时间:2023-08-24 17:18:02
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇人工智能教育的未来,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
关键词:设计;人工智能;挑战;机遇
一、引言
第四次工业革命的到来,人工智能作为一项主要的技术,必将鞭策整个人类社会的转型。很多国家制订了战略规划,在2017年我国也了《新一代人工智能发展规划》和《新一代人工智能产业三年行动计划(2018-2020)》,人工智能产业已上升为国家战略。近年来,在人工智能涉及的领域中,艺术与技术结合,升华到与人工智能的结合且越来越受到重视。阿里智能AI“鲁班”已经掌握了上百万个设计师的创意内容,双11期间制作1.7亿张海报,没有一张是重复的,而这些工作如果人工制作的话需要100个设计师工作300年;央视节目中“鲁班”PK资深设计师取胜等等这些新闻,无不极大地震撼了整个设计行业。设计师会失业吗?高校的设计教育面对AI的挑战与机遇如何制定培养目标?如何在新的竞争中占领先机?未来已来,智能艺术设计的路在何方?
二、设计行业面对四大挑战
(一)惊人的数字
马云在一次报告中说未来30年人类只工作4个小时,大量的工作岗位会被人工智能抢走;根据白宫的人工智能报告预测,在未来10-20年间,人工智能技术有可能取代47%现有工作。麦肯锡的预测是49%,盛产劳动力的中国和印度的影响最大。Siri之父、人工智能专家温那(Winarsky)的预测是70%的工作将被取代。不得不说,AI是人类智慧的结晶,正在高速颠覆着人们的生活。
(二)AI设计发展趋势
AI最容易取代的是简单设计:如LOGO、UI界面、海报招贴、网站网页、产品造型、室内家装、产品包装……原本这种理想的设计工作不再能提供人生的庇护所,但凡是明确、简单、重复标准、规则的美术设计与制作工作,未来都容易被取代,传统设计行业将会萎缩乃至可能逐渐消失。
(三)设计环境恶劣
设计创意无法保护,设计法规没有限定,设计竞价无序,商家厂家缺乏契约精神,设计知识产权无法保护契约,新设计新技术缺乏情趣,设计同质化严重……(四)设计教育落后现有设计模式传统、设计教育落后,设计知识体系缺乏更新、进化,知识性重复训练、模仿性传统方法制约了学生创造性情感思维的发展,设计师终身教育观念的缺失阻碍了设计师的可持续发展,设计知识与设计人才近亲繁殖、代际传递的情况严重。
三、AIDesign发展迅猛
目前传统艺术设计已经发生智变,使设计更美更快更简单。人工智能艺术与设计已经一定高水平,如果设计师仍停留在传统设计水平,就会受到来自机器的“威胁”。但也不全会,除了“创意”部分让机器无可奈何,人类设计师与机器的竞合中,我们要转变方向注重数字移动媒体策划与设计、移动媒体用户需求挖掘、数字移动媒体需求文档的撰写、数字移动媒体优化、数字移动媒体UI界面设计、H5设计、App设计、UE用户体验设计、虚拟移动媒体设计、信息交互设计等媒体智能设计新技术。高品质艺术、设计依赖于混合增强智能技术。AdobeMax“SneakPeeks”将迎来Adobe全家桶的诸多全新功能,如图片变视频、静态变动态、一键设计字体、视频扣剪、纸盒自动生成、AR呈现、AE一键去马、Ru跨平台制作(剪辑、混音、调色)、跨平台同步改稿、人工智能排版等十大看似很科幻但已经实现了的AI功能。华为Mate20手机3D扫描防生建模与成像,以及AI手势动作捕捉的体感游戏功能,更为我们提供了解放设计生产力的前景。同时MIT研发的工业产品AI设计系统即将面世。主要产品体现如下:
(一)AIVD人工智能视觉设计
AI集成化的成熟产品,比如Adobe系列的产品,软件低层融入AI技术,更好更快地创作文字和图像、影音等元素。如AdobeSensei:人工智能做设计的底层技术,集成在Adobe系列软件中,有字体匹配方案、自动配色方案、基于线稿自动上色、自动校正手绘图形等。
(二)AIPD人工智能产品设计
Adobe人工智能鞋包设计、IBMWatson智能设计服装、Autodesk智能设计汽车等。
(三)AISD人工智能空间设计
Prisma智能风格化设计、Autodesk建筑智能生成设计、ZahaHadid参数化设计等产品。
四、设计人工智能教育的发展动向
未来,人工智能教育会加速发展,老师不会被AI取代,但不用AI的老师一定会被取代;未来,老师不是简单地传授知识,而是通过言传身教的沟通交流,对学生进行激励、鼓舞,成为人类灵魂的设计师;未来,AI将实现规模化和个性化间的平衡,带来了一种学生易学、教师易教的解决方案;未来,老师作为教学过程中始终核心地位,推陈出新积极善于运用AI技术进一步提高师生教与学的体验和教学效率。当务之急,要让更多的老师正视人工智能的快速发展,通过学习AI技术了解人工智能的发展情况,从而改变老师的教育教学观念和教学方法,引领高品质教育的未来。在未来教育中,教师的角色有三种观念:1.取代说,2.不可取代说,3.人机协同说大多数观点是:未来,教师将与人工智能协同共存。未来知识传授功能会逐步被人工智能取代,而人类教师则应偏重于培养学生的核心素养。正如雷克利福德所言,“科技不能取代教师,但是使用科技的教师却能取代不使用科技的教师”。如今,抛开先天财富的不同,人与人之间的差距主要来自学习能力的不同。这种差异会加剧不平等,在未来,这种趋势将会进一步加强。应对人工智能时代,教师除更新教育教学观念、转变角色、改革教学模式和方法外,必须坚持终身学习,教师的终身学习,不仅要学习Python之类的AI编程技术,更需要增强对,限于时间和精力有限,分别将有关AI知识技能分为三类,以适应设计人工智能的技术更迭和“一专多能”。
五、结束语
人工智能即将进入高中课堂。近日,我国第一本面向中学生的AI教材——《人工智能基础(高中版)》正式。
为什么要在中学开设人工智能课程?这本教材有什么特点?对于中学教师和学生而言,应如何准备才能应对人工智能的教与学?记者对此进行了调查。
全国已有40所学校引入教材
据了解,该教材是华东师范大学慕课中心和商汤科技合作,联合全国多所知名中学教师共同编写,由新闻出版总署批准出版并备案。目前,全国已有40所学校引入该教材作为选修课或校本课程,成为首批“人工智能教育实验基地学校”。
“与其他教材不同,该教材以‘手脑结合’为主要学习方式,不仅关注对人工智能原理的介绍,更加重视这些原理在生活中的运用。”华东师范大学教授,博士生导师陈玉琨介绍说,“作为教材的编者,我们特别希望学生能发挥独特的想象力,设计一些在高中阶段有可能完成的项目,并动手将其转化为独具特色的作品。”
记者看到,该教材共分9个章节,以基础普及性的知识为主,分别介绍了图片识别、声音识别、视频识别、计算机写作和深度学习等人工智能技术的原理和应用场景,每一页都配有彩色图表,并引入了大量科普内容和实例。此外,该教材还配套了一个教学实验平台。
香港中文大学教授林达华表示,目前,人工智能人才面临着全球性短缺,在人工智能和基础教育结合方面,各个国家都还处在探索的过程中,该教材的出版,是人工智能教育的一次重大突破,意味着人工智能将由此走出“象牙塔”,进入高中生的知识范畴。
“今天,技术更迭速度太快,谁也无法预计未来的职业选择,我很乐意让我的孩子在中学阶段就了解掌握一些人工智能方面的知识技能。”一位家长这样告诉记者。
目的在于普及原理引发兴趣
作为一门兼具学术含量和技术含量的学科,对高中学生而言,应该怎样去了解人工智能这门学科;对于高中教师而言,又该如何教学呢?
“大多数中学生的最终职业道路都不会是成为人工智能研究者或工程师,但是未来很多行业都将在不同程度上受益于人工智能的赋能。因此,该学科在中学阶段的教学目标应该定位让学生了解掌握人工智能的基本思想、基础知识以及常用算法和工具。”林达华说。
在陈玉琨看来,人工智能的教学和研究经常要用到高等数学的知识,这已经超出了高中生的知识范围,因此,在中学阶段,教师应注重对相关概念、算法、原理进行定性介绍,“定量的部分,可以留待以后再学。”
多位专家表示,教师在教学过程中,要特别重视对人工智能应用场景的介绍,这不仅会让课堂变得更加生动,学生学习的兴趣更加高涨,同时也会提升师生的思维与创造能力。
“总体而言,在中学阶段开展人工智能课程的主要目的在于普及人工智能的原理与技术,引起学生对人工智能学习的兴趣。当然,也期望能为高等学校培养人工智能领域的拔尖人才奠定相应的基础。”
“校企合作”解决人才缺口
也有专家指出,人工智能是一门新兴技术,中学教师在该领域的知识储备是不足的。
“师资是课程的基础。”上海师范大学教授岳龙表示,“开设人工智能课程对教师的知识结构也提出了新的挑战,因此组建专门的师资培训团队非常重要。”
据记者了解,为帮助教师克服知识储备不足的问题,华东师范大学慕课中心与商汤科技将联合举办多期“人工智能教师研修班”——培养一批人工智能的种子教师,在他们带领下,逐步提升我国教师总体的人工智能素养,从而改善中学教师开展人工智能教育教学面临的困难和挑战。
关键词:新工科;人工智能导论;实践教学;校企合作;案例库
随着物联网、大数据、5G及人工智能等信息技术的发展,为了应对中国产业变革及新一轮的科技革命,适应“中国制造2025”国家战略需要及产业经济创新发展,同时将国际工程教育思想本土化,“新工科”应运而生[1]。信息技术发展催生出了人工智能相关的专业,国内高校纷纷设立了智能科学与技术专业。近年来,人工智能技术的发展引领着人类社会正逐渐走进智能社会,人工智能将深刻影响人类社会。随着人工智能的进一步发展,高等教育的价值也将进一步提高[2]。因此,各高校应尽快建立与新工科相一致的智能科学与技术专业,并深入研究我国人工智能的人才培养体系、课程设置、实验平台及成果转化等方法,改革传统人工智能的教育教学方法,形成有新工科特色的智能科学与技术专业工程教育方法。由于传统的专业是按学科划分的,因此,目前的智能科学与技术专业课程体系以理论为主,强调学科知识的系统性和完备性[3]。人工智能导论作为智能科学与技术专业的核心课程,同时也是人工智能“入门性”和“引导性”的课程。但是,目前人工智能导论的课程设置上主要存在课程内容陈旧、实践课程不足、教材理论过强、教学模式老旧及实践教学与企业需求不适应等问题。尤其是人工智能导论课程,缺乏实践教学将会降低学生学习人工智能的兴趣和积极性。因此,为了解决这些问题,并使高校跟上人工智能时代的脚步,抓住高等教育发展的新机遇,进行面向新工科的人工智能导论实践教学模式探索具有重要的现实意义。
1人工智能对新工科人才的新要求
1.1具备多学科交叉知识。人工智能导论是一个多个学科交叉而成的一门课程。人工智能导论主要包括知识系统、智能搜索技术、脑科学、机器学习、神经网络、支持向量机、专家系统、智能计算及分布式智能等内容[4]。因此,一个合格人工智能专业人才需要具备多学科知识。1.2具备多领域应用能力。人工智能导论的应用领域广泛,基本包含工业、农业及社会生活的各个行业(如工业生产、通信、医疗、金融、社会治安、交通领域及服务业等)[5]。人工智能导论课程要求学生在学好理论前提下也应该掌握各行业的相关知识,只有这样才能提高人工智能技术在各领域的应用。1.3具备人工智能创新创业精神。目前,创新驱动发展成为了我国现阶段发展的重要力量,人工智能成为经济发展的新引擎[5]。在大众创业、万众创新的号角下,人工智能技术作为创新创业过程中的一个大趋势。因此,当今新形势下培养具有创新创业精神的人工智能专业人才对我国经济发展及大学毕业生创新创业具有重要意义。1.4具备人工智能人文素养。人的内在品质就是人文素养,人文科学的知识水平和研究能力是人文素养的重要组成部分,人文素养是人文科学体现出来的以人为研究对象和中心的精神[6]。人工智能对人类社会带来的是便利还是带来灾难,关键是使用者的思想道德和人文素养。因此,培养具有人文精神的人工智能专业人才具有重要的意义。
2人工智能导论课程教学现状
目前,许多高校已经认识到传统的人工智能导论课程已经不能适应社会和学生发展的需要。尤其是地方普通高校在师资、科研及学科力量薄弱情况下进行人工智能导论的实践教学。目前人工智能导论的课程设置上主要存在的问题如下:⑴本科生课程内容陈旧。近年来,随着云计算、大数据、5G等信息技术的快速发展,也带动人工智能技术发展日新月异。对于高校来说,要紧跟人工智能技术前沿,传授学生的知识也要紧跟人工智能的发展。目前,虽然也出现了不少新的人工智能导论教材,但在课堂上能够教学的新内容仍然不多,教材内容仍然集中在传统的人工智能技术(如问题求解、知识表示、归结原理及经典推理等技术)上。⑵研究生课程内容重叠。研究生的人工智能导论课程应作为本科生课程的一个延续,但部分高校对研究生人工智能导论课程的教学重视不够。很多本科生已经学过的内容在研究生阶段又进行了重复。因此,在新工科背景下培养高层次的人工智能人才,就必须要在研究生阶段加强新工科人才实践能力的培养,选择合理的人工智能导论课程,改革研究生阶段人工智能导论的教学理念和教学模式。⑶实践课程不足。实践教学是提高人工智能新工科人才能力的重要路径。目前,大多数院校的人工智能导论课程理论与实践联系不够紧密,对学生实践能力的培养不够,只知道理论,而不进行实际的实践应用就不能成为合格的人工智能新工科人才。另外,大多数地方高校的人工智能实验室建设投入不足,实验条件差,验证性的实验较多,实验课时不足,学生对人工智能新技术的接触不够。⑷人工智能导论教材理论性过强。目前,现有的人工智能导论教材以理论为主,缺乏人工智能实践内容。在课程教学过程中学生经常会感觉索然无味,当实践课程开设不足时,这种情况会非常明显。学生会渐渐的对人工智能导论课程失去兴趣和热情,最终会导致课程的教学质量和效果下降,不能达到新工科人工智能专业人才培养的预期。⑸教学模式老旧。人工智能导论是多学科交叉的课程,课程内容理论性强、抽象、多知识点是新工科的特点。然而,大多数地方高校仍然采用过去的课堂教学模式(即“教师讲、学生听”的教学模式),这种单向灌输的教学方式以教师为主,学生的主动性不够,只是在被动接收知识。学校这种重视理论不重视实践的教学模式,在一定程度上影响了新工科人才的实践能力,从而导致教学内容与企业社会需求脱节。
3人工智能导论实践教学初探
3.1人工智能导论课程实践平台建设。为了提高学生对实践教学的兴趣,南阳师范学院计算机科学与技术学院在人工智能导论授课过程中广泛应用多种计算机实验教学平台,如采用开源的PaddlePaddle百度飞桨深度学习平台,希冀一体化人工智能实践教学平台及大数据综合实验平台。教师可以在实践教学过程中方便的使用这些平台进行授课,学生也可以在课堂中跟随老师完成相关实验,并能够在课下进行相关实验练习及提交作业。3.2人工智能导论课程实验内容优化。在人工智能导论实践教学过程中,以学生兴趣为导向,开展相关应用课程实验,南阳师范学院计算机科学与技术学院对人工智能导论实验课程内容进行优化。优化后的主要实验课程包括搜索优化算法实现、智能计算实现、贝叶斯分类实验、最近邻算法实验、机器学习实验及神经网络实验。最后,通过期末课程设计进一步提高学生解决实际问题及创新创业的能力。3.3人工智能导论实践教学模式改革。⑴校企合作为使人工智能导论实践教学不与企业脱节,校企合作是关键。应积极派遣教师进企业进修,了解企业需求,并提高教师的工程能力。从2018年以来,南阳师范学院计算机科学与技术学院每年暑假期间累积派遣教师58人/次前往百度、中兴、科大讯飞、神舟数码及江苏传智播客公司等进修培训。同时已经在固定时间邀请相关企业讲师到学校进行人工智能方面的项目教学。建立起了具有地方区域特色的师资队伍及校企协调的实践教学模式,从而避免人工智能导论课程实践与企业实际脱节。⑵“双导师”负责制人工智能导论实践课程实行“双导师”制,邀请企业中实践经验丰富的人才任教或任职,校企合作建立实践教师指导团队,改革教学策略及教学方法,以项目为牵引,将人工智能导论实践课程作为第二课堂学分。还要积极制定人工智能相关的科技作品竞赛的奖励机制,积极引导学生参加各种人工智能相关的比赛,从而进一步提高学生在创新实践方面的能力。⑶采用案例教学法以案例导入进行教学,提高学生兴趣。首先,从人工智能竞赛的部分赛事中、(如百度的人工智能大赛,“2020年全国人工智能大赛”,“2020中国高校计算机大赛人工智能创意赛”等)中选取贴近实际问题的案例作为人工智能导论实践课程的案例来源。然后,采用目前主流的人工智能开发软件进行算法代码的编写,引导学生采用Python语言调用第三方接口库进行算法的实现。最后,让学生使用主流的编程语言(如C++、Java等)开发完善算法或进行系统设计与实现。
4结束语
在新工科背景下,人工智能导论作为智能科学与技术专业的基础核心课程,人工智能人才培养应注重提高学生解决问题的能力。在这种背景下,笔者结合近年来了解到的企业需求和上课的实际,对人工智能导论实践教学模式进行初探,具体如下:①校企合作,构建人工智能实践平台;②建立案例库,优化实践的内容;③校企“双导师”制,采用案例教学,从而进一步提高学生在创新实践方面的能力。
参考文献:
[1]杨晴,王晓墨,成晓北等.新工科背景下的新能源科学与工程专业——哈佛大学工科教育在学科交叉方面的启示[J].高等工程教育研究,2019.S1:23-24,33
[2]李明媚,成希,罗娟.人工智能时代的高等教育之变与不变[J].黑龙江高教研究,2020.2:41-44
[3]陈义明,刘桂波,张林峰等.智能科学与技术专业课程体系建设的理论思考[J].计算机教育,2020.309(9):103-107
[4]刘永,胡钦晓.论人工智能教育的未来发展:基于学科建设的视角[J].中国电化教育,2020.2:37-42
[5]姚琳,石志国.人工智能课程体系与教学方法研究[J].中国大学教学,2019.10:19-22
关键词:人工智能;大数据;交叉领域
自二战时期阿兰•图灵破解恩尼格玛密码机带来胜利的曙光之后,人工智能初见苗头,1956年“人工智能”一词首次由约翰•麦卡锡等科学家在达特茅斯研讨会上提出,时至今日,人工智能经历了60多年的浪潮和洗礼,其中有曙光、有冰封,也有期望。纵观当下,人工智能不仅仅是机器智能,在深度学习和推陈出新的算法推动下,其携手云计算、大数据、卷积神经网络等,攻破了自然语言语音处理、图像识别的瓶颈,像潘多拉的盒子一样在认知科学、机器人学、机器学习等领域全面开花,人工智能涵盖了从基础层、技术层到应用层等多个方面,为人类文明带来了翻天覆地的变化[1-2]。人工智能包罗万象,在其基础上衍生的大数据“洪流”对人类社会的方方面面进行冲击,这些数字的价值已然超越了诸如金钱、财产、黄金、石油,甚至是土地。然而,大数据技术也如同普罗米修斯盗得的圣火,一方面给人间带来温暖和光明,另一方面也有可能使自身被奴役甚至使人葬身火海[3]。因此,当我们沉迷于大数据的海洋中时,我们是否有能力像蓝鲸遨游大海一样自由掌舵,是当今大数据和人工智能时代存在的一个重大问题。是“曲径通幽”还是“会当凌绝顶”,我们如何在大数据中“浮游”,而不是一味地扩充,需要理性看待与合理评价大数据对人类生存和发展的影响。
1.人工智能和大数据与“工业革命”
2020年刚刚结束的新一轮美国总统竞选上演了各种“国家闹剧”,为何特朗普在2016年赢得大选,而4年之后却无法连任?时间推移,2016年他胜利的部分原因在于他利用了面临技术威胁的工业行业中工人们的焦虑,同时指责非法移民对美国及美国人资源和就业机会的占用[4]。但在技术浪潮的挑战中,自动化和人工智能才是占用的“根源”。早在18世纪60年代工业革命时期,机器取代人力,规模化工厂生产取代个体手工生产,即引发了人工智能数据的工业大变革。从机械结构、电气控制等模块的设计和改良,车间机器人的智能化已可以代替人完成生产作业[5]。通过智能化机器人可以减轻劳动负担,还可以用于环境检测[6]和实施救援[7]等,保护我们的人身安全。这些“机器人”在为我们减负的同时确实也引发了“失业危机”,这种现象不仅于美国,日本、韩国和德国亦是如此。我们也许可以形象一下,未来20或30年后,工厂中工伤几乎为“零”,完全实施机器人24小时作业,速度惊人,质量统一,而仅有的几个人使用简单的触摸界面对机器下达“命令”。机器的发展已超乎我们对普通机械的认知,21世纪开发的三大机器人中大狗(BigDog)解决了运动和重载运输问题,特别用于军事领域,被誉为“当前世界上最先进适应崎岖地形的机器人”;亚美尼亚(Asimo)从人类如何移动上展现了机器人仿人运动;Cog具有了人类所特有的思考,由不同处理器组成的异种机互联网络形成了“大脑”。特斯拉——其除了是电动汽车和能源公司外,还是自动驾驶汽车行业的领跑者之一。其2016年已销售具有自动驾驶、自动自制和自动停车功能的电动汽车,但出于法律和伦理层面,驾驶员还是要坐在驾驶位上,但他可以做他想做的其他事,发短信、打电话或是休息,而不再是驾驶汽车。我们可以不用担心酒驾,不用因为时间紧张而疲劳驾驶,不必为新手司机而变得脾气暴躁……汽车自动驾驶将让我们行驶得更规则、更安全和更“无聊”。自动驾驶上的智能进化,使得自驾型派送车为商业化服务成为可能,还有自驾型飞行器也在被研发,通用、宝马、谷歌等公司一直在努力开发,通过无人机在您家门口投送包裹将对电子商务世界带来更多创造性方案。“如果你够走运的话,机器可以把你当成宠物。”虽为戏谑之言,却又饱含心酸。工厂变得越来越自动化,但其仍需要人类专家,他们才知道如何监控传感器,知道在发生故障时如何进行修复,机器的运行离不开人的监控,只有人的思考才能有新产品的诞生以及高效的生产流程,我们与机器共存,是从体力中解放,但要从事脑力工作。
2.人工智能和大数据与金融的未来
“数字蝶变”席卷金融行业各个领域[8],金融行业应用大数据、移动互联网、人工智能等先进信息技术,累积了非常多的客户信息。通过大数据的帮助,金融公司在分析数据下寻找更多的金融创新机会。在商业智能(BI)的辅助下,电信业可以对客服描述和定位及需求进行预测;保险业可以在进行风险分析的同时进行损益判断;银行业可以调整市场活动,建立信贷预警机制等等[9]。人工智能和大数据让金融业形成了“以客户为中心”的模式。与客户最密切的金融即是金钱,但是它们已经被“支付宝”和“微信”以及更多的电子支付方式取代,越来越少的人使用现金,数字金钱是否会完全取代物质金钱,我们很可能会发展为无现金社会。那么首先“下岗”的是谁呢?答案毫无疑问:银行。巴克莱银行前首席执行官安东尼•詹金斯曾预测,对于工业化国家,银行员工和其分支机构在未来10年内会消失;花旗全球视角与解决方案的一项研究预测,美国和欧洲的银行将在未来10年裁减约180万员工;甚至2016年2月的一份丹麦银行家协会新闻稿表示,银行抢劫案数量连续第5年下降。就支付领域而言,在这样的时代背景下,如何利用大数据技术对跨越式发展的支付行业进行监管,成为一个值得深入研究的课题[10]。在人工智能下,我们都有被银行自动回复或自会读取特定问题的“员工”惹恼过。沟通技巧和财务知识同样重要,因此,银行业员工的下岗只是在基础性操作上,对于“专业咨询”,需要更多受过高等教育、具有更好沟通能力的员工。目前,我国的多数银行还没建立“开放、共享、融合”的大数据体系,数据整合和部门协调等问题仍是阻碍我国金融机构将数据转化为价值的主要瓶颈。大数据的整合、跨企业的外部大数据合作不可避免地加大客户隐私信息泄露的风险。有效防范信息安全风险成为商业银行大数据应用中急需解决的问题。
3.人工智能和大数据与“专家系统”
电子病历数据、医学影像数据、用药记录等构成了医疗大数据。医疗数据不仅包括大数据的“4V”特点,即规模大(volume)、类型多样(variety)、增长快(velocity)、价值巨大(value),还包括:时序性、隐私性、不完整性和长期保存性。医疗大数据可以提供预警性,当数据发生异常时,通过一定的机制可以发出警告,从而迅速采取相应措施,及时解决问题[11]。成立于1989年的美国胸外科协会(STS)数据库,至今已经涵盖了美国95%的心脏手术,收集了500万条手术记录[12]。其中的先天性心脏手术(CHSD)数据库是STS数据库的重要组成部分,是北美最大的关注儿童先天性心脏畸形的数据库,被认为是医学专业临床结果数据库的金标准。近年来,基于CHSD数据库所进行的数据挖掘不断增加,大型数据库对提高医疗质量所起到的正向作用正在日益凸显。如Welke等基于CHSD数据库探讨小儿心脏外科病例数量和死亡率之间的复杂关系[13];Pasquali等基于CHSD数据库探讨新生儿Blalock—taussig分流术后的死亡率[14];Jacobs等基于CHSD数据库采用多变量分析方法来研究病人术前因素的重要性[15];Dibardino等基于CHSD数据库采用多变量分析的方法来探讨性别和种族对进行先天性心脏手术结果的影响[16]。这些都是在医疗领域采用人工智能提供的医疗诊断,形成了“专家系统”,专家系统可以说是一种最成功的人工智能技术,它能生成全面而有效的结果。借助医疗大数据的平台,“专家系统”可以智能辅助诊疗、影像数据分析与影像智能诊断、合理用药、远程监控、精准医疗、成本与疗效分析、绩效管理、医院控费、医疗质量分析等。不仅是数据平台,“达芬奇机器人”可以看成医疗的高精尖“人工智能”,它能缩短泌尿外科手术以及术后患者恢复时间,促进患者早期下床活动,减低并发症发生率[17]。达芬奇手术机器人在消化系统肿瘤、泌尿系统肿瘤、妇科肿瘤和心胸部肿瘤等手术中均有运用[18]。正是机器人,还有其他人工智能设备,如插入手表或衣服里的传感器、植入我们皮肤下的芯片,以及智能手机中装有各种“专家系统”的远程医疗、预防医学,甚至是器官的3D打印和虚拟现实治疗等的发展,让医学发生相应的转变,并使其逐步突破人类的传统健康概念,那么是否意味着医学将成为只有科学性,毫无直觉性的学科呢?我们携带的内部传感器和外部应用程序将成为我们的医生吗?“你好,医生”被“嘿,Siri”取代吗?这不尽然。医学必然将是向精准化发展,并更具个性化、参与性、预防性和可预测性。医生不再是疾病的修理工,而是改善我们健康状况的顾问。直观当下,我们还是被“看病难”所困扰,我们提出“分级诊疗”,是在拥有家庭医生、全科医生和专科医生的基础上再加上人工智能,以实现预期的健康监测、辅助诊疗和疾病筛查。
4.人工智能和大数据与教育变革
面对各行业和各学科,教育作为传承文明和创新知识的载体,似乎被排除在人工智能之外。就目前而言,人工智能与教育深度融合发展还存在技术基础不稳、教育数据缺陷、算法能力不足等现实问题[19]。我国目前更想要做到的是在教育上消除“信息鸿沟”,促进教育公平、均衡发展。因此,目前可以看到人工智能的教育多在于语言学习软件,通过虚拟技术和人工智能构建一个灵活的、可扩充的虚拟交互平台,设计多维虚拟场景和智能人工角色,实现不同场景下人机角色的交流和学习,提升学习者的口语能力和语感知识[20]。这使得教师不再是唯一的知识传播者,任何互联网搜索引擎都将提供比教师所有的更多信息,并且可以更快捷地获取。肺炎疫情暴发以来,远程网络教育成了主要教学形式,互联网教育形式其实早在小学、中学和大学中运用,虚拟现实技术在教学领域的研究和探索也在全面展开。谷歌已经开发一款VR纸板视图,并将研发的虚拟课程一起推向市场,使现实生活中在生物课上解剖一只青蛙成为一件容易且有趣的事,通过虚拟青蛙,学生们可以去除心脏和其他器官,而不再是象征性的抽象体验。虚拟现实可以像互动游戏一样,比单一的在教室听老师授课带来更多乐趣和体验,学习效果可能更好。我们的学习是知识的积累,那么教育就是我们的库,荀静等结合自身情况对西安工业大学知识库构建进行探究,认为机构知识库在保存知识资产的同时,更重要的是促进学校知识资产的传播利用和管理,提升学校影响力和学术声誉[21]。刘畅等通过对东北大学机构知识库服务的推广研究,了解到开放获取的概念和实践已经受到了广泛的认可,机构知识库不仅可以成为一个知识的存储库,也可以成为各个学科领域的学者进行在线交流的平台,提供个性化的增值服务,既有利于机构知识库的内容建设,也可以进一步促进学术交流和科研合作[22]。知识库,即大数据的有机整合和有序利用,是学术成果、视频文档、实验数据等进行收集、长期保存、传播和提供开放利用的知识资产管理与教育服务[23]。
5.人工智能和大数据应用的共性需求
人工智能和大数据时代,海量的信息来自“五湖四海”,但都通过互联网络汇聚智能终端。这些数据只会进一步增多,不仅仅是云存储,对于信息的进一步挖掘、处理、分析和利用,目标性结果才是我们最想要的信息。全球包括IBM、微软、谷歌和亚马逊等一大批知名企业纷纷掘金大数据挖掘这一市场,大家都在开拓自己大数据分析平台。数据挖掘是大数据时代孕育的产物[24],是我们的共性需求,与传统的统计分析技术相比,数据挖掘有着自身的本质特征,数据挖掘是在没有明确假设的前提下去挖掘信息并发现知识。数据挖掘所得到的信具有先前未知、有效以及可实用三个特征[25]。数据挖掘的出现不是为了替代传统的统计分析技术,相反,它是统计分析方法学的延伸和扩展[26]。随着信息时代的到来,数据挖掘被越来越多地应用于各个领域。
6.人工智能和大数据的展望
大数据与人工智能相辅相成,在人工智能的加持下,海量的大数据输出优化的结果,使人工智能向更为智能的方向进步,大数据与人工智能的结合将在更多领域中击败人类所能够做到的极限。漫长的人类历史发展和进化,信息和人类一直“缠缠绵绵”“你追我藏”,因此,我们应该明白信息就是信息,我们需要的是“维基百科”,而不是仅仅的“维基”。走出狭隘的信息资源,管理和洞察大数据,才是对数据的有用。因为,我们早已告别了数据库放在一间房间的时代。此刻不得不提蓝鲸法则——大数据之道:了解数据懂得利用数据的“浮力”才是关键;“以简约为目标”将数据最终形成洞察及行为;可以通过“数据”“信息”“知识”流程式、组合式、直通车式各种需要的方式来获取[27],在简约中“印象”处理繁杂的大数据,使之“为我所用”。=数据也是一门科学、一项技术,如果实验不能证明其具有可重复性和一般性,那它是没有科学依据,但是,任何一项科技,如果你坚信它必将改变社会和商业,选择从长期展望其发展并持续付出努力,那么就是一种战略选择[29]。人类社会的政治、经济、文化、思维等固有“态势”被重刷,数据思维将为我们带来一个智能全新的世界观。
关键词:人工智能;高职;技能培训
一、人工智能概述
人工智能(Anificail Intelligence)是指利用计算机软件技术与自动化处理的技术,让计算机能够模拟与扩展某些人类特定智能的学科,最近几年来发展非常迅猛,在智能接口,数据挖掘,主体系统等方面取得了丰硕的成果。智能接口技术是研究如何实现人类与机器的便利沟通,现在已经实现了文字,语音,自然语言理解等方面实用化的功能。数据挖掘则是如何从大量不完备的数据中自动生成可应用的知识的技术,在大数据时代里将会有非常广泛的应用;主体系统则是指的让计算机具备愿望,能力,选择等心智状态的实体,实现计算机的自主性。从当前的应用发展趋势来看,在未来的5~10年内,人工智能将会应用在教育,医疗,管理,生产等绝大多数的社会领域中,将推动社会的全面发展与进步。在本文中,作者将以高职技能教育为切面,分析人工智能在该领域内应用的前景,并提出建立一套基于人工智能的高等职业技术辅助教学系统的思路,方便进行人工智能应用的相关人士研究与借鉴。
二、人工智能在高职教育教学领域的典型应用及其不足
将人工智能应用到教育方面是很久以来的教育现代化的热点,从最近几年来的人工智能在教育方面的应用来看,主要有三种应用的层面:一是智能计算机辅助教学(ICAI),它是将人工智能的技术引入至CAI系统中来,实现更加智能化的教学支持,减轻教师的工作量。二是智能,即让某些特定的课程与教学的内容,由人工智能来取代教师进行授课,即时答疑,提高教学的效率;三是智能数据库,对于课程相关的网络教学资源数据库,应用人工智能的方法进行数据分析,提高数据库的访问速度与交互功能,便于快速搜索与整理数据。但是对于高等职业技能教学来说,上述的三大应用领域还有些不够契合,主要体现在如下的方面:
(1)对于学习者的活动流程的监控与记录能力不够。传统的CAI系统,侧重于对理论思维知识的辅助教学,而对于学习者的身体活动的记录能力不佳,这样无法即时准确地保存技能学习过程中与身体活动相关的数据。众所周知,技能的教学是与学习者身体的活动相关联的,行动数据的获取量不足就会导致无法对学习者的技能及其效果进行评估与纠偏。
(2)与使用者的交互功能不佳。传统的人工智能交互是文本与图像,虽然简单直观但形式单一,还无法通过生动的语音和动作与使用者进行交互。这样在教学辅助方面的效果不尽如人意。
(3)智能水平有待于提升。现代的人工智能辅助系统,虽然已经能够实现教学数据的排序、统计、汇总等简单的操作,但是离真正智能化的工作还有一定的差距。系统无法根据学生操作的具体情况做出个性化的情况统计分析,提出个性化的建议。在即时交互方面也还有很大的提升空间。
三、高职技能辅助教学系统的设计思路
针对上述教学人工智能应用的不足,结合高等职业技术学校的教学情况,特地提出一套人工智能辅助系统的设计思路:
(1)使用高级的智能接口技术实现行动数据的采集。
智能接口是为建立和谐的人机交互环境,使得人与机器之间的交流像人与人之间的交流一样自然和方便。学习者在进行练习的过程中,无法像传统的人机交互方式一样将数据录入至计算机中,而是需要智能系统通过摄像头,运动传感器等等高级的智能接口技术来感知学习者的活动,对活动进行分析与统计,并转化为大数据存放至海量数据库中。至于具体采用哪种智能接口技术,需要根据具体的学习内容而定。
(2)应用专家系统对于学习者在技能操作中产生的大数据进行分析。专家系统是目前人工智能领域最有实效的一个领域,它是利用人工智能的技术让计算机能够实现特定领域内的大量知识与经验的系统。利用它来对技能学习过程中产生的大数据进行分析和挖掘,从中提炼出具有个性化的知识体系,发现学生与老师都没有发觉到的某些特殊的学习状态,能够为进一步的学习反馈做好充分的准备。这样可以使得学习的针对性更强,效率更高。
(3)使用智能检索与生成技术对于分析结果进行输出与展示。通过使用人工智能的检索系统,可以快速地对分析的结果进行展示,可以利用网络的环境,用生动形象的方式将结果展现在学习者或教师面前,方便掌握学习的过程。
四、辅助教学系统的应用展望
通过应用了上述的基于人工智能的辅助教学系统,将对于高职院校的教学产生非常强大与积极的影响。首先,该系统可以将教师从重复机械的日常教学环境中解放出来,不再通过传统的测验,考试,交流等方式获知学生的学习状态,由系统监控学习者在技能培训过程中的一举一动,自动进行学习效果的定性与定量的分析,积极地反馈给教师,从而使得教学更具备了明确的方向。其次,该系统也会增加技能教学的趣味性,将培训的活动转化为类似于电子竞技的效果,学生在学习的过程中随时可以观察到自己的学习状态,以及与其他同学的差异,更能够培养自学的能力。第三,该系统可以与现有的高职院校校园网实现无缝的对接,将全院校的数据进行统一的智能加工与挖掘,可以更加方便高职院校的管理工作,也可以方便地扩展成为完备的高校智能管理系统。
参考文献:
[1]邱月,人工智能技术在计算机辅助教学中的应用[J].福建电脑,2007(08).
政策催化进一步加强
国内AI有望“弯道超车”
目前,各国政府都高度重视人工智能相关产业的发展。自人工智能诞生至今,各国都纷纷加大对人工智能的科研投入。美国主攻军用机器人技术,欧洲主攻服务和医疗机器人技术,日本主攻仿人和娱乐机器人。可以说,人工智能成为各国“大脑”计划的重要内容。
当下我国社会面临老龄化压力、经济转型和制造业升级,对此,国务院在印发的《中国制造2025》中明确指示,要把智能制造和高端技术创新作为重点建设工程,特别提出要发展和培育一批产值超过100亿元的人工智能核心企业。
国内市场的扶持政策频出。2015年7月,国务院印发《“互联网+”行动指导意见》,将发展人工智能提升到国家战略层面;2016年1月,科技部部长万钢提出“科技创新-2030项目”,智能制造和机器人成为重大工程之一。
在2016年3月两会召开期间,《国民经济和社会发展第十三个五年规划纲要(草案)》正式出炉,其中提到,要大力推进先进半导体、机器人、智能系统、智能交通、精准医疗、智能材料等新兴前沿领域的创新和产业化,形成一批新增长点。
政策和资金的支持、人才储备、技术的积累和突破等都为人工智能的发展提供了基础条件。科技部高技术研究发展中心研究员刘进长认为,我国人工智能与机器人技术的快速发展,一是因为国家的高度关注与政策支持,二是得益于金融界的重视与大企业的不断进入。
“2014年,中国市场的工业机器人销量猛增54%,我国智能语音交互产业规模达到100亿元,指纹、人脸、虹膜识别等产业规模达100亿元。”广证恒生副首席分析师赵巧敏向《经济》记者分析称,在利好因素的促进下,我国人工智能技术攻关和产业应用发展势头良好。
在她看来,目前国际巨头在人工智能技术上还没有完全形成垄断。我国在人工智能的研究上与发达国家相比,甚至与美国相比都不算落后,这是难得的历史机遇,是提升综合国力和影响力的绝佳机会。
“我国完全有可能利用市场需求优势、用户数据优势等,抢占人工智能技术和产业的制高点,实现人工智能技术‘弯道超车’。”赵巧敏称。
人工智能大潮来袭
千亿市场规模可期
人工智能已经开始进入一个新的阶段。从Siri识别到无人驾驶,都是人工智能的实现载体,涉及到的技术和领域跨越多学科,包括深度学习、智能识别、专家系统、神经网络、智能机器人等。
未来,人工智能需求将会激增。据BBC预计,到2020年,全球人工智能市场规模将达到183亿美元,约合人民币1190亿元。
“目前人工智能的应用领域主要还是以工业制造为主,但是随着经济结构的转型,以及不断攀升的劳动力成本,未来包括机器人在内的人工智能产品的市场需求将会不断扩大。”爱建证券研究所研究员刘孙亮向《经济》记者表示,随着人均可支配收入的增加,以及人口老龄化时代的来临,人工智能家庭化的现象将会普及,届时家用助老服务机器人、医疗机器人以及家用清洁机器人的市场需求将会激增。
国内著名的咨询机构艾瑞咨询在参考人工智能行业全球市场规模后预计称:在不包括硬件产品销售收入、信息搜索、资讯分发、精准广告推送等的情况下,预计2020年中国人工智能市场规模将达到91亿元人民币。
而目前市场的关注点还只是在智慧金融、智能家居等应用领域,对于人工智能的发展空间来说,这只是冰山一角。
赵巧敏表示,由于人工智能属于基础型技术,与机器人和大数据联系紧密,其水平的提升将带来多领域的应用扩展,大幅拓宽传统产业的发展之路,造成未来5-10年的巨大颠覆性影响,产生10-100倍的溢出效应,由此将打开万亿规模的市场空间。
“仅仅以工业机器人领域为例,在智能化水平提高后,将降低固定资产投资成本近30%,降低人工成本近60%-70%,在汽车整车、零部件制造、食品工业及物流等行业产生8-10倍的产业集群带动作用,对应着800亿-1000亿元的市场规模。”赵巧敏说。
实际上,中国人工智能的商业化应用环境甚至能创造更大的市场空间。我国人工智能的商业应用水平已经十分繁荣,这一概念已经渗透了教育、金融、医疗、文体娱乐等领域,且获得了很好的市场反响。
“市场关心的IT和互联网领域几乎所有的主题和热点,例如智能硬件、O2O、机器人、无人机和工业4.0,发展突破的关键环节都是人工智能。”赵巧敏表示,人工智能的发展是必然趋势,它将成为未来30年内我国技术发展的重心,也会给互联网领域带来新的突破,给人们的生活带来翻天覆地的变化。
在人工智能应用领域,我国已经发展得较为全面,包括家居领域、安防领域、医疗领域、企业领域、金融领域和教育领域。
然而尽管目前我国自主知识产权的文字识别、工业机器人、娱乐机器人等智能科技成果已经进入大规模实际应用,但市场空间仍然很大。中泰证券首席宏观策略师罗文波向《经济》记者表示,我国机器人的“密度”只有德国、日本的1/10,行业发展空间巨大。
VC青睐人工智能
巨头加速并购
人工智能一直是硅谷大佬们疯狂追求的领域,谷歌、Facebook、IBM均重金投资人工智能,是目前AI领域的领导者。微软、谷歌和Facebook等全球科技巨头都认为2016年是AI迅速进化的关键节点。
Google希望在人工智能领域复制Android的成功,并力图打造一个机器人帝国;Facebook计划在2016年制造出能够在家务和工作上帮助自己的人工智能;苹果4天内接连收购两家人工智能初创公司……
据罗文波统计,目前全球人工智能企业已经超过了900家,大多集中在北美和西欧。这些人工智能初创企业总估值超过87亿美元。“随着日本、北美、欧洲的‘大脑’计划大规模布局人工智能,2040年全球很有可能实现广义的人工智能。”
除互联网巨头外,敏锐的资本方也在积极布局人工智能领域,近年来风投不断加大对人工智能初创企业的投资,持续布局人工智能这个重要风口。
“2014年人工智能企业融资总量首次超过10亿美元,2015年融资总量更是超过12亿美元。2016年到现在,全球在人工智能领域的投资已经超过4亿美元。”渤海证券研究所证券分析师齐艳丽向《经济》记者表示,随着科技巨头在人工智能领域的布局将提速,VC/PE在人工智能领域的投资也将随之爆发。
“反过来,资本层面的爆发也将持续带动人工智能行业加速爆发。”齐艳丽认为,虽短期看人工智能仍处于大规模投入期,较难变现,但未来人工智能应用于无人驾驶汽车、辅助诊断、刑侦监测等领域将会产生巨大的商业价值和社会价值。
在全球市场火爆的背景下,国内市场也充满了巨头和风投的博弈与布局。
出于对人工智能行业商业前景的看好,国内巨头纷纷进军人工智能领域,百度、阿里、腾讯均在人工智能领域发力。
其中,百度2014年研发投入接近70亿,同时涉足了深度学习与自动驾驶领域,并推出了“百度大脑”计划;阿里巴巴推出了国内首个人工智能平台DTPAI;腾讯推出了撰稿机器人Dream writer,开放了视觉识别平台腾讯优图,同时成立了腾讯智能计算与搜索实验室。一些具有创新性眼光的巨头公司也相应进入,让整个行业迎来了爆发的机会。
“互联网巨头公司和创业公司是我国AI技术基础研究主力军。在国家政策大力支持下,无论是科研机构还是企业都在加大人工智能研究的力度,由此也取得了较为不错的成绩。”据罗文波介绍,截至2015年底,我国人工智能领域已有近百家创业公司,约65家获得投资,共计29.1亿元。人工智能领域布局如火如荼。
巨头的基础层切入为人工智能基础领域的研究带来了巨大的资金优势和人才支持,使得部分技术达到世界一流水平。例如,我国的视觉、语音识别的技术已经处于国际领先水平。
而近两三年,风投也开始加速了在这一领域的投资步伐。2014年开始,我国人工智能领域投资金额、数量、参与投资机构数量均大幅增加,2015年更是实现了跨越式的增长。“2015年我国投资人工智能的机构数量已经高达48家,是2012年投资机构数量的6倍;投资额为14.23亿元,是2012年投资额的23倍。”赵巧敏表示。
短期看好应用开发
长期关注技术研究
二级市场一向是搜寻热点的风向标。人工智能市场的火爆也催热了资本市场的相关行业。在市场空间巨大、产业前景明朗的背景下,占据资金优势的上市公司纷纷瞄准人工智能领域,分享广阔蓝海。
随着人工智能的不断进步和发展,最先实现产业化的AI应用层将最早迎来投资机会。银河证券分析师杨华超向《经济》记者分析称,无人驾驶、工业4.0、智慧医疗等主题将成为未来中长期的热点,建议关注相关主题的优质标的。“同时,AI数据层和应用层作为准入门槛较高的环节,之前具有技术积累和数据资源的公司将优先受益,可以关注目前已经在人工智能领域已经有技术和规模优势的公司。”
对此,罗文波则建议投资者,选择人工智能领域的标的,要分长短期来考量。“短期可关注在人工智能商业化应用有所突破的企业,长期可关注具备技术研究实力的公司。”
在他看来,具备竞争力的上市公司主要有两类,一是与机器人硬件制造相关的公司,它们一般拥有较好的智能制造业基础,在未来产业升级过程中,拥有强大的竞争优势;二是在人工智能商业化应用有所突破的公司。
对此投资逻辑,赵巧敏也表示认同,“短期看好应用开发领域,特别是基于当下较为成熟的感知智能技术如语音、视觉识别的服务、硬件产品等的应用开发将是短期的投资亮点”。
“目前下游应用领域也面临着大量需求,如人口老龄化对服务机器人的需求、定制化生产对3D打印的需求、物流配速对无人机的需求等。”赵巧敏分析称,穿戴设备、3D打印、无人驾驶、服务机器是最值得看好的应用场景。
而从长期来看,在以现有技术为基础的应用领域基本饱和之后,只有技术研究才能推动新一轮的应用创新,赵巧敏称。技术研究是长期的投资关注点,“应该关注核心技术模块提供商和数据传输、运算、存储过程所涉及的基础设施运营商”。
与此同时,在主板之外,一些新三板标的同样值得关注。从2015年起,挂牌新三板的人工智能企业数量明显增加。以机器人子行业为例,仅2015年一年就有35家机器人企业在新三板挂牌,还有10家机器人企业在待挂牌状态,20多家公司在审查待挂的状态。投资者可以有选择地关注其中较好的标的。
机器和人类、现实和科幻、邪恶和美好的分界从来没有像今天这样如此模糊。眺望未来30年,智能革命的壮阔波澜,将改写人类社会对智商的理解和定义。
从AlphaGo说起:Have to win
关于这场围棋大赛,先引用一段博士老板Alan Yuille教授(美国顶级机器智能科学家,霍金理论物理学博士)的判断:
Go is a complex game but still it is finite so with enough computer power,and clever algorithm,the computers will have to win(if not this year,then next year)。(围棋是一套复杂但有内在逻辑和明确计算量的游戏,所以只要计算机遵循围棋的推演路径并拥有充裕的运算能力就必然能够赢得人类、取得胜利,AlphaGo的胜利对于计算机而言只不过是时间问题。)
AlphaGo战胜人类,美国学术界早有准备
伴随着摩尔定律的不断实现和几十年来人工智能的软硬件技术积累,人工智能其实已经悄然改变了我们生活中的许多方面,当我们还在感慨电影中各种AI的强大时,未来已经悄然而来,AlphaGo只是这场人工智能大浪潮中的一朵璀璨浪花。
在过去的5年里,人工智能已经在语音识别、计算机视觉、语言理解、医疗健康等领域取得了巨大进展,并在某些领域里超过了人类,比如语音识别、人脸识别等等方面。
以计算机视觉为例,人工智能已经发展出了突破肉眼精度的图像识别技术并已被广泛的应用于公安、金融、信息安全等领域,产生了巨大的价值。而这些进展之所以没有引起社会轰动,是因为社会中大部分非专业人员会通过直觉和自身感受而推论出机器识别“人脸”、识别“苹果”等图像信息是一件容易的任务,是一件不同年龄、不同教育背景、不同文化背景的人都能胜任的任务,在这其中体现不出人工智能的“智能”来。
但站在人工智能发展的角度,从围棋和图像识别的复杂性和不确定型来说,图像的变化比棋盘的变化要大得多。
围棋是有可遵循的逻辑、可衡量的计算量的游戏,对于人类大脑的难度在于庞大的计算量和对棋盘宏观形势的敏感度;而图像识别则会在信息抓取和逻辑分析层面呈现出更广泛意义上的随机性和不确定性。
通过机器学习将图像中的信息进行分类解析、最终提取有价值的结构化数据是极难的科研课题,从学术界到工业界的转化耗费了几十年的时光。
然而相比于计算机视觉、语言语音理解等其他的进步,AlphaGo的划时代意义在于它不仅仅缩短了机器与人的智能距离,还将颠覆人与人智商差异的感知。
未来人与人的智商差距不再会是不可弥补的先天差距,而将成为一种可以通过工具而后天获取的能力,这带来的会是人类自我价值评估的一次大颠覆,智商对于人的意义将会在一定程度上有所下降。这就像从前算术不好的,现在用计算器就能补上;未来下棋不好的,可能只是加个AlphaGo就能补上。“智商”这个词的定义可能会被迫从形容人和动物差异,变成由人和机器的差异所定义。
第一个十年的变化:The rich get richer(富人更富,强者更强)
从短期来看,让我们畅想一下在这场大浪潮中,谁会成为最大的受益者呢?
当我们回顾推动人工智能发展的关键因素时,有三个要素极为重要:数据、算法和计算。
AlphaGo这次在全社会范围内对人工智能进行了一场大面积的认知普及,会使得拥有成熟商业模式和海量数据优势的BAT等巨头重金投入这片市场,彼此间的互相追赶将在市场中形成像google收购deep mind一样的并购风潮。
同时伴随着计算能力的不断提升和算法的持续优化,这将带来人工智能史上的第一次大规模应用实践,各巨头的业务将因为人工智能带来的效率提升而加速拓展,他们相较其它竞争者的优势也会因此不断加大,这就正如今天的google相对于其他公司一样。
当资本成为这场竞逐游戏的驱动力时,获得先发优势的公司雪球也必将越滚越大,优势将在成长中愈发明显,The rich get richer。
未来的思考:人类将重新理解知识、智慧、人性
从远期来看,人工智能的进步将改写人类对自我、知识和教育的理解。
倘若,90%的医生、律师、教师、程序员能被机器所代替,人们将需要重新开始讨论“人”的自我定义和“知识”的新时代价值。
当旧时代下的知识已成为机器人仅需拷贝和执行的简单命令,而“为什么要学法律、学编程等”的疑问及背后对自我价值的疑惑就必将引发社会教育结构的变革。
过往人与人之间通过知识组合的不同而形成的差异将被人工智能抹平,“高考”等考试测评手段作为广义上的游戏(game),就像围棋一样,将不再能作为准确评价智慧和学识的方式而被修正。
当在体力劳动和脑力劳动里独立的人类相对于机器都不再具备经济优势时,人的存在形态、存在价值和机器的交互融合将成为未来前沿学术研究的重要课题,这会是一次人类社会的集体迷思、也会是人类价值的再次追寻。
人类的希望?
有人曾说,机器和人的差异是艺术的创作和欣赏。但这对于人工智能而言,已经并不是什么特别难的事情,大概在10年前就已有成熟的学术成果来用计算机创作梵高风格的作品,在这背后的艺术风格提炼、学习和再造并不是什么新鲜的技术。
也有人说,机器和人的差异是情感。但我不确定现今的人类社会对情感的定义是否像对智商一样,有着广泛的共识而能成为人类独特性的特征。情感诞生于本能和动物性,只是在人身上闪烁出了更加多彩的光芒,悲欢喜乐、嬉笑怒骂,这本就是人性中最难以捉摸而妙不可言的部分。
所以,机器和人的区别最终会是什么呢?在这个恐怕哲学家也难以回答的终极问题下,我想起了最近读到的这样一句话,“如果机器认为这场战斗必败,那么机器会选择投降;如果人认为这场战斗必败,那么有人会选择义无反顾的战斗,直至战死为止。”
或许,这句话里已经轻轻道出了我们与机器的区别。
从去年开始,阿里巴巴在全国各地频繁举办云栖大会,不断地教育用户。到近期,摩根士丹利报告称,阿里巴巴的云计算业务阿里云其单独估值已经高达390亿美元。而全球最早投身云计算的亚马逊7月12日市值再创历史新高达到3557亿美元,超过伯克希尔哈撒韦公司跻身美国前五大公司。
今年上半年以来深陷舆论漩涡的互联网巨头百度继去年推出百度开放云之后,7月13日正式了2016百度开放云战略。百度创始人、董事长兼CEO李彦宏表示,百度天生就是云计算公司。云计算已经不是简单的云存储以及计算能力的需求,大数据、云计算、人工智能三位一体才是真正的云计算。
巧合的是,在百度2016开放云战略此前不久,阿里巴巴云栖峰会(成都)、腾讯“云+未来”峰会也相继召开。昔日国内互联网领域三巨头BAT在云端的交锋已经不可避免,与阿里巴巴和腾讯相比,百度能否在云端后发先至呢?
三大智能平台
百度云计算事业部总经理刘炀正式智数大数据平台――天算,智能多媒体云平台――天像,以及智能物联网平台――天工,其中包含众多全新上线的行业解决方案和产品。三大智能平台,连同已有的云服务,共同构成了百度开放云成熟、完整的产品矩阵。
天算平台整合百度大数据服务和人工智能技术,提供从数据收集、存储、处理分析到应用场景的一站式服务,广泛适用于诸多行业场景,在生命科学、数字营销、日志分析、金融征信、智能客服等领域变现尤为突出。
随着传播媒介的演变,传播的方式也开始走向智能化,百度天像智能多媒体云平台通过人工智能、大数据的技术,增加互动时的用户体验。天像平台依托百度海量资源,提供了包括从文档到视频的多媒体处理服务;同时基于百度人工智能技术,开放百度在图像、语音处理的智能服务。
百度天工平台提供从设备端的SDK到接入、协议解析、设备管理、存储、数据等全栈产品,让企业和合作伙伴可以快速搭建一个满足行业诉求的物联网应用。万物互联的时代正在开启,然而行业之间的技术和产品天然存在着鸿沟,传统行业和互联网之间更是有着完全不同的技术栈和语言。对此百度天工智能物联网平台,深入行业,用行业的语言和行业交流,做更懂行业的物联网平台。百度天工的物接入服务是国内首个支持原生MQTT协议的公有云物联网服务,物解析服务是国内第一个支持工业Modbus协议的云服务,抹平行业技术鸿沟,降低传统企业上云门槛。
生态之争
伴随着云计算、大数据等技术愈发成熟,云计算已经跨越技术层面演变为生态之争,谁能获得更多合作伙伴的支持,已经成为最关键的竞争维度。
李彦宏表示,虽然大家一直认为是个toC的公司,但是其实百度在搜索领域有超过100万家企业,从去年开始全力发展O2O业务,又有超过200万家企业进入百度生态之中,对于企业级服务百度从来不陌生。百度开放云已经在各个领域陆续取得成效。
北京诺禾致源生物信息科技有限公司副总裁吴俊表示,诺禾致源使用百度智能大数据生命科学解决方案,有效解决了基因测序和生命科学研究海量的数据存储和分析需求。
百度智能多媒体云为业内知名的直播平台――全民TV提供了全方位的支撑,全民TV CEO李然表示通过百度开放云有效帮助平台降低延迟、过滤违法信息,提高了用户体验,大大降低了平台内容审核的成本。
太原铁路局和百度开放云合作,借助百度的云计算、大数据、人工智能和物联网技术平台打造集铁路、公路、航空为一体的智慧物流云平台。太原铁路局表示双方的合作将大大提升物流效率,助力传统物流行业的升级改造。
对于生态问题,刘炀表示希望通过技术输出,用科技的力量为更多的企业服务。百度希望通过技术、产品创新和行业形成紧密结合。同时在行业构建云计算生态,和合作伙伴共建生态,协同共赢,为面临升级转型的传统行业提供帮助支持。
殊途同归
无疑,以BAT为代表的互联网巨头都视云为未来,但是在具体策略上又略有不同。
刘炀表示,百度开放云将继续以三大智能平台为依托,不断创新,精益求精,将未来智能的触角延伸至360行。云计算是百度的战略,人工智能是云计算的未来。
百度首席科学家吴恩达表示希望通过人工智能帮助百度开放云用户。目前百度人工智能在图像识别、语音识别、机器学习平台和大数据领域拥有成熟的应用技术,吴恩达相信人工智能将像100年前的电力一样改变诸多行业。
在此前腾讯的“云+未来”峰会上,腾讯董事会主席兼首席执行官马化腾介绍了腾讯的云计算发展之路。腾讯云与业内其他云解决方案的不同是:腾讯云方案不是作为一个独立的业务来考虑的,而是作为整个平台战略去考虑。
10月21日,2016英特尔中国行业峰会在珠海召开,来自医疗、金融、交通、零售、能源、教育等行业的企业代表分享了他们对于数字化变革的理解与实践。这本该是英特尔中国行业峰会的主旋律,但是实际是与会嘉宾对人工智能的话题表现出更大的热情,有点喧宾夺主的味道。
得AI者得未来
2015年底,许多机构在展望2016年度科技领域时几乎会不约而同地将人工智能列为重点方向之一。现在来看,人工智能的火爆程度让最乐观的预测者都大跌眼镜,这得归结于AlphaGo的推波助澜。
正如文章开始所说,人工智能的使命便是完成海量物联网数据的商业价值转化。根据相关预测,2021年,全球将会拥有18亿台PC,86亿台移动设备,157亿台物联网设备。而到2035年,物联网设备的数量将会超过1万亿台,相应的数据数量将会增长2400倍,从1 EB增长到2.3ZB。如何有效管理、控制和利用如此浩瀚的数据,人工智能是解决之道。
所以说,得物联网者得未来,而得人工智能者将执物联网之牛耳。只有人工智能才能为“万物互联”之后的应用问题提供最佳的解决方案。
2016英特尔中国行业峰会上,英特尔与科大讯飞公司签署合作备忘录,双方将在人工智能领域展开为期三年的基于英特尔至强处理器+英特尔至强融核处理器,以及英特尔至强处理器+FPGA为基础的机器学习/深度学习研究项目。科大讯飞联合创始人,讯飞研究院副院长王智国博士非常到位地点评了这一合作:“一直以来,我们双方都致力于人工智能技术的创新和行业的推动,一方擅长底层计算架构,一方擅长算法及应用。我们期待双方在人工智能技术上的深度合作能够推动硬件和软件的协同设计及优化,共同发现人工智能计算平台创新的解决方案,推动人工智能产业的发展,并通过这些创新的技术支持更多行业用户进行业务转型。”
作为全球最大的半导体芯片制造商,英特尔的公司定位正在悄然发生变化。如今,英特尔将自己定位为“一家致力于驱动云计算和智能互联计算的公司”。可见人工智能已经成为英特尔公司的未来战略方向之一。
人工智能对计算力资源的需求到底有多大,现在谁也无法预判,这就像是个“计算黑洞”。但有一点可以肯定,人工智能是高性能计算在现在和未来的进一步延展和进化,而这恰好是英特尔的优势所在。
对英特尔而言,进入人工智能领域是水到渠成的事情,也是技术上的自然演进。从另一个角度看,物联网和人工智能是历史摆在英特尔公司面前一次前所未有机遇,其空间和舞台远大于PC时代和互联网时代。送上门的蛋糕(要知道,当今世界90%以上的数据都是由英特尔处理器来承载的),岂能让它从嘴边溜走。
从资本到技术,从硬件到软件
基于新的公司定位,英特尔开始从资本层面进行帝国的战略布局。作为硅谷最大的企业风司,英特尔投资总裁Wendell Brooks 说“会把未来的投资聚焦于那些能够更好拓展公司业务发展的领域”,人工智能毫无疑问是重中之重。
9月宣布将收购计算机视觉创业公司Movidius,后者致力于研发低功耗的计算机视觉芯片;8月将Nervana收入囊中,后者主攻半导体、软件和AI深度学习技术;5月宣布将收购专注于计算机视觉技术开发的俄罗斯公司Itseez;4月收购意大利半导体功能性安全方案厂商Yogitech;2015年12月完成了对可编程逻辑器件厂商Altera的收购;2015年10月收购了人工智能公司Saffron Technology……
针对某一业务领域展开如此高密度地集中收购,无论是在英特尔公司历史还是整个IT行业都是十分罕见的。可见,英特尔布局人工智能的决心之大。
由于技术因素,专用领域的智能化是人工智能未来5到10年的主要应用方向,比如自动驾驶。在更远的将来,随着技术的进一步突破,通用领域的智能化有望实现。但无论是专用还是通用领域,人工智能都将围绕“基础资源-技术平台-业务应用”这三层基本架构形成生态圈。
在人工智能上,英特尔能做些什么?仅仅是提供计算平台吗?当然不是,这从英特尔的疯狂收购中也看得出。
关键词:人工智能;授课内容;讲授方法
人工智能概论课程是我校智能科学与技术专业开设的一门重要的专业基础课,它在整个专业教学体系中起到奠基的作用,如何针对其特点制定合理的教学目标与授课内容,并有效地组织课堂教学,取得良好的教学效果是非常重要的,本文将从多个角度对其进行全方位的思考与探索,为相关课程教学的改革提供新的思路。
1教学目标的精确定位
首先,人工智能概论课程在智能科学与技术专业整个教学体系中起到引导和奠基的作用,但不同于其他相关的专业基础课,其总的特点可归纳为“少而精”,即在较少的教学授课学时中起到画龙点睛的作用,为学生进一步的深入学习打好基础,并激发他们对智能专业的学习兴趣和爱好。基于以上特点,通常选择一学期共32学时课程的安排计划,并且在大三上学期开始进行授课。
其次,要研究解决同学们所反映的“虚与实”问题。人工智能是一门涉及到多个学科的课程,具有相当复杂的背景,其与哲学、数学、经济学、神经科学、心理学、计算机工程、控制论和语言学都有着密切的联系,并且随着这些学科的发展而深化,不断产生新的思路和新的问题。以上特点决定了该课程内容较为抽象,且难以把握全局,学习起来不易消化理解,从而造成了学生学习的困难,容易产生畏惧感,并且学生常常对其在实际环境中的具体应用产生疑问。
如何在这么短的授课学时里使学生产生学习兴趣并且能取得良好的教学效果是一个具有挑战性的课题,这需要对该课程的授课内容、教材选择、讲授方法和考核形式进行全方位的思考与探索,并在教学过程中落在实处。一方面让学生了解和掌握人工智能的发展历史和思想渊源,并指出各个分支的本质特点和整个领域的发展趋势;另一方面有意识地穿插介绍人工智能在实际中具体应用的例子,开阔学生的眼界,打消他们的疑虑。这些将在本文的后面部分进行深入的介绍。
最后人工智能概论这门课程还要兼顾研究型和应用型这两种特点的共同发展。在以前,由于人工智能授课内容的特点,常常讲授时偏向研究型,往往涉及到复杂的数学推导和逻辑运算,增加了老师讲授的难度和学生学习的困难。因此,针对上述问题,在教学过程中可以引入多种形式的事例说明和多媒体演示环节,以讲授思想为主,具体技术为辅,这将直接反映到授课内容的选择上。
2授课内容的选择
人工智能概论授课内容的选择至关重要,本着该课程“少而精”的特点,既需要让学生在较短时间内掌握基本的思想与概念要点,又要对该课程进行全方位的介绍,并点出其发展趋势,因而对授课教师有着非常高的要求。由于授课课时的限制,我们无法做到既面面俱到,又对每个具体方向进行详细的讲解;而且这样也容易陷入复杂的数学推导和逻辑运算的误区。因而,整个课程的讲授内容应该以传授思想和概念要点为主,并在讲授的过程中加入有趣的事例,通过这些形象的事例说明和多媒体演示环节折射出人工智能思想的精髓和应用的广阔前景。
人工智能概论主要涉及到知识表示、搜索推理、计算智能、专家系统、机器学习、自动规划、Agent和自然语言理解等内容,其中以知识表示、搜索推理和计算智能为授课内容的重点,在讲授的过程中需要对这些内容加以整理精简,分清主次,合理地安排授课内容在总学时内。除了这些基本的授课知识外,还应该在教学环节引入多媒体演示,通过形象生动的视频演示让学生们了解人工智能的科学价值和实际应用所在。视频可以选用世界一流大学实验室的开放多媒体内容,例如:MIT计算机科学与人工智能实验室的相关科研项目中间过程及结果的视频演示,以此来开阔学生的眼界,增长他们的见识,使之了解其应用前景和未来的发展空间。
人工智能领域的发展受到多个学科的影响,这些学科在不同历史时期都对人工智能领域起到了各种推进作用,也产生了许多不同层面的争论,至今也是如此。如何在授课过程中形象地对人工智能历史进行回顾,阐述这些学科对人工智能领域的影响,尤其是思想方面的影响特别重要。“回顾历史,立足当今,展望未来”――给学生形象地描绘出人工智能发展的思想史,并以画龙点睛之笔指出人工智能领域发展的广阔未来,是授课教师艰巨而光荣的任务,只有这样才能使学生把握住人工智能领域的整个发展脉络,激发出他们的学习兴趣和爱好。
以哲学家对强人工智能方向的争论为例,向学生们介绍这些收集整理的资料对于他们思想的启迪是非常有益的。这里值得说明的是这种思想的阐述事实上是非常不容易的,其难度甚至高于复杂的数学推导,因为它常常要求授课教师掌握思想的精髓所在,并用非常形象生动的语言对其进行说明,而这些常常是现在书本中所没有的。例如:知识的表示、获取、存储和推理是人工智能领域中重要的组成部分,虽然目前已经有很多书籍详细地介绍了这些方面,但学生仍然反映听起来比较抽象。为什么会这样?其原因是一些基本的问题并没有得到圆满的说明和阐述,如“什么是知识”,“知识能够表示吗”,“有统一表示各种各样抽象、复杂知识的工具吗”,“抽象的美学与复杂的人类情感,知识能够表示吗”……其中有些问题看似容易回答,却往往涉及到一些复杂的哲学问题,目前在各种人工智能的教科书和专著里常常对这些问题避而不谈,只在数学的层面上针对具体的问题来进行说明和讲授。如果想在这方面有所突破的话,就需要阅读大量的哲学书籍,如认知学、知识论和心智哲学等领域的著作,还需要大量时间的理解和参悟,这些有价值的资料也是对授课内容的极大丰富和补充。近年来,认知神经科学、心理学、生物学、语言学甚至社会学对人工智能领域有着较大的推进作用,也是将来融合发展的总体趋势,如何在课堂上结合具体的事例对其加以说明也是授课内容的一个重要环节。
3相关教材的选择
众所周知,关于人工智能的国内外优秀教材有很多,例如:S.J. Russell和P. Norvig所著的《Artificial Intelligence――A Modern Approach》被全世界89个国家的900多所大学用作教材[1],国内可以考虑使用其影印版或中文翻译版本,大大的降低了购买国外原版教材所需的费用,并可以在此基础上考虑实现双语教学。此外还有蔡自兴教授等编著的人工智能及其应用,详细而恰当地介绍了人工智能领域中的各个研究方向(分别适合于本科生[2]和研究生[3])等。我们从整个教学时间安排上看,因其所占学时较少,所以人工智能概论课程的教材选择不适用于大部头的书籍,宜选用篇幅较小但内容较全的适合于本科生的教材。除了选择合适的教材外,对于任课教师还要拥有大量的参考书,包括上述提到的其他领域的书籍和资料,只有这样才能拓展所掌握的知识,为实现良好的教学效果而服务。
4讲授方法和考试形式的选择
课程讲授时注意主线的选择,着重以思想介绍为主,详细地介绍人工智能发展的历史以及各种学派和学说,如符号主义、连接主义和行为主义等,要重点介绍他们的特点和本质,指出它们形成的原因以及其中的不足之处,并向学生介绍新的学说,例如机制主义[4]等。整个教学过程并不涉及较为复杂的数学,要注重各个分支的思想源流,主要从其机制上做定性介绍。同时可在讲授过程中穿插相关历史问题的争论,例如:中国屋问题[5]等,引发学生学习的兴趣和爱好,开展交互式教学,使学生和老师产生互动。授课方式采用板书和多媒体交互使用方式,力争在每节课的空闲时间里穿插加入人工智能领域的实际应用介绍,放映相关的视频录像,开阔学生们的眼界。在最终考试形式的选择方面不是要学生死记硬背知识点,而是要注重学生思想的发挥,鼓励学生提出新想法和新思路,并丰富其掌握的相关知识,为将来的进一步学习打好基础和做准备。
5结语
我们认为在教学方式上力争采用“启发式”教学,能真正做到启迪学生思想的作用,尤其要鼓励思想创新,在高等教育阶段培养学生具有独立思考、勇于探索的能力,使之成为社会的有用之才。希望这些在人工智能概论课程教学中的思考和探索能在日常教学活动起到有益的作用,并与同行们共同交流和探索。
参考文献:
[1] S.J. Russell, P. Norvig. Artificial Intelligence:A Modern Approach[M]. 2nd Ed. 北京:清华大学出版社,2006.
[2] 蔡自兴,徐光佑. 人工智能及其应用本科生用书[M]. 3版. 北京:清华大学出版社,2003.
[3] 蔡自兴,徐光佑. 人工智能及其应用研究生用书[M]. 3版. 北京:清华大学出版社,2004.
[4] 钟义信. 机制主义方法与人工智能统一理论:人工智能的新方法与新进展[J]. 计算机教育,2010(19):7-10.
[5]J. Preston, M. Bishop. Views into the Chinese Room: New Essays on Searle and Artificial Intelligence[M]. Oxford: Oxford University Press,2002.
Teaching Reflection on Introduction to Artificial Intelligence
YANG Dedong, SUN Hexu, YANG Peng, ZHANG Lei
(School of Control Science and Engineering, Hebei University of Technology, Tianjin 300130, China)
无处不在的“机器人”
对于机器人的形态,在我们的印象中大体是具有类似于人的外形,能够与人类交流的机器。但事实上,机器人的类型多种多样,包括无人机、自动驾驶汽车、服务机器人、生活方式类机器人、机器人玩具、社会化机器人、机器人工具和协作机器人。它们都有一个核心就是AI(人工智能)。
在GMIC全球智能机器人大会上,地平线机器人技术创始人兼首席执行官余凯认为,人工智能是一次新的产业革命。人类正进入一个虚实融合的世界,新物种也诞生于此。机器人不同于以往机器的发明,它不再是人类体力、脑力的延伸,而是能自主决策和行为。不管它是否具有人类的外形,只要它能够和你交互和决策,它就是机器人。余凯认为,以后所有的智能品类都会衍变成Robot,社会将变为无处不在的智联的人工智能社会。机器人也将从神经元感应发展到深度学习。由感知到决策,机器人才能成为真正改变世界的力量。
机器人将走进每个家庭
机器人涵盖了出行、识别、监控、智力启迪、交流等生活领域,充分显示了机器人颠覆传统的巨大能力,而在其中儿童陪伴类机器人在市场应用上最为夺目和普及。
儿童陪伴机器人总体特点,形象呆萌可爱,与孩子能够智能语音交互,能唱歌跳舞,用于早教娱乐,有的还具备拍照、在线通话视频、远程监控以及净化空气等多种功能。奥飞娱乐首席执行官陈景青在演讲中,以目前在儿童中知名度很高的超级飞侠乐迪机器人为例,他讲到,乐迪机器人具有专属世界观、动画原声音色,个性点播系统,十万个为什么,以及成长记录功能。实时大数据,让家长更了解孩子。同时还具备自学习与成长维护系统。
陈景青认为,机器人中最好的应用就是儿童陪伴机器人。以儿童作为一个发力点,将人工智能和动漫IP内容结合起来,让虚拟IP转为现实机器人走进孩子的生活,让孩子可以享受各种互联网的应用,使孩子成长得不一样。有数据显示,以动漫IP为形象来设计机器人,其购买意愿会提高31%。
最为重要的是机器人能够把孩子的精力从以视觉为主的iPad中解放出来,儿童通过语音交互就能够和机器沟通。思必驰副总裁雷雄国认为,语音是最自然的人机交互入口。语音交互越真实,亲切度越高。在语音研发当中其声源和远场识别,对场景化的语义理解以及自定义的语音唤醒是其核心,尤为需要注重的是本地语音识别。
儿童陪伴机器人的快速发展与家长对孩子的重视程度密不可分,Dash Robotics Inc首席执行官Nicholas Kohut表示,中国具备良好的机器人市场,中国家长都非常注重孩子的教育,所以公司也非常注重中国市场的开发。
机器人不仅在儿童陪伴当中应用广泛,伴随着老龄化社会的来临,今后机器人在助残和养老方面将会普及,这方面日本已发展得很成熟。今后在国内也会逐渐发展起来。当然,个性化的定制将成为机器人设计研发的方向之一。
人工智能、机器人和互联网三个产业在过去基本上是独自发展,而在2014年后这三个产业逐渐融合,现在正在加速发展。过去手机功能很单一,除了手机外消费者还要购买MP3、优盘、相机等等电子产品,而现在这些功能都集中在手机上,其他电子产品都边缘化了。图灵机器人创始人兼首席执行官俞志晨表示,机器人的发展也会像手机一样,将来会成为集智能家居、教育育儿、家庭服务等等功能于一身的综合体。未来智能机器人将走进每个家庭,给我们带来智慧的家庭生活服务。
面临难点
个人简历:
1981年,毕业于浙江美术学院工艺系(现中国美术学院),学士;
1982年-1983年,任教于中国美术学院,教师;
1984年-1986年,德国慕尼黑造型艺术学院与柏林艺术大学访问学者;
1986年-1988年,获美国耶鲁大学艺术学院硕士学位,被授以作为表彰最优秀毕业生的诺尔曼・艾弗斯纪念奖;
1988年,成立个人设计工作室,为Adobe公司提供设计;
1989年-1997年,美国耶鲁大学艺术学院,讲师;
1991年-1998年,就职于全球最大的出版O计软件公司Adobe,先后担任设计师,高级艺术指导,设计总管,负责全公司设计工作;
1998年,加入两方设计公司,任设计总监;
1999年,任上海大学美术学院,客座教授;
2001年,参加北京申奥工作,艺术指导;
2006年-2008年,任北京奥组委形象与景观艺术总监;
2003年-至今,任中央美术学院设计学院院长、长江学者特聘教授、博士生导师
主要设计、研究项目:2001 年参与北京市申奥工作,设计北京申奥多媒体陈述报告;2004建立中央美院奥运艺术研究中心并任主任,中心设计了奥运奖牌、奥运体育标识、奥运色彩系统、奥运景观系统指南、奥运门票等奥运设计项目;2006年10月至2008年10月任北京奥组委形象与景观艺术总监,负责北京奥运形象与景观设计工作;2009年作为学术总监与主要发起人负责申请、筹备、举办了ICOGRADA 北京世界设计大会。大会有40多个国家2000人参会,超过100场演讲,24个专业展览,成为推动中国设计发展的一项重要活动。曾任教于美国耶鲁大学艺术学院并担任世界最大出版设计软件公司Adobe 高级艺术指导与设计总管,负责全公司设计工作。作品多次参加国际重大展览并获奖,作品被多家博物馆收藏;多次被邀请作为设计比赛评委;在世界多地举办过学术讲座,主持过很多与设计相关的学术活动。
技术的进步、互联网的发展和数字化时代的到来使得设计行业面临着巨大的机遇和挑战。在2016年11月召开的国际艺术设计教育年会上,中央美术学院设计学院院长王敏教授就现阶段技术和数字化发展所引发的设计领域的一系列变革问题进行了名为“Envision, Empower, En-hance―Design in the Era of 4th Industry Revolution”的主题演讲,在设计领域引起了巨大的反响,更是吸引学者们广泛的关注。发言中,其不仅对目前数字和人工智能背景下的设计问题进行了广泛的论述,更对未来设计行业和设计教育的发展指引了方向。本期,我刊特别邀请到了王敏教授做客权威人物栏目,就第四次工业革命所引发的设计价值与设计蜕变相关问题接受我刊专访,深入探讨设计未来的研究方向和设计师的培养问题。
本刊主编:王院长您好!感谢您接受我刊的专访!我们知道,在去年年底结束的国际艺术设计教育年会上,您的发言引起了巨大的反响,特别是其中有关人工智能所引发的设计变革方面的问题,更是得到了很多学者和教育工作者们的关注。您能进一步深入解读一下您是如何看待设计师与人工智能的关系的呢?
王院长:好的。首先,我想说的是目前人工智能的发展已经对设计师带来了巨大的冲击,而且在未来,设计师的很多工作还将会被人工智能系统所取代。但其次,我想进一步说明的是某些工作的消失并不意味着设计行业的消失,因为设计师的很多工作是不能被人工智能所取代的。因此我想,设计师和人工智能的关系应该是相互促进、相互激励发展的关系。历次的工业革命,都带来了设计理念、设计价值的转变,也为设计领域的发展带来了巨大的机会。第四次工业革命也以一样。在人工智能、物联网Internet of Things ,工业4.0、新能源、新思维兴起的时候,也为设计领域和设计师带来了前所未有的机遇与挑战。
本刊主编:王院长,刚刚您谈到了历次工业革命和第四次工业革命的问题,您能介绍一下四次工业革命都对设计带来了怎样的影响吗?中国在这四次革命过程中又处于一种什么样的状态呢?
王院长:当然可以,而且我个人认为将四次工业革命的影响梳理清楚对于我们现阶段把握好设计发展的脉络是非常有帮助的,因为伴随工业革命、技术革命发生时,设计师设计理念的转变、设计所带来的价值的转变、设计行业发生的变化,这都会给我们一些对未来的启示和思考。首次,第一次工业革命由蒸汽机引发,人类进入机械生产时代,机器产生的能量大于人与动物的力量,机器取代了人工,带来了生产的进步,但也带来了各种毫无美感的粗劣的机器,在人们为工业进步欢呼之时,莫里斯倡导的艺术与手工艺运动也开始掀起,随后新艺术运动,新装饰,青年风格等在欧洲形成,很多艺术家设计师投入其中,创造了大量的精美设计作品,今天仍为很多人喜爱,这让人们看到了艺术与工业结合去创造美的可能性;其次,电与工业流水线带来了第二次工业革命,电报电话的能力远优于人的传播能力,人类通讯方式从此发生了革命性的变革。福特的T型车流水生产线大大提高了工业生产效率,将汽车带进普通人的生活,也预示着工业产品对人类生活所将带来的巨大影响。此时出现的包豪斯带来了现代设计教育的理念,包豪斯倡导艺术与技术统一,功能性与极简的现代审美观,其后形成的现代主义设计潮流极大推动了工业化对人类生活形态与审美的渗透与改变,在这个现代主义设计发展的进程中吸引了众多人才,也产生了很多设计大师,设计的价值为社会所关注;其三,第三次工业革命始于60年代,从计算机再到互联网,第三次工业革命又一次引起了生产方式和生活方式的巨大变革,比如计算机的应用颠覆性改变了设计、印刷、传播的过程,改变了设计师的工作与设计的价值,3D打印势必引发产业组织形态和供应链模式包括设计价值的颠覆性变化;最后,第四次工业革命来到,随着互联网的发展和计算机技术的更新,人工智能和机器学习开始成为新的热点,也是必为设计行业带来巨大挑战与机会。
再来看看我国,由于历史原因我们错过了第一次与第二次工业革命,仅仅搭上了第三次工业革命的末班车,面对第四次工业革命,我们从来没有像今天这样与世界领先的技术浪潮如此接近过。尤其是在人工智能领域,中国最大的优势在于7亿多互联网用户,而大量的用户就意味着更多的数据。2016年白宫前沿峰会报告指出,在人工智能的新领域深度学习领域中,中国无论是数量或是被引用论文数量都赶超美国位居全球第一。深度学习的应用也体现在我们的日常生活之中,购物平台利用大量的数据分析用户需求,匹配并推荐其需要的商品,或是资讯类APP为用户匹配并推送相关的新闻讯息。除此以外,深度学习最终价值的体现其实还有更多,比如AlphaGO大战李世石,深度学习在背后也起着非常重要的作用,再比如自动驾驶、语音识别、图像识别等都是深度学习的研究范畴,也将是人工智能未来在我们生活中的应用场景。
本刊主编:王院长您的思路太清晰了!正如您所说,历次的工业革命都对设计和人类产生了几乎是具有颠覆意义的影响,那么我想进一步请教一下您,您认为设计在第四次工业革命中是一个什么样的身份?设计存在的价值在哪里?而我们如此众多的设计师将何去何从?将如何重新找到自己的社会价值呢?
王院长:这个问题非常好,它正是我们中国设计和设计师们面临的困惑,这里我就谈谈我个人的看法。前面几次工业革命过程让我们看到,技术的发展淘汰了一些行业、工种,但它也不断创造新的机会、新的工作。在社会、技术发展的进程中,设计与艺术起到技术无法替代的作用。我们应该将第四次工业革命当作机遇、机会,来实现设计的新的价值。现阶段,第四次工业革命带来了对设计新的要求、新的机会。设计的定义、价值正在改变,企业对设计的需求也在改变。这是一个拥抱创新、创意、设计的时代。近年来,很多大型公司开始并购设计公司;国内外很多商业学院陆续开设设计思维的相关课程,新加坡甚至将设计思维作为高中的必修课;越来越多的设计师开始创业。这里我们所说的设计师创业,并非开办一个设计师事务所,或者打造一个设计品牌,而是更多的涉猎到非设计行业。这些变化就要求我们不断重新定义设计、重新定义设计师、重塑设计师,作为最根本的,我们还需要重新定义设计教育。在人工智能时代,很多行业或是消失,或是大量削减人数,设计行业也一样,但这并不意味着设计行业的消亡,正相反的是,未来社会更需要设计师,只是是与以往不同的设计师。我们要不断重新定义设计、重新定义设计师、重新判断设计的价值。设计师因为他们的职业特点,他们对用户体验的关注、他们所普遍具有的同理心、他们的创造性思维的能力,加上对跨行业的经验,使他们可以为企业带来美化产品之外的价值。设计由最初对产品的关注被提升到组织与策略的层次,设计一词不再局限于有型的产品,而是一种策略思考。
本刊主编:王院长,您提到设计和设计师都需要重新定义和进行价值重塑,那么您认为当前的设计人才应该具备那些能力呢?一名好的设计师又应该如何定义呢?