HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 人工智能教育专业

人工智能教育专业

时间:2023-08-23 16:59:55

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇人工智能教育专业,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

人工智能教育专业

第1篇

自1956年人工智能概念在达特茅斯会议提出以来, 人工智能的发展超出了人们的想象:1997年, IBM超级电脑深蓝击败国际象棋世界冠军卡斯帕罗夫;2016年, 由Google旗下的深度学习公司Deep Mind开发的人工智能围棋程序Alpha Go战胜了世界围棋冠军李世石, 这件事轰动了全世界[1]。随后有关人工智能的热点应用不断推出, 比如无人驾驶、智能医生、语音与人脸识别等, 让我们认识到人工智能的应用已与生活息息相关。在教育领域, 人工智能应用也取得了重大突破, 比如2017年高考期间, 机器人艾达挑战高考数学, 10分钟就答完, 获得134分, 激发了教育领域对人工智能的巨大热情, 同时也引发了人们对教育的忧虑与反思[2]。2017年7月国务院印发了《新一代人工智能发展规划》, 提出人工智能产业竞争力在2030年要达到国际领先水平。目前世界主要发达国家先后从国家层面人工智能政策规划, 将人工智能作为国家经济发展、社会变革和国际竞争的新动力[1]。

1 人工智能定义和发展阶段

人工智能的英文是Artificial Intelligence, 简称AI, 人工智能的内容不断丰富和发展, 至今还没有统一的定义。比较权威的说法认为[3]:人工智能是关于人造物的智能行为, 主要包括知觉、推理、学习、交流和在复杂环境中的行为。人工智能的长期目标是发明出可以像人类一样或能更好地完成以上行为的机器, 短期目标是理解这种智能行为是否存在于机器、人类或其他动物中, 所以它包含了科学和工程双重目标。根据其功能强弱, 人工智能分为三类, 即弱人工智能、强人工智能还有超级人工智能。人工智能的发展大体上经历了三个阶段, 第一阶段是20世纪50~60年代, 提出人工智能的概念。主要以命题逻辑、谓词逻辑等知识表达和启发式搜索算法为代表;第二阶段是20世纪70~80年代, 提出了专家系统, 同时基于人工神经网络的算法研究发展迅猛, 伴随着半导体技术计算硬件能力的逐步提高, 人工智能逐渐开始突破;第三阶段是自20世纪末以来, 尤其是2006年开始进入了大数据和自主学习的认知智能时代。随着移动互联网的快速发展, 人工智能的应用场景也开始增多, 特别是深度学习算法在语音和视觉识别上实现了巨大的突破[4,5]。人工智能的技术体系主要分为四个方面, 即机器学习、自然语言处理、图像识别以及人机交互等。当今击败世界围棋冠军李世石的Alpha GO主要应用了机器学习中的深度学习算法。

2 人工智能应用状况与反思

2017年, 阿里的无人超市落地杭州, 进店、挑选商品、付款支付一气呵成, 消费者几乎在完全自主的状态下完成购物。与此类似, 昆山富士康公司裁员6万名工人, 全用机器人代替。京东、淘宝引入的智能机器人替代了原来的仓库管理、人工客服等岗位。因此有学者悲观地断言:在人工智能时代, 因为很多职业岗位或技能将被智能机器人所代替, 职业院校毕业生很有可能面临毕业就失业的窘境。笔者认为, 我们不应该重蹈历史上英国制定的限制汽车推广使用的《红旗法案》的悲剧。正是这个在今天看来毫无道理的, 但却持续了三十年的法案让德国和美国的汽车工业完全赶上来, 最终远超英国。人工智能应用必将淘汰或替代很多现有就业岗位, 但同时又会创造新的就业岗位, 这是一个伴随着产业智能升级的、长期的艰难过程, 对于职业教育来说, 这既是一个严峻的挑战, 也是一个难得的机遇。

3 人工智能时代职业教育的发展策略

为了更积极地适应人工智能时代, 除了国家层面的统筹规划、科学指导和政策、经费支持之外, 建议还要做好以下几个方面的发展规划。

3.1 解放思想, 更新理念与制度

中国工程院院士潘云鹤提出, 人工智能走向2.0阶段的真正原因是世界正从原来由人类社会与物理空间构成的二元空间, 向着由物理空间、人类社会与信息空间构成的新三元空间演变[6]。因此, 职业教育在教学和管理过程中应该加入人工智能等相关理念和技术, 同时其办学定位、人才培养方案、专业建设、课程内容、考核评价标准等方面都需要做出相应的改进。比如当前大多数职业院校非计算机类专业的课程安排中, 信息技术类课程课时偏少, 数据处理、编程类或人工智能课程几乎没有, 这样的安排不利于提升学生的信息素养, 必须做出相应的调整, 同时适当减少将来可被人工智能应用替代的技能课程的课时, 比如电算会计、环境监测等。

3.2 善用人工智能, 提升教学与管理

在人工智能背景下, 教师们现有的重复性工作和大量数据积淀的教学任务, 比如批改作业或阅卷或课堂考勤都可能被人工智能取代, 因此, 教师能腾出更多的时间, 更充分地关注学生的个性差异, 从而为学习者提供更精确的个性化学习服务, 教师也能够及时调整教学方法和手段, 优化教学评价方式, 补充教学资源, 减少备课重复性工作, 提升教学效率, 真正地做得因材施教, 同时学生们的学习方法和方式将不同程度地得到重构, 基于大数据的智能在线学习平台大量出现, 不同的学校、学科及专业课程不再封闭, 学习时时处处都可以进行, 碎片化与个性化学习将日益普遍。教师能完整地跟踪学生的整个学习过程, 比如学生上课是否睡觉、是否玩手机、是否在教室里与其他同学合作学习等, 都能够根据监测数据进行智能解析, 有利于更有效、更全面地对学生进行过程性评价。大部分课程考试将全部自动化, 考生资格审查利用人脸识别、监考与阅卷都由智能机器来完成。上述人工智能给教学带来的这些变化既需要网络硬件设施和相关软件系统来支撑, 更需要职业教育的教师们继续提升信息技能、深化和加强信息素养。

3.3 深化产教融合、优化实训筑牢就业

在人工智能时代, 职业院校应与相关行业统筹发展, 深化产教融合, 拓宽企业参与的途径, 深化引企入教改革, 支持引导企业深度参与职业院校的教育教学改革, 多种方式参与学校专业规划、教材开发、教学设计、课程设置、实习实训, 促进企业需求融入人才培养环节;鼓励以引企驻校、引校进企、校企一体等方式吸引优势企业与学校共建共享生产性实训基地;全面推行现代学徒制和企业新型学徒制, 推动学校就业与企业招工无缝衔接。比如职业教育将出现新师徒制, 行业领域的行家里手将通过互联网以VR或者AR技术言传身教的方式, 带领规模庞大的徒弟用碎片时间进行学习与实践。

3.4 完善终身学习的职业教育体系

随着人工智能应用的深入推广, 职业院校培养的技能型人才所掌握的技能如果不及时进行充电升级, 中低端的重复性强的工作将面临被智能机器人不同程度进行替代的危险。所以对于不少技能岗位, 守着一门技术吃一辈子老本的时代将一去不复返。因此, 职业教育要继续完善终身教育体系, 为职业教育学生的充电升级铺就一条纵深的通道。

3.5 人文教育为道, 智能教育为用

在人工智能的帮助下, 简单重复性的工作将被机器替代, 人们将从重复繁琐的事务中解脱出来, 转去从事更具有创造性、创新性或者更具有情感类的工作, 这些工作需要人与人之间的合作与沟通, 因此, 职业教育更需要注重学生思想道德水平、人文综合素质的培养, 这是做人之道, 在此基础之上激发学生们的学习主动性和创造力, 促进跨界思维的形成, 更好地掌握人工智能时代的相关职业岗位知识和相应的智能技能。著名理论物理学家霍金曾说:完全人工智能的研发可能意味着人类的末日。Tesla汽车和Space X公司创始人马斯克说:我们必须非常小心人工智能。如果必须预测我们面临的最大现实威胁, 恐怕就是人工智能了[7]。一群没有良好道德水平的, 但掌握了智能技术或设备的人们是危险的, 所以职业教育应该从学生入学起就开始, 不断提升学生的思想道德水平, 热爱社会、热爱生活、乐于助人、与人为善。只有这样, 人工智能应用才能更好地服务人们、造福社会。

4 结论

人工智能正在快速又深刻地改变我们的教学、生活和工作方式, 也对职业教育提出了严峻的挑战, 同时也是一个巨大的机遇。职业教育在面对人工智能时代的变革时, 须要从国家政策、理念与制度、教学管理、产教融合、终身学习等方面做好应对, 切实地把握人文教育之道对智能教育之用的统领原则, 培养能很好地掌控人工智能技术和应用的人才。

参考文献

[1]谢青松.人工智能时代职业教育的转型和发展[J].教育与职业, 2018 (8) :50-56.

[2]苏令.人工智能来了, 教育当未雨绸缪[EB/OL].[2018-05-15].

[3]Nils J.Nilsson.人工智能[M].郑扣根, 庄越挺, 译.北京:机械工业出版社, 2000.

[4]王璐菲.美国制定人工智能研发战略规划[J].防务视点, 2017 (3) :59-61.

[5]贺倩.人工智能技术在移动互联网发展中的应用[J].电信网技术, 2017 (2) :1-4.

第2篇

关键词:人工智能;教学改革;教学方法

引言

人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。

1、教学现状与问题

作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。

2、管理类人才的人工智能课程教学改进策略

课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。

2.1教学方法改进

教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。

2.2教学内容设置

世界一流大学在人工智能课程内容设置根据不同国家的教育体系设置,肯定会有不同,但颇有共通之处。本文借鉴世界顶尖大学经验,针对管理类专业人工智能课程教学内容进行研究,结合中国教育体系设置,认为应从以下几方面进行改进。(1)核心内容设置为避免学生因为知识点过多而出现杂而不精的问题,势必要精化教学内容。在互联网时代,我们可以使用云计算和其他方式来实现数据信息的传输、存储和处理,通过在线收集和整合网络课程相关数据,挖掘和丰富教学资源,并在整合课程资源的基础上,进行研究方法和前沿知识的扩展。在核心内容设置方面,可以通过收集到的数据资料,选择人工智能领域具有代表性且难易程度适中的知识作为重点,使学生能够在有限的学时内掌握人工智能的知识脉络。例如,编写针对管理类人才的人工智能教材,内容涉及绪论、知识表示与推理、常用算法、机器学习、神经网络等方面的同时,重点增加相应知识点在管理上的应用案例,加强学生对知识点的理解。同时,根据管理类专业偏向领域,开设关联程度较大、应用较广泛的人工智能选修课程,以便学生根据自己的兴趣与需求选修具体方向的课程。(2)注重学生的数理及编程基础良好的数理及编程基础是学习人工智能的前提。只有具备了这些基础,才能搞清楚人工智能模型的数量关系、空间形式和优化过程等,才能将数学语言转化为程序语言,并应用于实验。管理学院人才的数理及编程基础相对薄弱,因此,在安排学生学习人工智能课程之前,建议开设面向全体管理类专业学生的微积分、线性代数、概率论等专业基础数学课程以及C语言、python等编程基础课程,使学生具备数学分析的基础与一定编程基础,为学习人工智能课程打下坚实的基础。另外,可以推进MOOC平台建设,在平台上开设人工智能网络课程,帮助学生掌握人工智能知识基础及专业技能。(3)实验建设为了加强学生对于人工智能知识点间的关联性理解,可以基于不同的应用模块,设计具有前后铺垫、上下关联的综合性实验,设计不同层次的项目要求,同时基于相同的实验课题,让学生分组对实验课题进行攻克,并设置多元化的实验评价体系,通过实验教学过程中反映出的不同进度,让教师能对学生的学习水平做出准确评判,及时进行教学反思,以便更好地开展下一步工作。例如,针对人工智能课程应用中很广的遗传算法,在某一管理规划的具体应用上设置理解-实现-参数分析-具体应用-尝试改进-深度拓展的不同层次的项目要求,在这些项目层次中规定必做项与可选项,让学生基于同一实验课题进行合作学习,然后通过个人自我评价、小组成员互相评价以及教师评价的方式进行打分,对小组整体能力以及个人能力进行综合评估,以期培养学生的自主思考能力。

第3篇

关键词:精品课程;视频公开课;课程建设;人工智能

一、引言

中南大学的人工智能课程是国内高校最早开设的该课程之一。1987年清华大学出版社出版了我校蔡自兴和清华大学徐光编著的《人工智能及其应用》,成为国内率先出版的具有自主知识产权的人工智能教材,为人工智能课程提供了一部好教材,对人工智能在中国的传播和发展起到重大推动作用。

我校人工智能课程自开设以来已培养约30届学生,培养人数超过3000人。授课对象包括计算机、自动化专业的本科生和电子信息类等专业的研究生。2001年,我们研发的“人工智能网络课程”被评为优秀网络课程。2003年和2007年“人工智能”分别被评为首批国家精品课程和全国双语教学示范课程。同时,课程的相关网络资源和知识表示方法的课堂录像陆续上网,向全社会开放,成为学生复习和自学的有力手段和特色环境。

近年来随着国外名校的视频公开课风靡网络,建设我国自己的视频公开课已势在必行。在这种背景下,人工智能课程的等一批国家精品视频公开课应运而生。我们的“人工智能PK人类智能”的视频公开课入选国家精品视频公开课建设计划,已成为首批播出的课程之一,受到公众欢迎与好评。

二、讲授内容选定

人工智能是一门前沿交叉学科,也是一门与人类生活息息相关和公众颇感兴趣的科学。网络视频公开课是以大学生为服务主体,同时面向社会大众,是免费开放的科学与文化素质教育的网络视频课程与学术讲座。由于人工智能属于专业基课程,如何在有限的时间内讲述一个完整的专题,避免艰深的专业知识,让大多数人都能听懂并感兴趣,是安排视频课程内容时需要首先考虑的问题。为此,在内容安排上将重点放在专业史和热点研究介绍上,其目的是通过介绍学科的发展史和一些经典或热点问题的研究情况,激发大家对人工智能研究的兴趣,增进对人工智能知识的了解,认识到前沿科学其实离现实并不遥远。

在上述理念指导下,本视频课程并没有照搬平时上课的内容,而是精选了人工智能领域中一些具有代表性的内容进行介绍。首先概述人工智能的起源与发展历史,以及人工智能领域影响最大的三大流派及其认知观等。然后介绍人工智能中几种经典技术,包括推理证明技术、问题求解技术等。此外,对人工智能中公众最感兴趣的一个应用领域――机器人学进行阐述。最后,对人工智能的一些最新研究发展领域,如计算智能和群智能技术等进行讨论。具体内容安排如下:

第一讲:人工智能的诞生

长期以来人工智能充满了激烈争论,其发展过程不是一帆风顺的,在中国也历经了质疑、批评甚至打压,直至出现希望的曙光,形成今天的可喜局面,其过程可谓艰辛。该讲从不同角度对人工智能的定义进行介绍,分析其异同,介绍人工智能的起源与发展过程,特别是在中国的发展情况,让听众对什么是人工智能有个大致的了解。

第二讲:人工智能的学派

从符号主义为代表的经典人工智能到连接主义、行为主义,人工智能的研究可以说是从一家独秀走向百家争鸣。该讲介绍人工智能的主要学派,各自的理论基和认知观,并论述人工智能对社会、文化、经济等层面的影响。

第三讲:经典人工智能的推理技术

经典人工智能的有关推理技术和方法是早期人工智能研究的主要手段,用于研究基于经典逻辑的自动定理证明等问题,对人工智能学科的发展产生了深远的影响。本讲主要介绍基于数理逻辑方法的推理证明技术,尤其是定理证明方法的代表之一――消解原理。

第四讲:问题求解与搜索

问题求解技术是人工智能研究领域的一个核心问题,涉及问题表示和求解搜索两部分内容。这一讲主要介绍问题求解中的一种常用方法――状态空间法,阐述图搜索方法和求解策略,特别是引入启发式信息的启发式搜索方法。

第五讲:机器人学

机器人是人们听到人工智能时几乎第一时间联想到的事物。机器人学作为一门学科,该讲介绍机器人学的发展过程和机器人的分类,探讨机器人学与人工智能的关系,说明研究开发机器人技术的动机。

第六讲:人工智能的新领域――计算智能

经典人工智能虽在早期占有统治地位,但目前已经不再是研究热点。而计算智能则异军突起,成为智能学科中新的增长点。本讲主要介绍计算智能的几个主要分支神经计算、进化计算、模糊计算和人工生命的一些基知识。

第七讲:人工智能中的仿生学――群智能

人工智能是一门信息科学与生命科学等高度交叉的科学,不仅涉及到计算机、自动化、数学、信息学等学科,还涉及到心理学、脑科学、仿生学等各种学科。群智能就是仿生学在人工智能中应用的典型。该讲主要介绍受到蚁群和鸟群社会行为启发而构建的蚁群算法和粒群算法,将其转换为可计算模型,引入到问题优化求解中。

三、课程建设经验

由于授课对象的不同和授课时间的限制,在只有30分钟的一讲一主题情况下,要像平时上课那样详细讲解是不可能的,为此需要对视频公开课的材料进行重新组织。我们的人工智能课程作为首批国家精品课程,其教学资源还是比较丰富的,具有一定优势。

首先,使用主讲人编著的《人工智能及其应用》作为课程教材。根据教学对象不同,编撰了不同类型的教材,以适应不同层次学生的要求。2003年和2004年在清华大学出版社先后出版了《人工智能及其应用》第三版“本科生用书”和“研究生用书”。2005年在高等教育出版社出版了面向大专院校和网络课程的《人工智能基》,以及在国防科技大学出版社出版了面向管理类学生的《人工智能及其在决策系统中的应用》。2010年又出版了“十一五”规划教材《人工智能及其应用》第四版及《人工智能基》第二版,使教材与时俱进,不断创新,更好地为人工智能教学改革和人才培养服务。这些教材已为高水平课程建设和学科建设做出了重要贡献,也为视频网络课程提供了丰富的素材。

其次,教学资源丰富,知识融会沟通。课程主讲人也是国家级教学团队“智能科学基系列课程教学团队”的负责人,团队成员除承担人工智能课程教学外,还负责智能控制、机器人学等相关课程的教学。这些课程也都有对应的自编优秀教材,都可直接作为课程的参考资料。

“人工智能网络课程”具有明显特色(网络化、智能化和个性化),得到专家和同行的认可和肯定,被教育部评为国家级优秀网络课程。特别是更新后的向导学习、个性化以及算法实验,采用了人工智能技术本身来实现人工智能网络课程,具有显著的特色和先进性。网站上课程的教学大纲、教案、课件、实验指导书、课堂录像和参考文献一应俱全。人工智能相关的网络资源,如网站、新闻组、BBS等,包括了大量的文献资料、讨论、本领域研究的前沿动态、人工智能课程相关的演示动画

和实验等。

虽然有相当丰富的教学资源,但为了适应视频公开课的需要,在视频公开课材料的组织上仍然花费了大量的时间和精力。本视频公开课课程具有下列主要特色:

(1)材料翔实、图文并茂

人工智能的发展经过几代人的努力奋斗,其在中国的发展尤其曲折。在课程资料组织过程中,对许多重要理论与方法的提出者以及一些会议与纪念活动等介绍,基本上都配以图片。这些图片有的是自己的第一手资料,有些则是从网络搜索得到。这些图片的引入,给本来相当枯燥无味的文字和概念增加了趣味性和对观众的吸引力,也是视频教学优势的一个体现。

(2)深入浅出、直观生动

人工智能作为一门讲述前沿理论的专业基课,其复杂的技术、算法、理论是一般观众很难理解的。视频课程不可能在较短时间内将这些问题讲透,而是通过形象的动画说明基本原理和概念,激发学生进一步学习的兴趣,真正起到带“入门”的作用。这也是视频课程的优势所在。

(3)精选题材、注重趣味

人工智能是一门高度交叉的科学,涉及面极广。为了让观众尽可能全面地了解这门学科,公开课着力于讲授内容的精选。从人工智能的起源开始,分别介绍了经典人工智能的搜索推理技术、当前的研究热点计算智能和群智能技术,以及人们对人工智能最直观的印象――机器人学,形成一定的体系。在这些题材中包括了逻辑学、生物学、脑科学、神经学乃至仿生学等不同的学科交叉,力求使枯燥的科学理论变成美味的知识盛宴。

四、问题与体会

经过紧张的准备和拍摄过程,“人工智能PK人类智能”精品视频公开课终于上网与广大观众见面了。由于时间仓促和经验不足等原因,本视频课程仍存在一些不足之处,值得今后弥补。

(1)考虑到比较通俗易懂的要求,使没有相关专业基的公众也能够基本上听懂,因而将很大一部分内容的重点放在了专业史上,其专业深度不够。

(2)由于每讲必须在30分钟内讲完一个专题,因此难以对相关技术进行深入探讨,只能简要介绍其原理和概念,使观众能知其然,却没法知其所以然。

(3)国外的公开课基本上都是随堂录像,视频课讲的内容就是平时课堂讲授的内容。而我国的视频公开课课程却强调普及性,相应的牺牲了部分专业性,在定位上仍有犹豫。这可能是我们的公开课与国外公开课的一个重要差别。

要把我国的视频公开课建设好,不能盲目追求观看率和点击率。从课程性质上看,文史类课程由于受众面广,容易被更多的人群接受和理解,观看的人就自然会多。理工类课程由于受限于领域基知识,受众面相对较窄,其接受程度肯定较低。要真正建设一门好的视频公开课,还是应该明确定位,内容贵精不贵多,完整清晰的讲述好若干知识点,让观众真正有所收获就是成功的。

参考文献:

[1]傅京孙,蔡自兴,徐光,人工智能及其应用,北京:清华大学出版社,1987

[2]宋健,学科前沿的最精彩成就[C],见蔡自兴,徐光编著的人工智能及其应用(第四版)[M],北京:清华大学出版社,2010

[3]蔡自兴,徐光,人工智能及其应用(第三版),本科生用书[M],北京:清华大学出版社,2003

[4]蔡自兴,徐光,人工智能及其应用(第三版),研究生用书[M],北京:清华大学出版社,2004

[5]蔡自兴,蒙祖强,人工智能基[M],北京:高等教育出版社,2005

[6]蔡自兴,人工智能及其在决策系统中的应用[M],长沙:国防科学技术大学出版社,2005

第4篇

 

一、网站的构建 

 

1.网站框架设计 

我国高中阶段人工智能教育还处于起步阶段,据调查,全国已开设人工智能课程的中学不超过十所。事实上,对于人工智能这一前沿学科,大部分信息技术教师还缺乏足够的了解,因此对于该课程的开设也一直处于观望状态。考虑到人工智能教育的实际情况以及网站的主要对象,我们以高中信息技术选修课教材《人工智能初步》为基础,按教学内容设置和划分栏目,同时又围绕“学人工智能、教人工智能、用人工智能、机器人专题”四大专题进行内容重组。当然,网站的基本架构并非一成不变,它需要在实际应用中进行检验与修正,最终实现网站的完美架构。依据上述思路建构的网站基本框架如图1所示。 

2.网站的栏目设计 

 

新闻栏目以图文的形式人工智能发展的最新情况,这是激发并维持广大师生关注人工智能的基础,也是师生获取最新信息的窗口。子栏目“中国动态”“欧美动态”等分别介绍了各地区最新的人工智能信息,尤其是机器人产品的新闻。子栏目“会议论坛”,“比赛通知”为师生、参与比赛提供服务。 

论文栏目是作为资源型网站的基础。子栏目“教学研究”主要面向从事人工智能教育的研究者和教师,探讨教学方法、分析教学案例、推荐教材和参考书,为更好的开展人工智能教学提供理论依据。子栏目“学习乐园”主要面向学生,展示活动实录、阐述学习感受,聆听专家意见,为更好的学习人工智能提供事实参考,教师也通过“学习乐园”来了解学生的所思所感所想。子栏目“赛事规则”介绍了各个地区和各级机器人比赛的一些规则,有利于师生更好的进行人工智能的教与学。 

资源、视频、图库、酷站:这四个栏目是资源型网站的核心。尤其是资源模块中的子栏目“电子书刊”“教学课件”“人工智能软件”分别以不同的文件格式向师生提供教与学的资源,使其能快速准确地获取符合需求的资源,免去了在因特网上盲目搜索出现大量冗余信息的麻烦。网站整合了文本、视频、图片等多媒体信息,以丰富多彩的形式呈现资源,增强了网站的吸引力和信息的可阅读性。 

爱问栏目是作为学习型网站的基础,也是本网站的一大特色。“爱问”是采用了模仿“百度知道系统”的程序设计,更注重知识的答疑解惑。我们将此栏目划分为“学人工智能”“教人工智能”“用人工智能”“机器人问题”四个子栏目,师生可根据各自的需要进行提问、回答问题、搜索问题等操作。同时,设立了积分制,激发师生提问和回答问题的热情。 

用户中心栏目是学习型网站的核心。作为一个专题网站,必然要十分强调学习的功能。子栏目“网络书签”的功能可以使学习者记录自己所浏览过的或所感兴趣的网页,便于在下次登陆后继续学习。在子栏目“信息”功能中,学习者可以新闻、论文、资源、爱问等信息,待管理员审核通过后即可在网站中显示出来。另外,教师也可在教学过程中通过此模块要求学生提交作业,便于教师随时随地的批改作业。 

 

二、网站的访问数据分析 

 

人工智能教育专题网站从开设至今将近8个月的时间,已经有超过1万的独立访客访问了本站,我们选取了最近访问的2000位独立访客进行研究。通过对地域、被检索方式、受访页面及回头率的分析,可为网站下一步的改进与完善提供依据,为其他人工智能教育类网站的建设,在网站的用户类型,网站的内容选择与更新,网站的推介宣传等方面提供参考与借鉴。 

 

1.地域分析 

在统计到的访问该网站的地域中,国外共有12个国家访问了本网站。国内除西藏、澳门之外,其他省份、直辖市、特别行政区都有访问过本网站,这为我们今后在高中普及人工智能教育提供了有力的依据。但是,通过图2的数据我们也可看到,各个地区间的访问量差距较大,并且访问量靠前的几个省份基本上是沿海地区,而中部和西部地区的访问量比较少,所以在今后的工作中不仅要加强网站本身的建设和宣传,更要把人工智能教育的理念推广到中部和西部地区,使那里的中小学师生也接触人工智能的知识,激发他们对信息技术美好前景的向往。 

2.被检索方式分析 

搜索引擎是网络上最常用的获取资源的方式。掌握用户使用搜索引擎的情况,有助于了解网站的被检索方式。统计搜索关键字的次数,有助于了解网站被检索访问的原因。在专题网站建设完成后,向“百度”、“Google”等大型搜索引擎系统提交收录网页申请是极其必要的,它有利于提高网站的知名度和访问量。而在网站中增加“人工智能”,“prolog 源程序”等文字内容,将会有利于用户在盲目搜索时能访问到该专题网站。 

3.受访页面分析 

受访页面是指用户访问该专题网站时所停留的页面。通过对受访页面的统计,使我们能够掌握用户相对较为关注网站的哪些内容。表1数据中“学人工智能”占23.82%,“资源下载”占了16.32%,表明用户对人工智能的知识还不是很了解,对人工智能的认识还停留在“学”的层面,远未达到“教”的程度。人工智能教育类网站在建设中,如果能提供大量的人工智能的基础知识以及丰富的可下载资源,将会显著提高网站的受欢迎度以及用户的认可度。 

4.回头率分析 

在网站访问统计中,通常将距离上次访问超过12小时的再次访问记录为一次回头。通过对回头率的统计(表略)看出该专题网站的粘性不是很高,尤其是3次回访以上的用户还不多。通过对部分用户访谈后了解到,网站的更新速度慢,资源较少,内容偏难是其不愿进行多次回访的主要原因。所以,人工智能教育类网站在维护期间要注意内容的时效性、丰富性、通俗性才能保证网站访问的可持续性。 

 

 

三、网站建设的若干思考 

 

目前国内外有关人工智能的专题网站不多,针对人工智能教育的网站更少。在可供借鉴的成熟案例较少、研究又处于刚起步阶段的情况下,有必要对我们的工作进行反思总结。通过上述访问数据的分析,以及在人工智能教育专题网站建设的准备阶段,实施阶段及运行阶段的实践,我们认为在建设人工智能教育类网站时应当注意以下几个问题。 

1. 充分关注用户信息 

访问量是综合类或门户类网站的生命线,应当尽可能地拓宽访问者的类型与层次。但人工智能作为一门新兴学科,其专题网站的学科性特点甚至比普通的专题学习网站还要突出,因此单从访问量上来说,它是无法和门户类网站相比的。所以在建设的初期首先就要考虑的网站的对象问题,也就是要关注哪类人访问了网站。只有准确的掌握了用户的信息才能更好提供用户需要的资源。 

在这里,人工智能教育专题网站是通过以下三种手段来获取用户信息的。 

第一,用户必须注册才能访问网站,注册的内容包括年龄、身份、学历,电子邮件等内容。 

第二,在网站中设立“网站调查”栏目,可以对“你是如何知道本站的”,“你觉得本站建设的如何”等内容教学在线调查。 

第三,通过“中国站长站”等专业的数据收集程序来获取用户基本信息,可收集到用户地域、受访问页面、用户回头率等信息。只有掌握了准确的用户信息,才能更好的为用户提供服务。 

2.与用户携手共建网上资源 

人工智能的子学科门类众多,仅高中教材《人工智能初步》中就有知识及其表达、推理与专家系统、人工智能语言与问题求解等多个主题。而且我国的人工智能研究相对薄弱,很多资料都是外文的。任何一个人要很熟练的掌握人工智能的各个内容是很困难也是不现实的。我们通过一年多的实践也体会到,仅仅依靠课题组成员很难保证网站资源库内容的全面性和针对性。所以在网站最新一次改版中,我们增加了用户的信息功能,使得用户自己可以新闻、添加文章,上传资源,只要经过管理员审核即可在网站中显示。 

另外,在人工智能教学过程中,我们也充分利用学生的优势,要求学生以作业的形式提交文本和视频资源,并将作业的数量和质量作为考察学生学习效果的一个指标。这些举措保证了网站内容更新的时效性和内容的针对性。用户所的就是用户所关注的,用户所关注的就是网站所要收集的。 

3.通过多种形式充分发挥网站作用 

目前,全国高中开设了“人工智能初步”选修课的学校极少,教师手头上可供选择的教材也只有5套。从专题网站上统计的数据来看,虽然网站目前的用户主要是教师,但“学人工智能”页面访问量却远多于“教人工智能”。从这些情况看,单靠几个人工智能教育类的专题网站无法从根本上解决高中人工智能教育现阶段所面临的窘境。所以,在条件允许的情况下,可以通过研修班、会议论坛等形式组织教师进行面对面的交流。 

例如,我们就在2007年5月25日至27日在浙江师范大学举办了全国首届“高中人工智能课程研修班”,来自全国十个省市的70余位信息技术教师及教研员参加了研修班的学习。在研修活动中,教师不仅学习了人工智能的知识,也对人工智能教育的现状及发展过程中遇到的问题做了充分了探讨和交流。本次研修活动结束后,人工智能教育专题网站则成了学员们交换信息、交流体会、共享资源的有效平台。 

 

四、结束语 

 

总之,借助专题网站的平台作用开展各种活动,不仅弥补了人工智能教育网站缺乏面对面交流和互动的缺点,也为把网站资源建设的更具针对性提供了有效帮助。 

 

参考文献: 

[1]张剑平. 关于人工智能教育的思考[J] .电化教育研究.2003,(1). 

[2]曹瑞敏. “中国海”学生专题学习网站应用[J] .中国电化教育.2005,(5). 

第5篇

计划强调,要加强人工智能领域专业建设,形成“人工智能+X”复合专业培养新模式。计划的重点任务之一,是要完善人工智能领域人才培养体系,并且推动高校人工智能领域科技成果转化与示范应用。高校在人才培养中起到了至关重要的作用,虽然人工智能尚未成为一级学科,但国内不少一流的高校已经开始通过建立合作实验室、增强人工智能分支教学等方式发展人工智能。

为了解各高校开展人工智能研究的情况,亿欧盘点了10家在设有人工智能实验室或有人工智能分支专业的高校。

清华大学:计算机科学与技术系

清华大学计算机科学与技术系(简称计算机系)成立于1958年,在2006年、2012年全国学位与研究生教育发展中心开展的一级学科整体水平评估中,以总分满分100分的成绩排名第一。2017年,在 USnews 推出的世界大学学科排名 Best Global Universities for Computer Science 中,计算机科学与技术学科紧随 MIT之后位列世界第2名。在 QS 世界大学排名 (QS World University Rankings) 给出的全球计算机学科排名中为例第15名,其排名与得分逐年稳步提升。

计算机系包含了国内计算机专业最全的学科方向,设有高性能计算机与处理器、并行与分布式处理、存储系统、大数据与云计算、计算机网络、网络与信息系统安全、系统性能评价、理论计算机科学、数据工程及知识工程、软件工程、计算机与VLSI设计自动化、软件理论与系统、生物计算及量子计算、人工智能、智能控制及机器人、人机交互与普适计算、计算机图形学与可视化技术、CAD技术、计算机视觉、媒体信息处理等研究方向。

计算机系现设有高性能计算、计算机网络技术、计算机软件、人机交互与媒体集成4个研究所;智能技术与系统国家重点实验室;计算机基础与实验教学部等科研教学机构。

计算机系还设有国家级计算机实验教学示范中心,包括:计算机原理实验室、微型计算机实验室、计算机网络实验室、操作系统实验室、计算机软件实验室、计算机控制系统实验室、智能机器人实验室、计算机接口实验室、学生科技创新实验室等。此外,计算机系还与腾讯、搜狗、微软、思科等国内外著名公司建立了面向教学或研究的联合实验室。

北京大学:智能科学系

智能科学系成立于2002年7月,主要从事智能感知、机器学习、数据智能分析与智能计算、智能机器人等方向的基础和应用基础研究,侧重于理论、方法以及重大领域应用上。

北大智能科学系依托于视觉听觉信息处理国家重点实验室,实验室以实现高度智能化的机器感知系统为目标,在生物特征识别研究方面处于国际领先地位。智能科学系在著名的软件与人工智能专家、我国载人飞船工程软件专家组组长何新贵院士和长江特聘教授查红彬教授的带领下,重点开展机器视觉、机器听觉、智能系统与智能的生理心理基础等研究。以北大智能科学研究人员为技术核心的北大指纹自动识别系统,是国内唯一能与国外系统抗衡的自主知识产权,是中国第一家也是唯一的一家提供公安应用全面解决方案的系统,拥有中国指纹自动识别技术产品第一市场占有率。

人工神经网络说话人识别新方法的研究获得教育部科技进步一等奖;国家空间信息基础设施关键技术研究获得2000年中国高校科学技术二等奖,入选2000年中国高校十大科技进展。

复旦大学:类脑智能科学与技术研究院

复旦大学类脑智能科学与技术研究院于2015年3月筹建成立,是复旦大学校内的独立二级研究机构。其前身为复旦大学第一批跨学科交叉国际化研究中心——计算系统生物学研究中心,成立于2008年。研究院基于复旦大学既有的数学、统计学、计算机科学、生物学、信息学、临床医学、语言学、心理学等多学科综合交叉研究优势,以计算神经科学为桥梁,着力开展大脑机制解析、脑疾病智能诊疗、类脑智能算法、类脑智能软硬件、新药智能研发、通用智能等相关领域的科学研究、技术研发和人才培养。

研究院率先探索打通国际与国内、科技与产业的全链条、全球化产学研合作机制,充分发挥高校培养和储备高端智能人才、发现和培育前沿技术的综合优势,推动产学研源头创新与合作,致力于成为推动脑科学、人工类脑智能与产业应用融合发展的重要科技创新平台。

研究院目前在建五个核心功能平台和一个国际合作研发中心,主要包括:一是以脑高级认知功能的多信息反馈处理机制研究为核心的神经形态计算仿真平台;二是以多尺度多中心重大脑疾病数据库和算法开发为基础的智能诊治数据示范平台;三是依托高端医疗影像设备集群,为生物医学转化研究和信息产业智能化提供试验技术支撑的综合生物医学影像平台;四是以开发深度学习、强化学习和自组织学习等机器学习算法以及可穿戴设备、类脑芯片、健康服务机器人等为目标的类脑智能软、硬件开发平台;五是集孵化加速、产业联盟、投资基金为一体,为类脑智能创新项目及企业提供应用技术资源和孵化服务的类脑智能产业化平台;六是依托已有的欧洲人类脑计划、美国脑计划等国际合作的数据、学术资源,建设类脑智能国际合作节点和人才培养中心。

中国科学院:自动化研究所

中国科学院自动化研究所成立于1956年10月,是我国最早成立的国立自动化研究机构。目前设有类脑智能研究中心、智能感知与计算研究中心、脑网络组研究中心等12个科研开发部门,还有若干与国际和社会其他创新单元共建的各类联合实验室和工程中心。另有汉王科技、三博中等四十余家持股高科技公司。

近年来,自动化所共获得省部级以上奖励30余项。数量逐年增加,质量不断提高;专利申请和授权量连年攀升,多年位居北京市科研系统前十名绘制的“脑网络组图谱”第一次建立了宏观尺度上的活体全脑连接图谱;虹膜识别核心技术突破国外封锁,通过产学研用相结合走出“中国制造”之路;基于自动化所语音识别技术的“紫冬语音云”在淘宝、来往等阿里巴巴旗下移动客户端产品中得到推广;“分子影像手术导航系统”通过国家药监局医疗器械安全性及有效性检测认证并进入临床应用;“智能视频监控技术”和“人脸识别技术”分别成功应用于2008年北京奥运会、2010年上海世博会的安保工作中,为社会安全贡献自己的力量;研制的AI程序“CASIA-先知1.0”采用知识和数据混合驱动的体系架构,在2017首届全国兵棋推演大赛总决赛中7:1的悬殊比分战胜人类顶级选手,展示了人工智能技术在博弈对抗领域的强大实力……

在共建机构方面,自动化所与新加坡媒体发展管理局联合成立中新数字媒体研究院,聚焦交互式语言学习、视频和分析等领域;与瑞士洛桑联邦理工大学(EPFL)在京成立中瑞数据密集型神经科学联合实验室,在类脑智能研究方面展开合作;与澳大利亚昆士兰大学(UQ)共建中澳脑网络组联合实验室,在“计算大脑”研究方向上进行远景规划;还与香港科技大学共建智能识别联合实验室,在模式识别、无线传感器网络等领域展开合作。

厦门大学:智能科学与技术系

早在上世纪八十年代初,厦门大学就已开始从事人工智能领域的研究,相继在专家系统、自然语言处理与机器翻译等领域取得过一系列成果。为此,1988年经学校批准成立“厦门大学人工智能与计算机应用研究所”,后于2004年更名为“厦门大学人工智能研究所”。2006年12月,经国家教育部批准,厦门大学正式设立“智能科学与技术”本科专业,并于2007年6月经学校批准成立“厦门大学智能科学与技术系”。

厦门大学智能科学与技术系现有一个本科专业(智能科学与技术),三个硕士学位授予专业(模式识别与智能系统、计算机科学与技术、智能科学与技术),两个博士学位授予专业(计算机科学与技术、智能科学与技术)。

目前该系承担多项国家863、国家自然科学基金、福建省科技基金等项目,拥有“福建省仿脑智能系统重点实验室”、“智能信息技术福建省高校重点实验室”和“厦门大学语言技术中心”三个平台,此外还有“艺术认知与计算”、“自然语言处理”、“智能多媒体技术”、“人工大脑实验室”、“智能中医信息处理”等多个研究型实验室,为培养高质量的学生提供了必要的保障。

上海交通大学:计算机科学与工程系

上海交通大学计算机科学与工程系成立于1984年。近年来,随着计算机科学与技术在人们生活中的应用不断深入,特别是随着云计算、物联网、移动互联网、大数据等技术的兴起,交通大学计算机系不断调整学科方向,形成了高可靠软件与理论、并行与分布式系统、计算机网络、智能人机交互、密码学与信息安全等研究方向。

该院系下设三个重点实验室:智能计算与智能系统重点实验室、上海市教委智能交互与认知工程重点实验室、省部共建国家重点实验室培育基地及上海市可扩展计算与系统重点实验室。其中,上海交通大学-微软智能计算与智能系统联合实验室目前是教育部-微软重点实验室,成立于2005年9月,是交通大学和微软亚洲研究院在多年良好合作的基础上,为了更好发挥各自在并发计算、算法与复杂性理论、仿脑计算、计算机视觉、机器学习、计算智能、自然语言处理、多媒体通讯以及机器人等领域的优势,实现“使未来的计算机和机器人能够看、听、学,能以自然语言的方式与人类交流”这一共同使命而成立的。实验室在科学研究、人才培养、学术交流等方面也取得了很好的成绩。实验室累积200余篇,成果发表于CVPR,ICCV,WWW等国际顶级会议上。

南京大学:计算机科学与技术系

南京大学的计算机科学研究起步于1958年,建立了计算技术、计算数学、数理逻辑等专业开始培养计算机相关领域专门人才,1978年在上述三个专业基础上成立了计算机科学系,1993年更名为计算机科学与技术系。

依托该系师资,先后成立了南京大学计算机软件研究所、计算机软件新技术国家重点实验室(南京大学)、南京大学计算机应用研究所、南京大学多媒体计算技术研究所、南京大学软件工程中心(江苏省软件工程研究中心)、南京大学信息安全研究所等科研机构。主要科研方向有:软件自动化与形式化、分布与并行计算及新型网络、新型程序设计与软件方法学、多媒体与信息处理、人工智能与机器学习、系统软件及信息安全等。

建系30年来,共承担国家973计划、国家863计划、国家攀登计划、国家自然科学基金、国家科技攻关等重大科技计划项目以及省、部、委科研项目和企事业委托或国际合作的研发项目300余项,科研成果获得各种奖励80余项,其中国家科技进步奖一等奖1项、二等奖4项、三等奖2项,省部委自然科学奖和科技进步奖特等奖2项,一等奖8项,二等奖37项。3000多篇,出版专著、教材50多部,申请国家发明专利33项。部分成果被转化为产品,产生了较大社会效益和经济效益。

哈尔滨工业大学:计算机科学与技术学院

哈尔滨工业大学计算机专业创建于1956年,是中国最早的计算机专业之一。在1985年,发展成为计算机科学与工程系,并建立了计算机科学技术研究所。2000年,计算机科学与技术学院成立;同年,建立了软件学院,后经国家教育部、国家计委批准为国家示范性软件学院。目前。哈工大计算机科学与技术学院拥有计算机科学与技术国家一级重点学科、7个博士点和7个硕士点、1个博士后科研流动站、一个国家级教学团队、一个国家级科技创新团队、一个国防科工委创新研究团队。

目前主要研究方向包括:智能人机交互、音视频编解码技术、语言处理、自然语言理解与中文信息处理、机器翻译、信息检索、海量数据计算、计算机网络与信息安全、传感器网与移动计算、高可靠与容错计算技术、穿戴计算机、企业计算与服务计算、智能机器人、生物计算与生物特征识别。

学院有一批研究成果达到国际先进水平,包括:国家信息安全管理系统、数字视频广播编码传输与接收系统、大规模网络特定信息获取系统、计算机机群并行数据库系统、并行数据库系统、神州号飞船数据管理分系统、穿戴计算机系统、信息安全与实时监测系统、人脸识别系统、视频编解码技术、黑龙江省CIMS应用示范工程、农业专家系统等等。

中国科学技术大学:计算机科学与技术学院

中国科技大学于1958年建校时就设置了计算机专业。根据学科发展趋势和国家中长期发展规划,面向国家和社会的重大需求,计算机科学与技术学院将科研力量凝聚在高性能计算、智能计算与应用、网络计算与可信计算、先进计算机系统四个主要的研究领域。

学院的支撑实验室有:国家高性能计算中心(合肥)、安徽省高性能计算重点实验室、安徽省计算与通讯软件重点实验室、 多媒体计算与通信教育部-微软重点实验室、中国科大超级运算中心和信息科学实验中心。

其中,多媒体计算与通信教育部—微软重点实验室主要从事人机自然语音通信、语义计算与数据挖掘等方面的研究。人机自然语音通信方面,主要研究中文信息处理、人类视听觉机理、语音语言学等。语义计算与数据挖掘方面,主要研究自然语言驱动的计算、多媒体内容的语义标注、自动问答、语义社会网络、数据与知识工程、隐私保护与管理中的语义计算等。

依托多媒体计算与通信教育部—微软重点实验室,双方联合实施了联合培养博士生计划、实习生计划、精品课程建设计划、青年教师培养计划等,取得了突出成果,探索出了一条企业和高校共同培养优秀人才的道路,为微软亚洲研究院与其他高校的合作提供了一个经典范例。

华中科技大学:自动化学院

华中科技大学自动化学院是由原控制科学与工程系和原图像识别与人工智能研究所于2013年合并组建的学院。原控制科学与工程系前身是成立于1973年的华中工学院自动控制系,1998年更名为华中理工大学控制科学与工程系;原图像识别与人工智能研究所是1978年由教育部和航天部共同批准成立从事图像识别和人工智能研究的研究机构。

科学研究工作主要涉及复杂系统控制理论、决策分析与决策支持、电力电子与运动控制、智能控制与机器人、计算机集成控制与网络技术、信息检测与识别、飞行器控制与状态监测、生物信息处理、神经接口与康复技术、物流系统、国民经济动员与公共安全、多谱图像制导、目标探测的多谱信息技术、多谱信息的实时处理与系统集成技术、人工智能与思维科学、信息安全等方向。

模式识别与智能系统是自动化一级学科的重要二级学科。迄今为止,本系在原 “图像识别与人工智能研究所”和“控制科学与工程系”的这两个学科点承担了百余项国家、国防与行业项目。近5年科研经费总额在8000万元以上,包括973计划,国家自然科学基金重点、面上和青年基金项目,863计划,国家重大专项、国防重点预研与基金,国家科技支撑计划,省部级科研项目,以及大型工程和企业科研合作项目等。

总结

第6篇

一、顶层设计,构建全方位、多层次、可操作的指导体系。

为了保障人工智能教育在我校真正落实和长期发展,学校将人工智能教育工作纳入到学校整体三年发展规划中,并作出明确要求。

为了让师生更加重视人工智能教育,促进学生全面发展,特修订了我校“五美”能行课程体系,将人工智能课程进行了重新定位和设计。

为了建设符合我校校情、学情的人工智能课程体系,学校成立了人工智能课程建设与实施的探索与研究项目管理团队,制定了项目计划书,从项目名称、项目团队、项目背景、项目创新点及解决问题、项目推进措施、项目完成期限等方面进行了具体规划。

二、支撑保障

完善软硬件设施和文化建设,为人工智能教育开展做好支撑和保障。除了四楼独立的人工智能实验室,我校还自主改造了五楼的创客教室和阅览室,扩宽了人工智能教育场所,尽全力满足学生人工智能上课需求。

学校高度重视人工智能教育,不断加大投入。在资金紧张的情况下依然给学生购买了小学生C++趣味编程书和人工智能超变战场的场地。

三、具体做法

1.基于校情和学情的人工智能课程设计

课程设置:开学之前,课程部整体规划,实行信息技术课两节联排。

人工智能课程开设内容安排:基于校情学情,本学期3-6年级全面铺开人工智能课程,3年级以信息技术基础知识、编程猫、乐高搭建基础入门为主;4年级AI神奇动物,5-6年AI变形工坊,是集搭建和编程于一体的人工智能课程体系。本学期信息技术类人工智能特色社团的开设:人工智能机器人社团、信息学奥C++社团、创意编程社团。

2.三位一体,三组联动推进人工智能课程的开发与实践。三组是:项目组、教研组和集备组。具体做法是:

项目组的做法:根据人工智能项目管理计划书的内容和要求,3月初进行项目工作总结和4月份计划汇报,5月份进行了中期汇报。进一步梳理人工智能校本课程的内容,促进人工智能课程实施与落地,进行了生本AI人工智能校本课程的开发与研究,重点对课程目标和课程内容进行了设计和探索。

教研组的做法:1.参加区首次信息技术教研活动,明确方向和工作重点。组织信息技术教师按时参加区里首次信息技术教研活动,并将区里的要求传达给每一位信息技术老师,为接下来的工作做好铺垫指明方向。2. 教研组内进行磨课,四年级潘倩老师执教了四年级AI神奇动物—敏捷的蛇;徐娜老执教了五年级AI神奇变形工坊—设计“地雷”,课后及时听评课,提出优点与不足,并进一步改进完善。

集备组活动:各年级备课组利用双周周二上午时间进行集备,研究本周的上课内容、梳理课堂具体流程及教学设计。

3.加强教师培养力度,积极组织教师参加人工智能培训和学习。学校鼓励教师进行小课题的研究,提升教学专业素养。2019年区级小课题《小学人工智能课程体系、教学策略和教学评价的研究》顺利结题。2020年区级小课题《奎文区人工智能教育专项课题--小学人工智能教育教学策略及评价方法的研究》立项。

4.为了拓宽视野,为人工智能教育的发展进一步指明方向。落实请进来:邀请区教研室专家进校为学校人工智能开展情况进行诊断;邀请优必选指导老师入校指导人工智能课程,并进行赛事辅导和培训。

5.为了给学生的学习搭建更广阔的平台,丰富学生的课余文化生活,促进学生信息素养的提升。以赛促学,积极组织学生参加各级各类比赛。

四、取得成效

1.学校层面:以人工智能教育为契机近年来,我校的信息化、数字化、智能化水平不断提升,互联网+教育、智慧校园工作取得了巨大的进步,学校获得省市区多项荣誉。

第7篇

关键词:人工智能;研究生教学;教学方法

人工智能是一门研究机器智能的学科,是在研究人类智能行为规律的基础上,利用人工的方法和技术,研制智能机器或智能系统来模仿、延伸和扩展人的智能,实现智能行为。在知识经济向智能经济高度发展的今天,人工智能具有重要的理论意义和社会价值。人工智能理论已经渗透到各个领域,人工智能技术也得到广泛应用,许多研究成果已经进入人们的生活。

人工智能课程是一门多学科交叉的课程,具有很强前沿性,涉及哲学、认知科学、行为科学、脑科学、生理学、心理学、语言学、逻辑学、物理学、数学等众多领域;涉及面宽,内容广泛,更新快。人工智能课程的开设能够更好地培养学生的创新思维和技术创新能力,培养学生对计算机前沿技术的前瞻性,提高他们的科技素质和学术水平[1]。

人工智能课程内容的广泛性、前沿性和应用性特点决定了授课方法的多样性。与本科生相比,研究生在教育目标和身心特征方面都有较大的区别。笔者多年从事研究生人工智能课程教学工作,现总结多年教学经验如下。

1研究生培养目标及其教学特点

研究生教育阶段的教育目标是使研究生形成具有个性化的研究品格、研究定向和研究视野,以具有独立思考并获得独创研究成果的能力[2]。从这一意义上讲,个性化是研究生教育培养目标的构成主体。尤其随着我国经济持续高速增长,社会对知识创新、新经济生长点的期望值增大,这就要求我国研究生教育在其培养目标的定位上不仅要重视人才培养的高层次性,更要重视创新能力、实践能力和创业精神的培养。并且,研究生身心发展已较成熟,具有较稳定的个性特征,思维力强,具有较高的专业性思维意识和创造力,为独立地进行专业研究活动提供了心理上和智力上的保证。而且,研究生已具备了基础理论和专业知识,特别是有一定工作经历的研究生,他们不仅有本科教育阶段的知识积累,也有应用这些知识的经验,对于扩大其专业知识领域并进行研究有着积极主动的态度。总之,从年龄构成及身心特征上讲,研究生适应高层次、跨学科知识领域的学习和研究。

研究生的特征及其教育目标决定了研究生教学不应该是由教师讲授已定论的知识,而应是以教学为基本依托,通过教学提出具有研究性、探索性、未确定性甚至是尚存争议性的课题,激励研究生独立思考和质疑,让他们在思考和质疑的过程中提出问题,培育他们发现问题、提出质疑的科学批判精神,训练并提高其创新能力、实践能力和创新精神。创新精神和创新能力主要表现在具有健全的人格、强烈的责任感、开放的心态、团结合作的精神、严谨科学的思维能力和创新思维方式。

个性是创新的源泉,研究生课程体系的设置应该具有一定的灵活性,依据研究生不同的知识基础和研究定向,设置具有弹性化的课程,使研究生的个性化得以凸显。另外,为提高研究生专业研究和创新能力,在课程教学中,也应凸显教学的研究性和专业性,重视专业领域背景知识和研究方法的讲授,开展跨学科、非专业知识的教学,教学内容应涵盖专业领域的研究热点、难点、争议问题和最新研究动态,还应包括交叉学科、边缘学科的研究趋势,以扩展学生的视野[3]。也就是说,研究生教学既要凸显研究生的个性化特点,又要凸显内容的学术性和研究的指向性。

2人工智能课程的特点

2.1多学科交叉,具有很强的前沿性

人工智能是一门多学科交叉的课程。课程内容的理解需要运用多学科知识和较强的逻辑思维能力,多学科的知识相互联系、相互交叉,融合形成新的知识,成为新的思维方法和综合能力的萌发点。通过课程学习,学生可以通过不同学科知识的融合来达到对原有知识的超越,用一种全新的思维方法来思考所遇到的问题,提出新的解决办法。这也是创造力的迸发和智能的飞跃。具有了知识的广度和深度才具有融会贯通、创新的可能,人工智能课程的开设能够更好地培养学生的创新思维和技术创新能力,为学生提供一种新的思维方法和问题求解手段。

2.2涉及面宽,内容广泛,更新快

人工智能课程是一门知识点较多的课程,它以概率统计、离散数学、数据结构、计算机编程语言、数据库原理等课程为基础,涵盖了模式识别、机器学习、数据挖掘、计算智能、自然语言理解、专家系统等众多研究方向,内容涉及面广,概念抽象,不易理解。并且,人工智能课程内容更新快,近年来人工智能科学的快速发展,涌现出了大批新方法,研究热点问题也从符号计算发展到智能计算和Agent等。其中,计算智能主要涉及神经计算、模糊计算、进化计算和人工生命等领域,在模式识别、图像处理、自动控制、通信网络等很多领域都得到了成功应用;Agent最早来自分布式人工智能,随着并行计算和分布式处理等技术的发展而逐渐成为热点。

在互联网上有大量最新的与课程内容相关的研究论文,为学生提供了很好的查阅文献的环境,使学生能够根据所学习的内容和所在课题组的研究方向阅读相应文献,提高学生的学习兴趣和独立提出问题、解决问题的能力。

2.3应用性强

人工智能理论已经渗透到科学的各个领域,当前,几乎所有的科学与技术分支都在共享着人工智能领域所提供的理论和技术。例如,自第一个专家系统DENDRAL研制成功以来,专家系统已成功地应用于数学、物理、化学、医学、地质、气象、农业、法律、教育、交通运输、军事、经济等几乎所有领域;数据挖掘技术是以一种更自动化的方式对具有大量数据的商业活动进行分析和预测,在市场营销、银行、制造业、保险业、计算机安全、医药、交通、电信等领域已有许多案例;语义Web让Web上的信息能够被机器所理解,实现Web信息的自动处理,成功地将人工智能的研究成果应用到互联网。另外,在机器视觉、自然语言理解、智能控制与智能制造等方面,人工智能技术也得到广泛的应用,有许多研究成果已经进入人们的生活。目前,从理论到技术,从产品到工程,从家庭到社会,智能无处不在,人工智能广泛的应用性给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。

人工智能课程的多学科交叉性、内容广泛性、概念抽象、不易理解以及前沿性和应用性特点决定了在该课程的讲授过程中应该采用多种授课方法。多种授课方法的采用一方面便于授课内容的理解,另一方面也能够更好地培养学生的创新思维和技术创新能力,提高他们的科技素质和学术水平。

3人工智能课程教学方法

3.1基于问题的启发式教学法

苏霍姆林斯基说:“唤起人实行自我教育,乃是一种真正的教育。”基于问题的启发式教学法是教师在深入了解学生心理特点和学习规律的基础上,设计适合教学的启发式问题,并采取灵活多样、生动活泼的启发方式,充分调动学生的学习兴趣,激发、引导学生进行科学思维,培养学生独立思考问题、提出问题和解决问题的能力。该教学方法强调的是过程,教师的主要任务是提出问题,依据举一反三的思路引导学生展开逻辑推理,通过逐层分析深入思考问题,最后综合学生观点阐述相关理论。

在课程教学中,有许多内容适合于采用启发式教学方法。例如,在知识表示方法的学习过程中,教师首先提出问题:“你是怎样进行数学定理证明的?”并在学生的回答过程中,引导学生认识到知识及其表示的重要性;随后,提出问题:“在计算机中如何表示知识?”引导学生逐步总结出不同知识表示方法在知识表达能力、推理效率、可实现性、可组织性、可维护性方面的区别。另外,在确定性推理的教学过程中,教师可以利用“某处发生盗窃案,公安局派出5个侦查员去调查,研究案情时,5个侦查员各给出了一句可信的结论,据此判断谁是盗窃犯”的问题[4],让学生进行判断和讨论,引导学生认识到推理过程中可以使用多条规则进行推理,并且推理路线也可能存在多条,从而引出推理的两大基本问题:解决冲突消解等问题的推理策略,以及解决推理线路等问题的搜索策略。

启发式教学法的要点是设计适当的启发式问题和启发方式、安排能调动学生积极性的讨论环境、鼓励学生发表个性化观点。教师不仅用问题引发学生思考,更要鼓励学生让思维自由驰骋,主动提出问题,讨论问题,寻求问题解决方案。在探讨、研究问题中,不要以现有的结论和固定的程式束缚思想,鼓励学生的个性化观点。启发式教学是一种民主、科学的教学方法,其中包含诸多具体的教学方法,如激疑启发法、比喻启发法、类比启发法、联系启发法,等等。启发式教学在传授知识的同时,更注重的是对创新的孕育、萌芽、生成和壮大,它能促使学生自己获取知识、思考问题、提出问题、分析问题、解决问题,培养学生的自学能力。以问题为基础的启发式教学,利用问题引导学生学习,全方位深层次发展学生的创新思维和探究性学习能力。问题可以诱发出学生的求知欲,激发、唤醒了学生的主体意识;问题往往是面向生活世界的实践活动的,它使教学活动从以传授知识为中心转化为传授知识与培养能力并重,理论与实践相结合,提高了学生分析、综合、观察、想象等思维能力。

3.2基于案例的探究式教学法

基于案例的探究式教学法要求教师能够根据学生的认知水平和能力,创设引导学生进行探究活动的案例,以激发学生探究问题的兴趣,促进学生质疑、探求的创造性学习动机,通过选择与确定问题、讨论与提出设想、实践与寻求结果、验证与得出结论,发展学生的创造性思维,培养学生独立探究、研究能力和创新能力。探究式教学强调学生的积极参与,强调师生互动。对教师来说,必须转变传统的“传道”观念,以平等的心态与学生交流探讨。在课堂上,要努力营造民主、宽松、和谐的教学氛围,积极引导学生大胆设想,大胆探索。使学生树立研究型学习的观念,消除依附心理,养成勤于思考、善于思考的良好学习习惯,通过积极参与研讨培养学生自己获取新知、探求未知的能力,以及团队意识和合作精神。

我们在本课程神经网络部分的教学中,将基于BP神经网络的维吾尔文手写字母识别作为案例开展了探究式教学活动。在介绍了前馈多层感知器及标准BP算法之后,教师将科研项目中基于标准BP算法的维吾尔文手写字母识别实验及其结果详细地在课堂上进行演示,引导学生对实验提出质疑。在教学实践中,学生提出了大量问题,例如,输出层神经元个数如何确定,为什么输出层神经元个数对识别率会有影响?网络训练过程中出现震荡的原因是什么?如何解决?为什么有时误差较大,权值的调整量反而很小?等等。在教师事先准备好的实验演示的基础上,开展学生进行课堂讨论,让学生提出解决问题的各种方法,并现场通过实验进行验证,逐步让学生理解BP网络结构设计、输入输出数据的预处理、初始权值设计的必要性及其实现方法。课堂授课实践表明,这种方法极大地激发了学生的学习兴趣,使学生能够大胆设想,大胆探索,增加了学生的自信心和创新精神。本次课堂讨论结束后,教师根据学生的讨论以及实验结果演示,总结标准BP算法的局限性,例如,“易形成局部极小”,“训练次数多,学习效率低”,“训练时有学习新样本遗忘旧样本的趋势”等,并要求学生通过查资料、搜集必要的信息、积极地思索和实验验证提出解决上述问题的方法,将学生分组,让学生展开讨论,为下次讨论课作好准备。

传统教学方法是告诉学生怎么去做,在一定程度上损害了学生的积极性。而案例教学要求学生自己去思考、去创造,使得枯燥乏味的内容变得生动活泼,并且案例教学中,通过学生之间的交流既可以使学生取长补短、促进人际交流能力,也可以引导学生变注重知识为注重能力。

案例教学法的关键是案例的选择。案例是为教学目标服务的,因此它应该具有典型性,且应该与所对应的理论知识有直接的联系。案例最好是经过深入调查研究。来源于实践,不能只是一堆数据的罗列。教科书的编写应采用图片、表格、曲线等方式让学生看到算法的实验结果,启发学生思考。另外,案例应该只有情况没有结果,有激烈的矛盾冲突,没有处理办法和结论,由学生对案例提出质疑,从这个意义上讲,案例的情况越复杂,越多样性,越有价值。

案例教学法能够实现教学相长。教学中,教师不仅是教师而且也是学员。一方面,教师是整个教学的主导者,掌握着教学进程,引导学生思考、组织讨论研究,进行总结、归纳。另一方面,在教学中通过共同研讨,教师不但可以发现自己的弱点,而且从学生那里可以了解到大量感性材料。另外,案例教学法能够调动学生学习主动性。教学中,由于不断变换教学形式,学生大脑兴奋不断转移,注意力能够得到及时调节,有利于学生精神始终维持最佳状态。案例教学的最大特点是它的真实性。由于教学内容是具体的实例,加之采用是形象、直观、生动的形式,给人以身临其境之感,易于学习和理解。最后,案例教学法能够集思广益。教师在课堂上不是“独唱”,而是和大家一起讨论思考,学生在课堂上也不是忙于记笔记,而是共同探讨问题。由于调动集体的智慧和力量,容易开阔思路,收到良好的效果。

3.3加强研讨

鉴于研究生的培养目标和人工智能课程研究范畴的宽泛性、应用性、创新性和前沿性,根据我校计算机系硕士生指导教师的研究领域,我们在课堂教学中为计算智能、机器学习算法、机器视觉、自然语言理解部分增加了研讨会,要求学生上网进行文献检索、阅读和学术研讨,根据个人的研究兴趣和研究设想上台作报告。另外,我们还邀请相应专家和成果突出的各届研究生为学生做报告,介绍他们的研究实践、研究成果和心得体会。例如,在自然语言理解部分的课堂教学中,在介绍完自然语言理解的基本概念与原理之后,我们要求将来做这个领域的研究生在通过查资料了解所在研究小组工作的基础上,上台作报告。机器翻译研究组的同学在学习自然语言理解部分的内容之后,对其所在小组目前的工作及采用的技术、存在的问题做了分析,并通过阅读文献,提出了初步的解决问题的设想。与自己所在研究小组的科研相结合,开展文献检索和学术研讨,一方面让学生开阔了眼界,另一方面也提高了学生查阅文献、主动获取知识、独立思考的科研能力。

4结语

人工智能理论已经渗透到科学的各个领域,人工智能技术也得到了广泛的应用。人工智能课程具有多学科交叉、内容广泛、前沿性和应用性强等特点,课程开设能够很好地培养学生的创新思维和技术创新能力。教与学是教师与学生双方互动的过程,教学中要根据学生身心特征的实际情况采用相应的教学方法,并结合本校科研队伍的研究领域,不断地探索和提高,才能使教学工作更上一层楼,切实为国家、为社会培养具有创新能力、实践能力和创业精神的高层次人才。

参考文献:

[1] 陈白帆,蔡自兴,刘丽珏. 人工智能精品课程的创新性教学探索[J]. 计算机教育,2010(19):27-31.

[2] 谢安邦. 构建合理的研究生教育课程体系[J]. 高等教育研究,2003,24(5):68-72.

[3] 教育部研究生工作办公室,国务院学位委员会办公室. 高层次人才培养的研究与探索[M]. 北京:高等教育出版社,2000.

[4] 蔡自兴,徐光佑. 人工智能及其应用[M]. 4版. 北京:清华大学出版社,2010:113.

Exploration of Artificial Intelligence Course Teaching of Graduate Students

ZHAO Hui1, JIA Zhenhong1, WANG Weiqing2

(1.School of Information Engineering, Xinjiang University, Urumuchi 830046, China;

2.Graduate School, Xinjiang University, Urumuchi 830046, China)

第8篇

关键词:人工智能;大数据;交叉领域

自二战时期阿兰•图灵破解恩尼格玛密码机带来胜利的曙光之后,人工智能初见苗头,1956年“人工智能”一词首次由约翰•麦卡锡等科学家在达特茅斯研讨会上提出,时至今日,人工智能经历了60多年的浪潮和洗礼,其中有曙光、有冰封,也有期望。纵观当下,人工智能不仅仅是机器智能,在深度学习和推陈出新的算法推动下,其携手云计算、大数据、卷积神经网络等,攻破了自然语言语音处理、图像识别的瓶颈,像潘多拉的盒子一样在认知科学、机器人学、机器学习等领域全面开花,人工智能涵盖了从基础层、技术层到应用层等多个方面,为人类文明带来了翻天覆地的变化[1-2]。人工智能包罗万象,在其基础上衍生的大数据“洪流”对人类社会的方方面面进行冲击,这些数字的价值已然超越了诸如金钱、财产、黄金、石油,甚至是土地。然而,大数据技术也如同普罗米修斯盗得的圣火,一方面给人间带来温暖和光明,另一方面也有可能使自身被奴役甚至使人葬身火海[3]。因此,当我们沉迷于大数据的海洋中时,我们是否有能力像蓝鲸遨游大海一样自由掌舵,是当今大数据和人工智能时代存在的一个重大问题。是“曲径通幽”还是“会当凌绝顶”,我们如何在大数据中“浮游”,而不是一味地扩充,需要理性看待与合理评价大数据对人类生存和发展的影响。

1.人工智能和大数据与“工业革命”

2020年刚刚结束的新一轮美国总统竞选上演了各种“国家闹剧”,为何特朗普在2016年赢得大选,而4年之后却无法连任?时间推移,2016年他胜利的部分原因在于他利用了面临技术威胁的工业行业中工人们的焦虑,同时指责非法移民对美国及美国人资源和就业机会的占用[4]。但在技术浪潮的挑战中,自动化和人工智能才是占用的“根源”。早在18世纪60年代工业革命时期,机器取代人力,规模化工厂生产取代个体手工生产,即引发了人工智能数据的工业大变革。从机械结构、电气控制等模块的设计和改良,车间机器人的智能化已可以代替人完成生产作业[5]。通过智能化机器人可以减轻劳动负担,还可以用于环境检测[6]和实施救援[7]等,保护我们的人身安全。这些“机器人”在为我们减负的同时确实也引发了“失业危机”,这种现象不仅于美国,日本、韩国和德国亦是如此。我们也许可以形象一下,未来20或30年后,工厂中工伤几乎为“零”,完全实施机器人24小时作业,速度惊人,质量统一,而仅有的几个人使用简单的触摸界面对机器下达“命令”。机器的发展已超乎我们对普通机械的认知,21世纪开发的三大机器人中大狗(BigDog)解决了运动和重载运输问题,特别用于军事领域,被誉为“当前世界上最先进适应崎岖地形的机器人”;亚美尼亚(Asimo)从人类如何移动上展现了机器人仿人运动;Cog具有了人类所特有的思考,由不同处理器组成的异种机互联网络形成了“大脑”。特斯拉——其除了是电动汽车和能源公司外,还是自动驾驶汽车行业的领跑者之一。其2016年已销售具有自动驾驶、自动自制和自动停车功能的电动汽车,但出于法律和伦理层面,驾驶员还是要坐在驾驶位上,但他可以做他想做的其他事,发短信、打电话或是休息,而不再是驾驶汽车。我们可以不用担心酒驾,不用因为时间紧张而疲劳驾驶,不必为新手司机而变得脾气暴躁……汽车自动驾驶将让我们行驶得更规则、更安全和更“无聊”。自动驾驶上的智能进化,使得自驾型派送车为商业化服务成为可能,还有自驾型飞行器也在被研发,通用、宝马、谷歌等公司一直在努力开发,通过无人机在您家门口投送包裹将对电子商务世界带来更多创造性方案。“如果你够走运的话,机器可以把你当成宠物。”虽为戏谑之言,却又饱含心酸。工厂变得越来越自动化,但其仍需要人类专家,他们才知道如何监控传感器,知道在发生故障时如何进行修复,机器的运行离不开人的监控,只有人的思考才能有新产品的诞生以及高效的生产流程,我们与机器共存,是从体力中解放,但要从事脑力工作。

2.人工智能和大数据与金融的未来

“数字蝶变”席卷金融行业各个领域[8],金融行业应用大数据、移动互联网、人工智能等先进信息技术,累积了非常多的客户信息。通过大数据的帮助,金融公司在分析数据下寻找更多的金融创新机会。在商业智能(BI)的辅助下,电信业可以对客服描述和定位及需求进行预测;保险业可以在进行风险分析的同时进行损益判断;银行业可以调整市场活动,建立信贷预警机制等等[9]。人工智能和大数据让金融业形成了“以客户为中心”的模式。与客户最密切的金融即是金钱,但是它们已经被“支付宝”和“微信”以及更多的电子支付方式取代,越来越少的人使用现金,数字金钱是否会完全取代物质金钱,我们很可能会发展为无现金社会。那么首先“下岗”的是谁呢?答案毫无疑问:银行。巴克莱银行前首席执行官安东尼•詹金斯曾预测,对于工业化国家,银行员工和其分支机构在未来10年内会消失;花旗全球视角与解决方案的一项研究预测,美国和欧洲的银行将在未来10年裁减约180万员工;甚至2016年2月的一份丹麦银行家协会新闻稿表示,银行抢劫案数量连续第5年下降。就支付领域而言,在这样的时代背景下,如何利用大数据技术对跨越式发展的支付行业进行监管,成为一个值得深入研究的课题[10]。在人工智能下,我们都有被银行自动回复或自会读取特定问题的“员工”惹恼过。沟通技巧和财务知识同样重要,因此,银行业员工的下岗只是在基础性操作上,对于“专业咨询”,需要更多受过高等教育、具有更好沟通能力的员工。目前,我国的多数银行还没建立“开放、共享、融合”的大数据体系,数据整合和部门协调等问题仍是阻碍我国金融机构将数据转化为价值的主要瓶颈。大数据的整合、跨企业的外部大数据合作不可避免地加大客户隐私信息泄露的风险。有效防范信息安全风险成为商业银行大数据应用中急需解决的问题。

3.人工智能和大数据与“专家系统”

电子病历数据、医学影像数据、用药记录等构成了医疗大数据。医疗数据不仅包括大数据的“4V”特点,即规模大(volume)、类型多样(variety)、增长快(velocity)、价值巨大(value),还包括:时序性、隐私性、不完整性和长期保存性。医疗大数据可以提供预警性,当数据发生异常时,通过一定的机制可以发出警告,从而迅速采取相应措施,及时解决问题[11]。成立于1989年的美国胸外科协会(STS)数据库,至今已经涵盖了美国95%的心脏手术,收集了500万条手术记录[12]。其中的先天性心脏手术(CHSD)数据库是STS数据库的重要组成部分,是北美最大的关注儿童先天性心脏畸形的数据库,被认为是医学专业临床结果数据库的金标准。近年来,基于CHSD数据库所进行的数据挖掘不断增加,大型数据库对提高医疗质量所起到的正向作用正在日益凸显。如Welke等基于CHSD数据库探讨小儿心脏外科病例数量和死亡率之间的复杂关系[13];Pasquali等基于CHSD数据库探讨新生儿Blalock—taussig分流术后的死亡率[14];Jacobs等基于CHSD数据库采用多变量分析方法来研究病人术前因素的重要性[15];Dibardino等基于CHSD数据库采用多变量分析的方法来探讨性别和种族对进行先天性心脏手术结果的影响[16]。这些都是在医疗领域采用人工智能提供的医疗诊断,形成了“专家系统”,专家系统可以说是一种最成功的人工智能技术,它能生成全面而有效的结果。借助医疗大数据的平台,“专家系统”可以智能辅助诊疗、影像数据分析与影像智能诊断、合理用药、远程监控、精准医疗、成本与疗效分析、绩效管理、医院控费、医疗质量分析等。不仅是数据平台,“达芬奇机器人”可以看成医疗的高精尖“人工智能”,它能缩短泌尿外科手术以及术后患者恢复时间,促进患者早期下床活动,减低并发症发生率[17]。达芬奇手术机器人在消化系统肿瘤、泌尿系统肿瘤、妇科肿瘤和心胸部肿瘤等手术中均有运用[18]。正是机器人,还有其他人工智能设备,如插入手表或衣服里的传感器、植入我们皮肤下的芯片,以及智能手机中装有各种“专家系统”的远程医疗、预防医学,甚至是器官的3D打印和虚拟现实治疗等的发展,让医学发生相应的转变,并使其逐步突破人类的传统健康概念,那么是否意味着医学将成为只有科学性,毫无直觉性的学科呢?我们携带的内部传感器和外部应用程序将成为我们的医生吗?“你好,医生”被“嘿,Siri”取代吗?这不尽然。医学必然将是向精准化发展,并更具个性化、参与性、预防性和可预测性。医生不再是疾病的修理工,而是改善我们健康状况的顾问。直观当下,我们还是被“看病难”所困扰,我们提出“分级诊疗”,是在拥有家庭医生、全科医生和专科医生的基础上再加上人工智能,以实现预期的健康监测、辅助诊疗和疾病筛查。

4.人工智能和大数据与教育变革

面对各行业和各学科,教育作为传承文明和创新知识的载体,似乎被排除在人工智能之外。就目前而言,人工智能与教育深度融合发展还存在技术基础不稳、教育数据缺陷、算法能力不足等现实问题[19]。我国目前更想要做到的是在教育上消除“信息鸿沟”,促进教育公平、均衡发展。因此,目前可以看到人工智能的教育多在于语言学习软件,通过虚拟技术和人工智能构建一个灵活的、可扩充的虚拟交互平台,设计多维虚拟场景和智能人工角色,实现不同场景下人机角色的交流和学习,提升学习者的口语能力和语感知识[20]。这使得教师不再是唯一的知识传播者,任何互联网搜索引擎都将提供比教师所有的更多信息,并且可以更快捷地获取。肺炎疫情暴发以来,远程网络教育成了主要教学形式,互联网教育形式其实早在小学、中学和大学中运用,虚拟现实技术在教学领域的研究和探索也在全面展开。谷歌已经开发一款VR纸板视图,并将研发的虚拟课程一起推向市场,使现实生活中在生物课上解剖一只青蛙成为一件容易且有趣的事,通过虚拟青蛙,学生们可以去除心脏和其他器官,而不再是象征性的抽象体验。虚拟现实可以像互动游戏一样,比单一的在教室听老师授课带来更多乐趣和体验,学习效果可能更好。我们的学习是知识的积累,那么教育就是我们的库,荀静等结合自身情况对西安工业大学知识库构建进行探究,认为机构知识库在保存知识资产的同时,更重要的是促进学校知识资产的传播利用和管理,提升学校影响力和学术声誉[21]。刘畅等通过对东北大学机构知识库服务的推广研究,了解到开放获取的概念和实践已经受到了广泛的认可,机构知识库不仅可以成为一个知识的存储库,也可以成为各个学科领域的学者进行在线交流的平台,提供个性化的增值服务,既有利于机构知识库的内容建设,也可以进一步促进学术交流和科研合作[22]。知识库,即大数据的有机整合和有序利用,是学术成果、视频文档、实验数据等进行收集、长期保存、传播和提供开放利用的知识资产管理与教育服务[23]。

5.人工智能和大数据应用的共性需求

人工智能和大数据时代,海量的信息来自“五湖四海”,但都通过互联网络汇聚智能终端。这些数据只会进一步增多,不仅仅是云存储,对于信息的进一步挖掘、处理、分析和利用,目标性结果才是我们最想要的信息。全球包括IBM、微软、谷歌和亚马逊等一大批知名企业纷纷掘金大数据挖掘这一市场,大家都在开拓自己大数据分析平台。数据挖掘是大数据时代孕育的产物[24],是我们的共性需求,与传统的统计分析技术相比,数据挖掘有着自身的本质特征,数据挖掘是在没有明确假设的前提下去挖掘信息并发现知识。数据挖掘所得到的信具有先前未知、有效以及可实用三个特征[25]。数据挖掘的出现不是为了替代传统的统计分析技术,相反,它是统计分析方法学的延伸和扩展[26]。随着信息时代的到来,数据挖掘被越来越多地应用于各个领域。

6.人工智能和大数据的展望

大数据与人工智能相辅相成,在人工智能的加持下,海量的大数据输出优化的结果,使人工智能向更为智能的方向进步,大数据与人工智能的结合将在更多领域中击败人类所能够做到的极限。漫长的人类历史发展和进化,信息和人类一直“缠缠绵绵”“你追我藏”,因此,我们应该明白信息就是信息,我们需要的是“维基百科”,而不是仅仅的“维基”。走出狭隘的信息资源,管理和洞察大数据,才是对数据的有用。因为,我们早已告别了数据库放在一间房间的时代。此刻不得不提蓝鲸法则——大数据之道:了解数据懂得利用数据的“浮力”才是关键;“以简约为目标”将数据最终形成洞察及行为;可以通过“数据”“信息”“知识”流程式、组合式、直通车式各种需要的方式来获取[27],在简约中“印象”处理繁杂的大数据,使之“为我所用”。=数据也是一门科学、一项技术,如果实验不能证明其具有可重复性和一般性,那它是没有科学依据,但是,任何一项科技,如果你坚信它必将改变社会和商业,选择从长期展望其发展并持续付出努力,那么就是一种战略选择[29]。人类社会的政治、经济、文化、思维等固有“态势”被重刷,数据思维将为我们带来一个智能全新的世界观。

第9篇

关键词:人工智能;案例式教学;兴趣引导教学法;问题驱动教学法

中图分类号: TP309 文献标识码:A 文章编号:1009-3044(2014)03-0599-02

人工智能是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的综合性技术学科[1],是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透、迅速发展且与人类生活密切相关的综合性新学科,其核心研究领域包括模式识别、自然语言处理、机器学习、数据挖掘、人工神经网络和专家系统等等[2]。

语言信息处理是语言学与计算机科学交叉形成的一门新型学科,其课程体系以语言学、计算机应用、应用数学和认知科学为主干,研究内容是自然语言的自动化信息处理技术,是人类语言活动中信息成分的发现、提取、存储、加工与传输[3]。目前该方向的主要应用领域包括机器翻译、文献检索、信息提取、自然语言的人机接口等。由此可见,为语言信息处理专业开设人工智能课程是必须的。该文针对“人工智能”课程自身特点和语言信息处理专业研究生培养目标,并结合笔者多年来的教学经验,分别从课程内容设定、教材选择、教学方法、考核方式等多个方面对该课程的教学改革进行了探索与研究。

1 以“精”“典”为基本要求的教学内容选择

“人工智能”课程的突出特点研究内容涉及面广而学时数较短(大部分高校的研究生专业安排的课程的时数在36到48学时之间)。因而授课时不能追求内容“大而全”,必须“精”,选择重点、核心基础知识进行学习,选择与专业方向最相关的“典”型应用领域进行重点详细介绍,使学生在有限的时间内学到最有用的知识。“人工智能”课程教学内容总体可以分为三大部分。

第一部分是基础理论知识,学习人工智能中知识的表示方式(谓词逻辑表示法、产生式知识表示法、框架表示法、语义网络表示法等)。语言信息处理专业学生本科专业背景不同(有文科,有理工科),所以该部分教学内容难点在于教学进度和难易程度的均衡。本部分内容可安排8~10学时。

第二部分是搜索与推理,对使用特定知识表示方式表达的知识和问题进行推导或搜索,得出相应结论或搜索结果。本部分安排10~12学时,重点在于启发式搜索。

第三部分是人工智能中的典型应用领域。对于该部分内容的选择要以学生专业为中心进行,选择与学生专业相关性较大的领域进行教学,以期能够有助于学生了解并掌握学术的主流发展趋势,从而能够更好地培养自身的科学素养和创新能力。本部分主要学习机器翻译、机器学习、自然语言处理、数据挖掘、多Agent系统等。本部分安排18~36学时。

2 选择“最合适”的教材

教材是教师教和学生学的主要凭借,教材的好坏在很大程度上决定了教师能否成功“教”与学生能否顺利“学”。教材的选择要以教学对象的特点和教学目标为依据,选择最合适的教材。在广泛研读目前比较热门的人工智能教材的基础上,结合教学目标和教学对象的特点,选则清华大学出版社出版﹑蔡自兴和徐光祐编著的《人工智能及其应用》(第4版)[1]作为教材。该教材总体也可以分为三部分:第一部分论述了人工智能的三大技术, 即知识表示;第二部分论述推理及搜索; 第三部分论述人工智能的主要应用领域,包括专家系统、机器学习、自动规划、分布式人工智能和自然语言理解等。与第三版本科生用书相比,增加了如本体论和非经典推理、决策树学习和增强学习、词法分析和语料库语言学等(非常适合笔者的教学对象)。

3 创新型人工智能课程教学方法

“人工智能”课程涉及的知识面广,既包括基础理论,也包括具体应用,即有抽象复杂的计算,也有繁杂的系统实现,为此,如何激发学生的学习兴趣并保持学生的学习兴趣是本课程教学的关键。此外,因为是研究生教学,所以更突出学生的主体地位,注重培养学生的学习兴趣、自主学习的意识和能力。为此,笔者主要采用了以下几种教学方法。

3.1 兴趣引导教学法

常言“兴趣是最好的老师”,如何培养学生对本门课程的学习兴趣,激发学生对本门课程的求知欲,是一门课程首要任务。

为了提高学生的学习兴趣,笔者在第一节课让学生观看美国科幻电影“机器人”的相关片断,通过机器人安德鲁非凡的创造能力、情感表达能力和自学习能力让学生更好地了解人工智能的目标、意义,激发学生探索人工智能的兴趣;在学习“博弈策略”及“极大极小分析法”时,笔者通过让学生来参与“一字棋”对决游戏说明博弈树的层次结构原理,通过“人机对弈”说明“α-β剪枝技术”引入的必要性;通过“啤酒与尿布”的故事说明数据挖掘技术在现实生活中的应用,让学生认识到人工智能并不是虚无抽象的学科,而与人们的生活息息相关,激发起学生用人工智能相关技术解决现实问题的兴趣。

3.2 问题驱动教学法

在讲授基础理论时,如“不确定性推理”、“数据挖掘”等这一类型内容抽象、算法复杂的知识时,采用了问题驱动式的教学方法。

教师首先提出与内容相关的若干问题,并为学生相关的资料或向学生提供找到问题的一些线索,让学生带着问题去思考、分析和讨论等方式来查找答案,主动获取知识,应用知识,教师在必须的时候还需给予一定的引导和帮助。如在讲授产生式知识表示法时,以“动物识别系统”问题原型,给出学生系统模型,让学生编写一个能够用来进行动物识别的应用程序。

此教学法很好地培养学生解决问题的能力,形成研究的态度,提高认知能力。

3.3 实践教学法

“实践是检验真理的唯一标准”。人工智能课程中,能够动手实践的知识一定要让实践。

在讲“专家系统”的构造步骤时,用“营养专家系统”为案例进行介绍,将该专家系统分解为一个个小的具体任务(如知识库构建、规则库的构建、界面设计等),并分配给不同的学生,学生按照专家系统的一般构造步骤去完成相应的任务,最终完成一个完善的系统,从而达到掌握专家系统构建的教学目标。

实践教学法可以提高学生分析、解决问题的能力和动手能力,并可以进一步加深对理论知识的理解。

3.4 案例教学法

案例教学法是将案例讨论的方法运用到课堂教学活动中去,教师根据课堂教学目标和教学内容的需要,通过设置一个具体的案例,引导学生参与分析、讨论、表达等活动,让学生在具体问题情境中积极思考、主动探索,以提高教与学的质量和效果,培养学生认识问题、分析问题和解决问题等综合能力的一种教学方法[4]。案例教学法中教师扮演设计者和激励者的角色,鼓励学生积极参与典型案例的讨论,重点掌握教学进程,引导学生思考,组织讨论研究,进行总结、归纳,同时教师也参与到学生共同研讨。不但可以发现自己的不足,也可以从学生那里可以了解到大量感性资料。该教学法有利于调动学生学习主动性,通过生动具体的案例介绍可以促进学生对知识的理解和实际应用。

人工智能授课中,对于产生式系统和自然语言理解系统的有关概念及系统构成技术,采用了案例教学法。

在介绍产生式系统时,我们以动物识别系统为案例进行介绍。案例教学通常可以分为3个步骤,即案例引入、案例分析和案例总结。案例引入过程介绍产生式的语法和语义、产生式系统的组成及工作原理后,通过屏幕演示动物识别系统的运行过程使得学生能够获得老虎、金钱豹、斑马、长颈鹿、鸵鸟、企鹅、信天翁七种动物的一些特征;案例分析阶段通过向学生展示使用Prolog编写的动物识别系统源程序,详细介绍设计思想以及实现过程。该过程是案例教学的关键,教师引导学生进行案例分析,之后由学生进行补充,师生共同讨论力求系统得以更完善;案例总结阶段由老师对学生的讨论情况进行总结,在总结讨论情况的基础上提出一些问题(例如如何进一步提高系统的效率?)。

在介绍自然语言理解系统时,以自然语言情报检索系统LUNAR[5]为例进行介绍。从LUNAR系统的词法分析、语义解释和问题回答三个阶段进行详细分析。经过案例引入、案例分析和案例总结三个阶段,使得学生对LUNAR系统的设计步骤、关键技术及设计思路有深入的了解。之后,要求学生写出案例分析书面过程,并完成课后作业“指挥机器人的自然语言理解系统SHRDLU”。

4 课程考核方式的改革

研究生教育以培养学生的能力和素质为主要目标。人工智能课程的考核方式也以此为目标,采用以考察理解应用为目的的论述题,或结课论文形式进行,同时注重平时考核。平时考核以学生查资料的能力、阅读相关文献即完成课后作业的情况为考核对象。

5 结束语

为了提高人工智能课的教学质量,根据课程及教学对象的特点,结合教学过程实际问题,采用了合适的教材,安排了合适的学时,在教学过程中综合各种教学方法的优点,并采用了适当的考核方式。教学结果表明,通过这些尝试,提高学生学习的兴趣和积极性,取得较好的教学效果,学生能够有意识地使用人工智能中的相关知识、思想来进行学术研究。

参考文献:

[1] 蔡自兴,徐光祐.人工智能及其应用——研究生用书[M]. 第3 版. 北京:清华大学出版社,2004.

[2] 廉师友.人工智能技术导论[M].西安:电子科技大学出版社, 2002.

第10篇

关键词:人工智能;智能化计算机辅助教学;专家系统;知识库

中图分类号:TP18文献标识码:A文章编号:1009-3044(2007)12-21667-02

The Application of Artificial Intelligence in Education

HU Ji-li,YIN Yun-xia

( Anhui University of Traditional Chinese Medicine, Hefei 230038,China)

Abstract:As a result of the interpenetration of older branches into each other, scientific theories and their application of Artificial Intelligence have expanded into nearly all the areas of human activity. This paper introduces the application of Artificial Intelligence in education, especially deals with Intelligence Computer Aided Instruction based on the artificial Intelligence.

Key words:Artificial Intelligence;CAI;expert system;knowledge base

1 引言

人工智能作为当今世界三大尖端技术(空间技术、能源技术和人工智能技术)之一,是计算机科学的一个分支,它的目标是构造能表现出一定智能行为的。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学和哲学、机器学习、计算机视觉等。总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。人工智能的研究更多的是结合具体领域进行的,主要研究领域有专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决定支持系统和人工神经网络。它总的来说是面向应用的,随着人工智能的诞生和发展, 人们开始把计算机用于教学领域。同时, 自七十年代以来, 有教学能力的专家系统得到研制。人工智能技术与专家系统的成就, 促使人们把问题求解、知识表示这些技术引入计算机辅助教学(CAI) , 这便是智能型计算机辅助教学(CAI)。

近几十年来, 随着人工智能技术的日渐成熟, 它的一些研究成果被陆续应用到教学领域, 推进了教育发展改革和教学现代化进程。人工智能在教学系统的重要性也已形成共识。

2 人工智能在教育中的作用

目前在教育技术中涉及到AI的主要有以下领域:

2.1 知识的表示与访问

基于人工智能的知识表示是以知识为对象,以计算机的软硬件和计算机科学及人工智能和专家系统技术为工具,以哲学、心理学和逻辑学等为方法和指导,将知识表达成计算机可以直接处理的“知识库”,使用“计算机的智能”来模拟人类专家或“人类智能”,对知识进行快速、精确、自动、科学的处理。它不属于通常的“数据管理或信息管理”的“数据”层次,而是属于“知识处理”或“知识”的智能化层次。其主要内容是对于知识进行形式化的表示、自动化的推理,智能化的教学或创造。计算机辅助教育是其中重要的组成部分。

2.2 符号计算

符号计算包括数值计算、符号计算和函数作图。其代表软件是Mathematica,当该软件在1988年第一次,对科技及很多其他领域的计算机使用方式产生了深刻的影响。Mathematica 1.0时,商业周报将其列入当年最重要的十大新产品名单。这标志着现代科技计算的开始。Mathematica也被大量地用于教育:有成百上千的课程,从高中课程到研究生课程用它作基础。随着各种学生版的,Mathematica也已成为全世界各种不同专业学生的重要工具。

2.3 对学生错误的自动诊断

采用人工智能技术,使得教学过程中系统可以自动诊断学生的学习水平,不仅能发现学生的错误,而且能指出学生错误的根源,从而做出有针对性的辅导或学习建议。而且根据学生的特点自动选择教学内容,自动调整教学进度,自动选择教学策略与方法。

2.4 实现智能性超媒体教学系统

超媒体系统有理想的教学环境,容易激发学生的学习兴趣和学习主动性,但不能保证达到预期的学习目的,而且由于不了解所要教的对象,所以不能做到有针对性的指导,不能因材施教。智能辅助教学系统正好与此相反。将二者结合起来,就可实现性能互补,从而研究制出新一代高性能的智能超媒体教学系统。

3 人工智能应用于教育的新方向:ICAI

3.1 传统CAI的不足

传统的CAI由于其集成性、交互性、多媒体性等特点,在教学中可以极大地激发学生的学习动机,提高教师的教学效率和学生的学习效率。但在使用过程中,CAI的一些弱点也逐渐暴露出来。主要表现有:

(1)缺乏人机交互能力

现有CAI 大多以光盘作为信息的载体, 将教材中的内容以多媒体的形式展现出来, 教学信息是按预置的教学流程机械式地提供给学生的, 学生接受起来很被动。而且在课堂教学中, 一般也只能通过教师按预定的课件流程进行操作, 无论学生还是教师都不能很好地参与教与学的过程, 因此人机交互没有很好地实现。

(2)缺乏教师与学生的互动

现有的CAI 课件在学生自学、进行操作使用时,如何学习都是学生自己的事。教师不能完全了解学生的情况,学生在碰到问题时,也不能向教师求助,师生之间是互相封闭的,软件所起的积极效果大打折扣。同时由于缺乏网络支持,现有的绝大多数CAI 课件是在单机环境下运行的,它们无法利用网络的优势使知识内容快速更新,也更无法提供便捷的学习讨论空间、随时随地的师生交流方式以及远程教学实现的条件。

(3)缺乏智能性

要想面对不同情况的学生进行不同程度的教学过程, 使学生的学习变为主动, 并能由系统自动地提供助学信息而有选择地学习,要想使教师的教学能积极地参与进去并根据系统提供的信息按照学生的认知模型为其准备最适合的学习内容, 给予不同方式的教学模式与方法, 没有智能性的CAI 课件系统, 是很难实现以上目的并达到良好教学效果的。由此可见,现有的CAI 随着人们要求的提高, 已经不能尽如人意。因此以智能CAI 为代表的新的计算机辅助教学系统将是教师在教育技术上需要不断探求、努力实现的发展方向索。

3.2 ICAI-人工智能与多媒体技术的结合

为了克服传统CAI的缺点,需要在知识表示、推理方法和自然语言理解等方面应用人工智能原理。因此很多专家提出了智能计算机辅助教学(ICAI),智能计算机辅助教学(Intelligence Computer Assisted Instruction-ICAI)以认知学为理论基础。将人工智能技术应用于CAI,是智能化的CAI。在ICAI系统中,允许学生与计算机进行较自由的对话,学生的应答不限于数字或简单的短语。系统能够判定学生应答的正确程度,并给予适当的反馈,而不是简单地说“对”或“错”。ICAI的宗旨在于利用现有计算机技术实现较好的人工智能,模仿人类的交互方式、思维习惯及情绪流动,修饰和掩盖计算机的缺陷。

3.3 ICAI的优点

(1)将教学内容与教学策略分开,根据学生的认知模型提供的信息,通过智能系统的搜索与推理,动态生成适合于个别化教学的内容与策略。

(2)通过智能诊断机制判断学生的学习水平,分析学生产生错误的原因,同时向学生提出更改建议、以及进一步学习内容的建议。

(3)通过对全体学生出现的错误分布统计,智能诊断机制将向教师提供教学重点、方式、测试重点、题型的建议。

(4)为教师提供友好的教学内容、测试内容维护界面,无需改变软件的结构即可调整教学策略。

(5)通过对学生认知模型、教学内容、测试结果的智能分析,向教学督导人员提供对任课教师教学业绩评价的参考意见。可以说,一个理想、完美的ICAI系统就是一个自主、优秀的“教师”。

3.4 ICAI的标准

以现有的科学技术水平而言,短时期内显然无法实现具备上述全部功能的ICAI系统。一般认为,只要具有下列一个或几个特征的CAI系统就可以称之为ICAI系统。

(1)能自动生成各种问题与练习。

(2)根据学生的学习水平与学习情况选择与调整学习内容和进度。

(3)在了解教学内容的基础上自动解决问题,生成解答。

(4)具有自然语言生成与理解能力,以便实现比较自由的教学问答系统,提高人机交互的主动性。

(5)对教学内容有解释咨询能力。

(6)能诊断学生错误,分析原因并采取纠正措施。

(7)能评价学生的学习行为。

(8)能评价教师的教学行为。

不难看出,ICAI与传统的CAI相比,更加符合教育教学的规律,切合学生的认知习惯,具有明显的优越性。

3.5 ICAI的结构

ICAI主要由三个模块组成:专家系统模块、教师模块和学生模块。

(1)知识库

知识库是实现知识推理与专家系统的基础,而建造知识库的前提则是要解决知识的形式化,人工智能技术在教育中的应用表示以及知识的访问与调用问题。因此,知识的表示与访问是人工智能的核心技术之一,也是将AI引入教育领域必须首先解决的一个难题。

ICAI中的资源库应该包括以下一些内容:

①多媒体素材库:包括所要呈现的知识的一些素材,包括:文本、图像、声音、动画及数字影象等多媒体教学资源。这些用于多媒体数据库管理,便于分类、增删、修改及查询等操作。

②教学内容库:教学内容库用于存放教学内容,包括领域知识库(含辅助知识库、提示帮助库、练习题库,和测试题库)。这些教学内容,包括习题和试题分章、节、课及知识点等有序存贮。供专家决策系统调用。

(2)学生模块

学生模块主要包括以下三个模块:学生登陆模块、学生水平评价模块和学生监督模块。

①学生登陆模块:利用该模块主要用于学生使用ICAI时登录,第一次登录时学生输人姓名、性别、年龄、学历等相关信息,然后对学生进行询问,选择合适的测验题对学生进行初测推荐学习计划。当再次登录时,系统根据保存的信息安排合适的学习内容。

②学生水平评价模块:学生水平测试模块用于评价某一教学单元学习完后测试成绩。通过测试等因素分析,可以比较确切地了解学生的具体情况,从而制定出合理的教学策略和教学过程

③学习监测模块:学习检侧模块用于监测记录学生的日常学习情况,记录学生学习某教学单元时的参数值,并记录在学生档案中。包括:学生目前学习单元号;学习方式;正常学习、练习、提前浏览、学后复习;学习时间;学生提示问题的类型和次数;学生本次练习出错次数。

(3)专家决策模块

CAI中的专家决策系统可以看作专家系统中的推理机。专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统,它应用人工智能技术,模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以达到甚至超过入类专家的水平。计算机中存有人类专家的知识并具有推理能力,从而可解决诊断、规划、调度、预报、决策等要靠人类专家才能完成的任务。

成功的例子如:① DENDRL系统的性能已超过一般专家的水平,可供数百人在化学结构分析方面的使用;②MYCIN系统可以对血液传染病的诊断治疗方案提供咨询意见经正式鉴定结果,对患有细菌血液病、脑膜炎方而的诊断和提供治疗方案已超过了这方面的专家。

ICAI根据学生模块提供的学生学习情况,通过智能系统的搜索与推理,得出智能化的教学方法与教学策略,能够较科学地评估学生的学习水平,还可以通过分析学生以往的学习兴趣和学习习惯,预测学生的知识需求和常犯错误,动态地将不同的学习内容、学习方法与不同的学生匹配,智能地分析学生错误的原因,进而有针对地提出合理的教学建议、学习建议以及改进方法,既提高了学生学习的满意度,激发了学生的学习热情,也对教师教学提供了客观的依据和科学的方法。

4 结束语

由此可见人工智能技术已经逐步应用于计算机辅助教学中,与教学现代化有着密切的关系。人工智能技术的发展也必将会对ICAI 的发展起到巨大推动作用。近几年来,人工智能的研究者们尝试着使学生脱离“辅导学习”的过程来接受新知识,而采用“通过活动进行学习”的方式。在教学的其他方面,人工智能技术还可以建立人类推理模型学习工具等诸多的运用, 展示出越来越好的实用性。随着Internet 的发展,虚拟现实技术的广泛应用, ICAI 也将得到进一步的完善。21 世纪的教育教学手段将是以智能化CAI 为主线,多学科、多方位发展的新技术的体现。这种手段产生了人机交互、人机共生等全新概念,使人类扩展了自己的能力,促进了教育领域方方面面的改革。

参考文献:

[1]王万森.人工智能原理及其应用[M].北京:电子工业出版社,2000.

第11篇

2020年3月3日,教育部公布2019年度普通高等学校本科专业备案和审批结果,人工智能专业成为热门。 人工智能专业探索实践适合中国高等人工智能人才培养的教学内容和教学方法,培养中国人工智能产业的应用型人才。

2、机器人工程专业

机器人工程专业需要掌握工业机器人技术工作必备的知识、技术,有较强实践能力、创新精神。 机器人工程专业毕业后主要从事机器人工作站设计、装调与改造,机器人自动化生产线的设计、应用及运行管理等相关岗位工作,是具有较强综合职业能力的高素质应用型专门人才。

3、电子商务专业

电子商务专业可以分为两个基本方向:电子商务经济管理类方向和电子商务工程技术类方向。经管类方向要求侧重掌握互联网经济和商务管理相关的知识与技能,工程类方向要求侧重掌握互联网技术和商务信息相关知识与技能。 电子商务专业毕业生可从事企事业单位的网站设计、建设与推广和网络维护工作;可从事网络商务贸易活动、网络营销与策划、物流管理等工作,以及在各级学校从事电子商务教学等工作。

4、物联网工程专业

物联网工程专业培养能够系统地掌握物联网的相关理论、方法和技能,具备通信技术、网络技术、传感技术等信息领域宽广的专业知识的高级工程技术人才。 毕业生适应传统媒体机构、政府机关、事业单位、公司等团体组织急需的宽口径、复合型信息传播人才。本专业既能从事信息传播时代内容方面的深度、综合、跨学科的信息传播工作,同时也能在新闻传播技术方面从事设计、制作等方面的传播技术类工作。

5、大数据技术专业

大数据技术被渗透到社会的方方面面,医疗卫生、商业分析、国家安全、食品安全、金融安全等方面。全社会已形成“用数据来说话、用数据来管理、用数据来决策、用数据来创新”的文化氛围与时代特征。 大数据技术毕业生的主要工作岗位有大数据项目实施工程师、大数据平台运维工程师、大数据平台开发工程师等。

6、网络与新媒体专业

网络与新媒体专业旨在培养适应传统媒体机构、政府机关、事业单位、公司等团体组织急需的宽口径、复合型信息传播人才。 学生毕业后可以在各级党政机关、部队、院校、企业等从事网络新闻宣传与媒介传播优化等工作,在国家重点新闻网站、各级报社、广播电台、电视台、传媒集团等单位的信息化管理宣传部门、文化传播公司等从事媒介内容生产与媒介经营管理等工作。

7、网络空间安全专业

网络空间安全专业以网络空间安全专业理论和技术为主,还借助新闻学、法学、情报学等学科的优势,培养既具有扎实的网络空间安全基础理论、专业知识和技术技能,又具有一定网络信息传播知识,且懂法律及管理的复合型人才。 网络空间安全毕业生能够从事网络空间安全领域的科学研究、技术开发与运维、安全管理等方面的工作。其就业方向有政府部分的安全规范和安全管理,包括法律的制定;安全企业的安全产品的研发;一般企业的安全管理和安全防护;国与国之间的空间安全的协调。

8.软件工程专业

软件工程专业需要掌握计算科学基础理论、软件工程专业的基础知识及应用知识,具有软件开发能力以及软件开发实践 的初步经验和项目组织的基本能力。 软件工程专业学生毕业后可以从事各级各类企事业单位的办公自动化处理、计算机安装与维护、网页制作、计算机网络和专业服务器的维护管理和开发工作、动态商务网站开发与管理、软件测试与开发及计算机相关设备的商品贸易等方面的有关工作。

9、学前教育专业

学前教育专业培养具备学前教育专业知识,能在托幼机构从事保教和研究工作的教师学前教育行政人员以及其他有关机构的教学、研究人才。 学前教育专业一直是经久不衰的报考热门,就业率≥85%。各地按照国务院的总体要求和部署,把大力发展学前教育,作为贯彻落实《教育规划纲要》,推进新时期教育事业科学发展的突破口和重要任务。

10、临床医学专业

第12篇

【关键词】人工智能计算机网络技术

一、关于人工智能

1.人工智能的发展

人工智能技术的发展起始于1956年,一直发展至今,经历了三个重要阶段,在第一阶段中,人类实现了让机器人代替人完成计算工作,运用计算机编程,实现了智能的逻辑问题处理工作。第二阶段是人工智能运用到交流系统中,通过计算机将外界的事物变化以及分析外界不可确定因素,传输到逻辑思维分析系统,从而与外界实现交流。第三阶段就是利用人工智能系统强大的处理能力,在很多复杂项目当中进行应用。

2.人工智能的含义

人工智能也可以被称之为机器智能,它是通过计算机网络的模拟技术,赋予机器设备人类的思维方式和语言行为,目的是为了代替人类完成一些难度较大的工作,有助于节省时间和人力资源,提高工作质量和效率。由于人工智能技术的应用非常广范,无论是计算机编程设计,还是智能化程序研究,都可以看到人工智能的参与痕迹,这样的发展不仅能为相关行业创造巨大的经济效益,还会推动产业结构的进一步改变。

3.人工智能的优势

从目前人工智能的应用来看,人工智能具有强大的学习能力不仅能顺利模拟人类的语言行为,完成既定的工作任务,还能够准确筛选和处理复杂的信息数据,尽可能的减少资源损耗,提高网络的运行速度。除此之外,人工智能还具有较强的协作能力,在计算机网络管理方面,人工智能技术与计算机网络技术的联合运用,方便协调网络的管理工作,提高管理效率,减少弊端。

二、人工智能在计算机网络技术应用中存在的问题

1.网络安全问题对人们的正常生活造成威胁

随着互联网的快速发展,越来越多的信息被投放在互联网上,人们随时可以拿出智能手机、平板电脑等终端设备搜索和下载自己所需要的网络信息。但是,这是一个“信息爆炸”的时代,普通的防火墙工作效率较低,数据处理不及时,一些被植入了骚扰病毒和木马程序的页面经过伪装,在用户搜索时自动弹出,不但会造成一定的使用困扰,而且容易引发计算机故障,泄露用户信息,难以保障人们的正常生活和信息安全。

2.良莠不齐的海量信息难以保障信息有效

信息技术普及以后,互联网就像一个蕴含着巨大能源的宝藏,在互联网上,用户都能够轻松获取到海量的信息资源。由于不加甄别和筛选,在这些信息当中,还包含着大量的垃圾信息和广告推送,真正有用的信息却是少之又少。网络信息质量的参差不齐,对信息的有效搜索和利用带来了诸多困难。

3.为不法分子提供了作案工具

近几年来,人工智能的普及范围越加广泛,网络购物、无纸化办公的出现为人们的便利生活创造出了新的可能。与此同时,网络也成为了一些不法分子实施诈骗、勒索的作案工具。在虚拟的网络世界,各类网络攻击和网络犯罪现象层出不穷,难以遏制。犯罪分子通过计算机网络的强大功能,破坏了网络安全,利用网络的缺陷和漏洞,轻松盗取了用户的详细信息,然后对网络系统、数据资料等进行篡改,实施网络犯罪。网上犯罪的作案时间短,手段隐蔽,不会在第一时间被受害者和网警发现,再加上互联网具有无国界性,难以追踪网络犯罪组织的真实IP,给案件侦破和审理带来了极大的困难。

三、人工智能在计算机网络技术中的应用

由于人们对于计算机网络的要求越来越高,为了更好地提升技术水平,安全、高校的人工智能技术必将被应用于人类生活和生产的各个领域。

1.人工智能在网络安全方面的应用

在过去的计算机网络管理工作中,确实存在着很多不稳定的因素,这些因素扰乱了网络环境的运行秩序,造成了一些不良的用户体验。但是,人工智能技术的应用,能够净化网络环境,轻松解决网络安全问题。在过去,由于数据计算量较大,网络中的防火墙工作效率比较低下,很容易被一些“化过妆”的页面蒙蔽,造成用户信息泄露、盗用等问题。但是,由于人工智能技术的介入,现在的智能防火墙系统可以通过记忆、统计,或者概率的方法,对大量的运行数据加以处理和分析,能够快速判断出某一页面是否存在病毒捆绑的问题。智能化识别恶意网站,将这些页面进行过滤,防止造成用户信息泄露,全面提升计算机安全运行的程度。

2.人工智能在信息管理方面的应用

针对人类生活的不同需求,人工智能技术提供了越来越多的智能化、多元化的计算机网络服务,如在互联网信息搜索方面。过去的信息搜索就如大浪淘沙,虽然整体来看搜索到了很多的信息资源,但是真正能用的信息却是凤毛麟角。在人工智能技术应用以后,不但改变了以往的信息搜索方式,还能通过关键词的查询,实现信息的精准定位。除此以外,还可以根据用户的个人喜好、生活习惯等个性因素,优先推送一些用户可能感兴趣的信息。在信息管理方面做出这样的改变,不仅提高了信息搜索的准确率,节省了搜索时间,同时还有效提升计算机网络的工作效率和质量。

3.人工智能在打击犯罪方面的应用

随着科学技术的不断发展,网络犯罪的大量出现已经成为了不可逆转的趋势。据相关数据显示,目前,网络犯罪已经成为了我国最多的犯罪类型。保护用户的网络信息安全,提高计算机网络的防护性能,有效打击犯罪已经是势在必行。人工智能技术在计算机网络中的应用,有助于构建智能化管理系统,在数据信息自动化采集的过程中,及时发现和处理计算机网络中的系统漏洞和不安全因素,预防数据资料被恶意篡改,有效提升安全运营中心的运营效率和网络的管理水平,为打击网络犯罪做出了巨大贡献。