时间:2023-08-23 16:59:59
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇人工智能教育的核心,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
关键词:设计;人工智能;挑战;机遇
一、引言
第四次工业革命的到来,人工智能作为一项主要的技术,必将鞭策整个人类社会的转型。很多国家制订了战略规划,在2017年我国也了《新一代人工智能发展规划》和《新一代人工智能产业三年行动计划(2018-2020)》,人工智能产业已上升为国家战略。近年来,在人工智能涉及的领域中,艺术与技术结合,升华到与人工智能的结合且越来越受到重视。阿里智能AI“鲁班”已经掌握了上百万个设计师的创意内容,双11期间制作1.7亿张海报,没有一张是重复的,而这些工作如果人工制作的话需要100个设计师工作300年;央视节目中“鲁班”PK资深设计师取胜等等这些新闻,无不极大地震撼了整个设计行业。设计师会失业吗?高校的设计教育面对AI的挑战与机遇如何制定培养目标?如何在新的竞争中占领先机?未来已来,智能艺术设计的路在何方?
二、设计行业面对四大挑战
(一)惊人的数字
马云在一次报告中说未来30年人类只工作4个小时,大量的工作岗位会被人工智能抢走;根据白宫的人工智能报告预测,在未来10-20年间,人工智能技术有可能取代47%现有工作。麦肯锡的预测是49%,盛产劳动力的中国和印度的影响最大。Siri之父、人工智能专家温那(Winarsky)的预测是70%的工作将被取代。不得不说,AI是人类智慧的结晶,正在高速颠覆着人们的生活。
(二)AI设计发展趋势
AI最容易取代的是简单设计:如LOGO、UI界面、海报招贴、网站网页、产品造型、室内家装、产品包装……原本这种理想的设计工作不再能提供人生的庇护所,但凡是明确、简单、重复标准、规则的美术设计与制作工作,未来都容易被取代,传统设计行业将会萎缩乃至可能逐渐消失。
(三)设计环境恶劣
设计创意无法保护,设计法规没有限定,设计竞价无序,商家厂家缺乏契约精神,设计知识产权无法保护契约,新设计新技术缺乏情趣,设计同质化严重……(四)设计教育落后现有设计模式传统、设计教育落后,设计知识体系缺乏更新、进化,知识性重复训练、模仿性传统方法制约了学生创造性情感思维的发展,设计师终身教育观念的缺失阻碍了设计师的可持续发展,设计知识与设计人才近亲繁殖、代际传递的情况严重。
三、AIDesign发展迅猛
目前传统艺术设计已经发生智变,使设计更美更快更简单。人工智能艺术与设计已经一定高水平,如果设计师仍停留在传统设计水平,就会受到来自机器的“威胁”。但也不全会,除了“创意”部分让机器无可奈何,人类设计师与机器的竞合中,我们要转变方向注重数字移动媒体策划与设计、移动媒体用户需求挖掘、数字移动媒体需求文档的撰写、数字移动媒体优化、数字移动媒体UI界面设计、H5设计、App设计、UE用户体验设计、虚拟移动媒体设计、信息交互设计等媒体智能设计新技术。高品质艺术、设计依赖于混合增强智能技术。AdobeMax“SneakPeeks”将迎来Adobe全家桶的诸多全新功能,如图片变视频、静态变动态、一键设计字体、视频扣剪、纸盒自动生成、AR呈现、AE一键去马、Ru跨平台制作(剪辑、混音、调色)、跨平台同步改稿、人工智能排版等十大看似很科幻但已经实现了的AI功能。华为Mate20手机3D扫描防生建模与成像,以及AI手势动作捕捉的体感游戏功能,更为我们提供了解放设计生产力的前景。同时MIT研发的工业产品AI设计系统即将面世。主要产品体现如下:
(一)AIVD人工智能视觉设计
AI集成化的成熟产品,比如Adobe系列的产品,软件低层融入AI技术,更好更快地创作文字和图像、影音等元素。如AdobeSensei:人工智能做设计的底层技术,集成在Adobe系列软件中,有字体匹配方案、自动配色方案、基于线稿自动上色、自动校正手绘图形等。
(二)AIPD人工智能产品设计
Adobe人工智能鞋包设计、IBMWatson智能设计服装、Autodesk智能设计汽车等。
(三)AISD人工智能空间设计
Prisma智能风格化设计、Autodesk建筑智能生成设计、ZahaHadid参数化设计等产品。
四、设计人工智能教育的发展动向
未来,人工智能教育会加速发展,老师不会被AI取代,但不用AI的老师一定会被取代;未来,老师不是简单地传授知识,而是通过言传身教的沟通交流,对学生进行激励、鼓舞,成为人类灵魂的设计师;未来,AI将实现规模化和个性化间的平衡,带来了一种学生易学、教师易教的解决方案;未来,老师作为教学过程中始终核心地位,推陈出新积极善于运用AI技术进一步提高师生教与学的体验和教学效率。当务之急,要让更多的老师正视人工智能的快速发展,通过学习AI技术了解人工智能的发展情况,从而改变老师的教育教学观念和教学方法,引领高品质教育的未来。在未来教育中,教师的角色有三种观念:1.取代说,2.不可取代说,3.人机协同说大多数观点是:未来,教师将与人工智能协同共存。未来知识传授功能会逐步被人工智能取代,而人类教师则应偏重于培养学生的核心素养。正如雷克利福德所言,“科技不能取代教师,但是使用科技的教师却能取代不使用科技的教师”。如今,抛开先天财富的不同,人与人之间的差距主要来自学习能力的不同。这种差异会加剧不平等,在未来,这种趋势将会进一步加强。应对人工智能时代,教师除更新教育教学观念、转变角色、改革教学模式和方法外,必须坚持终身学习,教师的终身学习,不仅要学习Python之类的AI编程技术,更需要增强对,限于时间和精力有限,分别将有关AI知识技能分为三类,以适应设计人工智能的技术更迭和“一专多能”。
五、结束语
关键词:人工智能;教学改革;教学方法
引言
人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。
1、教学现状与问题
作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。
2、管理类人才的人工智能课程教学改进策略
课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。
2.1教学方法改进
教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。
2.2教学内容设置
世界一流大学在人工智能课程内容设置根据不同国家的教育体系设置,肯定会有不同,但颇有共通之处。本文借鉴世界顶尖大学经验,针对管理类专业人工智能课程教学内容进行研究,结合中国教育体系设置,认为应从以下几方面进行改进。(1)核心内容设置为避免学生因为知识点过多而出现杂而不精的问题,势必要精化教学内容。在互联网时代,我们可以使用云计算和其他方式来实现数据信息的传输、存储和处理,通过在线收集和整合网络课程相关数据,挖掘和丰富教学资源,并在整合课程资源的基础上,进行研究方法和前沿知识的扩展。在核心内容设置方面,可以通过收集到的数据资料,选择人工智能领域具有代表性且难易程度适中的知识作为重点,使学生能够在有限的学时内掌握人工智能的知识脉络。例如,编写针对管理类人才的人工智能教材,内容涉及绪论、知识表示与推理、常用算法、机器学习、神经网络等方面的同时,重点增加相应知识点在管理上的应用案例,加强学生对知识点的理解。同时,根据管理类专业偏向领域,开设关联程度较大、应用较广泛的人工智能选修课程,以便学生根据自己的兴趣与需求选修具体方向的课程。(2)注重学生的数理及编程基础良好的数理及编程基础是学习人工智能的前提。只有具备了这些基础,才能搞清楚人工智能模型的数量关系、空间形式和优化过程等,才能将数学语言转化为程序语言,并应用于实验。管理学院人才的数理及编程基础相对薄弱,因此,在安排学生学习人工智能课程之前,建议开设面向全体管理类专业学生的微积分、线性代数、概率论等专业基础数学课程以及C语言、python等编程基础课程,使学生具备数学分析的基础与一定编程基础,为学习人工智能课程打下坚实的基础。另外,可以推进MOOC平台建设,在平台上开设人工智能网络课程,帮助学生掌握人工智能知识基础及专业技能。(3)实验建设为了加强学生对于人工智能知识点间的关联性理解,可以基于不同的应用模块,设计具有前后铺垫、上下关联的综合性实验,设计不同层次的项目要求,同时基于相同的实验课题,让学生分组对实验课题进行攻克,并设置多元化的实验评价体系,通过实验教学过程中反映出的不同进度,让教师能对学生的学习水平做出准确评判,及时进行教学反思,以便更好地开展下一步工作。例如,针对人工智能课程应用中很广的遗传算法,在某一管理规划的具体应用上设置理解-实现-参数分析-具体应用-尝试改进-深度拓展的不同层次的项目要求,在这些项目层次中规定必做项与可选项,让学生基于同一实验课题进行合作学习,然后通过个人自我评价、小组成员互相评价以及教师评价的方式进行打分,对小组整体能力以及个人能力进行综合评估,以期培养学生的自主思考能力。
【关键词】人工智能;未来教育;未来学校;创新变革;挑战
【中图分类号】G434 【文献标识码】A
【论文编号】1671-7384(2017)07-0012-03
近年来,世界各国高度重视人工智能技术的发展,相继了相关研究报告。2016年10月,美国白宫了《为人工智能的未来做好准备》和《国家人工智能研究与发展战略计划》两份重要报告。2016年11月,英国政府《人工智能:未来决策制定的机遇与影响》报告。2017年3月,国务院总理发表2017政府工作报告,指出要加快培育壮大包括人工智能在内的新兴产业,“人工智能”首次被写入政府工作报告。当前,人工智能正逐渐融入电商零售、医疗健康、交通以及个人助理等多个领域,并展现出巨大的应用空间。人工智能在教育领域同样拥有巨大的应用潜力,随着知识表示方法、机器学习与深度学习、自然语言处理、智能、情感计算等关键技术的发展,人工智能将在教育领域发挥越来越大的作用[1]。
人工智能在教育中的典型应用主要集中在智能导师辅助个性化教与学、教育机器人等智能助手、居家学习的儿童伙伴、实时跟踪与反馈的智能测评、教育数据的挖掘与智能化分析、学习分析与学习者数字肖像六大方向[1],已经表现出巨大的应用潜力。学校作为教育活动的重要组织场所之一,人工智能将为学校的管理与教学带来变革性的影响,主要表现在四大方面:维护校园安全、辅助教师教学、变革学习范式以及优化学校管理。
维护校园安全
校园安全是顺利开展学校教育活动的基础,也是教育改革和发展的基本保障。《国家中长期教育改革和发展规划纲要(2010-2020年)》指出,要“切实维护教育系统和谐稳定,深入开展平安校园、文明校园、绿色校园、和谐校园创建活樱为师生创造安定有序、和谐融洽、充满活力的工作学习生活环境”[2]。计算机视觉与机器人技术的发展使得人工智能维护校园安全成为可能,其将在非法人员识别、消防安全预警、活动事故防护三个方面发挥重要作用。
1. 非法人员识别
部署保安机器人将是未来学校保证维护校园安全的重要措施之一。保安机器人能通过眼部的图像采集设备采集进入校园人员的面部信息,识别当前人员身份,若未检测到相关人员信息,系统则会通知学校的安保人员进行身份验证、登记等工作。同时,位于校园各处的保安机器人还将实时监控是否有陌生人通过非正规途径进入校园,检测到相关行为之后,则会通知学校安保人员进行处理。此外,位于学校门口的保安机器人还将采集学生的面部信息,与信息库中的学生信息相比对,确定学生身份,并记录学生到校与离校时间,确保学生在校期间的安全。
2. 消防安全预警
未来学校的消防安全预警系统包含了感烟探测器、感温探测器、火焰探测器、可燃气体探测器等多种感应器,同时通过摄像设备实时采集图像信息,分析画面中是否出现明火、烟雾等现象。其综合图像分析与探测器感知,判断是否有火灾现象发生。此外,系统通过实时采集校园内人员的行为数据,与数据库中消防安全危险行为做比对,分析是否有相关危险行为发生。若危险行为发生,则会通知学校安防人员。在火灾发生时,拥有智能搜救技术的消防机器人将会代替人进入火灾发生区,通过生命探测仪,自动感应、搜索、识别被困人员,将其救出火灾发生区。消防机器人的部署很大程度上避免了人员进入火灾发生区受到二次伤害现象的发生,其机动性超越了现有的消防安全系统,在很大程度上保证了校园内师生生命和财产安全。
3. 活动事故防护
目前,校园课间活动的伤害事故主要表现在拥挤踩踏伤害、追逐打闹伤害、危险游戏伤害等三个方面。基于人工智能的活动事故防护系统通过校园内的摄像设备实时采集师生行为数据,通过与数据库中活动事故危险行为模型相比对,分析判断是否有危险行为发生。若相关行为发生,系统则会将相关危险行为发生的地点、类型等发送给学校的安防人员,提醒安防人员采取相应措施。
辅助教师教学
随着图像识别、语音识别、自然语言处理等技术的发展,越来越多的人工智能工具被应用于教育领域,成为教师教学的得力助手。教育机器人和智能作业测评工具的出现大大减轻了教师的负担,提高了教师教学的效率。
1. 辅助备课
备课是真实教学实践的预演,是应用教师知识并发展教师知识的过程。其既是确保教学质量的条件,也是教师专业发展的途径[3],是教师教学的重要组成部分。备课机器人能够通过语音识别记录教师话语信息,利用自然语言处理技术分析整合教师话语信息,识别教师要求。备课机器人根据教师提供的教学目标、教学重难点、学生的基础知识等,在相关学科的知识库中进行资源的搜索与整合,形成电子教案。同时,根据教案内容为教师提供课堂测试习题以及上课所需课件。教师只需要根据所教班级的学生特点与自己的教学习惯,对教案、测试习题以及课件稍作调整即可应用于教学。
2. 智能作业测评
自然语言处理技术的进步使得作业自动批改成为可能。科大讯飞将“讯飞超脑”计划的阶段性研究成果“全学科阅卷”技术应用于考试,实现阅卷过程的数据化与自动化,在将教师从简单重复的阅卷工作中解放出来的同时,完成对考试数据的采集[4]。基于人工智能的作业评测系统可对作文、阅读等主观题进行语义识别并提出修改意见,根据学生的作业结果为教师自动生成详细的学情报告。智能作业评测技术的应用将有效分担教师的教学压力,显著提高教学效率,教师能够更多地专注于与学生互动、教学设计和专业发展。
3. 辅助课堂管理
在未来,教辅机器人将走进教室,辅助学生解决学习中遇到的难题。教辅机器人能够识别学生身份,读取学生当天所学课程信息以及学生在课堂的行为数据,为学生提供个性化解题方案奠定基础。教辅机器人通过语音识别获取学生问题信息,利用自然语言处理技术分析整合学生话语信息。然后,教辅机器人通过人脸识别采集学生的面部信息,综合面部表情、姿态和语调通过情感计算技术分析目前学生的情绪状态,综合学生的情绪状态和行为数据确定学生当前学习状态。教辅机器人依托优秀教师授课资源库,智能搜索相关答案,针对不同学习状态的学生采取不用的解题风格。此外,教辅机器人将收集到的学生行为数据上传到学生管理系统,辅助教师等进行学生的日常管理工作。
变革学习范式
学习范式是指特定时代的学习共同体所共有的学习理念、学习方式,并对学习者的学习态度、学习行为产生积极的引导作用,以促进学习的有效进行[5]。人工智能技术的发展使自适应学习系统真正地为教育所用,为学习所用,人工智能将使现有的学习范式走向自适应学习。
自适应学习系统在本质上是一类支持个别化学习的在线学习环境。它针对个体在学习过程中的差异性(因人、因时)而提供适合个体特征的学习支持,包括个性化的学习资源、学习过程和学习策略等[6]。基于人工智能的自适应学习系统将整合自适应内容、自适应评估和自适应序列三种工具。自适应内容通过分析学生对问题具体的回答,为学生提供个性化的内容反馈和学习资源推送。自适应序列利用一定的算法和预测性分析,基于学生的学习表现,持续收集数据。其中在数据收集阶段,自适应序列会将学习目标、学习内容与学生互动集成起来,再由模型计算引擎对数据进行处理以备使用。自适应评估可根据学生回答问题的正确与否,及时改变和调整测评的标准。
优化学校管理
学校是教育的核心单元,高效的学校管理是学校开展各项工作并得以高效运行的重要保障[7]。人工智能的融入将使未来学校的管理工作更加高效,使学校更好地服务于教师的教学与学习者的学习。其将在考务管理、教师管理、学生管理三方面发挥重要作用。
1. 考务管理
在未来的学校中,监考机器人将代替监考人员进行考务工作,很大程度上节省学校考务管理方面的人力资源。监考机器人通过内置于眼部的摄像头采集学生的面部信息,与数据库中学生信息比对,确定学生身份,自动完成签到。其通过内置于手臂端的金属探测器,扫描学生全身,z测学生是否带有作弊物品。监考机器人通过摄像头、红外感知等确定学生位置以及教室内的桌椅等位置,规划行动路径,分发和收集试卷。此外,监考机器人还将通过位于眼部的摄像头实时采集学生行为数据,与数据库中作弊行为实时对比分析,如果学生有作弊行为发生,则会立即制止,维护考场纪律。
2. 教师管理
教师管理是学校管理工作中的重要组成部分,教师评价则是教学管理中的核心部分。人工智能为教师的智能评价提供了可能。基于人工智能的教师评价系统通过教室的摄像设备实时采集教师及学生的行为数据、表情数据,通过学生的穿戴设备采集其体征数据。系统经过对教师和学生的行为数据、情绪数据和体征数据的分析(如系统与学校的学科管理系统相连通,确定教师的教学内容是否与教学大纲要求相适应,重难点是否突出,所讲述内容是否具有实用性;教师讲授知识时,根据学生的行为、情绪和体征的反应确定教师所讲授知识是否被学生理解;教师在讲授内容和组织学习活动时,语言是否规范、清晰,态度是否亲切和蔼等),最终评定教师的教学效果,并生成可视化报告,辅助学校完成对教师教学效果的评估工作。此外,系统还将通过教室的摄像设备采集教师面部信息,识别教师身份,自动记录教师的出勤情况,辅助学校的教师管理工作。
3. 学生管理
学生管理在学校管理中同样发挥着重要作用。基于人工智能的学生管理系统可通过位于学校门口以及教室的摄像设备采集学生面部信息,识别学生身份,自动记录学生的到校时间和离校时间,为学生的出勤考核提供数据支持。通过位于教室的摄像设备实时采集学生的行为数据,分析学生的课堂表现以及课余时间的同学之间的交流情况,为学生管理的班风、学风管理提供决策支持。同时,通过分析学生的学习成绩、课堂表现、课下交流情况,判断学生是否有异常行为(趋向),并及时反馈给学校管理者。此外,系统还将学生的在校情况,包括到校时间、离校时间、测试成绩、作业完成情况等反馈给学生家长,家校协同完成学生管理工作。
让机器在没有人类教师的帮助下学习,让机器像人类一样感知和理解世界,使机器具有自我意识、情感,以及反思自身处境与行为的能力,是人工智能面临的主要挑战[8]。除此之外,人工智能在教育领域中的应用目前还处于初级阶段,在学校的管理与教学应用方面仍面临着数据基础薄弱、决策和推理机制适应难、缺乏专业应用人才等挑战。
(作者单位:江苏师范大学智慧教育学院)
参考文献
闫志明,唐夏夏,秦旋等. 教育人工智能(EAI)的内涵、关键技术与应用趋势――美国《为人工智能的未来做好准备》和《国家人工智能研发战略规划》报告解析[J]. 远程教育杂志,2017(1): 26-35.
程天君,李永康. 校园安全:形势、症结与政策支持[J]. 教育研究与实验,2016(1): 15-20.
翁春敏,陈群波. 基于教师情境知识的备课研究――国外研究的视角[J]. 外国中小学教育,2015(5): 51-57.
搜狐教育. 科大讯飞吴晓如:互联网+人工智能时代的教育变革[EB/OL]. http: // sohu. com/a/69484549_372506,2017-6-15.
George R. Boggs. What Is the Learning Paradigm? [EB/OL]. http: //vccslitonline. cc. va. us/mrcte/learning_paradigm. html, 2017-6-13.
陈仕品,张剑平. 基于EAHAM模型的适应性学习支持系统体系结构[J]. 电化教育研究,2008(11): 53-57+82.
【摘 要】以江苏省句容高级中学开展的机器人教育为例,阐述了机器人教育在信息技术课程改革中的地位和作用。以机器人教育作为信息技术课程的重要内容之一,句容高中的做法和经验值得学习。
【关键词】机器人教育;信息技术;课程改革
【中图分类号】G633.67 【文献标识码】A 【文章编号】1005-6009(2015)22-0068-01
【作者简介】赵春声,江苏省镇江市教育局教研室(江苏镇江,212000)教研员。
随着科学技术日新月异的发展,人类社会正进入以机器人为代表的智能化时代,机器人教育越来越受到人们的关注。在一些发达国家,机器人教育已经在中小学得到了普及,在我国基础教育阶段,机器人教育才刚刚起步。因此,在信息技术课程中开展机器人教育成为信息技术课程改革发展的一个趋势。江苏省句容高级中学的机器人创新教育课程基地在这个方面做出了积极的可贵的探索。
首先,机器人教育可以成为学习程序设计的基石。基础教育用到的机器人的编程软件功能简单,大都具有图形化、模块化的特点,它能够通过靠鼠标的拖拽实现编程,不像一般程序设计语言那样要记很多语句。同时,所有编写出来的程序都能执行,程序中出现错误能够在编写中指出,不会出现运行中出错的情况。虚拟机器人通过软件平台对所编写的程序进行仿真,实体机器人通过硬件的实际行动来执行人们编写的程序,使初学编程的人不再觉得编写程序是抽象的、没有具体运用价值的一件事,而是实实在在地看到自己所编写的程序的功能与作用。
其次,机器人教育可以作为人工智能的学习平台。机器人是人工智能研究与应用的一个具体领域。随着微电子和人工智能技术的发展,目前的机器人大都配有相关的智能部件。在高中阶段开展对机器人的探索和研究,通过对看得见、摸得着的人工智能实际应用的问题展开教学,能够使学生受到有关人工智能科学的启蒙教育,既能促进学生的个性发展,又能促使学生未来产生对信息技术的追求。
再次,机器人教育是培养学生实践能力与创新精神的载体。当今全球基础教育改革的趋势就是,以知识为核心的教育逐步转变为以能力为核心的教育,知识成为学习的载体而不是目标,机器人教育正是体现这一教育思想的最佳方式之一。
机器人的硬件系统和软件系统是一个有机的整体,两者相互支撑,相互作用,缺一不可。在机器人的教学和学习中,既需要编写程序,又需要硬件的搭建,因此,在机器人教育中,需要学生动脑与动手相结合,需要学生能够创新思维。在一些机器人比赛中除了规定项目外,还有创意项目,重点展示选手自己设计制作的机器人。创意项目更多地展示了学生的创新能力与实践能力、合作能力和应变能力。
正如当初多媒体计算机的普及对教育领域产生了重大影响一样,机器人的诞生和发展也必将在教育界引起一次翻天覆地的变化。有专家预言,信息技术教育的未来必然导向机器人教育。如果把20世纪80年代称为PC时代,把互联网飞速发展的20世纪90年代称为Inter时代,那么21世纪将是PR(个人机器人)时代。
一、判断题(每题2分)
1.智慧社区包含的核心内容是它可以起到一个重要的桥梁作用,通过信息的收集,通过大数据的分析,通过物联网使服务的提供能够和需求结合在一起,最终使人们得到更加优质的、更加相对便宜的、更加有效的、更加个性化的服务。
正确
错误
2.家庭规模缩小强化了代际支持能力。
正确
错误
3.中国的预期寿命排名较低。
正确
错误
4.从老龄研究的角度,智慧养老能够解决根本性的问题。
正确
错误
5.社区老年服务集成平台的预测作用包括准确得知老年人生活的种种需求。
正确
错误
6.对于如何高效率、低成本地解决养老问题只针对城市地区而言。
正确
错误
7.大数据的价值重在挖掘,而挖掘就是分析。
正确
错误
8.大数据在我们日常生活中很少接触到。
正确
错误
9.以大数据应用促进医药分离改革,遏制虚高药价。
正确
错误
10.当前世界的四大趋势包括“经济全球化”、“全球城市化”、“全球信息化”和“城市工业化”。
正确
错误
11.美国在人工智能方面取得了较好的成果。
正确
错误
12.《在英国发展人工智能》中提出了:数据、技术、研究、政策上的开放和投入四个方向。
正确
错误
13.1956年10月,中国科学院筹建了中科院自动化及远距离操纵研究所(后更名为中科院自动化所)。
正确
错误
14.20世纪80年代初期,钱学森等主张开展人工智能研究,中国的人工智能研究进一步活跃起来。
正确
错误
15.人工智能在医疗领域还存在一些问题。
正确
错误
16.只要人类搞清楚的问题都容易被机器人所取代。
正确
错误
17.医联合体发生在基层和专科医院之间。
正确
错误
18.作为影响深远的颠覆性技术,人工智能可能改变就业结构、冲击法律与社会伦理、侵犯个人隐私、挑战国际关系准则等,对企业管理、个人安全、社会稳定乃至全球治理带来挑战。
正确
错误
19.我国新一代人工智能发展的指导思想和基本原则是要推动互联网、大数据、人工智能和实体经济深度融合,培育新增长点,形成新动能。
正确
错误
20.2016年9月开始,微软的技术与研发部门和人工智能(AI)研究部门相互分离,各司其职。
正确
错误
二、单项选择(每题2分)
21.医疗健康数据的应用包括:药物研究、病人行为及其相关数据、( )、管理医疗社保基金。
A.临床研究 B.科学研究 C.涉密研究 D.门诊诊断
22.发展网信事业战略的目标:加强领导、统筹规划和依靠( )紧密协同。
A.产、学、用 B.产、学、研 C.社会分工 D.产、学、研、用
23.基础技术提供平台主要是( )平台,这些云平台为人工智能实现大规模的实时计算提供了计算基础。
A.云计算 B.互联网 C.云计算、大数据 D.大数据
24.2017年谷歌无人驾驶汽车可以对不同场景进行学习,如( )、城市道路、过桥等。
A.泥泞路 B.平路 C.乡间小路 D.山路
25.腾讯AI政务基于腾讯微信、QQ等平台自身连接能力,提供( )、智能服务、智能分析和智慧应用等服务。
A.精准推送 B.实名认证 C.智能核身 D.勾勒用户图像
26.牢牢把握新一代人工智能发展战略机遇,坚定不移地把发展人工智能放在提高社会生产力、提升国际竞争力、增强综合国力、保障国家安全的战略支撑的( )位置。
A.全局核心 B.重点突出 C.关键部分 D.战略中心
27.微软自然语言计算组成立于 1998年,专长于( )、输入法、问答、社交、文本挖掘等。
A.翻译 B.收集 C.处理 D.校对
28.2016年5月,美国白宫成立了( )和机器学习委员会,协调全美各界在人工智能领域的行动,探讨制定人工智能相关政策和法律。
A.人工智能 B.制造 C.无人驾驶 D.I技术
29.欧盟的人脑计划旨在通过计算机技术模拟大脑,建立一套( )的生成、分析、整合、模拟数据的信息通信技术平台。
A.创新 B.全自动 C.全新的、革命性 D.智能
30.德国“工业4.0”计划涉及到的机器感知、( )、决策以及人机交互等领域。
A.规划 B.识别 C.应用 D.操作
31.2017年,日本政府制定了人工智能产业化路线图,计划分( )阶段推进利用人工智能技术,大幅提高制造业、物流、医疗和护理行业效率。
A.4个 B.2个 C.5个 D.3个
32.人工智能的发展要素:算法+( )+数据。
A.编程 B.数学 C.模拟 D.计算能力
33.国家加大对人工智能关键技术研发的支持力度,人工智能已成为我国的战略( )。
A.发展重点 B.中心 C.要素 D.核心
34.百度、腾讯、阿里巴巴、科大讯飞等企业积极布局人工智能领域,抢占产业( )。
A.发展制高点 B.发展先机 C.发展 D.发展机遇
35.对人工智能发展态势的判断中的新挑战是指人工智能发展的( )带来新挑战。
A.不确定性 B.负面影响 C.积极性 D.不稳定性
36.碳云智能成立于2015年10月,希望建立一个健康大数据平台,运用人工智能技术处理这些数据,帮助人们做( )。
A.日常起居 B.健康管理 C.医疗检查 D.生活管理
37.百度的Apollo(阿波罗)计划,即百度将向汽车行业及自动驾驶领域的合作伙伴提供一个开放、完整、安全的软件平台,帮助他们结合车辆和硬件系统,快速搭建一套属于自己的完整的( )系统。
A.自动驾驶 B.自动操作 C.智能驾驶 D.无人驾驶
38.我国新一代人工智能发展的总体部署中构建一个体系是指构建( )的人工智能科技创新体系。
A.对外开放 B.互惠互利 C.合作共赢 D.开放协同
39.互联网医院要依托于( )建设。
A.现有实体 B.信息共享 C.互联网 D.分级诊疗
40.《打造智慧社区,优化居家养老(下)》认为,发展智慧养老服务可以带动我国哪些经济领域的发展( )。
A.制造业 B.服务业 C.娱乐业 D.农业
三、多项选择(每题2分)
41.人工智能的智能硬件其交互方式出现( )直接交互。
A.手势 B.语音 C.体感 D.眼神
42.人工智能能够对( )的安全进行防护。
A.个人 B.医疗 C.金融 D.城市
43.( )的融合创新是智能安防发展的重要切入点。
A.人工智能 B.体感 C.音频 D.视频
44.人工智能产业体系的融合产业有( )。
A.智能金融 B.智能客服 C.自动驾驶汽车 D.智能制造
45.人工智能应用类企业的切入领域有( )。
A.机器人 B.智能家居 C.教育培训 D.医疗设备
46.广泛开展人工智能科普活动,做到( )。
A.支持开展形式多样的人工智能科普活动
B.鼓励科学家参与人工智能科普
C.建设和完善人工智能科普基础设施
D.支持开展人工智能竞赛
47.智慧社区的渊源包括( )。
A.原始社会 B.工业社会 C.农业社会 D.信息化社会
48.智慧社区的三级指标包括( )。
A.保障体系 B.便民服务 C.社区治理与公共服务 D.主题社区
49.中国人口老龄化面对的挑战有( )。
A.人口流动频繁,家庭养老能力不足
B.代际关系变化,老年居住空巢增加
C.预期寿命延长,照料需求压力加大
D.家庭规模缩小,代际支持能力弱化
文章编号:1004-4914(2017)05-148-02
一、引言
互联网金融经历了过去几年的高速发展后,带给了人们新的感受。随着2016年4月12日,国务院印发《互联网金融风险专项整治工作实施方案》以来,整个行业正在进行一次“价值回归”,P2P等平台类模式正在减少,靠着拼渠道、流量和高收益的红利时代已经过去,精细化、差异化、技术化的运营和创新将是互联网金融这个阶段的主题,人工智能将在互联网金融领域发挥越来越重要的作用。
一直以来,金融领域个性化的服务都是依赖于“人”的服务。但从2016年开始,机器正在尝试取代人在财富管理服务中的位置,随之而来的是智能投顾服务。举个例子,在美国,券商、资管纷纷开始设立互联网金融平台,以互联网财富管理类的服务为主,目的是捕获更多中小投资者,在现有的证券业务体系之外培育新的增长点。贝莱德收购Future Advisor、Fiidelity与Betterment展开战略合作、Vanguard推出自己的智能投顾服务、嘉维证券与宜信合作进入中国市场开展智能投顾服务。这样的例子还有很多,这背后是传统金融机构对技术所能产生的势能的认可。国内的智能投顾玩家也很多。其中,宜信和品钛这样的在新兴市场上已经相对成熟的公司已经推出了自己的智能投顾服务。此外,还有大量早期创业公司直接以此为方向,比如弥财、钱景财富、蓝海财富等。
二、人工智能在互联网金融领域的应用情况
(一)人工智能在互联网金融领域应用的必然性
2016年以来央行、其他部委以及最高法院都了关于互联网金融的指导意见,分别是《关于促进互联网金融健康发展的指导意见》、《非银行支付机构网络支付业务管理办法》以及《最高人民法院关于审理民间借贷案件适用法律若干问题的规定》。这些政策性文件的出台,预示着这个行业在政策红利和边界较为模糊的情况下实现的业务的快速发展模式已经走到了尽头。随着后期监管文件的逐步下发,门槛的设立,要求的标准化,很多后来者已经丧失了最好的入局机会,而现有的稳健平台,则迎来了最好的发展机遇。对于互联网金融企业而言,要适应政府的监管,获得客户的支持,要取得自身的发展,只能依托于人工智能。长时间以来,人工智能在互联网金融领域的应用及重要性被频繁提及。近日,《中国互联网金融发展报告(2016)》新书在京,该《报告》执行主编、中科金财董事长朱烨东表示,未来互联网金融行业发展将逐渐走向正规、规范,移动支付的不可逆转,大数据、云计算在互联网金融的核心地位进一步加强,金融科技将成为未来互联网金融发展的主要趋势。
(二)人工智能极大提高了互联网金融的效率
作为百业之母的金融行业,与整个社会存在巨大的交织网络,沉淀了大量有用或者无用数据,包括各类金融交易、客户信息、市场分析、风险控制、投资顾问等,数据级别都是海量单位。同时大量数据又是非结构化的形式存在,如客户的身份证扫描件信息,既占据宝贵的储存资源、存在重复存储浪费,又无法转成可分析数据以供分析。金融大数据的处理工作面临极大挑战。通过运用人工智能的深度学习系统,能够有足够多的数据供其进行学习,并不断完善甚至能够超过人类的知识回答能力,尤其在风险管理与交易这种对复杂数据的处理方面,人工智能的应用将大幅降低人力成本并提升金融风控及业务处理能力。
说到人工智能,不得不提的一定是AlphaGO,但是在互联网金融领域,有一个比AlphaGO更加强势的公司,这家公司的名字叫Kensho。这是以前高盛出来的分析师团队,把整个高盛的经验模拟,通过机器取代现在大量的人工,进行相应的投资、分析、决策。而且在信息,在互联网传播非常快的时候,他们去除掉了大量的噪声,回归到这个事情的本质。很快高盛发现了这家公司的发展速度和未来价值,直接把它私有化,直接变成第一大股东,因为发现这中间带来的差别是这个企业的核心竞争力。
Kensho公司的核心技术就是能在两分钟之内做出一份一份简明的概览,随后是13份基于以往类似就业报告对投资情况的预测。而你根本就不需要去检查这些数据分析,因为这些分析是基于来自十个数据库的成千上万条数据。如果没有这些人工智能,分析师们可能要花上几天的功夫收集梳理这些数据,而等他们分析完成后,市场的行情早瞬息万变。
可见,人工智能的引入对于互联网金融领域的效率提高是呈几何式的,你很难想象也不敢相信这么一个事实:未来的投资大师们可能是一堆机器。
(三)人工智能将互联网金融带入智能金融时代
互联网金融发展至今一共经历了两个阶段:第一个阶段是网络金融,把现有的金融产品搬到互联网上,互联网上面现在卖基金、卖理财、卖信托、卖保险。第二个阶段是大数据金融阶段,通过数据重新去定义相应的金融产品和相应的金融服务。第三个阶段正在萌芽,就是人工智能+互联网金融的阶段,网络上有人称之为智能金融时代。
从目前宁波当地的互联网金融企业发展来看,目前还停留在“互联网+金融”的模式:在传统金融服务上进行叠加,将互联网式思维、互联网式管理、互联网式数据融合进传统金融服务,而这正是现在大部分互联网金融服务提供商正在做的事情。“互联网+金融”的模式也正在让金融进入“普惠金融”的阶段,通过互联网金融对传统金融机构进行补充,让更多的人平等的享受到金融服务。但是,“互联网+金融”的模式下,信息安全、投资风控、资产调节等方面问题仍然存在,一定程度上说,互联网增加了信息风险,也正是如此,摸索期的互联网金融行业才会出现P2P跑路的现象,仅2015年,宁波当地的P2P公司跑路就多达9家之多。
人工智能是大趋势,从阿尔法狗的表现以及人工智能在互联网金融领域的运用来看,互联网金融在人工智能的改造下将不再局限于“互联网+金融”,而是逐渐向“互联网+金融+大数据+人工智能”转变。人工智能起到串联起互联网、金融、大数据,实现更加智能的精确计算的作用,实现大脑一般的思考,解决“互+金”模式下的诸多痛点。
从理财顾问、征信助手、智能风控系统、防范性金融系统这四个层面来看,整个互联网金融领域正在朝着越来越“技术范儿”的方向上前进,金融智能化成为大势所趋。智能金融的机器学习功能,让产品背后的逻辑系统可以快速适应场景数据,建立合适的评分规则、决策体系,真正给现在的互联网金融带来颠覆性的变化。无论是消费金融领域还是风控层面上,互联网金融在人工智能的配合下正在呈现出无与伦比的崭新打法。这也正是阿尔法狗打败李世石之后,给金融智能化带来的全新想象。
(四)人工智能将颠覆互联网金融时代的风控体系
汇总整个互联网金融本质,其实存在两个层次风险,一是道德风险,二是经营性风险。面对2016年不断有“跑路”等负面消息萦绕的互联网金融,去伪存真或成为首要任务。一些企业资金并没有进入到实体业务,而是进入庞氏骗局,而去年出台的监管意见征求稿,监管层管理方向还是较为清晰的,希望通过资金的有效监控,将企业资金与个人用户之间的资金进行分离,规避风险。然而人力毕竟有限,不可能时刻紧盯住所有互联网金融机构,这时引入人工智能监管就十分必要。
人工智能已经在无人驾驶、图像处理、语音识别方面取得了突破性的应用,那互联网金融领域呢?李开复老师曾谈及人工智能应用的三个要素:数据、处理数据的能力和商业变现的场景。人工智能解决金融界问题的过程,很好的对应了这三个要素。也许,金融领域是人工智能最合适不过的颠覆场景。
在金融业务的前端,已经有不少传统银行将人工智能用于为客户定制服务,开发理财产品的应用。例如巴克莱银行和花旗银行等。国内银行中走在科技前列的招商银行,也开始试用全新的人工智能业务模式。未来人工智能和机器学习技术在金融业前端会有更多的便捷精准服务提供给客户。
那么金融应用领域的后端呢?信息安全、投资风控、资产管理等方面的问题成了新问题,对于躲在触屏手机背后的客户,缺失了央行数据的客户,银行没有办法通过一双双眼睛去看到用户是谦谦君子还是骗子流氓。这个时候,金融后端,传统金融风控手段覆盖不到和难以触及的,那么“互联网+金融”业务就要结合更广泛的互联网数据和人工智能手段,来处理更广泛的金融客户问题。
(五)人工智能技术在金融领域应用案例
Google、IBM等国际巨头公司已经将人工智能技术渗透在各种产品的方方面面,总体上看,国内金融行业也逐步开始应用人工智能技术,随着国内双创政策的推动和对人工智能产业的投资拉动,预计广泛应用节点即将到来。
1.阿里巴巴旗下的蚂蚁金服下设一个特殊的科学家团队,专门从事机器学习与深度学习等人工智能领域的前沿研究,并在蚂蚁金服的业务场景下进行一系列的创新和应用,包括互联网小贷、保险、征信、智能投顾、客户服务等多个领域。根据蚂蚁金服公布数据,网商银行的花呗与微贷业务上,使用机器学习把虚假交易率降低了近10倍,为支付宝的证件审核系统开发的基于深度学习的OCR系统,使证件校核时间从1天缩小到1秒,同时提升了30%的通过率。以智能客服为例,2016年“双11”期间,蚂蚁金服95%的远程客户服务已经由大数据智能机器人完成,同时实现了100%的自动语音识别。当用户通过支付宝客户端进入“我的客服”后,人工智能开始发挥作用,“我的客服”会自动“猜”出用户可能会有疑问的几个点供选择,这里一部分是所有用户常见的问题,更精准的是基于用户使用的服务、时长、行为等变量抽取出的个性化疑问点;在交流中,则通过深度学习和语义分析等方式给出自动回答。问题识别模型的点击准确率在过去的时间里大幅提升,在花呗等业务上,机器人问答准确率从67%提升到超过80%。
2.2015年,交通银行推出智能网点机器人,并引发了金融银行界的广泛关注。它为实体机器人,采用语音识别和人脸识别技术,可以人机进行语音交流,还可以识别熟悉客户,在网点进行客户指引、介绍银行的各类业务等。在语言交流过程中,它能回答客户的各种问题,缓解等待办理业务的银行客户潜在情绪,分担大堂经理的工作,分流客户,节省客户办理时间。
3.百度教育信贷实现“秒批”。“人工智能对于金融也会产生变革性影响,可以真正做到让征信升级”。6月8日,在2016百度联盟峰会上,百度董事长兼首席执行官李彦宏特别提到人工智能正在重构包括金融在内的传统产业。他特别强调,“现在百度的教育贷款,基本上是以‘秒’的时间可以决定是不是给一个人贷款。”李彦宏讲到的百度教育信贷的“秒批”,其具体的操作程序非常简单,用户想要获取百度消费信贷服务,只需在百度钱包APP“教育贷款”板块上传身份证,系统就能自动比对、确认用户身份信息,并根据信用记录判定用户所需的服务类型或额度,不仅能实现远程审批,审批时间更可缩短至“秒批”级别。秒批依靠的是百度以大数据和人工智能为基础的严谨风控体系。借助“大数据+人工智能”技术,百度风控部门为有信贷需求的群体绘制用户画像,建立信用体系,加上图像识别等人工智能技术的实际应用,构成了秒批的技术基础。
4.宁波聚元集团旗下超人贷平台自2014年上线以来,发展迅速,以高效风控、低成本控制、低坏账率享誉业内,平台注册会员超过1万人,线上累计交易金额已突破2亿元,稳定健康的发展道路使得平台处于整个大市行业中领先地位,并受到CCTV2、CCTV7央视正面报道,成为浙江地区首批在央视上榜的互联网金融品牌。超人贷平台除了将资金交由第三方商业银行或有资质的资金托管机构进行托管,建立信息披露制度,充分披露融资项目、经营管理等信息外,最重要一个突出优势就是采用先进的人工智能对每一笔交易?M行实时监控,监控信息还可面向公众开放。自创立以来发展稳健,越来越受到客户青睐。
关键词:人工智能;会计软件开发技术;翻转课堂;知识库;会计信息化
一、引言
近年来,随着云计算、人工智能、大数据和移动计算等新技术的发展与应用,知识管理理念的日趋成熟,新兴技术对高等学校教育教学模式的改革与创新带来了良好的机遇。2012年3月13日,教育部印发的《教育信息化十年发展规划(2011-2020年)》,旨在推进信息技术与教育教学的深度融合,实现教育思想、理念、方法和手段全方位创新。2016年6月7日,教育部颁布实施的《教育信息化“十三五”规划》,以期加快推动信息技术与教学教育的融合发展。这些政策的出台为高校翻转课堂教学模式的发展提供了明确的实施导向和政策支持,也为重庆理工大学会计信息化国家级精品课程之《会计软件开发技术》(AccountingSoftwareDevelopmentTechnology,以下简称为ASDT)课程实施翻转课堂教学模式改革与创新带来了良好的契机。知识库采用知识表示方式来存储、组织、管理和使用互相联系的基础学习知识、学习过程沉淀的知识和学生自我搭建的知识。基于人工智能技术的翻转课堂知识库构建与应用,不但可以调动学生的积极性和主动性,让课程教学延伸到网络平台,还能够在很大程度上提高课程的教学质量和教学效果。大数据、人工智能、知识库等技术的发展为翻转课堂教学模式的有效开展提供了良好的技术支撑,引起了教育界的广泛关注。周宇等人(2016)提出了一种面向关联数据的机构知识库构建方法,该方法能够覆盖机构知识库构建的整个过程,并支持机构知识的资源整合、语义检索、知识推理和关联数据。钟晓流等人(2013)信息化环境中基于翻转课堂理念的有效教学设计模型,对翻转课堂产生的背景与缘起、含义与特征、当前的研究进展与实践案例、相关的技术工具等进行了系统分析。曾明星等人(2014)阐述了翻转课堂的内涵、应用与研究现状,分析了软件开发类课程实施翻转课堂的可行性,探讨了软件开发类课程翻转课堂教学模型及其构成要素。刘清堂等人(2016)分析了机器教学、计算机辅助教学、智能导师系统的基本设计理念、关键技术以及代表性系统,提出以学习分析为核心的智能技术整合、融合人工智能和人类智能的自适应学习。综观上述文献,现有研究主要从翻转课堂的可行性和模型等方面去思考翻转课堂的教学模式改革问题,而利用人工智能、大数据等现代信息技术去改革与创新翻转课堂教学模式的研究文献还相对比较匮乏。基于人工智能技术的翻转课堂知识库构建与应用,通过全程记录课上和课下的教学互动过程,可以改善翻转课堂在教学方式、学生学习方式、评价体系等诸多方面的不足。鉴于此,本文基于大数据、人工智能等技术,探索改进与提升翻转课堂教学模式改革与创新的新技术与新方法。
二、基于人工智能的春秋战国翻转课堂知识的表达
人工智能(ArtificialIntelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,主要包括机器人、语言识别、图像识别、自然语言处理、智能监控、智能搜索等核心技术。ASDT课程将语音识别、语义识别、图像识别和智能搜索等人工智能技术融入翻转课堂教学改革的同时,导入春秋战国时期的七国争霸作为教学情景,将班上所有学生平均分成七个小组,分别对应齐、楚、燕、赵、韩、魏、秦等七个国家,每个小组的学生进行角色扮演,实施“春秋争霸”翻转课堂教学。在ASDT教学过程中,在讲授会计软件开发技术和会计数据业务处理流程的同时,让学生充分参与课程教学活动,强化互动学习,培养学生的团队协作能力、沟通能力、PPT制作与演讲能力、知识消化吸收及应用等能力。基于人工智能翻转课堂知识库构建的基础是将ASDT课堂的课堂教学活动和学生自主学习活动过程中形成的知识符号化的一个过程,通过对知识的映射转化为可供描述的事实和推理事实的数据结构。在构建知识库的过程中,知识的表达方式是构建知识库的关键。知识表达方式主要包括描述性、直接性、过程性等表达方式。其中,描述性的知识表达方式是客观和完整地反映相关专业领域的理论知识,具有准确性和逻辑性的特点。直接性的表达方式是以专业理论知识为基础,以图片、视频、音频和图形等方式直接表达知识的本质。过程性的知识表达方式是在教学过程中的积累和总结的经验知识。以下具体阐述在课堂教学活动和学生自主学习活动中知识的表达方式。
(一)课堂教学活动课堂教学活动由教师围绕各小组在完成作业的过程中遇到的实际问题,引导学生进行小组作品展示和组织小组间互动讨论。在课堂教学活动中,各小组通过PPT演示讲解本组作品中所涉及的知识点,运行程序进行作品展示。其他小组针对展示的作品轮流提问,小组回答问题以后,教师对作品进行综合性点评并打分。最后,教师根据知识库中的记录的学生自主学习活动中遇到的问题引导学生互动讨论,解决问题,针对学生不能解决的问题,进行重点讲解。在整个课堂教学活动中,教师对知识点的讲解、评价表现为描述性的知识,而教师和学生的角色高频切换,教师和学生评价、引导和提问不停迭代的探究式教学过程,表现为过程性的知识。通过语音识别、语义识别等人工智能技术的运用,自动识别和理解学生作品展示、各小组提问、教师综合点评等教学活动中的语言,转换为相应的文本,按照知识的表达方式自动分类,并实时传送到网络平台,更新知识库。
(二)学生自主学习活动将ASDT课程的教学目标和教学内容按主题进行任务分解,根据教学计划逐步推进,学生根据小组任务在重庆理工大学精品课程网上观看教学视频进行自主学习,小组成员合作完成小组任务。学生在学习过程中产生的疑问,可以借助智能搜索技术检索知识库,知识库推送相关知识点,帮助学生解决问题。在学生的自主学习过程中,学生在网页中通过简单检索、组配检索、限制检索等手段,进行交互式的访问,最终获得所需的知识信息,表现为过程性的知识。学生观看教学视频对相关知识点进行学习表现为直接性的知识。
三、基于人工智能的翻转课堂知识库的构建
在知识的直接性表达、描述性表达和过程性表达等多种方式下,多角度获取教学活动中的各种知识以构建知识库。基于人工智能的翻转课堂知识库包括教师编辑维护的知识库、学生自我搭建的知识库以及课堂学习过程中沉淀积累形成的知识库三部分,在教学活动中不停地进行动态更新,形成一个翻转课堂知识库的生态循环。其中,老师编辑维护的知识库是根据教学计划和教学任务按规则生成课题所需的知识点;学生自我搭建的知识库是根据学生在网络平台上提出的问题,生成的答案和解释;课堂学习过程中沉淀积累形成的知识库是自动记录和存储学生在课堂上的各种学习行为。基于人工智能的翻转课堂知识库,
(一)教师建立维护学生基础学习知识库教师首先根据教学总任务和总目标规划具体小组任务,按照教学大纲小组任务,同时在网络平台上编辑学生完成小组任务所需的基础知识和教学视频。此环节对课程的翻转和构建基础学习知识库具有重要的指导意义。建立基础学习知识库要和小组任务相匹配,并且具备合理性、科学性和可操作性,尽量涵盖完成小组任务所涉及的知识点。否则学生将无法完成小组任务,也无法有效建立基础学习知识库。学生根据小组任务和本小组实际情况,观看教学视频和学习资料,满足基础知识储备,完成小组作品。教师根据学生在自主学习过程中提出的问题不断更新维护基础学习知识库。
(二)学生自主学习形成知识库学生根据教师在网络学习平台上的任务,进行自主学习,完成小组的学习任务。当学生提出疑问时,网络平台会自动检索知识库,找到相应的知识点和教学视频对学生进行智能推送,学生解答问题。并且在人工智能技术的应用下,会自动记录学生在网络学习平台上的问题,形成并更新知识库,把学生的学习记录反馈给教师,帮助教师及时调整教学计划。
(三)课堂教学活动中形成知识库在学生的课堂学习中,小组成员进行PPT讲解和作品展示,在语音识别、语义识别和自动计分等人工智能技术下,自动记录和分析小组的作品展示情况、个人发言情况和积分情况。并且自动记录老师的总结点评和答疑,通过图像分析技术,自动归集学生个人的学习资料。同时,把课堂过程中的学生提问、教师答疑所涉及的知识,自动对接到网络平台,更新知识库。
四、知识库在翻转课堂教学活动中的具体应用
基于人工智能的知识库在翻转课堂教学活动中的具体应用主要包括自主学习、课堂教学和效果评价等三个方面。自主学习是指学生在翻转课堂的网络学习平台上进行课前的基础知识学习和基础知识自测,并且借助知识库解决疑问;课堂教学是利用基于人工智能技术构建的知识库,帮助教师和学生解决教学过程中的问题;效果评价是在翻转课堂的教学模式下,建立的适合现行教学模式下的学生评价体系,教师根据基础学习情况,在线统计问题,制定教学计划。下面将详细阐述人工智能的知识库在翻转课堂教学活动各中的具体应用,如图2所示。
(一)自主学习在自主学习过程中,学生首先了解教师的小组任务,在人工智能技术的应用下,根据老师的学习任务,智能化地制定学习目标。学生根据细化的学习目标进行自主学习,明确自主学习的课程内容,并根据课程内容和自身情况选择合适的学习内容。学生通过网络平台观看教师提供的教学视频或其他形式的学习材料开展学习,对学习收获进行记录,最后在网络平台上进行知识检测。同时,应用智能监控技术可以实时监控学生在网络上的学习情况和发言情况。学生可以根据自己的预习情况,在线提出问题,网络平台会根据学生提出的问题自动检测知识库,知识库推送相关知识点和学习资源,帮助学生分析和解决问题。利用智能监控技术,可以收集学生频繁在网络平台上搜索的所有问题。同时,学生也可以将问题进行拍照或者录制成视频发送给教师,利用图像分析技术可以自动识别图片或者视频中的问题并且推送给教师,根据问题调整教学内容和教学计划。
(二)课堂教学教师根据知识库中记录的学生自主学习情况,全面系统地了解学生的基础知识学习情况。知识库汇总学生在网络平台上的发言和提问情况,教师根据汇总的问题在课堂上进行重点讲解,使课堂学习更加高效。在学生作品展示、小组互动提问、教师综合点评等教学活动中,学生和教师可以借助知识库智能推送相关知识点,帮助解决教学活动中的问题。同时可以智能推理出合适的教学计划给教师进行选择。在学生提出问题和解答问题的过程中,智能收集问题和答案,形成知识,更新知识库。
(三)效果评价效果评价包含教学质量评价和学生评价两个环节。其中,教学质量评价是全面、系统的了解学生的学习情况和知识储备情况下,合理、客观地评估教师的教学质量。学生评价是考核学生的知识掌握情况、交流与沟通能力、演讲能力、协作能力、PPT制作能力、课堂参与程度和小组展示情况等。在基于人工智能的翻转课堂教学模式下,学生评价包括课堂教学活动和学生自主学习活动两个部分。通过语音识别和语义分析技术等人工智能技术,详细记录每一位学生在课堂上的发言情况、小组展示情况和教师对作品的点评情况。通过大数据分析技术,可以全面地了解学生在课外观看教学视频的情况和自测情况。因此,这种学生评价方式更加具有合理性和精准性。
五、结论
与传统的ASDT课堂相比,基于人工智能下的翻转课堂知识库的构建促使教学逐步从静态走向了动态,实现了以学生为主题,教师为主导的课堂教学理念,是适应新时期ASDT课程教学改革的必然。在基于人工智能的翻转课堂教学模型下,一定程度上改进了翻转课堂中的课堂教学、学生自主学习和效果评价等模块,有效督促学生自主学习,帮助学生在线答疑,同时更加综合地对学生进行考评,让老师教学更加高效。人工智能技术的广泛应用对于解决翻转课堂教学当前所面临问题的是较为理想的方案,它有助于提升翻转课堂整体的教学水平,促进翻转课堂的快速发展。
参考文献:
[1]周宇、欧石燕:《面向关联数据的高校机构知识库构建方法研究》,《图书情报工作》2016年第1期。
[2]刘清堂、毛刚、杨琳等:《智能教学技术的发展与展望》,《中国电化教育》2016年第6期。
[3]曾明星、周清平、蔡国民等:《软件开发类课程翻转课堂教学模式研究》,《实验室研究与探索》2014年第2期。
[4]钟晓流、宋述强、焦丽珍:《信息化环境中基于翻转课堂理念的教学设计研究》,《开放教育研究》2013年第1期。
[5]胡立如、张宝辉:《翻转课堂与翻转学习:剖析“翻转”的有效性》,《远程教育杂志》2016年第4期。
[6]王红、赵蔚、孙立会等:《翻转课堂教学模型设计》,《现代教育技术》2013年第8期。
[7]余燕芳:《基于移动学习的O2O翻转课堂与应用研究》,《中国电化教育》2015年第10期。
关键词:教学改革;智能科学;精品课程群;人才培养
智能科学精品课程教学团队长期坚持“严肃对待教育工作、严格要求学生、严密组织教学过程”的先进教育理念,履行“严谨教学改革是教育发展的动力”的指导思想[1]。本教学团队围绕“人工智能”和“智能控制”国家精品课程、“人工智能”国家级双语教学示范课程、“人工智能PK人类智能”国家级精品视频公开课、“智能控制”国家级精品资源共享课程、“智能科学基础系列课程教学团队”(国家级)、“人工智能网络课程”教育部国家新世纪网络课程建设工程以及“智能控制”、“人工智能”、“机器人学基础”和“智能系统原理与应用”等省级和校级智能科学系列课程群建设,潜心教学改革,建立了以师生互动、多维交叉、强化实践为特点的创新型人才培养模式,取得一些获得同行首肯的教学改革成果[2-7]。
本文着重介绍教学团队在智能科学精品课程群建设方面的基本情况。
一、智能科学精品课程群的建立
该团队逐步推进智能科学精品课程群建设,不断积累教学改革成果。首先,利用颇具特色的优秀教材群,建立起国内首个立体交叉的智能科学教材体系。其次,把多元智能理论和本体论的知识组织方法用于课程群建设,并建立了智能科学课程群之间的内在联系,建成国家级智能科学精品课程群。再次,增强实验教学,整合多元资源,创建开放式软硬件训练环境,促进智能科学精品课程群的进一步建设与发展。
(1)率先建设立体交叉的智能科学教材体系
智能科学具有高度交叉、多学科融合的特点,结合这些特点研究了不同课程、不同学历层次、不同学科门类之间的交叉链接关系。建设以信息学科类本科生教育为主,兼顾硕士和博士研究生的教材体系,并辐射到管理类、机械类等专业。教学团队与时俱进,对教材不断更新,自1987年以来共出版人工智能、机器人学、智能控制等教材共20个版本[8-13]。例如,《人工智能及其应用》、《机器人原理及其应用》和《智能控制》均为我国相关课程的第一部具有自主知识产权的著作,被誉为“智能三部曲”,为国内高等院校广泛使用。
(2)建立多层次智能科学精品课程群
团队把多元智能理论和本体论的知识组织方法运用于课程群建设,并依据个性化元素特征和个体差异构建模块化课程体系及系列化课程设置,并据此设计课程群及课程相关的实践环节。
设计出各课程间的横向关系和专业间的纵向关系,即建立智能科学课程群之间在知识、技能、素质三个维度上的横向联系,以及在本科生、硕士研究生、博士研究生三个学历层次与专业基础课、专业课专业层次上的纵向关系。
经过长期建设,10年来共获准12项各级质量工程等立项,建立与形成了国家级智能科学精品课程群。其中包括国家级精品课程、全国双语教学示范课程、国家级教学团队、全国优秀网络课程、国家级规划教材、国家级精品视频公开课和国家级精品资源共享课程以及省级和校级精品课程等。
(3)整合资源,加强实验,创建开放式训练软硬件教学环境
教学改革没有最好,只有更好。教学团队不断增加与逐步完善智能科学精品课程群的实验和实践环节,开设智能科学相关培训课程和专题讲座。注重整合各种资源,增强智能学科与其他学科的交叉,创建开放式训练环境和训练中心,建设智能科学与技术创新实验室、大学生程序设计竞赛训练中心、大学生智能移动机器人科技创新平台等。此外,还积极参与智能类学科竞赛,如“飞思卡尔”大学生智能车竞赛、全国大学生智能设计大赛、ACM/ICPC程序设计大赛,以及多种智能机器人和智能小车大赛等。
经过多年精品课程建设与积累,目前,教学大纲、教学日历、教案或演示文稿、重点难点指导、作业、参考资料目录和课程全程教学录像等教学必需资源均进行了持续建设与更新补充。其中一些特色资源得到建设与共享。首先,共享国家级教学名师积累的丰富教学资源。通过建立名师工作室、名师示范项目实验室和名师图书室,形成多元化的带教制度,使老教师的教学理念和经验得以传承。这样就能够加快年轻教师的培养与成长。其次,共享网络课程资源。各门网络课程均采用智能技术中的知识推理和智能算法来实现编程、答疑和虚拟实验,具有智能化、个性化、情境化和形象化等特色,以及导航系统多样化、向导学习个性化和情景化学习等功能。促进了各课程教学改革,提高学生培养质量,深受学生欢迎。再次,共享实验资源。教学实验从无到有,从弱到强,逐步建立教学实验室和科研实验室,全面向学生开放,使广大学生共享实验资源。通过实验,学生发挥了主动性,提出并积极验证和探索自己的思路,从而更好地掌握知识,培养学生的理论联系实际能力和创新能力。
二、改革课程教学,建设精品课程群
着力课程教学改革,建立以精品课程群为核心、以课堂教学为基础、以实践训练深化教学效果的课堂教学与实践教学创新体系。为了实现教学目标,保证课程群的教学和教改的顺利进行,加强了教师队伍建设和教学管理,建立教学质量评价系统,保证课程群的教学质量。
(1)建立以精品课程群为核心,以课堂教学为基础,以实训深化教学效果的课堂教学与实践教学创新体系。
提出“以趣导课、以疑启思、以法解惑、以律求知”的“四以”教学方法。建立“课堂讲授+启发互动+创新实践”三位一体的教学模式,探索出“项目驱动教学”(Project-orientedlearning)和“做中学、趣导思”的主动教学方法和学生培养途径。开发双语教学平台,改进与强化双语教学模式,完善双语教学的方法和手段,提高教学质量。
(2)加强教师队伍建设,改进管理,改革考试,促进课程群的教学和教改的顺利进行。
总结并推行“严肃对待教学工作,严格要求学生,严密组织教学过程,严谨施行教学改革”的“四严”教育思想,指导教师队伍思想建设[1]。注重对青年教师的业务培养,提高他们的授课水平。改革考试制度和方法,培养学生思维、分析能力和创造创新能力。
(3)建立教学质量评价系统,监控课程教学全过程,保证课程群的教学质量。
将控制论(Cybernetics)中的闭环控制信息反馈和故障诊断理念引入教学质量评估过程,建立教学质量的诊断、分析与校正评价系统DIACES (Diagnosis,Analysis and Correction Evaluation System)。
(4)利用教师试讲、督导听课、网上评教、同行评议、讲课竞赛、质量评优、师生座谈、公开示范课等一系列措施,反映教学中的存在问题和成功范例。然后通过集体讨论分析,提出对存在问题的纠正措施或对成功范例的推广意见,实现评估监控过程的自动化、智能化与常态化,保证教师授课技能、教学效果和人才培养质量的提高。
三、经验与结论
在智能科学精品课程群建设过程中,取得了丰硕成果,探索与积累了丰富经验。主要体会如下:
(1)在该精品课程群建设中,始终贯彻“以人为本”的育人理念,把多元教学理论和本体论的知识组织方法用于课程群建设,创建因材施教和探索性的学习环境。以“教书育人”为根本任务,坚持“严肃对待教学工作,严格要求学生,严密组织教学过程题,严谨施行教学改革”(“四严”)教育指导思想,奠定创新型人才培养的理论基础。
(2)注重“课程核心”教育定位,总结出“以趣导学、以疑启思、以法解惑、以律求知”(“四以”)的教学方法和“做中学、趣导思”的综合素质培养方法。做到师生互动,理论联系实际,深化教学,摸索出创新型人才培养的有效途径。
(3)建立覆盖多层次、多专业、多语种、立体配套的智能科学精品课程群系列教材体系,实现课程群系列教材的“精品化”。建立网络化、个性化、智能化的多维教育网络课程体系。建立一种教学质量评估系统,即质量诊断、分析与校正闭环评价系统。这些措施为课程教学和创新型人才培养提供了有力保障。
参考文献:
ABC成为时代主题
百度大脑优势独显
百度总裁张亚勤在大会致辞环节分享了对于云计算、人工智能和大数据等领域未来发展的深刻思考。
张亚勤说,百度云拥有百度大脑的支持,是百度云最独特、最重要的优势。百度大脑是百度云的核心引擎,而百度云是百度大脑的云化,为前者提供了神经元和数据训练源。通过深度学习和机器学习技术,百度在语音、图像、自然语言处理等方面取得世界领先成果。
此次峰会以ABC SUMMIT为名, 即是AI,Big Data,Cloud Computing。百度通过开放共享自身领先的技术能力,让云智数成为所有企业的基础能力,推动各行各业开始进入ABC时代。
对于未来信息科技发展的趋势,张亚勤表示,由云计算和人工智能组成的ABC将成为一个时代的主题。以云计算为基础,以人工智能为中枢,以大数据为依托,ABC将深度结合并改造传统行业,真正地提升每一个企业的运营效率,释放商业潜能,创造全新机遇。
截至目前,百度云已经和超过三万家企业展开合作,也陆续渗透到物流、医疗、教育、营销、金融等关系到百姓生活的各个行业中,让服务开始真正智能化。云智数三位一体的云服务结构可以为客户提供业务可持续发展的动力引擎。
以“智”为谋天智平台
会上,百度云重磅了最新的人工智能平台――天智。天智底层为百度云计算,由感知平台、机器学习平台和深度学习平台三部分组成,为不同需求的客户提供全面的人工智能服务。这也是继“天算”、“天像”和“天工”三大平台后,百度云的第四大平台级解决方案。至此,百度云实现了人工智能、智能大数据、智能多媒体和智能物联网全方位的智能平台服务。
感知平台主要包括图像技术(文字识别和人脸识别)、语音技术(语音识别、语音合成和声纹识别)和自然语言处理(NLP Cloud),可以应用于智能客服、身份验证、内容审核等场景,应用开发者可针对特定场景的应用直接调用API。
在这些技术方面,百度均处于行业领先地位。其中百度语音识别入选2016年MIT十大突破性技术,中文识别准确率达到97%。机器学习平台是百度云端托管的机器学习服务,可以打通机器学习全流程,内置20多种高性能算法,并开放Spark MLlib;同时支持百度用户画像数据,并提供多种应用场景模版。
深度学习平台具有灵活、高效、可伸缩、开源等特点。它支持多种神经网络结构和优化算法以及自定义网络配置,对于计算、存储、架构、通信等多方面多了细致优化。它支持多核、多GPU、多机环境,其Paddle内部技术已经使用成熟,并实现对全球开发者的开放。深度学习平台适用于精通深度学习的数据科学家,针对企业或研究部门的特定项目,需要大量的客户标注数据。
交通领域变革在即
智能交通时代来临
作为一家以技术驱动为核心竞争力的公司,百度通过百度云分享自身在云计算、大数据和人工智能等领域的技术优势,通过构建可以计算、分析、处理庞大交通数据的“交通大脑”,打破海陆空以及行政区域的限制,实时抓取散落在各个路面交通、地下交通、空中航线的海量数据。
同时通过百度拥有的全球最大规模的深度神经网络、最大深度机器学习开源平台,对交通大数据的有效归类、提取、利用,实现多系统配合协调,建立起一个更安全、更高效、更准确的智能交通体系。
百度副总裁王路与太原铁路局局长赵春雷、南方航空电子商务部副总经理王景成、中国海事局曾辉共同智能交通生B联盟,这也是国内首个覆盖陆海空车的智能交通生态联盟。
借助百度云计算、人工智能和大数据技术优势,构建“交通大脑”,与合作伙伴一起促进交通运输领域的技术创新和应用,发展智能交通,推动交通运输更智能、更高效、更安全地运行和发展。目前,诸多合作已在进行中。相信随着合作的深入,必将改变交通现状,推动中国智能交通的 发展。
在与太原铁路局的合作中,双方共建国内首家集铁路、航空和公路三位一体多式联运的物流云平台。通过百度云的接入,该平台可打通货物在公路、铁路、航空的运送及仓储信息;并利用大数据进行资源调配,通过人工智能深度学习物流管理,优化调度效率可达59%。
另一方面,百度云还将与中国南方航空共同推进智能航空计划,将通过大数据实现对于航班、旅客、机票、航站楼、天气等信息的综合分析调度。同时共同推进大数据营销、新一代信息技术和百度云的推广应用、消费信贷等多方面的合作探索,为用户打造一站式的智能出行服务平台。
同样基于百度云技术,将通过与中国海事局的合作,海事港口、船舶及相关水上设施信息也将实现联通和数据的共享,加强程控,降低成本,合力提升海运管控能力。
从陆地到海洋再到空中,百度云并不满足于交通体系的立体扩张,还要创造全新的交通方式。百度目前正在推进可以感知车辆行驶、预测交通状况的智能汽车和无人汽车的发展。百度无人车已成为国内外瞩目的前沿科技代表,在去年完成了实地路测,并在今年的乌镇峰会上再次亮相。
在智能汽车的商业化方面,百度已与国内知名商用车企业福田汽车达成战略合作。未来,百度将与福田汽车在汽车大数据、智能驾驶领域深入合作,开发出更多具备智能驾驶的商用车产品。
云计算、人工智能和大数据已成为新一轮产业革命的核心驱动力,百度云将透过云生态下的“交通大脑”,依托智能交通生态联盟,加强行业合作,挖掘数据中的更多价值,推进智能交通的全面云端化,突破前所未及的高度,让智能、计算无限可能。
写在最后
2016是百度云计算的元年,基于基础云、天算、天像、天工已经有80+款产品。下一步,人工智能已经成为百度的核心战略。
百度大脑“天智”――人工智能平台也应运而生,内容包括:
首先,感知平台,包括图像技术、语音技术、自然语言处理等技术,代表着耳口心相结合的“聪”。
其次,机器学习平台,包括打通机器学习全流程、内置20多种高性能算法、支持Spark MLlib、用户画像数据、多种应用场景模板的机器学习平台。
摘要:“智能超媒体网络教学系统”是使用快速自然语言处理系统、概念提取和排序、个性化信息归档、管理和标签管理等新一代网络和人工智能技术的教学系统。本文主要讨论在向大学本科学生提供紧跟国际前沿技术发展的“智能超媒体网络教学系统”(工程实训和毕业设计平台)的基础上,创造一种全新的课程教学模式。该项目研究为西安交通大学城市学院第一轮科学研究课题,已取得阶段性研究成果并开始实际应用。
关键词:数字媒体;超媒体;网络;教学系统
中图分类号:G642
文献标识码:B
1项目目标
按照高等院校的学生实际学习状况以及日益严酷的就业市场前景,试图以计算机网络课程教学中已初步进行的一些课程教学模式的改革为基础,提出设立“智能超媒体网络教学系统”,加强学生实践能力和创新培养,以进行本科院校课程教学模式的改革和探索。
主要目标是在向学生提供紧跟国际前沿技术发展的“智能超媒体网络教学系统”的基础上,创造一种全新的课程教学模式。
为解决日益严重的信息超载问题,使用全新的 “Web-based教学”在线教学模式和高级人工智能软件,向学生介绍和组织互联网上感兴趣的资料,让学生更快地找到想要的信息,并且从大量的数据中,发现对个人来说重要的信息。
项目以培养大学生创新能力和实践能力为重点,通过使用网络教学和辅助教学系统,增强自主学习的兴趣,学会工程化的设计方法。在实际工程设计练习的同时,也可使学生应聘时展现本人技术实力和工作经验,为就业创造良好的机会。
课程改革增加专门的工程设计的实训课程,将学生置入与实际工作环境类似的工程设计团队,以模拟招投标项目环境为背景,自主选择课题,进行职务角色分工,在教师指导下,参考预置的类约1000M实际项目资料以及人工智能设计工具和个性化智能数据库查询系统随时收集的最新资料,按标准化,规范化的实际工作流程,进行项目调研,用户系统分析,技术方案设计,最后形成可实际用于工程实施的完整技术解决方案,设备与工程预算,招投标文件,项目实施演示PPT文档等。
2解决的主要问题
需要解决的主要是大学生创新能力、实践能力和可持续发展能力的培养。
(1) 构造一种智能化、全球化的网络教学平台――“智能超媒体网络教学系统”。
(2) 使用上述系统,学生可以在学院内完成高水平的项目实训和毕业设计。
(3) 学生可了解和亲手实践了解国际最新的超媒体技术和产品知识。
(4) 学生可在建成的辅助教学系统平台上完成全部系统设计,为考取国际认可的工程师认证打下坚实基础,促进学生就业。
(5) 学生可完成完整的技术解决方案,招投标文件,在学生应聘时展现本人技术实力和工作经验,为学生就业创造良好的机会。
3项目研究在国内外同一领域的现状与趋势分析
3.1现状
在知识经济的新形势下,一种全新的教学模式“Web-based教学”已经在逐渐开始兴起并不断的发展壮大,然而目前国内的网络教学和辅助教学系统只是使用了Web-based教学的形式,仍然算不上真正意义上的网络教学,不能脱离传统的教学模式自建一个完善的教学系统,只能算是传统教育模式的一种补充。
基于这种情况,本课题组开始进行“超媒体网络教学”课程教学模式的改革探索。通过近一学期的前期实验,已经取得相应预期教学效果。
已参加实训的三个班级200多名同学共组成28个团队小组,分别模拟了28个公司,以西安交通大学城市学院北郊新校区为工程设计环境,参与了学院校园网,校园无线局域网,学院数据网络中心,校园网通信平台,行政楼网络集成,办公自动化系统,数字化图书馆管理系统,数字校园智能监控网络,内网安全解决方案,大学视讯系统等项目的计算机网络工程设计。
所有团队均按预定教学计划在规定时间内完成了项目立项报告、全套招标文件、全套投标文件(包括概要设计,草图,设备清单,信息点统计表,技术方案详细设计与技术方案图纸,设备报价清单,投标技术方案,投标评审会演示PPT等文档),并最后参加模拟投标会议和方案优选汇报会。
3.2趋势
目前,国内外教育界已开始研究真正意义上的网络教学和辅助教学系统。主要趋向是向智能化、全球化的网络教学方向发展。
国外较早就有人研究具有智能性的计算机辅助教学系统。近年来,有人提出了智能超媒体教学系统的要领,就是将人工智能技术与超媒体的信息组织、管理方式结合在一起而形成的智能型信息处理技术。
在智能超媒体教学系统中,可以利用超媒体提供的友好界面来激发学生的学习兴趣和学习动机,同时还可以利用超媒体向学生提供图文声像并茂的解释信息;而超媒体模块则可利用知识推理技术实现教学内容和教学策略的适应性控制,对学生进行有针对性的指导。当前,智能超媒体教学系统的研制和开发已成为网络教学应用领域中的一个重要的前沿课题。
4项目研究的重点
4.1课程教学模式的创新和发展
对在实训中将学生作为模拟企业的员工,严格按企业化模式进行管理,通过课程实训,完成贴近实际应用的工程化网络系统设计,以取得实践经验的教学模式进行重点研究,并尽可能开发出更新的课程教学模式。
4.2智能超媒体教学系统核心技术的理论研究
进行核心专利技术研究;算法研究及技术框架设计;软件总体规划及详细设计。
4.3智能超媒体教学系统软件开发和应用研究
进行验证及软件程序编码;进一步进行超媒体课程应用研究;同时考虑研究将系统平台应用于其它学科的教学模式改革。
5项目研究的创新点
(1) 在课程教学过程中结合实训和毕业设计,使用模拟公司工作岗位和招投标场景对学生进行工程化训练。
(2) 教学系统核心使用“主题聚类发现引擎”技术。按用户提出的个性化需求进行主题发掘,人工智能知识排序,重要信息推荐并提供分析图形显示的主题内容发现与聚合的优化搜索引擎。
(3) 在系统内部数据库提供1000M实际项目资料(包括招投标文件范本,工程实例,技术方案范本,设备产品,工程预算范本,PPT演示文档范本,日报-周报范本等分类数据库)以及相关人工智能设计工具和个性化智能数据库查询系统。网上搜索和用户PC机上的信息搜索集成一体。
(4) 向全球化的网络教学方向发展,使用语意分析,自主学习,及WEB 2.0环境中的信息挖掘和超前数据库处理技术,将最适合每个用户的需求的相关信息情报资料进行人工智能处理后即时推送给用户,主要解决了用户在网络时代被超量信息所淹没,无法在最短的时间内检索查询到自己所关心的相关信息的问题。
6项目研究的方案设计
6.1研究思路和技术方法
在项目研究上采取的研究思路和技术方法是:
(1) 使用WEB数据库、中间件和网站设计工具等构造三层架构的网络应用系统。
(2) 使用先进的搜索引擎和信息获取技术取得大量实训和毕业设计所需要的基础资料。
(3) 使用人工智能海量信息分析及提取技术进行个性化搜索及计算机辅助设计。
(4) 在网络化的基础上提供人工智能实训和毕业设计工具和个性化智能数据库查询。
6.2研究阶段
第1阶段:智能超媒体教学系统核心技术的理论研究;
第2阶段:软件总体规划及详细设计;程序编码;
第3阶段:课程教学模式的创新研究;教学系统验证试验;
第4阶段:智能超媒体教学系统应用研究。
6.3技术方法和路线
(1) 技术目标
研究开发个性化RSS主题聚类发现搜索引擎产品,进而形成一种按用户提出的个性化需求进行主题发掘,人工智能知识排序,重要信息推荐并提供分析图形显示的主题内容发现与聚合的优化搜索引擎产品。
(2) 技术内容
主题聚类发现引擎是一种按用户提出的个性化需求进行主题发掘,人工智能知识排序,重要信息推荐并提供分析图形显示的主题内容发现与聚合的优化搜索引擎。
主要解决了用户在网络时代被超量信息所淹没,无法在最短的时间内检索查询到自己所关心的相关信息的问题。大约可增加搜索查询速度几十到一百倍,并引导用户找到最适合自己的信息。
主题聚类发现引擎的技术核心可以按不同技术层面装入网站服务器,企业服务器,个人计算机形成以下不同用途的产品:
(1) 学校大型Web2.0环境网站RSS主题聚类发现搜索引擎
(2) 院系专用数据处理及信息挖掘优化搜索引擎
(3) 学生个人用户个性化专用信息挖掘优化搜索引擎。
(4) 设备价格比价搜索网络门户(可应用于计算机,电信,电子等不同领域)
6.4技术方法和路线
使用语意分析,自主学习,及WEB 2.0环境中的信息挖掘和超前数据库处理技术,将最适合每个用户的需求的相关信息情报资料进行人工智能处理后即时推送给用户。
部分技术方法摘要描述图示如下:
图1显示了本项目高级检索程序的实现。
图2显示文件组织系统的实现。
图3显示智能助理个体的实现和用知识库来发现和确认联想的例子。
智能检索挖掘系统运行于最终用户PC机上,包括Web server部分。系统采用类似B/S架构。利用IE插件开发技术,截取用户发送的Web请求信息,并由插件发送到Web server,由Web server实现相应的功能,最后通过分析提取处理相关信息,返回IE插件进行显示。Web server采用 + Apace进行开发。
7理论及实践意义
本项目的实施主要是为了进行“计算机网络”课程学科教育的教学改革研究与实践;其目的是全面推进素质教育,重点培养大学生创新能力、实践能力、创业能力、就业能力和可持续发展能力。
其主要意义是:
(1) 计算机网络课程是计算机专业,信息管理专业,电信专业的骨干专业课程,建设实训和毕业设计的智能超媒体辅助教学系统对促进教学和学科建设有重要意义。
(2) 实训和毕业设计辅助教学系统可在学生进行课程实训和毕业设计时提供人工智能设计工具和个性化智能数据库查询,以便学生完成高质量的毕业设计,同时通过课程实训完成贴近实际应用的工程化网络系统设计,取得实践经验,为就业作好充分准备。
(3) 技术先进的实训和毕业设计智能超媒体辅助教学系统可提供学习现代计算机网络技术的良好平台,增进教师学识水平,同时促进了教学水平的提高。
8推广价值
(1) 项目中涉及的学科教学模式改革研究成果可在有相似应用需求的本科院校,高职高专推广应用。
(2) 智能超媒体教学系统软件可以在相似的计算机专业,电信,信息管理,电力,能源,机械制造以及各类工科专业推广应用。
(3) 教学系统核心使用的“主题聚类发现引擎”技术可以按不同技术层面装入网络服务器或个人计算机形成以下不同产品,如企业专用数据处理及信息挖掘优化系统,个人用户个性化专用信息挖掘优化软件。
参考文献:
关键词 智能授导系统;辅助教学;语义Web
中图分类号TP31 文献标识码A 文章编号 1674-6708(2012)58-0165-02
计算机辅助教学(CAI)是以对话方式利用多媒体计算机的功能与特点与学生讨论教学内容、安排教学进程和进行教学训练的方法与技术。但是存在交互能力差和缺乏虚拟技术支持、智能性及教学策略等问题。人工智能(AI)是计算机科学、信息论、神经生理学、控制论、心理学、语言学等多种学科互相交叉渗透而发展起来的一门综合性学科。它用人工的方法在机器(计算机)上执行智能行为:感知、理解、学习、判断、推理、规划、设计、求解等。其技术特征主要是具有搜索功能、知识表示能力、一定的推理功能、抽象功能、语音识别功能及模糊信息处理能力。
1 智能授导系统
智能授导系统(ITS)技术是在对计算机辅助教学研究局限性的改革突破中发展起来的,它不仅克服了仅仅关注学生行为的缺陷,还引入了对知识的描述以及智能推理技术,智能授导系统的独特之处是能依据每个学习对象的不同需求而调整教学策略。
ITS从上个世纪80年代提出到至今已有30多年了,几乎涉及人工智能技术的所有问题,而且一直是人工智能技术在教育领域的核心研究之一。比较有代表性的是Peng-Kiat Pek和Kim-Leng Poh应用贝叶斯网络构建的学生模型可以较好的估计出学生的学习兴趣值,从而对学生的学习行为方向进行预测;Dietrich Albert和Cord Hockemeyer通过分析知识空间理论而得出的超文本结构和知识空间在结构上的有很强的相似性,通过对知识空间进行建模,使之适用于网络Web结构模式;Joel Martin和Kurt VanLehn使用贝叶斯网络技术对学生的学习结果进行评估,有效的分析出学生学习过程中的问题和不足;Declan Kelly和Brendan Tangney提出了一种多Agent技术(Multi-Agent System,MAS),通过对个体的个性化学习进行动态建模的智能框架的建构重组,满足了学习者的不同需求。随着国内数字化教学与教育信息化的大趋势,最近几年国内对于该领域的研究发展的相对比较快,而且需要进行综合性的研究,以不断促进智能授导系统的实际应用价值。
2 自适应智能授导系统机制
由于个体学习者基本上是基于资源的自主学习,在教学上的有效组织主要体现在学习资源的组织、传递和共享上,良好的资源组织和个性化资源服务是学习个体最强烈的需求。为了支持个体的自主学习,辅助教学研究十分强调“授导”。“授”即系统地对教学内容的组织和传播,通常反映为学习目标制定、学习材料序列化、学习路径引导以及学习结果评价等方面;而“导”则侧重对学生的具体学习过程提供针对性的学习支持。
2.1 网络智能授导的技术实现
网络辅助教学平台设计者们一直致力于智能授导机制的理论研究和实现,不仅在理论上提出很多模型和设想,而且实践上也有所突破,特别是可以借助计算机网络技术和人工智能技术构建一个更有针对性的、更智能的信息空间,为学习者提供个性化的学习支持。通过调研,网络辅助教学中智能授导的研发技术路线主要是模拟课堂面授的路线、人工智能的技术路线和网络协同进化的路线。
2.2 本体的智能授导机制
根据Brusilovsky提出的关于虚拟校园环境的部件理论知道,当前分布式虚拟环境支撑的网络教学平台大多是围绕内容部件、行为部件、通信部件、管理部件来提供学习者本体的智能授导应用功能。
1)内容部件是辅助教学系统的核心,多由构成课程的多媒体教学材料组成。运用静态超媒体比较容易实现,以一种同有的结构和形式呈现给学习者同样的教学内容。但是会产生由适应性内容所呈现的各种方法与技术问题,例如:附加解释、前提知识解释、比较性解释、解释变体、信息排序等。其实现需依赖于知识表示与呈现技术,特别是知识建模和知识本体的研究;2)行为部件主要功能是需要学生通过“做”的交互方式来完成的自主学习的过程,表现形式多指学习导航、练习、测试、模拟、实验等。其三个主要应用方向是自适应导航、自适应测试和虚拟实验;3)通信部件在智能授导系统中起到媒介作用,主要是支持学生与教师之间、学生相互之间的交流和沟通的通信工具,支持学习社区的协作学习和协同进化;其3个主要应用方向为)针对交互信息的知识发现、学习者智能互助和群体智慧;4)管理部件主要是支持教学过程中必要的管理职能。如学生管理、课程管理等。
2.3 自适应智能授导系统的构建策略
个性化的自适应辅助教学研究已成为现代教学系统应用的一个热点问题,而自适应智能授导系统运用人工智能技术,直接、科学地了解到学习者的个性特点及学习进展情况,灵活调整自身的策略、方案来满足受教育对象的需求。从集成观点出发,自适应智能授导系统首先涉及的是教学理论和思想与计算机技术的交叉。从计算机辅助教学的发展线索出发,网络技术与人工智能方法的应用是计算机辅助教学的必然趋势,但智能授导绝不是在计算机网络通信技术上的简单翻版,其需要进行更为深刻的分析与抽象。总的来看,自适应智能授导系统是一种建立在软件协同基础上的分布式的群体智能,更是一种人机协调的智能。
学习者模型是自适应智能授导系统的核心,而学习者学习过程中存在大量的不确定性因素和不确定性信息,因而成功获取学习者的情况是其它环节正确运行的保障。在学习者模型设计中,我们利用贝叶斯网络的条件概率分布量化知识项之间的组织关系及依赖关系,很好地反映学习者特定领域中的知识结构,当学习者模型中的知识项的状态发生改变时,将引起相关知识项的状态的改变,因而使学习者模型具有一定的预测能力。同时我们选择专门为语义Web设计的本体表示语言OWL语言来描述学习者模型,因为它具有更强大的功能来表示语义,比XML和RDF更容易被机器理解。
我们在辅助教学软件的研究开发中选择了语义Web下的自适应智能授导系统,因为它更多的关注系统各模块的标准化、形式化构建,以及系统间的互操作和知识共享与重用。其目标是使机器能够更好的理解网络上的内容,构建一个基础结构使在网络上运行的智能能够进行复杂的活动,对嵌入在基于网络的应用程序中的知识进行显性的描述,从而以智能化的方式来整合信息,提供基于语义的方式来访问网络,以及从文本中进行信息抽取。语义Web技术可以通过对智能授导系统不同模块中嵌入的知识和学习者的交互信息进行共享,从而在一定程度上推动了分布式智能授导系统的开放程度。图1给出了自适应智能授导系统的智能产生流程图。
3 结论
伴随着互联网络的日益发展,我们日常的学习与工作越发依赖数字化的资源与服务,智能化与人性化将是数字化教学重要的发展方向。我们选择了自适应智能授导系统作为数字化技术辅助教学研究的一个切入点,依据网络智能授导系统实现的三条技术路线,从理论框架上阐述了教学辅助平台中常见的智能授导机制,利用人工智能中贝叶斯网络的思想来设计学习者模型来实现适应性和个性化的教学,并选择了语义Web下的自适应智能授导系统来实现辅助教学软件的开发。
参考文献
[1]闵宇锋.浅谈网络教学平台中的智能授导机制[J].科技情报开发与经济,2010.
[2]Brusilovsky P. MILLER P., Course Delivery Systems for the Virtual University.
人工智能逐渐变为一种社会需要,机器也不再是人们眼中冰冷的工具,而是拥有自我意识的机器。著有《银河之心》三部曲的中国新一代的科幻作家江波认为“将机器赋予文明,将文明赋予机器。这是人类的使命,也许是最后的使命。”这是他对人工智能的期待和展望,也是未来人工智能发展的方向。
60年来,人工智能经历了一个从爆发到寒冬再到野蛮生长的发展过程。目前,随着芯片计算能力的不断提升以及很多相关先进技术的跨越式发展,人工智能技术和市场正在迎来新的春天,成为这一技术时代的新趋势,开始真正走入人们的工作和生活,将成为未来十年的产业新风口。
江苏南大电子信息技术股份有限公司(以下简称“南大电子”)作为“中国人工智能技术与应用大会暨人工智能60周年颁奖典礼”主题评选活动的参评嘉宾,不仅荣获了“人工智能60周年・2016年度中国人工智能卓越贡献企业”大奖,公司创始人、董事长狄敏先生还被评为“人工智能60周年・2016年度中国人工智能领军人物”。
南大电子是南京大学旗下一家研发智慧型服务机器人的跨国高新企业。依托南京大学声学科技领域和人工智能领域的核心技术优势,南大电子布局全球,致力于智慧型服务机器人产品与服务的研发、实践,并开拓性地联合国内各服务行业的标杆企业,努力探索实践服务机器人在各行业的落地应用。公司在世界声学王国丹麦设有国际领先的声学和ID工业设计研发中心,技术实力达到国际领先水平。
作为中国智慧型服务机器人系统的创意者与领导者,南大电子旗下汇聚了一批专业人才,中国科学院声学研究所李晓东担任公司首席科学家。核心团队成员还包括多名海外留学归国人员及硕士以上学位人员,核心工程师均毕业于国内外顶尖大学,并具有在外企或国内知名企业研发工作经历,在各自的专业领域内颇有建树。
南大电子创始人、董事长狄敏,本科就读于南京大学无线电物理和声学专业,是南京大学商学院首届EMBA毕业生,曾进修美国康奈尔大学EMBA项目,现任南京大学校友总会理事、南京大学首届EMBA联合会常务副会长、中国(南京)软件谷发展促进会副会长。狄敏董事长带领公司努力探索、实践服务机器人在各行业的落地应用,逐步推进公司在智慧型服务机器人行业的迅速发展。
南大电子还成立智慧型服务机器人产业研究院,致力于为中国机器人与智能制造领域的人才培养和技术转化提供基地,对机器人与智能制造技术进行应用推广。南京大学资产经营有限公司董事长高澎教授出任研究院院长。研究院立足产业基础,以机器人和智能装备技术研发和产业化为重点,推广机器人和智能装备技术的集成和应用,是我国机器人技术的优势研发单位。
南大电子深刻认识到,未来机器人产业的发展,尤其要把握市场需求,抓住“机遇”,精准发力。本着人工智能让机器人更加智能化的发展方向,南大电子着眼于智慧型服务机器人的人性化交互,让人与服务机器人的交互融入情感,让服务机器人成为一个有温度的产品,将智慧型服务机器人的情感性做到极致,真正满足人们对服务的情感需求。
南大电子智慧型服务机器人具备强大的人机交互功能,能够提供智能化引导分流、业务咨询、产品营销、市场宣传、娱乐互动等服务。其以机器人硬件为载体,依托云平台强大的智能服务技术,引入大数据分析系统,真正实现“能听、会说、能思考、会判断、看得见、认得出”的智能化服务。
持续快速发展的南大电子,始终把握行业技术发展潮流,以精益求精的态度赢得客户的信赖,旗下的艾德声机器人(Addasound Robot)广泛应用于银行、证券、保险等金融行业,政府、商超、连锁企业、服务机构等各个领域,帮助客户提高市场竞争能力。
南大电子完成全国交通银行智能客服机器人“娇娇”的落地与运维。“娇娇”是国内首个大规模投入到银行业中的实体机器人,更是国内首个全面获准进入金融领域的智慧型服务机器人,其所使用的系统中所搭载的各项交互技术都是来自南大电子的最新的人工智能技术,并且凭借平台强大的多能力融合和大数据处理能力,整合了包括语音识别(ASR)、语音合成(TTS)和自然语言理解(NLU)技术、声纹识别技术、智能图像、人脸识别技术等多项顶尖人工智能技术。
服务机器人市场是一个没有“天花板”的市场,预计到2020年,服务机器人年销售收入有望超过300亿元人民币,虽然市场十分可期,但同时也存在许多问题与不足。作为业内的领军企业,南大电子期待的不只是“娇娇”给智慧型服务机器人行业带来的影响和机遇,还精准把握政策与市场的脉搏。依托于自身强大研发实力与企业综合实力,南大电子正着力打造艾德声二代智慧型服务机器人。艾德声二代智慧型服务机器人是南大电子自主研发的产品,集结多项先进人工智能技术和专利于一身,依托于功能强大的智慧型云服务平台,真正做到了自然语言对话和智能视觉交互。
中国服务机器人发展机遇有多样化,首先是市场方面,受老龄化等因素影响,存在巨大市场需求,中国已于1999年步入老龄化社会,据预测,至2020年,中国老龄人口将达到2.48亿,老龄化水平将达到17.17%。其次,国家对服务机器人的支持力度非常大。《国家中长期科学和技术发展规划纲要(2006-2020 年)》将服务机器人作为未来优先发展的前沿技术。可以预见,服务机器人产业的未来市场不可估量。作为行业备受瞩目的明日之星,南大电子认为,注重自身的发展战略,关注共性技术,立足于市场及自身的需求,加强高端产品研发,才能推动企业乃至整个产业的发展。
据民政部预计,预计到2050年,我国将有4.8亿人步入老年,占总人口数的35%左右,届时每天将有3万人加入老年人队伍。与日益庞大的老年人口数量形成鲜明对比的是,全国养老机构护理人员数量不足100万。养老护理劳动力缺口巨大,传统的养老模式已无法适应当前的养老服务需求,严重阻碍了养老产业发展。因此,寻求科技手段解决养老产业的多层次需求已成为行业发展必然趋势。其中机器人作为全新智能化终端,有望改变包括养老产业在内的服务业格局,并为快速发展的养老产业注入全新血液,推动养老产业的全新运作模式。
养老产业正在成为南大电子智慧型服务机器人的一个重点目标市场。随着人工智能技术的成熟及运动感知技术的普及应用,以南大电子为代表的智慧型服务机器人将通过语音交互功能为老年人提供生活监管、陪伴聊天等日常服务,给老年人带来生理与精神上的双重关怀。