响。一般来讲,《人工智能》作为一门前沿课程,开始学生学习兴趣很大,当开始接触到抽象理论知识及部分算法时,学生往往感到不易接受。 我们通过各种途径和方法, 激发和培养学生的学习兴趣,包括鼓励学生参与某部分知识的扩充性资料查找,预留一定时间请学生负责对此内容进行讲解,布置学生对某个基本成型的实验进行纠错及验证,降低问题解决的难度。学生因此产生兴趣从而做更深度研究。? 

(2)进行启发式教学。 我们可以尝试在教学过程中不断提出问题请学生思考,启发学生求解这些问题,鼓励学生提出自己的猜想和解决方案,然后摆出教材中的解决方案,并与同学所提出的观点进行分析和比较,这足以加强学生学习的主动意识和参与意识,提高学生学习的积极性。? 

(3)课堂辩论与交互式教学。 组织课堂辩论,讨论的议题可定位为譬如人工智能是否能超过人类智能等有争议的问题。学生通过对这些问题展开激烈争论,激发了学习潜能,明确了学习目标。当然师生间的交流方式还有很多,如邮件互发、QQ留言等,也可在课程网站中的互动平台进行交流。? 

(4)分层次因材施教。 在授课过程中,通过对每个具体学生的学习进度、课堂作业情况进行及时评估,对学生提出进一步的学习建议和指导, 实现个性化的教学。 对优秀学生探讨,可以在教学设计和实验设计中要求其选作部分探索性、创新性的功课和实验,以发挥学生个性优势。对于有意于将来从事中小学教育的学生可以在机器人及人工智能技术发展现状等知识层面对其做问题讲解。而那些看似缺乏兴趣的学生,我们可以用多媒体手段如播放人工智能相关电影及科学小片引起其兴趣,实行逐步引导的教学过程。? 

另外,我们可以尝试双语教学。 采用中文教材和讲授的同时,注重在课程中的关键词同时用英文表示,并适当指定英文参考短文和英文参考书。使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。我们也可以在教学内容安排上,注重理论联系实际,将一些人工智能网络上的虚拟实验给学生进行课外上网练习,从而使学生了解算法的具体运行过程, 通过参与达到知识的理解,掌握基本方法和技术。? 

 

根据现有的条件,我们在教学中可以采用多媒体教学和网络课程教学相结合的方法,充分利用多媒体的丰富表现形式,利用网络课程的交互性、情景化等特点,构筑以学生为主体的《人工智能》课程现代教学模式。 对于抽象知识,可通过动画和视频演示,通过声音和图像展示人工智能的历史、人物和前景,做到学生直接而深刻地看到知识的内涵外延。网络课程能较好地实现交互并使学习过程情景化,通过网络课程的课堂练习和章节练习,教师可以评价学生的学习情况,并给学生提出学习建议,从而提高学生的研究力和创新力。我们也可以给学生播放中学《人工智能》课程课堂教学录像,以使学生看到初高中学生的知识范围及深度;同时给学生播放现有的《人工智能》科学成果,让学生看到理论背后的实践;也可以播放科幻片,激发学生想象的翅膀从而有兴趣把人工智能作为将来深造的方向。《人工智能》是一门较新的课程,改进教学方法和手段不仅要靠教师,也应增加硬件设备的投入。如果人工智能能采用智能辅助教学系统或机器人辅助教学过程逼真、形象,一目了然,这样可大大提高学生的学习效率,尤其是提高学生的观察判断能力、发现问题和解决问题的能力。? 

4 人工智能实践教学设计的探讨? 

我们可以在教学过程中,适量开设一些实验和设计,提高学生的动手能力,并加深他们对理论知识的理解,降低理论的抽象度,提升理论的实用性。在近两年的教学过程中,我们会适量加入一些人工智能语言的教学过程。例如,在讲解了“野人与传教士过河”等问题后,我们可以让学生使用Visual Prolog或者C ?++?对算法进行实现;在讲解 TSP 问题的遗传算法解决案例后,指出编码方案、初始种群大小、进化代数、交叉率变异率等因素对求解结果的影响,并要求学生通过实验的方式来分析、理解这些问题,并提出“寻找更有利的解决方案”等问题。把学生的兴趣激发后,为解决这些问题,学生会在课外主动查阅相关文献、相互讨论以实现他们所设计的方案,这样既培养了学生善于钻研和勇于创新的精神又提高了学生的实践与创新能力。? 

参考文献:? 

[1] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1).? 

[2] 何元烈,汪玲.“Visual C ?++?”在“人工智能”教学中的应用与探讨[J].广东工业大学学报:社会科学版,2008(8).? 

第3篇

关键词:人工智能;教育;应用;问题

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)03-0159-02

人工智能是研究如何构造智能机器(智能计算机)或智能系统,使其模拟、延伸、扩展人类智能的学科。随着人工智能的理论与技术在社会各个领域的广泛应用,其在教育领域内的应用也越来越受到重视,并取得了一定的研究成果。

一、人工智能教育应用的主要形式

人工智能在教育领域应用的最直接结果就是诞生了智能教学系统。智能教学系统是以计算机辅助教学为基础而兴起的,它是以学生为中心,以计算机为媒介,利用计算机模拟教学专家的思维过程而形成的开放式人机交互系统。目前,智能教学系统已成为人工智能在教育中应用的主要形式。智能教学系统主要是在知识表示、推理方法和自然语言理解等方面应用了人工智能原理。由于它综合了知识专家、教师与学生三者的活动,因此,与之相对应的,智能教学系统一般分成知识库、教学策略和学生模型三个基本模块,再加上一个自然语言智能接口。智能教学系统的功能具体来说有以下几条:了解每个学生的学习能力、认知特点和当前知识水平;能根据学生的不同特点选择适当的教学内容和教学方法,并可对学生进行有针对性的个别指导;允许学生用自然语言与“计算机导师”进行人机对话。智能教学系统的设计不仅要有计算机科学的知识,还需要有教育科学的理论指导。

二、人工智能在教育中应用的局限性分析

1.阻碍人工智能发展的关键因素。在人工智能的发展中,一直存在着对“计算机是否能代替人脑甚至超过人脑”的问题的讨论,实际上,以电子计算机为主要工具模拟人的某些思维活动而产生的人工智能是有局限的。①计算机处理问题的根本原理。要计算机解决某种问题,有三个基本的前提:必须把问题形式化;问题还必须是可计算的,即要有一定的算法;问题必须有合理的复杂度,即要避免指数爆炸。由于人的智能活动不能完全形式化,因此,机器就不能将人脑的智力活动全部复制出来。电子计算机最终只能把握0、1这两个开关代码,遇到不能形式化、不能找到算法或不能程序化的任务,计算机则难以执行。②人和机器之间的根本区别。智能模拟利用了人和机器的共性,即两者都是一个信息转换系统,但两者之间存在着不容忽视的本质区别。智能模拟与天然智能属于两种不同的进化系统,人类的智能是人类社会实践的产物,机器的智能是机械制造的结果。大脑和电脑的组织结构也不相同,两者属于两种不同的运动过程,前者是复杂的生理--心理过程,后者是机械--物理过程。智能模拟可以在局部上超过天然智能,但是,模拟的根本方法是功能模拟法,两个系统在结构和实际过程上是不一样的。智能模拟不具有人的思维的社会性,不具有主观世界。

2.人工智能在教育中应用的局限。就目前人工智能的发展水平以及人工智能本身的特点而言,它在教育中的应用也是有其局限性的。①与学生之间无法畅通交流。教育本质上是一种“交互”活动,而智能教学系统无法实现最充分、最真实的交互。目前自然语言理解的研究成果非常有限,远不能达到人人交流的要求。此外,就态度、品德、情感等教育问题而言,机器只能通过学生输入计算机的信息来判断其掌握和内化程度,而无法像人类教师通过自然状态的交流和观察来判断学生的真实情况,因此,“机器智能”很容易被蒙蔽“双眼”,无法做到像人与人之间那样自然畅通的交流。②决策和推理机制不完善。智能教学系统的关键智能所在是其决策和推理机制,即“教学策略”模块根据不同学生的具体情况通过推理做出灵活决策,这种决策基于学生模块提供的有关学生的知识水平、认知特点和学习风格,而这些不能完全被形式化。同时,随着教育理念的不断更新以及教学模式和教学方法的不断改进,系统所应用的教学策略模块用于评估和判断学生学习过程的能力是有限的。③人工智能并非适合所有的学习领域。根据加涅的学习结果分类,学习分为言语信息、智慧技能、认知策略、动作技能和态度五类。言语信息分为符号学习、事实学习和有组织的知识学习,这些属于可形式化内容,适用于智能教学系统;智慧技能分为辨别、具体概念、定义性概念、规则和高级规则,其中前四项属于可形式化内容,适用于智能教学系统,而高级规则属于复杂――形式化内容,部分内容不适用于智能教学系统;动作技能和态度领域的学习,在其认知成分中可以使用智能教学系统,但情感和行为成分等非形式化内容,则难以用智能教学系统来实现。因此,并不是所有的学习领域都适用于智能教学系统。智能教学系统在教育中应用的重点应放在认知领域中的符号学习、事实学习和有组织的知识学习、辨别、具体概念、定义性概念以及规则这些学习内容上。

三、人工智能教育应用的发展方向

近年来,随着计算机技术、网络技术、人工智能技术以及现代教育教学理论的发展,人工智能在教育中应用的发展呈现出以下几个趋势。

1.开始突破单一的个别化教学模式。长期以来,计算机辅助教学系统和智能教学系统都是强调个别化教学模式,这种模式在发挥学生的学习积极性、主动性和进行因人而异的指导等方面确实有许多优点。但是,随着认知学习理论研究的进展,人们发现在计算机辅助教学系统和智能教学系统中只强调个别化是不够的,在某些场合(例如问题求解)采用协作方式往往更能奏效。因此,近年来在智能教学系统中,协作型教学模式得到越来越多的重视和研究。

2.智能教学系统日益与超媒体技术相结合。超媒体系统具有良好的开发环境、灵活方便的用户界面以及图、文、声并茂的特点,而且其信息的组织方式与人类认知的联想记忆习惯相符,已成为目前一种最理想的信息载体和最有效的信息组织与信息管理技术,在许多领域尤其是教育领域有广阔的应用前景。把超媒体技术引入智能教学系统,从而发展成为智能超媒体辅助教学系统,可以大大改善计算机辅助教学系统的教学环境,激发学生的学习积极性,从而显著提高教学效果。

3.智能教学系统与网络的关系日益密切。网络的应用和普及为远程教育和终身教育提供了一个良好的空间。当前,智能教学与多媒体网络的结合成为人工智能在教育中应用的一个势不可挡的发展趋势。

4.传统人工智能与神经网络模糊决策机制相结合。传统人工智能从宏观角度开展认知模拟,可以部分地模拟人类的逻辑思维过程,而神经网络模糊决策机制从微观方面进行认知模拟,着力实现模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。今后将探索一种新的智能处理模型:把神经网络的模糊决策机制和符号专家系统的推理能力结合起来,利用多重知识源、多种模型进行复合协同处理。如果上述技术能够成熟运用,那将对人工智能的发展及其在教育中的应用起到决定性的作用。

参考文献:

[1]王士同.人工智能教程[M].北京:电子工业出版社,2001.

[2]王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,1998.

[3]何克抗.计算机辅助教育[M].北京:高等教育出版社,1997.

[4]徐鹏,王以宁.国内人工智能教育应用研究现状与反思[J].现代远距离教育,2009,(5):3-5.

第4篇

【关键字】人工智能;教育;进展

【中图分类号】G40-057 【文献标识码】A 【论文编号】1009―8097(2008)13―0018―03

人工智能是一门综合的交叉学科,涉及计算机科学、生理学、哲学、心理学、哲学和语言学等多个领域。人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能,其长期目标是实现人类水平的人工智能。[1]从脑神经生理学的角度来看,人类智能的本质可以说是通过后天的自适应训练或学习而建立起来的种种错综复杂的条件反射神经网络回路的活动。[2]人工智能专家们面临的最大挑战之一是如何构造一个可以模仿人脑行为的系统。这一研究一旦有突破,不仅给学习科学以技术支撑,而且能反过来促使人脑的学习规律研究更加清晰,从而提供更加切实有效的方法论。[3]人工智能技术的不断发展,使人工智能不仅成为学校教育的内容之一,也为教育提供了丰富的教育资源,其研究成果已在教育领域得到应用,并取得了良好的效果,成为教育技术的重要研究内容。

人工智能的研究更多的是结合具体领域进行的,其主要研究领域有:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络和分布式人工智能等。[4]目前,在教育中应用较为广泛与活跃的研究领域主要有专家系统、机器人学、机器学习、自然语言理解、人工神经网络和分布式人工智能,下面就这些领域进行阐述。

一 专家系统

专家系统是一个具有大量专门知识与经验的程序系统,它使用人工智能技术,根据某个领域中一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。[5]专家系统主要组成部分为:知识库,用于存储某领域专家系统的专门知识;综合数据库,用于存储领域或问题的初始数据和推理过程中得到的中间数据或信息;推理机,用于记忆所采用的规则和控制策略的程序,使整个专家系统能够以逻辑方式协调地工作;解释器,向用户解释专家系统的行为;接口,使用户与专家系统进行对话。近几十年来,专家系统迅速发展,是人工智能中最活跃、最有成效的一个研究领域,广泛用于医疗诊断、地质勘探、军事、石油化工、文化教育等领域。

目前,专家系统在教育中的应用最为广泛与活跃。专家系统的特点通常表现为计划系统或诊断系统。计划系统往前走,从一个给定系统状态指向最终状态。如计划系统中可以输入有关的课堂目标和学科内容,它可以制定出一个课堂大纲,写出一份教案,甚至有可能开发一堂样板课,而诊断系统是往后走,从一个给定系统陈述查找原因或对其进行分析,例如,一个诊断系统可能以一堂CBI(基于计算机的教学,computer-based instruction)课为例,输入学生课堂表现资料,分析为什么课堂的某一部分效果不佳。在开发专家计划系统支持教学系统开发(ISD)程序的领域中最有名的是梅里尔(Merrill)的教学设计专家系统(ID Expert)。[6]

教学专家系统的任务是根据学生的特点(如知识水平、性格等),以最合适的教案和教学方法对学生进行教学和辅导。其特点为:同时具有诊断和调试等功能;具有良好的人机界面。已经开发和应用的教学专家系统有美国麻省理工学院的MACSYMA符号积分与定理证明系统,我国一些大学开发的计算机程序设计语言、物理智能计算机辅助教学系统以及聋哑人语言训练专家系统等。[7]

目前,在教育中,专家系统的开发和应用更多的集中于远程教育,为现代远程教育的智能化提供了有力的技术支撑。基于专家系统构造的智能化远程教育系统具有以下几个方面的功能:具备某学科或领域的专门知识,能生成自己的提问和应答; 能够分析学生的特征,评价和记录学生的学习情况,诊断学生学习过程中的错误并进行补救教学;可以选择不同的教学方法实现以学生为主体的个别化教学。[8]目前应用于远程教育的专家系统有智能决策专家系统、智能答疑专家系统、网络教学资源专家系统、智能导学系统和智能网络组卷系统等。

二 机器人学

机器人学是人工智能研究是一个分支,其主要内容包括机器人基础理论与方法、机器人设计理论与技术、机器人仿生学、机器人系统理论与技术、机器人操作和移动理论与技术、微机器人学。[9]机器人的发展经历了三个阶段:第一代机器人是以 “示教―再现”方式进行工作;第二代机器人具有一定的感觉装置,表现出低级智能;第三代机器人是具有高度适应性的自治机器人,即智能机器人。目前开发和应用的机器人大多是智能机器人。机器人技术的发展对人类的生活和社会都产生了重要影响,其研究和应用逐渐由工业生产向教育、环境、社会服务、医疗等领域扩展。

机器人技术涉及多门科学,是一个国家科技发展水平和国民经济现代化、信息化的重要标志,因此,机器人技术是世界强国重点发展的高技术,也是世界公认的核心竞争力之一,很多国家已经将机器人学教育列为学校的科技教育课程,在孩子中普及机器人学知识,从可持续和长远发展的角度,为本国培养机器人研发人才。[10]在机器人竞赛的推动下,机器人教育逐渐从大学延伸到中小学,世界发达国家例如美国、英国、法国、德国、日本等已把机器人教育纳入中小学教育之中,我国许多有条件的中小学也开展了机器人教育。

机器人在作为教学内容的同时,也为教育提供了有力的技术支撑,成为培养学习者创新精神和实践能力的新的载体与平台,大大丰富了教学资源。多年来,我国中小学信息技术教育的主要载体是计算机和网络,教学资源单一,缺乏前瞻性。教学机器人的引入,不仅激发了学生的学习兴趣,还为教学提供了丰富的、先进的教学资源。随着机器人技术的发展,教学机器人种类越来越多,目前在中小学较为常用的教学机器人有:能力风暴机器人、通用机器人、未来之星机器人、乐高机器人、纳英特机器人、中鸣机器人等。

三 机器学习

机器学习是要使计算机能够模仿人的学习行为,自动通过学习来获取知识和技巧,[11]其研究综合应用了心理学、生物学、神经生理学、逻辑学、模糊数学和计算机科学等多个学科。机器学习的方法与技术有机械学习、示教学习、类比学习、示例学习、解释学习、归纳学习和基于神经网络的学习等,近年来,知识发现和数据挖掘是发展最快的机器学习技术。机器学习(自动获取新的事实及新的推理算法)是使计算机具有智能的根本途径,对机器学习的研究有助于发现人类学习的机理和揭示人脑的奥秘。[12]

随着计算机技术的进步和机器学习研究的深入,机器学习系统的性能大大提高,各种学习算法的应用范围不断扩大,例如将连接学习用于图文识别,归纳学习、分析学习用于专家系统等,大大推动了在教育中的应用,例如在建构适应性教学系统中,用机器学习与朴素的贝叶斯分类器动态了解学生的学习偏好,有较高的准确率[13]。基于案例的推理(case-based reasoning,CBR)是一种新兴的机器学习和推理方法,其核心思想是重用过去人们解决问题的经验解决新问题,在计算机辅助教育方面,已经出现了基于CBR的图形仿真教育系统,并且,针对个体特征的教育教学方法研究也有所突破。[14]另外,数据挖掘和知识发现在生物医学、金融管理、商业销售等领域的成功应用,不仅给机器学习注入新的生机,也为机器学习在教育中的应用提供了新的前景。

四 自然语言理解

自然语言理解就是研究如何让计算机理解人类的自然语言,以实现用自然语言与计算机之间的交流。一个能够理解自然语言信息的计算机系统看起来就像一个人一样需要有上下文知识以及根据这些上下文知识和信息用信息发生器进行推理的过程。[15]自然语言理解包括口语理解和书面理解两大任务,其功能为:回答问题,计算机能正确地回答用自然语言提出的问题;文摘生成,计算机能根据输入的文本产生摘要;释义,计算机能用不同的词语和句型来复述输入的自然语言信息;翻译,计算机能把一种语言翻译成另外一种语言。由于创造和使用自然语言是人类高度智能的表现,因此对自然语言处理的研究也有助于揭开人类高度智能的奥秘,深化对语言能力和思维本质的认识。[16]

自然语言理解最早的研究领域是机器翻译,随着应用研究的广泛开展,也为机器人和专家系统的知识获取提供了新的途径,例如由MIT研制的指挥机器人的自然语言理解系统SHRDLU就可以接收自然语言,进行人机对话,回答关于桌面上积木世界中的各种问题。同时,对自然语言理解的研究也促进了计算机辅助语言教学和计算机语言设计等方面的发展,例如“希赛可”网络智能英语学习系统,这个基于网络的“人-机”语境的建立,突破了普通英语教师和传统的单机的多媒体教学软件所能具备能力限制,也比建立于网络的“人-人”语境更具灵活性,可以为远程学习者提供良好的英语学习支持,在国内第一次系统地将用自然语言进行的人机对话系统应用在计算机辅助外语教学上,在国际上也是一种创新。[17]

五 人工神经网络

人工神经网络就是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能的元件(即人工神经元),按各种不同的联结方式组织起来的一个网络,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能,例如可以用于模仿视觉、模式识别、声音信号处理、控制、故障诊断等领域,人工神经元是人工神经网络的基本单元。[18]人工神经网络有两种基本结构:递归(反馈)网络和多层(前馈)网络,两种主要学习算法:有指导式学习和非指导式学习。

人工神经网络从模拟人类大脑神经网络的结构和行为出发,具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合于处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题,[19]这使人工神经网络具有更大的发展潜能,目前已经开发和应用的人工神经网络模型有30多种。人工神经网络在教育中的应用大多是与教学专家系统相结合,以此来改进教学专家系统的性能,提高智能性,使其在教学过程中对突发问题具有更好的应对能力。人工神经网络在学校管理中也得到应用,例如采用误差反传算法(BP)的多层感知器已应用于高校管理之中。

六 分布式人工智能(Distributed Artificial Intelligence,DAI)

分布式人工智能是分布式计算与人工智能结合的结果,研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型,主要研究问题是各Agent之间的合作与对话,包括分布式问题求解和多Agent系统两个领域。[20]分布式人工智能系统一般由多个Agent组成,每个Agent又是一个半自治系统,Agent之间及Agent与环境之间进行并发活动并进行交互来完成问题求解。[21]由于分布式人工智能系统具有并行、分布、开放、协作和容错等优点,在资源、时空和功能上克服了单智能系统的局限性,因此获得了广泛的应用。

分布式人工智能中的Agent和多Agent技术在教学中的应用逐渐受到关注。在教学中引入Agent可以有效地提高教学系统的智能性,创造良好的学习情境,并能激发学习者的学习兴趣,进行个性化教育。目前,Agent和多Agent技术多用于远程智能教学系统,通过利用其分布性、自主性和社会性等特点,提高网络教学系统的智能性,使教学资源得到充分利用,并可实现对学习者的学习行为进行动态跟踪,为学习者的网络学习创造合作性的学习环境。在网络教学软件中应用Agent技术的一个典型是美国南加利福尼亚大学(USC)开发的教学Adele(Agent for Distance Education - Light Edition) [22]。Agent技术在网络教学软件中取得的良好效果,促进了研究者对分布式人工智能在教育中的应用研究。

综上所述,科学技术的发展将会推动人工智能技术在教育中应用的广度和深度。从人工智能的应用趋势来看,人工智能在教育中应用的扩展可以通过以下三个方面进行:一是人工智能与其他先进信息技术结合。人工智能已经与多媒体技术、网络技术、数据库技术等有效的融合,为提高学习效率和效度提供了有力的技术支持,而引起教育技术界广泛关注。[23]例如人工智能技术通过与多媒体技术相结合,可以提高智能教学系统的教学效果;与网络通讯技术相结合,可以提高和改进远程教育的智能性。二是人工智能应用研究领域间的集成。人工智能应用研究领域之间并不是彼此独立,而是相互促进,相互完善,它们可以通过集成扩展彼此的功能和应用能力。例如自然语言理解与专家系统、机器人的集成,为专家系统和机器人提供了新的知识获取途径。三是人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸与扩展,这些新领域有分布式人工智能与Agent、计算智能与进化计算、数据挖掘与知识发现以及人工生命等[24],这些发展与应用蕴藏着巨大潜能,必将对教育产生重要的影响。

技术发展不断发挥着引导教育技术研究的作用,一种新兴技术的出现总是会掀起相应的研究热潮, 引发对技术在教育中应用的探讨、评价以及与传统技术的对比。[25] 人工智能作为一门交叉的前沿学科,虽然在基本理论和方法等方面存在着争论,但从其研究成果与应用效果来看,有着广阔的应用前景,值得进一步的开发和利用。

参考文献

[1] 史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007:1.

[2][11][18][19] 《计算机与信息科学十万个为什么》丛书编辑委员会,计算机与信息科学十万个为什么(8):人工智能[M].北京:清华大学出版社,1998:5,189,78-79,84.

[3] 任友群,胡航.论学习科学的本质及其学科基础[J].中国电化教育,2007,(5):1-5.

[4][21] 蔡瑞英,李长河.人工智能[M].武汉:武汉理工大学出版社,2003:12-13.

[5][12][15][20][24] 蔡自兴,徐光.人工智能及其应用(第三版)――研究生用书[M].北京:清华大学出版社,2007: 12-14,19-20.

[6] [荷]山尼•戴克斯特拉,[德]诺伯特•M. 西尔,[德]弗兰兹•肖特,等.任友群,郑太年主译.教学设计的国际观第2册:解决教学设计问题[M].北京:教育科学出版社,2007:67.

[7] 任友群.技术支撑的教与学及其理论基础[M].上海:上海教育出版社,2007:42-43.

[8] 路利娟.应用专家系统提升现代远程教育的智能化[J].中国教育技术装备,2007,(12):79-80.

[9] 陈恳,杨向东,刘莉等.机器人技术与应用[M].北京:清华大学出版社,2007:6.

[10] 关注机器人幼儿教育――访鲍青山博士[DB/OL].

[13] 柏宏权,韩庆年.机器学习在适应性教学系统中的应用研究[J].南京师范大学学报(工程技术版),2007,7(4):76-79.

[14] 杨健,赵秦怡.基于案例的推理技术研究进展及应用[J].计算机工程与设计,2008,29(3):710-712.

[16] 自然语言理解[DB/OL].

[17] 贾积有.人工智能技术的远程教育应用探索――“希赛可”智能型网上英语学习系统[J].现代教育技术,2006,16(2):26-29.

[22] Erin Shaw, W. Lewis Johnson, and Rajaram Ganeshan, Pedagogical Agents on the Web[DB/OL].

第5篇

【关键词】人工智能;诊断学教学;智能教学系统;智能组卷系统;智能阅卷系统;智能仿真教学系统

人工智能(artificialintelligence,AI)的概念最早是在1956年的Dartmouth学会上提出的,随着计算机核心算法的突破、计算能力的迅速提高以及海量互联网数据的支撑,目前已被广泛地应用于各个领域[1-2]。近年来,人工智能也给教育教学领域带来了机遇,人工智能+教育正如火如荼地开展和推进,改变着传统的教育形式及生态[3-4]。2018年教育部《高等学校人工智能创新行动计划》,各大高校在人工智能及其教育发展上有了纲领性的指导[5]。医学教育作为教育教学诸多领域的一隅,乘着人工智能发展的东风,各大高校在推进医学教学改革方面进行了大量积极的探索与尝试[6-8]。诊断学是由基础医学过度到临床医学的桥梁课,其教学质量的良莠直接影响到医学生的培养质量,传统的教学方法难以满足现代医学教学的要求,如何发挥人工智能的应用优势,让其更好地应用于诊断学的教学工作,也是诊断学课程教改的重要研究方向。

1传统的诊断学教学方法存在的问题

诊断学是学习临床基本技能最重要的一门课程,其内容包括症状学、体检检查、实验室检查及辅助检查等四大块,分为理论课和见习课,目前大多数医学院理论课采用的是以大班的形式在多媒体教室讲授,而见习课则采取分小组的模式进行,多年的教学实践发现该教学模式取得的教学效果不尽人意,尤其是近年来随着全国各大医学院校的扩招,出现了师资及教学资源配套的相对不足,上述教学模式的问题逐渐凸显。理论知识以老师讲授为主,采取的是“满堂灌”的教学模式,然而该部分教学内容知识点繁多,知识串联度不高,课堂灵活度、生动度较为薄弱,学生听完课以后对课程内容印象不深,知识掌握度差,同时由于学生的学习主观能动性差异大,不能进行课前充分预习的学生在课堂上更加难以跟上老师讲授的节奏。见习课是对理论知识进行实践,培养学生的实践操作能力,前期理论知识掌握度差又会影响见习的教学质量,导致教学过程形成恶性循环[9]。见习课主要采取老师讲授要领及演示操作流程,之后学生们互相练习的教学方法,该部分内容需反复加强练习,同样的动作要领反复锤炼才能熟练掌握,因课堂见习时间有限,而老师讲授及演示需占用大部分时间,学生动手实践机会不多,老师对学生的操作手法、操作内容、操作顺序等重要内容进行指导和勘误的时间少,学生操作的规范性难以保证,在以后的临床实践中,往往存在实践操作能力的缺陷。上述教学模式教师与学生们之间除了课堂时间,其余时间是脱节的,不能很好地沟通,学生们有疑问的知识点难以得到老师的及时解答,教学活动中没有充分反馈,各个教学环节难以进行教学反思,形成教学相长的良性循环。课后复习及阶段性总结复习是课堂知识内化及升华的重要方面,传统的教学模式通常是给学生布置课后作业,学生完成后上交由老师批改留档,这个环节学生与老师缺乏有效的沟通,且由于学生们学习主观能动性差异,课后没有老师的监督及针对性地辅导,课后作业的质量良莠不齐,教学质量欠佳是显而易见的。随着现代医学的发展及研究的开展,涌现了一大批新的诊断方法与手段,譬如关于肿瘤诊断的分子marker,评估预测疾病活动度及预后相关的指标,在临床上已经常规应用,但由于教材更新需要周期,很难跟新进展同步介绍,另外由于课时有限,难以全面地就学科前沿及新进展进行讲授[10]。

2人工智能应用于诊断学教学的重要意义

2.1教师方面

将人工智能应用于诊断学教学实践,削弱了教师的知识权威而强化了教师的价值引导,对教师的个人能力提出了更高的要求,促使教师踏实践行终身学习并持续更新自身知识结构。互联网高速发展的时代,知识呈几何指数更新并出现大爆炸,基于各种互联网即时通讯平台及手机APP,诊断学体格检查、理论知识讲授相关的小视频及研究进展不胜枚举,这就要求教师及时获取、更新知识并进行相应的知识储备。人工智能的应用促使教师从单人施教发展为团队施教,为开发更具个性化的课程教学注入团队的力量。基于大数据的人工智能可以减少诊断学教学过程中的机械性、重复性工作,如平时作业的批改、考勤统计等,减轻了教师的工作负担,教师可以将更多的精力投入到医德医风、医患沟通能力以及体格检查手法的规范化培养上,更多的心思放在丰富课程内容及教学形式上。同时大数据可以及时反应学生的学习动态,教师可以根据学生的反馈及课程评价有针对性地对学生进行相应的辅导。

2.2学生方面

将人工智能应用于诊断学教学实践,可以实时动态记录学生的学习情况及暴露的问题,如是否按时完成课程任务、测试中哪些知识点容易出错等,人工智能系统能够对这些数据进行关联分析和深度挖掘,并且可视化呈现相应的数据,有利于教师及时掌握学生的学习进度、参与度以及学习效果,并根据具体的学情分析数据来调整辅导和教学方案。基于人工智能强大的算法和分析,可以为学生定制个性化的教学内容及进度,提供更有针对性的课堂内容和随堂测试,并对测试及平时作业进行智能批改,真正做到查漏补缺。诊断学课程内容相对枯燥,学生们的学习兴趣有限,基于人工智能的教学方式可以寓教于乐,在课程中将一些比较零散的知识点可以设置成互动小游戏,营造出良好的课堂氛围,提高学生们的学习兴趣及学习效率。

2.3教学过程

针对教学过程,人工智能亦发挥着至关重要的作用。第一,诊断学作为桥梁课程,是一门必修课,包括临床医学五年制、八年制、法医学、基础医学等相应专业的学生均需要学习,人工智能拥有超强的计算能力和强大的“记忆力”,面对众多不同专业的学生,可以根据大数据进行分析,制定出适合不同专业学生的完备教学目标。教学活动开展过程中,人工智能还可以根据学生的课堂及课后测试表现,依据分层教学的要求自动设置梯次教学目标,帮助学生们逐步提升学习能力和知识掌握度。第二,人工智能可以凭借自身信息化的特点,对各种教学资源进行分析,为教师和学生选择更优质更合适的资源提供依据,促进个性化的教与学。第三,传统的教学方式、教学内容相对有限,人工智能基于大数据能够启发新的教学思路,创新教学方法,为诊断学教学提供更多的可能性。

3人工智能在诊断学教学中的应用

3.1智能教学系统

智能教学系统是教育技术学中重要的研究领域,其根本宗旨是使得学生的学习环境更加优良和谐,智能教学系统能够及时有效地调用最新最全的网络资源并充分优化后供学生学习,使得学生能够更加全方位、多角度地学习专业知识,提高学习效果[11]。智能教学系统大致由领域知识部分、教师部分及学生部分3个部分构成[12],其中领域知识部分又称为专家部分,这一部分既包含了需要讲授的内容及掌握的技能,又可以添加专家的学术成果,既能够保证学生对于基本概念、基本理论及基本技能的掌握,又能够拓宽知识面,增加知识的广度。智能教学系统的教师及学生部分主要是为设计和制定教学方案及策略服务,基于大数据基础上,根据课程的特点、历年教学情况、学生身心发展特点及学习实际情况,制定更加个性化、高效的教学方案,促成教师因材施教,取得更加理想的教学效果。

3.2智能网络组卷阅卷系统

诊断学教学内容包括理论和见习两大块,教学过程中教师的大量时间用于出题、阅卷、批改平时作业等与考核相关的工作,并且在出题过程中需要围绕相对固定的重难点内容不断创新题型,消耗教师大量的精力。智能网络组卷阅卷系统能够充分发挥其优势,将教师从繁冗的考核相关工作中解脱出来,使得教师的教学更高效,教师能够把更多的时间。智能网络组卷系统能够有效收集和分析知名高校教学团队编写的在线题库,实现教学资源的共享,通过随机抽题组卷、答案随机排序、题型随机排序以及设置避免与历年考卷重复等,显著提升试卷的质量,亦能改善考试作弊的顽疾,客观地考核学生对知识的掌握度。智能网络阅卷系统有简明的阅卷流程,能够更有效地识别试卷及答案,能够明显降低传统人工阅卷方式因疲劳带来的出错率,使得工作效率更高、考核结果更公正。

3.3智能仿真教学系统

诊断学教学的见习部分是学生提高技能的重要环节,常常采用分小组在病房完成的方式进行,在课程的开展过程也凸显出了各种各样的问题,譬如因学生分组进行询问病史、体格检查,重复次数多,患者难以多次配合;在教学时间段内病房缺相应的病种,无法对所学的症状进行直观的学习;传染病流行期间出于对学生健康安全的保护,无法进入病房见习等等,此时智能仿真教学系统能够发挥重要的补充作用[13]。人工智能可以根据提供的海量真实临床病例,由医学专家整合其临床特征,联合计算机专家,根据相应的教学要求,形成虚拟病人学习系统,学生在仿真诊疗环境中,进行问诊、体格检查、诊断以及给出治疗方案,同时系统能够自动发现学生在问诊及诊断过程中的错误,通过实践、纠错再实践,提高学生采集病史、体格检查的能力,同时能够加强学生的临床思维的训练,夯实临床基本功[14-16]。

4总结及展望

第6篇

关键词:互联网+;会计;教育

一、“互联网+”会计的影响

“互联网+”会计,从思维到实际操作层面都对会计行业造成了巨大的影响,赋予了传统的会计工作更多的可能性。通过分析“互联网+”背景下,人工智能、大数据、云计算等新兴科技融合会计工作的现状与影响,能够帮助思考新时代会计人才的培育方向。

(一)会计信息处理效率大大提升

人工智能在会计工作中能够快速实现会计信息的处理与数据的运算与存储,使得会计人员的作业重心从数据的录入、整理、归纳、运算等烦琐漫长的工序转移到关键信息的筛选、核查、审阅等重要环节上,大大缩短了信息处理的时间,优化了数据的处理功率,同时人为失误也得到了最大限度地削减。

(二)会计工作内容变动整合

人工智能等新科技在会计行业的使用与推广一方面降低了会计工作的强度,节省了会计工作的用人需要,另一方面也势必会对传统的会计工作者产生冲击,尤其是工作内容简单且重复性高的初级管账人员。而大数据的整理分析、计算机软件的熟练操作与使用、人工智能的运用与管理等也逐渐将成为会计人员工作中的重点。

(三)会计信息更为真实可靠

传统会计手工记账的业务处理容易出现操作失误等情况,运用人工智能与大数据的应用最大程度上减少了人为失误,且数据信息得到了良好的存储管理,易于追溯、查询与审核,从而大大提高了会计信息的真实性。同时,人工智能的使用相比会计人员相比更能降低因为主观判断造成的失误,使得会计信息更客观中立,为利益相关者的投资决策提供更为真实可靠的信息。

(四)“互联网+”会计技术仍待进一步改进

人工智能、大数据等新兴科技引入会计行业后,在保证其能够快速获取、有效处理、精准转化决策信息的同时,确保人工智能系统可靠、安全、正常的运营是极其重要的工作。在激烈的市场竞争面前,会计技术的运营需要控制在稳定的技术及安全环境下,以防范财务数据的泄露或崩溃而给企业带来难以弥补的损失。人工智能等新兴科技在引入财务工作的过程中,其安全性、可靠性、稳定性等重要性能仍然需要进一步的研究、实践和优化升级。

二、传统会计专业教育的不足

“互联网+”时代对会计人才培养提出了新要求,传统的会计专业教育的缺陷逐渐暴露。具体问题如下:

(一)教育思维固化

在“互联网+”会计的背景下,会计专业人员不仅需要会计专业知识储备,在计算机软件、数据统计与分析等方面也需要具备一定的技能。但前者属于管理类学科,具有人文科学的特点,后者则属于理工科的内容,二者之间存在一定的隔阂,但绝不是泾渭分明、非此即彼的关系。而许多高校尚未完成从培养“专业性人才”到培养“复合型人才”的观念转变,没有将二者进行很好的融合,会计思维与数据、逻辑、计算机思维仍然互不沟通。

(二)课程设计缺陷

我国多数高校如今对于会计专业课程的设置不尽合理,会计与计算机的融合操作教学一般都只对高年级开设,且其比重与传统的理论教学相比只占学生专业课程中很小的一部分。而课程内容也主要在于培养学生会计系统的运用能力,让学生成为“应用型“会计人员,理论与实践没有实现深度融合,学习的更多的是操作应用而非创新创造,使得学生对会计信息开发系统仅仅处于一种肤浅的认知与操作阶段,缺乏对前沿会计信息技术的深入理解与运用。

(三)教学方式落后

当前许多高校的会计教学方法仍为传统的“理论解读和实务演练”。教师讲述个人对会计知识的理解,学生被动的接受知识与观点,但没有主动的对会计知识进行探索;而实务层面,也主要由教师进行示范演练,学生对示范进行单调的模仿学习,重复既定的规范步骤,这种教学方式拘束了学生的自我探索空间,难以培养学生的自主创新意识,虽然能够快速学习实务操作的程序步骤,但对于学生分析、解决问题与自主创新等能力的培养仍存有不足。

三、会计专业教育的发展方向

(一)培养学生自主学习与创新能力

在“互联网+”时代的大背景下,人工智能、大数据、云计算等技术高速发展,企业商业模式变化日新月异,在会计行业中只有时刻保持着对前沿知识技术的敏感、具备强大的自主学习能力与自主创新能力才能不被智能科技取代。因此在会计人才的培养教育中,应有意识的引导学生改被动接受为主动学习、改单调模仿为自发创造,不断提高学生的职业胜任素质。

(二)培养“互联网+”会计思维方式

会计专业教育不能割裂人与计算机、会计与新科技的联系。人工智能等新兴科技在会计工作中的使用主体仍然是会计人员。因此在会计教学工作中,应逐渐培养学生树立“互联网+”会计的思维,注重会计知识与计算机实务操作的融合,培育学生处理信息、驾驭系统的能力;增加“互联网+”会计相关课程占总体知识群的比重,紧密结合人工智能的开展方向及最新动态,融合人文与科学思维、管理与计算机思维。

(三)培养复合型会计人才

结合我国当前会计行业结合互联网技术后的发展现状进行分析,未来新技术的深入发展需要依据中国会计准则,不断完善会计信息化软件建设,丰富各类复杂业务的会计处理方式,因此高校需要加大“互联网+”会计的“跨界”复合型人才培养力度,使之兼具经济管理、数据分析、会计实务、信息技术等知识能力,迎合当前会计劳动力市场在快速发展的科技时代背景下的用人需要。

第7篇

关键词:人工智能;音乐教育;智能乐器;大数据

1引言

随着人工智能技术的不断进步,重新塑造音乐使得音乐教育的学科素养培育、审美感知、艺术表现和文化理解变得更有支持和创意。探索应用人工智能技术推进音乐教学的改革与发展有具有十分重要的意义。本文通过研究与实践,引导学生学会用科学的方法培育计算思维创作音乐,用科学的意境欣赏音乐陶冶学生的音乐审美感,用科学的评价提升音乐课堂教学效率。通过这些措施,可以使学校音乐教育精准地开展因材施教差异化教学,彰显音乐教育的特色。

2人工智能与音乐

人工智能技术与音乐教育有机融合,丰富了课堂教学资源,拓展了智能乐器的功能,提升了音乐教育技术手段。它支持个性化学习,可以观察音乐课堂学习,分析音乐的旋律与节拍,有效评价教学效果,激发音乐教师运用人工智能技术创新音乐教学的热情,发挥教师在课堂教学中的主导作用。

2.1乐器的智能化

乐器是学习音乐的重要工具。乐器植入人工智能技术,形成了智能化乐器。它能够大量储存多种乐器的音乐数据。尤其是在音乐键盘中运用,功能的提升特别突出,应用于音乐教学中引发了多种形式的教学模式。例如,图1显示了融合多媒体计算机、主控系统、音乐课堂教学智能评价系统将多部电子钢琴连接起来的智能乐器实验室。通过语音室方式授课,可以实现多种乐器的分组教学。这在传统的音乐课堂上是无法完成的。

2.2智能化乐曲创作

智能乐器不仅能够储存乐器音色,而且还能用指令对各种音色播放进行控制,各种音色按照指令进行演奏。这种创作功能是以往其他乐器都无法比拟的[1]。例如,能唱出《月亮代表我的心》十七声部的合唱团,很好听,但很难。运用智能乐器按指令合成该十七声部音乐则轻而易举。2.2.1机器学习生成乐曲人工智能技术赋能智能乐器,使得机器学习的功能日趋进步。机器学习在音乐领域所做的事情,就是提取音乐作品的“数据”,输入给定模型学习音乐的“特征”,再对音乐数据进行分析和编排。例如,如果输入的是《梨园金曲》民族音乐,则机器就能学会民族音乐的曲调特征,生成掌握特征模型的民族音乐作品。2.2.2用软件生成乐谱使用MuseScore3forMac软件可以制作乐谱,在工具栏选择对应时值的音符输入音符。例如,在MuseScore3窗口输入如图2所示的“我和我的祖国”乐谱,再导出MP3文件进行播放。2.2.3代码生成乐曲用Python代码生成曲子,要借助音乐标准格式MIDI—乐器数字接口,运用Python-midi库编写程序,编译MIDI文件生成音乐。例如,生成一个简单乐谱的MIDI文件需要使用Python-midi,其中:Pattern对象表示乐谱;Track对象表示音轨,通常乐谱都有多条轨道组成,每种乐器是一个轨道;midi.NoteOnEvent表示每个音符的开端,在参数表中可以定义每个音符的音长和音高;midi.NoteOffEvent表示每个音符的结束。参考代码如下:importmidi#定义patternpattern=midi.Pattern()#定义轨道track=midi.Track()#添加轨道到patternpattern.append(track)#音符开始,并定义位置、音量、音高on=midi.NoteOnEvent(tick=0,velocity=50,pitch=midiG_3)track.append(on)#音符结束off=midi.NoteOffEvent(tick-100,pitch=midi.G_3)track.append(off)#轨道结束eot=midi.EndOfTrackEvent(tick=1)track.append(eot)#存储midi.write_midifile("example.mid",pattern)程序运行结果生成了如图3所示的简单音符:这样如图2的“我和我的祖国”乐谱,也可以通过Python代码生成MIDI文件。

3AI赋能音乐课堂

在AI赋能的音乐教育环境,促使音乐教学实践变革以及学生学习音乐方式。例如,图4所示的集音乐创作教学及教学评价于一体的“智能化音乐课堂教学评价系统”,在教学设计的优化、教学方法的高效、教学手段的更新、教学评价的智能、教学策略的调整方面都具有借鉴意义[2]。

3.1大数据学习

大数据云计算可以将所有音乐家们音乐数据存储在云中,运用人工智能技术为学生提供更多有价值的音乐数据。学生通过音乐云学习音乐知识,欣赏音乐魅力、体验音乐节奏、理解音乐韵律。它使得优质音乐教学资源跨越校园,开放延伸音乐教学,远程辐射共享资源。这样就扩展了学生的视野,音乐知识的来源无限扩大,整个音乐云皆有学生的学习教材。特别是大数据音乐云不仅可以推送给学生更多的即兴音乐和更多的音乐信息,还能指导音乐爱好者创作出雅正、健康的音乐作品。

3.2个性化学习

人工智能技术从音乐学习行为数据搜集、数据分析与运用、个性化学习评价多方位帮助学生定制个性化的学习成长路径。推送在线音乐教育资源,指导表演建议乐器学习技巧。搭建音乐教育虚拟课堂,匹配音乐教学资源,实现因材施教的个性化学习,支持一对一的教学辅导和群组式讨论。通过这些措施提高教学质量和效率。

3.3教学评价智能化

运用人工智能技术将多个音乐辅助教学设备连接的音乐创作教学系统,基于音乐课堂教学的学生学习特质分析与教学效果分析的音乐课堂教学管理系统,来实现音乐教学的全程智慧管理,使音乐学习更有效率。例如,在虚拟音乐课堂乐器教学可以变成一对多的自选教学模式,使课堂变得轻松、愉快。教师可以开启课堂教学观察模块,捕捉每位学生同步练习的音准、节奏、力度数据,分析判断将评价信息同步反馈,给出学习指导建议。3.3.1创作教学模块“智能化音乐课堂教学评价系统”中的音乐创作教学模块,集视、听、练和反馈评价为一体,适时演示教师教学作品和评价学生练习作品。例如,在进行《我和我的祖国》授课时导入电影片段,欣赏“我和我的祖国”音乐的表现形式、演唱形式以及歌曲风格,可以使学生更好地体验作品的创作意境,激发创作意识。使用MuseScore创作“我和我的祖国”三声部习作音乐,并能储存、刻录,编辑等二度创作。3.3.2课堂教学评价模块音乐课堂教学评价有着传统音乐教学评价无法比拟的灵活性、客观性和实用性。从大数据分析角度获取音乐课堂教与学相关数据,对学生的音乐基本素养与学习态度进行科学分析判断。例如,以创作《红河谷》中的和声与音乐作品风格内容的“编配伴奏音乐”教学过程为例。课前在“课堂教学评价模块”上安排学生根据作品风格完成伴奏的音乐;播放制作好的《红河谷》MIDI音乐(在第二和第六个小节缺失编配和弦);使学生感受、探讨大小三和弦的表现力,形成对大小三和弦的感知。然后要求学生试着用MuseScore为《红河谷》缺失的两小节选配和弦,以适合歌曲的伴奏风格。学生需要边哼唱歌曲边试着套用不同的伴奏风格,找到他们认为最恰当的和弦伴奏风格,说出理由并提交[3]。评价系统将学生提交的作业比照音乐要素进行评价。及时反馈学习评价的信息,并对学生的学习进程制定一个个性化的学习方案[4]。同时通过教学反馈深度优化决策模型,促进教师实时改进教学策略,提高教学效率和效果,提升教学质量。

4结语

人工智能技术在音乐教育领域中的广泛应用,为传统的音乐教育模式注入了活力,为音乐教师创新音乐教学理念开辟了新思路[5],为因材施教提供了新的适合学生学习的音乐教学模式。人工智能在音乐教育模式方面的探索,不仅给音乐教育教学的发展带来了物质技术层面的进步,还从音乐教学层面促进计算思维培育开辟新途径。这对音乐教育理念、教学手段、教学方式和方法以及拓展学生音乐视野、学习音乐、享受音乐、创造音乐等都带来深刻的变化和积极的影响。

参考文献

[1]邹孟雨.人工智能及其在音乐教育中的应用.北方音乐,2018(15):254-255

[2]郭文进.“互联网+教育”运行模式探究.决策与信息(下旬刊),2015(9):63

[3]段晓军.电脑音乐系统与中小学音乐教学实践.中国音乐教育,2006(6):26-28

[4]王迪.浅析娱乐教育中元学习能力的培养.河北广播电视大学学报,2007(1):79-80

第8篇

 

经过比较详细研究Alphago的算法发现,它在布局阶段的前20步采用人类经验,之后开始在人类经验的基础上融入了自己学习的权重,变得更加的理性以及所谓的大局观。由于围棋的复杂性,Alphago也不能在每步都能精确地知道当前棋盘中所有下法的胜率。所以,他采用的是在可以期待的近期(20步以内)综合价值和胜率会超过50%的走法。从这几点来看,这次的机器战胜远超过国际象棋中人类被战胜的意义。Alphago的算法是一种新的适应机器的思维,发挥了机器的强项,弥补了机器的短处。这非常让人感到害怕、悲观和失望。因为,人生就是一盘棋局。如果50年后,有一个智能科技机器助手,它不能告诉你最终的未来,但是可以告诉你在几年内的未来,你该如何是好?那这是不是一种宿命论?事实上,笔者在教授数据分析课程的这几年中,一直在宿命论和未来不确定性两种相对的观点中摇摆。数据统计已经有足够的算法和可靠的实践在某些方面做出人类无法预计或预见的准确预测,只不过那些领域还很小,比如,库存的预测、销量的预测,等等。数据已经在显示其巨大的价值,而一旦数据预测技术能够输入足够多的变量,采用类似Alphago或更加高级的算法,进而对你个人、你所在组织、公司、国家的短期未来甚至是长期未来做出80%、甚至是90%的准确预测,你会怎样去接受这样的未来?!当然,不确定性仍会存在,这是一个好消息。在此,我对Alphago事件尝试做一些思考分析。

 

一、Alphago战胜人类的几种可能的基础

 

1.Deepmind公司用十年的时间磨练,修改算法,虽然在算法上没有创新,但是如何融合已有算、如何调整权重等多个方面,仍然是做了大量、艰苦的工作。

 

2.Google拥有超级大量的计算资源供Alphago的使用,也就是说目前机器学习的过程非常的耗费时间以及计算资源。按照以往的经验,20年内,我们使用的桌面型机器就应该能够支撑起Alphago目前所需的计算资源。从现在开始,再过30-40年,可能Alphago这个“古老”的程序只需要几天就能完成现在几个月所需的机器学习时间。

 

3.在硬件上CPU和GPU的协同调度,以及分布式的运算的运用,大大加快的计算的速度。这也是近几年软硬件基础发展奠定的基础。

 

4.Alphago 在击败欧洲冠军时进行了严格的保密,说明当时Alphago团队当时也并不是很自信能够战胜。事实上,我认为,在这次比赛开始前,他们仍然没有这个把握,仍然应该认为是一半对一半的胜率。但是,哪怕输了,也没有关系,反正继续让Alphago学习后再提升。

 

5.Alphago对战时采用方式近似的模拟了人脑的信息的处理方式,只不过速度更快。所以,Alphago也不能百分之百的胜率,但是随着学习的时间不断增加,最终会远远超过人类。

 

二、Alphago围棋人机大战事件将会产生的影响:

 

1.个人,组织,公司,国家间的竞争将会更加重视人工智能的策略参考。人类的思考开始依赖于机器的理性,人的决策变得更加的理性,情感的因素会不断下降,也意味着更加没有人情味。这必然会影响到人类的进化进程。

 

2.人与机器的关系需要重新的思考,人应该如何同机器共存。

 

3. IT行业的人力资源需求将大规模增长,而有些行业将大规模失业。

 

4.基因技术、可控核聚变、机器人技术、人工智能这些技术都将对人类产生重大意义的影响,但是如何控制好这些技术将成为一个重大的问题,否则任何一个技术都可能毁灭人类。为了控制好这些技术,需要从现在开始立即进行大量的辩论及监督审查。

 

5.Alphago在最终在决定某个落子的评分中,其权重为人类经验参数同左右互搏这种机器学习得来的概率参数各占50%。Alpago团队曾经调整过不同的权重,但是经过实验发现各占50%时的最终胜率最高。这一数据是否在暗示,如果要战胜人类就必须首先理解人类的思考,否则就无法做到青出于蓝而胜于蓝。但是,在理解人类思考的同时,也会无法避免地继承人类的弱点,这也是Alphago最终会有失败的一局。另外,在具体的步骤中,也不是每步都是完美的。可能这也许是人工智能能够超越人类,但是可能无法毁灭人类的重要一点。因为,如果人工智能自己最终学会思考,相信人工智能最终会参透,或许最符合人工智能自身的利益生存方式是同人类共存,而不是消灭人类。

 

三、Alphago围棋事件可能对教育领域的产生的影响

 

1.Alphago算法有较强的通用性,但也有很多的限制。首先为了更加精确,需要大样本量的学习,Alphago为了加快学习进度在学习现有人类棋盘的基础上,开始自己与自己互博,加快学习的速度。这点在通用领域中实现有一定的难度。在教育领域中,目前比较适合Alphago算法快速进入的领域的是在线课程的学习。

 

2.在线课程的学习目前来说仅仅完成了内容的提供,如何编排现有的课程已达到最高的学习效率,这点目前还没有引入人工智能方法。如果引入,将会对教学的方法理论产生一定的影响,甚至会影响到线下课程顺序的设计安排。

 

3.多媒体材料的类型的挖掘,不同类型的媒体会带来不同的教学效果,人工智能在这个领域有助于通过大数据分析统计出在认知不同阶段采用何种类型的教学媒体效果最好。

 

4.个性化的学习,引入Alphago算法后的人工智能,会为个性化学习带来天翻地覆的变化。通过摄像头对学习者情绪的监控,结合学习过程中不间断的学习效果的评估,可以会带来真正意义上的个性化学习。

 

5.真正意义上的个性化学习会对分层教学产生深远的影响,因为学习的进度快慢会非常容易的将不同学习能力的学习者分类,教育会不知不觉走向过程和结果的不公平。

 

6.目前,已经有在线课程网站同招聘网站结合的构想,利用在线学习的记录,为雇主提供是否雇佣的参考。未来可能会更加大规模地出现该类现象,未来各级各类学校的升学也可能会更加依赖机器或网站记录的学习过程,同时造成新的学习能力歧视。但是,这样针对个体的不公平,却可以带来整个组织以及国家的利益最大化,将来如何面对这样的不公平,会成为一个重要的讨论话题。

 

7.Alphago通过在线教学领域的挖掘最终也会或多或少的影响到传统的教学。如在教师多媒体的选择标准、课程顺序及进度的选择。但是,在远远没有量化的教学领域,还有很长的路需要走,而一旦传统的教学领域被量化,如学生的表情、情绪、反应等,那么教师这个职业将同今天的围棋一样,不得不慎重的思考接受一个类似上帝的理性的人工智能的建议。另外,最快掌握这一技术的组织和国家,将获得先发的优势。

 

四、Alphago围棋事件可能对职业教育领域的产生的影响

 

1.大量的主要是重复性的工作,尽管需要一定的随机应变能力的工作,将会在30~50年逐步被人工智能所替代。这些职业中的低层次职员将被大量地解雇。这一点提醒职业教育的层次需要不断地上移,为符合人力资源市场的需求及保证国家的竞争力,职业教育中本科教育及研究生教育的比例将逐步加大。

 

2.工厂的工人将被大量的机械手臂代替,全自动化的工厂将越来越多。尽管处于迈向老龄化的社会,却并不能保证年轻人足够的就业岗位。IT产业的人力需求将越来越大,各个产业的从业者都将储存一定的人工智能的知识,以便同智能机器助手更好地共存。

 

3.职业教育的过程将更多地信息化,如教学资源库使用将更加类似于在线教学。通过物联网技术,教学的过程被更加地量化,实践操作的过程中实现较高精度的量化,实践教学的效率极大地提高。但是,工业领域的职业中的实践教学的比例将大幅度下降,由于机械臂的大规模采用,实践教学将被机械臂的操作实践教学大规模替代。对于人工智能分析、操作以及针对不同环境进行适应性调整的能力将成为大部分职业必修的课程。

 

4.有必要考虑培养学生的机器思维的理解能力,让学生能够理解人工智能的思维的方式,理解这种更加冷静的思维方式。同时,也要让学生明白人工智能不是万能,也会犯错,需要保持警惕,不可过分依赖人工智能。

 

5.在职业道德的教育中需要充分的讨论人与智能机器之间的关系,以及如何看待智能机器,应该拟物化的看待智能机器抑或是拟人化的看待?如果拟人化的看待,那么,拟人化到何种程度?如果面临险境,是否会因为情感因素去拯救智能机器而牺牲自己?等一系列的问题。

第9篇

【关键词】大数据时代;人工智能;计算机网络技术

引言

科学技术的飞速发展,使计算机网络成为人们生活和工作的重要组成部分。在计算机应用领域,将人工智能与大数据进行融合,可有效解决计算机网络管理中安全性的问题。然而,在大数据时代背景下,由于人工智能技术的发展仍处在探索阶段,在计算机网络技术中的应用还存在许多问题。基于此,深度探讨人工智能应用优势,并针对人工智能在计算机网络技术中的应用提出几点建议,具有十分重要的意义。

1大数据时代人工智能技术的含义及应用优势

1.1大数据下的人工智能技术

人工智能作为计算机技术体系下的分支,是一门融合开发和研究为一体,主要作用于开发人类智慧所应用的科学技术。在人工智能不断发展的历程中,对于人工智能的探索逐渐延伸至管理学、语言学、社会学等学科,使人工智能能够更好地接近人类大脑,完成对社会中存在各类要素和信息的采集,并模拟出人脑对图像和声音出现的反应。在大数据时代背景下,人工智能可借助大数据内容多和规模大的特征,替代人们完成部分工作,为人们生活和生产提供便利,以进一步增强人们的幸福感。人工智能与大数据的配合,可将人类思考习惯进行数字化处理,并完成对数据的储存。在未来发展中,人工智能可实现对人类日常生活的复制,实现机械化的自动操作和控制。通过大数据和人工智能的相互配合,可为人类和技术的发展提供更广阔的空间。1.2大数据时代下人工智能在计算机网络技术中的应用优势在大数据时代背景下,人工智能在计算机网络技术中应用所体现的优势,主要体现在以下几方面:①完成对信息的预测,在计算机网络运行中,要想提升运转速度就要及时处理系统中存在的模糊数据,但对于这部分信息价值的辨别存在一定的难度。如依照传统处理方法会增加系统运行成本,对系统造成影响。在大数据时代人工智能的干预,可依据模糊分析理论更有效辨别信息价值,完成对信息的预见,进而实现计算机网络运行效率的提高。②增加网络监管能力,计算机系统的快速发展使得计算机网络结构日趋复杂,为网络监管带来难度。而人工智能的参与可实现对网络的分类管理,不但提升管理的效果和能力,还为网络营造更加安全的环境。③人工智能强化数据整合,在人工智能和大数据相互协作下,对于计算机网络空间中存在的信息进行快速整合,完成对各类资源的有效配置。还可加快资源整合的速度,减少资源的消耗,降低计算机网络的运行成本。

2大数据时代下人工智能在计算机网络技术中的应用对策

2.1计算机网络安全管理中人工智能的参与

①在计算机网络网络安全入侵检测中应用人工智能。在大数据时代下,计算机网络环境日趋复杂,各类病毒和木马的入侵可对网络造成不可逆的影响。而在计算机网络管理中应用人工智能,可通过对以往入侵情况的分析,建立数据集成的系统,通过数据编码将入侵特征进行编码转换,在系统中储存完整的信息。一旦计算机网络出现入侵系统的情况,对网络安全造成威胁,系统就可依据设定对入侵类型进行辨别,并完成安全处理,保障计算机系统和网络的安全。②数据挖掘技术在计算机网络安全管理中的应用。数据挖掘主要是指将网络从主机会话中分离出来,并通过对网络控制实现计算的规范化,并将其产生的数据储存到数据库中,在遇到网络风险时就能完成数据的辨别。③人工神经模拟。人工智能的模拟技术可模仿人类大脑的思考和处理逻辑,在网络运行中,可对噪声等要素进行识别,并通过检测,完成对网络的安全性检查,提升网络运行安全性,提升检测的质量。④危险信息拦截和垃圾处理。在计算机网络安全管理中,人工智能可在网络系统中建立智能防火墙,对部分危险信息进行识别,并完成拦截。还可在系统设置访问权限,提升安全防控的效果。同时,在垃圾处理方面,人工智能和大数据的相互配合,可实现对网络遗留数据痕迹和垃圾的检测,快速找到包含病毒的文件,并在人工智能处理模式下完成病毒的处理,消除网络中存在的安全隐患。另外,人工智能可完成对系统资源的扫描,通过对信息的分析和处理,将数字化数据反馈给用户,使用户更加直接地了解计算机网络的运行状况,为进一步保障计算机网络安全提供帮助。

2.2计算机网络管理系统中人工智能的导入

①系统数据库技术。在计算机网络系统中,利用人工智能技术将计算机系统运行的内容转化为数据,将简单内容在变为复杂的程序,在运行中对其进行不断的优化,找到有效的运行方式,实现对系统对有效的管理。这种人工智能和大数据的相互配合,可有效弥补传统数据加工在内容逻辑性方面的缺陷,并通过数据库的建立,使得计算机网络系统在运行速度和储存空间方面都得到提升。②智能问答技术。在计算机网络搜索功能中,人工智能技术的参与可使得用户利用部分有效信息就能获得海量的资源,提升网络资源的使用效率。这种智能问答方式主要以简单指令为核心,通过对关键词的识别在海量数据中快速筛选到相关的资料,获取到用户需要的内容。这种工作方式可减少搜索的时间,完成对资源的合理应用。比如,用户在搜索栏中输入“流行乐”,当下在音乐市场中流行的乐曲都能显示出来,并带出“流行乐”相关的搜索标签,找到更多相关的信息和数据,减少搜索的时间,并提升搜索的整体质量。③智能技术。计算机网络系统可完整记录用户的搜索数据,并从海量资源中挑选出相关内容,完成对用户的精准推送,这种服务的机制,可减低用户大量搜索的时间,并在短时间内找到更有效的相关信息,提升计算机网络系统的应用效果,带给人们更多的便利和帮助。

2.3计算机网络运营系统中人工智能的支持

目前,计算机网络与行业领域的深度融合,奠定了计算机网络的发展基础。同时计算机网络所支持的各类平台,可为整体网络管理工作的开展提供对接渠道,依托于信息传输机制,可有效提高数据传输的时效性,进一步为行业的发展提供保障。(1)在企业管理方面。大多数企业在运行过程中,将产生大量的数据信息,有价值与无价值的信息将呈现出同步传输的模式,计算机网络系统的应用,则是对此类数据信息进行有效整合与分类,为管理人员提供一定的信息决策支持。人工智能的融合,对于原有的计算机网络运营系统来讲,则可有效建立起一种基于人工智能实现的运算环境,通过大数据技术的价值信息挖掘、神经网络与模糊网络的精密算法等,可有效提高数据信息的统计能力,以此来节约企业资金成本的投入。此类人工之能的导入可为企业经济管理建立一种数据运营框架,在相关信息的输入下,可按照有序性的运算模式实现数据的分析,进而提高企业自身的运营质量。(2)在教育教学方面。计算机网络与教育领域的结合,是我国教育改革的一个重要实现载体,通过网络海量资源的支持,可为学生提供更为全面的信息。例如,以人工智能技术为载体的信息分配机制,其可有效建立起一智能化数据体系,学生通过网络进行作答时,计算机系统的分配机制可依据学生作答情况,将各类信息进行精准记录。同时,平台本身还可依据学生的作答信息进行学习行为方面的预期分析,然后针对某一时间点下数据信息呈现出的异常特性来分析出学生学习行为的发展方向,并将此类信息及时反馈到系统中。通过此类信息的正确界定,可对教师的教学行为以及学生的学习行为等进行有效规范。人工智能的支持下,可令计算机网络呈现出智能化运作的特性,对于当前信息时代的发展态势来讲,智能化、自动化的运营模式在行业领域中属于一种必然导向,为此,应针对行业本身的需求,界定出技术的应用形式,以此来发挥出技术应有的价值效果。

第10篇

关键词: 游戏开发 人工智能 教学方法

1.背景

随着互联网时代的到来,人们的生活方式发生了许多重大的变革,其中之一便是网络游戏的盛行。如同雨后春笋般冒出来的网吧,以及快速增长的PC,使得人们接触到互联网的机会越来越多,这就为网络游戏的传播与发展创造了可能。一方面,数量庞大的网民群体中,年轻人占了绝大部分,网络游戏丰富了社会公众的文化娱乐生活,深受广大年轻人喜爱,这更促进了游戏产业的蓬勃发展。另一方面,现代社会生活节奏加快,人们压力日益增大,许多人倾向于在网游中寻求安慰,释放压力,因而全球市场对于网游的需求有增无减。同时,随着科技的发展和人们对游戏越来越高的要求,游戏逐渐向真实体验、感觉、触觉等人性化发展,让玩家有身临其境的感觉,在整个游戏过程中得到享受游戏的一种特别的快乐和放松。[1]

近年来3D影像和仿真科技的不断发展,让游戏开发人员得以创建出更吸引人、更令人沉迷其中的游戏环境。然而要做出更能令人流连忘返的游戏就得应用人工智能(AI)。AI的应用使游戏角色能够任意走动、角色可以走进障碍物、能够控制非玩家角色是否按照团队运动等,同时,AI还能延长游戏的生命周期,让游戏更加有趣和更具有挑战性。

AI能够处理游戏角色的追赶、躲避、聚集、避障和寻径问题;AI给游戏角色赋予模糊逻辑和有限状态机等基于基本规则的推理能力;AI脚本可以扩充AI引擎,让设计者和玩家更好地设计和玩游戏,等等。因此,将AI应用在游戏开发中以设计实现游戏角色的各种行为势在必行,有着重要的现实意义。

2.教学内容及其特点

本系人工智能课程的教学内容主要是处理追赶、躲避、聚集、拦截和避障等问题,使用经典A*算法及其改进算法解决寻路问题,以及有限状态机,等等。本文主要针对游戏中游戏角色的寻路问题进行探讨。游戏设计中游戏角色的寻路问题是设计的关键,传统的方法是应用A*算法及其改进算法等来实现游戏角色的寻路问题,目前逐渐有学者应用神经网络、遗传算法、粒子群算法等智能算法来实现游戏角色的寻路问题。如:迷宫寻路游戏中《帮助Bob找到回家的路》应用遗传算法,《智能采矿》游戏中应用神经网络,用粒子群实现坦克大战游戏,等等。尝试应用鱼群算法、萤火虫算法等智能算法求解游戏角色的寻路问题中,以实现游戏的更加智能化、人性化,同时,新的仿生算法的学习和应用能吸引学生的学习注意力、增强学生的学习兴趣。

智能算法是解决智能计算问题的方法,已成为人工智能界一个研究的热点领域,研究的最终目标就是为了让计算机和集成有计算功能的各种工具及设备更加独立、更加聪明,能够自主思考和行动,最终成为我们工作和生活中必不可少的一部分。智能算法主要包括:人工神经网络、进化算法、人工免疫算法、模拟退火算法、蚁群算法、粒子群算法、蜂群算法、人工鱼群算法、人口迁移算法、人工萤火虫算法等。[2]智能算法是一类仿生算法,就是向自然界学习,采用类比的方法,通过模仿自然界中动物飞行、觅食、求偶等行为以得到解决问题的一般方法,如蚁群、粒子群、蜂群、鱼群、萤火虫算法等。此外,还有很多智能算法通过模仿一些自然或物理现象和规律,如模拟退火算法通过模拟液体的结晶过程设计,免疫算法是模拟生物、植物或动物免疫系统自适应调节功能设计的,人工神经网络是模拟人的大脑结构及信号处理过程而设计的,进化算法是基于达尔文的“优胜劣汰、适者生存”原理设计的。[3]

针对本系人工智能课程的教学内容,建议补充人工智能中几种简单的智能算法的知识点,选取相关人工智能教材的一些内容结合智能算法进行教学。

3.教学方法

针对人工智能课程内容,根据高校教育规律、高校学生学习的特点,采用教学、实践相结合的教学方法,大小课结合,大课讲授理论知识,小课进行课堂实验,小课的课堂实验中严格要求学生亲手编写代码,应用大课所学理论知识完成简单小游戏以实现理论和实践知识的掌握。同时,借助游戏系的优势,制作动漫,采用动漫技术来实现人工智能中各种算法的仿生机制,让学生深刻体会每一种算法的原理和仿生机制,这样能增强学生学习人工智能课程的兴趣,可以取得更好的教学效果。

4.教学效果评价方法

人工智能这门课,最重要的是注重学生对人工智能理论及在游戏中应用的知识和能力的培养。因此,本课程学习结束后主要采用以下方式进行考查:(1)闭卷考试。主要考查对人工智能理论的理解、掌握和综合运用能力。(2)课堂练习。要求对课堂上介绍过的算法理解、分析、应用,编程实现游戏中的某个功能,最终课程结束时能完成一个功能完整的小游戏。(3)大作业。检查学生的动手编程能力,要求从介绍过的算法中找一种算法实现一个小游戏中游戏角色的移动、寻路等行为,形成一个演示游戏。该门课成绩分配如下:成绩=闭卷考试(70%)+课堂练习(10%)+大作业(20%)。

5.结语

人工智能是随着计算机技术的飞速发展和人们对自然界的深入理解而发展起来的,人工智能的应用逐渐广泛。游戏开发中人工智能的应用实现了游戏逐渐向真实体验、感觉、触觉等人性化发展,让玩家有身临其境的感觉。因此,在网络游戏相关专业开设人工智能课程势在必行,有着重要的现实意义。

参考文献:

[1]周乐.韩国游戏产业概况..

第11篇

人工智能不仅可以用于操作机器人,也可以广泛应用于社会生活中的各个领域中。文章阐述了人工智能的定义,简要介绍了人工智能技术在模式识别、计算机网络、远程教育中的应用。并在机器情感和智能家居两方面的应用中展望了人工智能在未来的前景和发展趋势。

【关键词】人工智能 应用 发展前景

现如今,科技的飞速发展使得人们生活的需求也在不断的变化,单纯的计算机技术似乎已经无法满足人们的需求。计算机不仅要提供更加智能化的服务,而且还要提供更加人性化的服务,只有这样才能逐渐满足人们日益增长的需求。随着人工智能技术的不断发展与完善,它在社会、生活等各个领域中的应用和影响也越来越大,而且相对于其他技术也有着更大的发展空间与发展前景。

1 人工智能的定义

人工智能并不是近些年才出现的新名词。早在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上就已经提出了“人工智能”这个词。美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能的定义是:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的学科”。而美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使用计算机去做过去只有人才能做到的智能工作”。由于人类的智能存在并不是单方面的,对于智能的研究很可能是多方面共同作用的结果,而且不同学科有不同的研究背景和不同的研究环境,对人工智能的理解不同,提出的观点也不同。这就导致了目前对人工智能的定义还没有一个统一的标准。

人工智能作为一门学科,它综合了计算机科学、心理学、生理学以及语言学等多种学科,是一门非常具有挑战性的综合型技术。人工智能技术的研究目的是为了让机器等设备能够代替人类或者人类专家来处理一些相对复杂的问题,因此也被称为机器智能。人工智能是相对于人类智能和自然智能而言的智能,使机器设备等通过对人类智能活动的模仿、延伸和扩展,实现某些机器思维,完成操作者的命令。

2 人工智能的应用简介

2.1 人工智能在模式识别中的应用

数字识别、汉字识别和语音识别使用的技术是人工智能中的神经网络技术,神经网络具有学习能力和快速并行实现的特点。汉字识别的难度相对于数字识别来说要复杂的多,困难的多,影响其正确识别的因素很多。以一套汉字识别系统为例――“汉王笔”,这是一套在手写板上书写的汉字联机输入计算机的汉字识别系统,是由中科院自动化研究所汉王公司开发的。语音识别在生活中并不陌生,目前很多移动端的应用程序中就有关于语音识别的应用。其中人工智能在语音识别中的应用代表之一是七国(英、日、意、德、法、韩、中)语言口语自动翻译系统。

人脸识别也是人工智能在模式识别中的重要应用。人脸识别主要是机器等设备基于人脸特征进行身份验证,相比其它人体生物特征的识别来说更加直接、精确度高。目前具有代表性的产品之一是汉王人脸通,它可以在无光线条件下进行人脸的识别,还可以利用高精度3D打印技术打印人脸的识别。汉王人脸通目前可以实现对易容的识别,同卵双胞胎、同卵三胞胎的识别。

2.2 人工智能在计算机网络技术中的应用

人工智能在计算机网络技术中的应用基本满足了人们对计算机等设备提出的智能化、人性化服务的需求。人工智能技术在计算机网络技术中的应用不胜枚举,此处仅是简要介绍人工智能在网络安全管理领域中的主要应用。下面以智能防火墙技术、入侵检测、智能型反垃圾邮件系统对用户邮箱的保护为例进行简要说明。

智能化防火墙系统采用智能化识别技术,如记忆、统计、概率以及策略等方法对数据进行识别和处理。采用智能化识别技术的目的主要是为了减少了计算机在进行匹配检查过程中所要进行的庞大计算。智能防火墙系统有效的解决了普通防御软件拒绝服务等问题,并且还有效的遏制病毒传播与入侵。

入侵检测是防火墙技术核心组成部分,入侵检测技术主要是通过采集数据、筛选数据、数据分类和处理等过程,及时向用户报告当前安全状态。人工智能技术在入侵检测中较为广泛的应用例子有专家系统、模糊识别系统以及人工神经网络等。

智能型反垃圾邮件系统可以在不影响用户信息安全的基础上,对用户邮件进行有效检测,并及时提醒用户存在可能危害系统的垃圾信息。

2.3 人工智能在远程教育中的应用

新西兰的研究人员制作出了一个“虚拟教师”――Dubbed Eve,“他”能根据远程学生的情绪状态做出适当的反应。Dubbed Eve三维动画教师是计算机科学中人工智能技术的实践应用。Eve的设计目的是以一对一的方式教8岁大小的孩子数学。Eve不仅可以接受孩子的提问、反馈、给出相应的答案,还能和孩子一起讨论问题,并能表现相应的情感。也能使用响应系统的基本信息判断孩子的反应,并从孩子的反应中相应的调整自己。为了制作出Eve,研究人员观察了教师和学生之间在真实生活中的交互情形,抓取了数千张面部表情、手势、身体语言等图片,编制了Eve的响应系统程序。基于人工智能的响应系统程序与嵌入式设备配合,机器设备能感知学生的情绪和其它生物信号、识别面部表情以及身体语言等。

3 人工智能的发展前景

情感能力对于计算机与人的交互至关重要,如何赋予计算机情感能力将是人工智能技术的发展前景。当前国际人工智能领域对人工智能和认知领域的研究日趋活跃。有能力感知和适应人来情绪的计算机程序,将作为未来发展的必要趋势。

智能家居也是未来人工智能技术在生活中应用的发展前景。基于人工智能技术的无线传感装置可以实现通过各类集成化的微型传感器协作地实时监测、感知和采集环境信息,可以更好的提升现代住房的安全、舒适。还可以通过物联网等方式实现用户在异地对智能家居系统的远程查询和调控。人工智能技术在生活中的应用很大程度上为人民提供了方便舒适的生活环境,也是未来的发展趋势。

4 总结

人工智能技术除了在模式识别和计算机网络技术中的应用之外,在工业生产、军事、农业生产、企业等各个领域当中都有了广泛的应用。人工智能技术不仅带动了新型处理技术的推广,而且还会延伸更多新型技术的发展。随着人工智能技术的不断完善与发展,它将在今后的社会、生活中发挥更大的作用。

参考文献

[1] 张妮,徐文尚,王文文. 人工智能技术发展及应用研究综述[J].煤矿机械,2009,30:4-6.

[2] 刘合鸣.论人工智能的研究与发展[J].科学实践,2010,248-249.

[3] 曾雪峰. 论人工智能的研究与发展[J].现代商贸工业, 2009,13:248-249.

[4] 张彬.探讨人工智能在计算机网络技术中的应用[J].软件, 2012,11:265-266.

[5] 陕粉丽.人工智能在模式识别方面的应用[J].长治学院学报, 2007,24:39-32.

[6] 潘春华.人工智能研究与相关应用分析[J].电子技术与软件工程,2013,238-239.

第12篇

关键词:机器智能;教学方法;专题文献调研;演讲;讨论;编程;学生评价

自2005年北京邮电大学在国内得到教育部批准设立智能科学与技术本科专业开始,机器智能课程就被设定为一门重要的专业基础课。在2008年全国智能科学技术教育学术研讨会上,机器智能课程被确立为第一批三门核心课程之一。作者曾在2009年全国智能科学技术教育学术研讨会上对该课程内容的建设进行了探讨[1],在此基础上,结合教学实践工作对于该课程的教学方法也进行了一些摸索。

1相关教学方法

机器智能是新出现的课程,可供参考的国内外资料较少,我们主要对相关的人工智能课程的教学方法进行了调研和学习。陈白帆、蔡自兴等的人工智能精品课程教学方法在国内最具代表性[2],开设课程设计,学生根据自己的兴趣组成小组选题。多媒体课件和网络课程相结合,采用启发式教学,举行课堂讨论等。王甲海[3]等探讨启发式传授人工智能解决问题的非结构化的思想。刘兴林[4]从教材选择、教学内容和方法、考核方式等做了一系列教学改革。韩洁琼[5]等提出注重激发学生的学习兴趣、加强对实验教学的重视。白洁[6]等提出与学科发展前沿接轨,注重培养学生的创新能力。朱红[7]等对图搜索内容进行有效的教学设计。王璐[8]等设计了应用型和研究型的教学情境。

国外人工智能课程建设具有更长的时间和更多的积累。很多大学在人工智能课程中围绕游戏引入工程项目。Jeffrey等[9]引入基于Blackjack游戏的优化模型来进行人工智能课程教学。Hansen等[10]开发了Glomus教学系统,引导学生在逻辑证明游戏过程中学会重要概念。Douglas等[11]针对电脑游戏中的人工智能的课程教学提出了学生教学生的方法。Ingrid等[12]以机器学习为主题把人工智能中分散的重要概念统一到一起。

2教学实践

2.1总体思路

在本课程教学实践过程中,总体思路是根据教学基本要求和主要内容形成的。详细的教学基本要求和内容参见文献[1]。基于此,对本课程的教学实践进行了如下分析。

1) 教学内容极其丰富多彩,如果需要详细地讲授,每一个章节都可以成为一门课程,64学时的时间是远远不够的。

2) 本课程是一门成长中的新课程,其中既要包括智能领域学者们研究了几十年的重要成果,也要涵盖当前国内外最新研究现状的了解和把握,才能让学生们感受到当前时代的脉搏,了解到本专业的魅力。

3) 智能科学与技术也是一门实践性很强的学科,其中很多技术都已经或正在社会生活中发挥着重要作用,学生们更渴望能够在学习实践中掌握和推进这些技术。

4) 任何教学过程,如果只是单方向的教师讲、学生听,很难达到良好的效果,必须要调动学生的主动学习兴趣,让学生真正参与到教学过程中来,才能实现教与学的双向促进。

于是,我们采取了以点带面的方法,抓住其中的关键点进行细致地讲解,其余的内容则根据侧重面的不同,分别采取启发式教学的方法,如专题文献调研、演讲、讨论、动手实验、学生评价等方式推动学生主动学习相关知识和技术,实现知识拓展和兴趣培养。

2.2专题文献调研

这是我们借鉴了带研究生做课题的经验而提出的一种方法。每次开始讲授这门课程的时候,学生们都会问:为什么我们课程的名字跟其他人工智能的课程不一样?内容上有什么区别?我也都会给出我们的回答,但是总感觉学生并没有完全理解。考虑到智能科学技术专业本身就是一个新鲜事物,机器智能课程也是新近提出的,目前并没有完全定论,属于前沿探索的问题。因此,我们提出进行专题文献调研的方法,希望让学生通过自己的广泛阅读、比较和分析,更加深入地了解本课程。

我们首先给出需要调研的问题以便引导学生的调研方向,即国内外关于智能科学与技术专业的建设情况如何?机器智能、人工智能、神经网络及其他相关课程的建设情况如何?这些不同于学生们以前在其他课程中遇到的作业或问题,没有固定的求解思路,没有确切的标准答案,但却都是学生们非常关心的问题,因此极大地激发了同学们的学习兴趣。我们鼓励大三学生自由组合,每3~4人组成一个课程小组,每组由一位组长负责组织管理,如召集小组讨论,共同制定调研计划,分配调研任务,综合调研结果等。这种形式对于大三的学生毕竟是新的尝试,开始的时候学生们对于如何进行文献调研不太清楚,我们在给学生介绍文献资源和调研方法的同时,也邀请了几位研究生来到课堂上现身说法,学生们普遍反映非常好。

经过1~2周的文献调研,学生们交上来的作业令人非常满意。内容涵盖了人工智能、机器智能、计算智能的概念,国内设置本科智能科学与技术专业的高等学校及其专业定位、培养方案、主干课程、实验课程、毕业生去向,美国、英国大学人工智能专业研究生排名,国内外著名大学的人工智能、神经网络相关课程教学内容、实践设计、参考教材等等。各组调研内容之间有一些交叉,证实了本领域的一些共同特点,如人工智能课程的知识表达与推理、搜索、专家系统、自然语言处理等经典内容;各组的调研结果更有很大的不同,既反映了学生们思考问题的角度是多样性的,也反映了智能科学技术专业建设和机器智能相关课程的教学是多样性的。经过比较和分析,学生们对本课程的理解清晰多了,学习态度非常积极,希望探索智能奥秘的热情极为高涨,为后面的教学打下了良好的基础。

2.3动手实验

实践出真知,我们在理论教学的同时也特别注重实验环节的设计,学生通过动手实验加深对理论知识的理解和运用。对于本课程的重点模块内容,如BP算法、启发式搜索,我们都给学生布置了以组为单位的实验作业。为了激发学生的主动性和创造性,还对每个作业给出了扩展性的要求。以BP算法的实验为例,我们要求各组在充分理解BP算法原理的基础上,编程实现手写数字0~9的训练和识别功能。我们也给出了扩展性要求:可以通过自己查阅文献,寻找提高BP基本算法性能的方法和技术;可以不限于手写数字0~9的识别,自主选择感兴趣的其他模式信息进行实验,如语音信息、手写英文字母、手写汉字等。

学生们开始面对这个作业的时候非常迷茫,不知从何处下手,我们一方面鼓励学生要有信心,不要有畏难情绪,一方面就相关内容安排课堂重点讨论,首先要正确理解和掌握经典BP算法的基本原理,包括其数学推导的全过程,然后从如何构造单一神经元和激励函数开始,进而讨论如何实现一层神经元和相邻层神经元的计算,以及如何进行误差计算和反向权值调整。学生们逐渐对实验作业有了深刻的理解,开始动手设计自己的神经网络,随着一个个步骤的实现,学生们之前的很多疑惑都豁然开朗,对BP算法充满了兴趣。很多组的同学对测试的识别率不太满意,都主动去图书馆查阅相关资料,尝试了一些改进方法和技术,如改变多种神经元激励函数、加入动量项微调权值修正量、自适应变步长算法等。

有一个组的作业给我印象极其深刻,因为他们勇于挑战了BP神经网络实现语音信息0~9的识别,不但很好地掌握了BP基本算法及其改进:变步长法和引入动量项法,还自学了录音、音频信号分帧、加窗、MFCC特征提取等。他们对待本课程的热情,还有他们表现出来的巨大的潜力都让我感动,让我对我们的专业和课程建设的未来充满了信心和希望。

正是应对了“理论与实践相结合”的经典理念,半年里64个学时完成后,从学生们的直接反馈中发现,他们理解掌握最为深刻的内容恰恰是他们曾经动手进行程序开发的内容。这充分表明了在本课程的教学过程中注重动手实践能力的训练和培养的重要性。

2.4演讲、讨论与评价

这也是我们在教学过程中探索出来的方法。专题文献调研和动手实践的作业极大地调动了学生们的积极性,效果也非常好,但作为一门课程,还是要有一个分数的评价。以往都是学生把作业交上来,老师统一评分。现在面对如此多样性的作业,老师个人的评价显得并不充分,我们认为学生们相互之间做的工作类似,能够理解各组作业的特色和工作量大小,在评价上更有发言权。因此,我们提出了一种同学参与评分的方案,即演讲+讨论+评价。

首先是演讲。为了使评分过程做到公开、公正、公平,我们在各组完成一次文献调研或者动手实验之后,都要求各组准备好演讲的文件和相关材料,包括ppt文件制作、程序演示、功能测试等,专门抽一次上课时间用来进行各组的集中演讲,展开实践经验的深入交流。每组派出一位代表来演讲,介绍本组作业的详细情况并演示。介绍完毕,就进入提问和讨论环节,老师和同学都可以就其中的任何问题提问,也可以进行程序功能的现场检测。这一方面活跃了课堂气氛,使得学生们大大增强了对于重点内容的理解和掌握,另一方面,各组之间可以相互学习,拓展视野,开阔思路。同时,这也很好地锻炼了学生的组织和演讲能力。最后是评价,也是各组选派一名代表,就像各类比赛中的评分专家一样,根据各组的演讲、提问、回答、演示等,综合给出一个评分。这种形式对于学生们也是很新奇的,大家都很认真地对待,基本上每次评分都能很好地反映出各组的水平。同时,这也激发了学生们的主动性和创造性,因为只有真正的努力和过硬的成绩才能获得各组同学的一致好评。

2.5创新性研究

我们鼓励对本课程相关领域具有浓厚兴趣、能力较强的同学自发组成小组,基于课程所学内容进行深入分析思考,提出创新性的课题展开研究,并在合适的时机鼓励学生们利用课程相关的知识积极参加各种竞赛,从今年开始中国人工智能学会主办的全国大学生智能设计大赛将是今后我们努力的主要方向。2010年,我们选择了三星公司面向大学生的bada应用开发试点活动作为第一次尝试。学生们经过三个多月的努力,获得两个三等奖和两个优秀奖。经过竞赛锻炼,学生们不仅加强了对于课程相关知识的理解和掌握,增强了研究开发能力和自信心,更加深了对于本专业的浓厚兴趣,为本专业和本课程的建设提供了强有力的支撑。

2.6专家讲座

我们先后邀请到了国内外的专家学者来给学生进行专题讲座。国际计算语言学会主席、美国南加州大学信息科学研究所Prof. Eduard Hovy关于什么是智能的讲座,首都师范大学人工智能领域著名教育专家王万森教授关于模糊逻辑与推理的讲座,都让学生们感受到了大家的风范,灵活生动的讲课风格受到了学生的高度赞扬。

3教学反馈

在北京邮电大学组织的2010年学生评教工作中,本课程得到了97.46的高分(满分100)。以下是我们收到的一些学生的反馈意见。

1) 实践时间充裕,在解决问题的过程中培养了一种能力。作业不死板,给出一个框架思路,同学可以自由发挥。还地锻炼了大家的团队合作精神,专注于自己擅长的领域才能做的更好。让同学们自己放开去做,在出错时及时交流纠正是一种很自由、很开放的学习模式,这样的氛围可能不会培养高的分数,但会收获高的能力。

2) 教学形式较为新颖,不是采用以往讲授知识的方式,而是采用了更为贴近实际的方式,在开学初就分组,抛弃了笔上作业,改用实际的编程、查找资料等方法,更能调动大家的学习积极性。验收作业也不是以往老师收上去批改后发下来这种千年不变的形式,而是让同学互相打分,这种方式更为客观而且可见,更加公平。最后感谢李老师一学期以来的教学与帮助,也感谢实验室所有老师和助教的帮助,也相信咱们智能科学与技术专业,机器智能这门课程会越来越完善、成熟。

3) 感觉比较实用、有意义。从大学开始接触的都是纯理论的课,这门课上需要做实践编程作业,我学习了机制与算法实现,更重要的是能让我们在解决实际问题中提供一些从未有过的思路。比如我在百度俱乐部参加一个如何构建购物网站的工作,需要垂直搜索技术,把各大购物网站的价格列出来,可是有些网站,如京东商城是采用图片形式显示价格的,很多研究生也没做出来,我用了机器智能中的BP算法解决了这个问题,当然需要一些图像处理技术。总之,试验后我们得到的是一种解决问题的思路,所以我觉得在提供知识的基础上使用实验技术加深对知识的理解效果很好,实验就是最好的作业。

4) 随着我们步入大三,越来越感受到智能领域的广博精深。就像老师教学的课件一样,每个知识点的扩充都能组成新的一章。本学期感触最深的除了三星竞赛此外还有两点:一是李老师上课讲的内容充实,从神经网络到机器情感,从BP到A*,几乎把智能领域经典的模型算法都覆盖了。第二点就是本学期李老师请来了很多professor(巨开心哈)。我觉得看看别的学校甚至别的国度的“大牛们”都在研究什么,有利于我们拓宽眼界,开阔思路。希望李老师以后也辛苦联系他们,让学弟学妹们也享受这种待遇。

4结语

本文对机器智能课程的教学方法进行了探讨,针对不同模块的教学内容,提出并实践了专题文献调研、演讲、讨论、动手实验、学生评价、创新性研究、专家讲座等教学方式,收到了较好的效果。今后还要紧跟智能科学与技术的发展进一步丰富本课程教学的前沿性和创新性,在力图编一本比较好的教材的同时,着手研究多种资源和手段的运用。

参考文献:

[1] 李蕾,王婵,王小捷,等.“机器智能”课程建设初探[J]. 计算机教育,2009(6):86-92.

[2] 陈白帆,蔡自兴,刘丽珏. 人工智能精品课程的创新性教学探索[J].计算机教育,2010(19):27-31.

[3] 王甲海,印鉴. 人工智能教学与计算思维培养[J]. 计算机教育,2010(19):68-70.

[4] 刘兴林. 大学本科人工智能教学改革与实践[J]. 福建电脑,2010(8):198-199.

[5] 韩洁琼,余永权. 人工智能课程教学方法研究[J]. 计算机教育,2010(19):71-73.

[6] 白洁,毕季明,李伟. 人工智能课程教学改革初探[J]. 中国教育技术装备,2010(36):43-44.

[7] 朱红,李果. 人工智能问题求解策略的教学研究[J]. 中国信息界,2011(2):70-71.

[8] 王璐,陆筱霞. 应用DBR的人工智能课程教学[J]. 计算机教育,2010(19):64-67.

[9] Jeffrey L. Popyack. Blackjack-playing agents in an advanced AI course[C]//ITiCSE '09,New York:ACM Press,2009:208-212.

[10] PDavid M. Hansen, Joseph Bruce, PDavid Harrison. Give students a clue: a course-project for undergraduate artificial intelligence[J]. ACM Newsletter,2007:44-48.

[11] Douglas D. Dankel, Jonathan Ohlrich. Students teaching students: incorporating presentations into a course[C]// ACM Special Interest Group on Computer Science Education,New York:ACM Press,2007:96-99.

[12] Ingrid Russell, Zdravko Markov, Todd Neller et al. MLeXAI: A Project-Based Application-Oriented Model[J]. ACM Transactions on Computing Education,2010(1):1-36.

Teaching Practice of Machine Intelligence

LI Lei, LIU Pingan, WANG Xiaojie, ZHONG Yixin

(Department of Intelligence Science, Beijing University of Posts & Telecommunications, Beijing 100876, China)