HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 智能电网研究方向

智能电网研究方向

时间:2024-01-05 14:36:53

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇智能电网研究方向,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

智能电网研究方向

第1篇

关键词:智能变电站;无功优化;柔流输电技术(FACTS);静止无功补偿;仿真

1引言

智能变电站作为坚强智能电网建设中实现能源转换及控制的关键平台之一,是智能电网的重要组成部分,也是实现分布式电源等新能源接入电网的重要支撑。智能变电站是连接电力生产及使用过程六大环节的关键,在技术和功能上能更好地满足智能电网信息化、自动化、互动化的要求。长期以来国内的变电站建设有常规变电站和数字化变电站两大模式[1]。随着风电、光伏等分布式新能源陆续接入系统,对系统安全性和稳定性的要求更高,对作为智能电网支撑节点的变电站也提出了新的要求。

电压质量对于保证电力系统安全稳定运行、提高产品质量、保护系统用电设备安全有着重要的影响。电力系统中电压的波动与无功有很大的关系,因此保证无功的平衡是保证电压质量稳定的基本条件。在长期的变电站运行中,利用有载调压变压器和并联电容器组进行电压调整和无功优化也暴露出一些不足,比如:变压器分接头和电容器开关的频繁操作,无功容量调整的非连续性不能准确满足系统无功需要量。因此在新型变电站无功优化中有必要研究一下适用于智能变电站要求的无功优化技术。

智能变电站具有可靠性高,交互性强[2],集成度高,低碳环保的特点。智能变电站从上到下可以分为站控层、间隔层和过程层三层[3]。

智能变电站作为智能电网的重要节点,需要在数据信息上为电网运行提供支撑。因此有必要在智能变电站内建立基于IEC61850 标准的一体化信息平台,应用分层分布式结构,简化和统一的数据源,形成系统内独一无二的基础数据信息,数据信息的交互共享以统一标准的方式进行,从而为系统提供稳定可靠的信息支撑。信息一体化平台的数据库基于标准化建模,采用跨平台、通信驱动管理等新技术,构建集保护测控、状态监测、故障录波、网络通信、计量、直流辅助系统、环境监测、视频、安防、环境参量等数据于一体的变电站全景数据平台,分为实时子系统和非实时子系统,如图1 所示。

2智能变电站的无功优化

2.1变电站无功优化原理

变电站无功优化是指以调节变压器分接头和无功补偿设备为手段[4],从而维持母线的电压和无功功率在正常运行允许的范围内。以图2 所示的简化变电站等值电路为例说明如下:

为系统电压,、分别为变电站主变的高低压侧电压,为负荷的电压,PL、QL分别为负荷的有功功率和无功功率,K为变压器变比,QC为补偿的无功功率,RS、XS、RL、XL分别为线路的阻抗参数,RT、XT为变压器的阻抗参数。

在没有补偿无功时

(1)

将 代入式(1)得到

(2)

略去与垂直的分量 后得到:

(3)

可见,为了使负荷端电压UL与额定值ULN的偏差为最小,必须随着负荷PL+jQL的变化调节UT2,以减小线路上的电压降落,有以下两种方法[69][70]:

1) 调节有载变压器的变比

由于为可控变量,当负荷变大时,降低K以提高UT2,从而提高UL来减小线路的电压降落,反之亦然。

2) 进行无功补偿即改变电容器组的数目

使用和上面一样的分析方法,略去垂直分量、并且未投入QC时的主变低压侧电压为:

(4)

当投入容量为QC的电容后,有

(5)

比较以上两式可见改变QC可以影响系统中各点的电压值和无功的分布,当负荷增大时,通过减小系统至站内高压侧的电压降ΔUS也能增大UT2以抵消ΔUL的增长。

投入QC后网损为:

(6)

从上式(6)可以看出网损与低压侧无功的平方即Q'=(Q2-QC)2具有很大的关系。在输送功率确定的情况下,网损随Q'的减小而减小。在理论上,当Q'=0时网损最小。因此,提高功率因数是降低简单辐射形网络网损的有效措施。

从上面的分析中得出以下结论:1)调节变压器分接头可改变低压侧母线电压,但对无功分配和网损基本没有影响。必须明确的是只有在上一级电网电压正常并且地区无功功率充足的情况下,调节变压器分接头才能实现电压随负荷变化情况进行相应的变化,以达到保持良好电压水平的目标[5]。若不能同时满足以上两个条件,采用调节变压器分接头进行电压调节的方式有可能对系统的安全稳定运行带来不利的影响,在极端情况下甚至出现电压崩溃,因此变压器档位调节采取了安全上下限的要求。2)投切补偿电容器一方面可以提高母线电压,另一方面还可以改变无功分配,改善功率因数和降低网损。

2.2 智能变电站的无功优化研究

2.2.1 智能电网对无功补偿的要求

智能电网的建设主要是为了降低系统电能损耗,提高系统的可靠性,并且具有自愈的功能。

在智能电网环境下,智能变电站的无功优化需要采用FACTS 技术。FACTS 技术是综合电力电子技术、微处理和微电子技术、通信技术和控制技术而形成的用于灵活快速控制交流输电的新技术。它使不可控的电网变的可控,是现代智能电网发展的需要,是解决电网运行和发展中各种困难的需要,现代电网规模越来越大,结构越来越复杂,对电能质量要求越来越高,同时对清洁能源和低碳能源的要求也越来越高。在这种情况下,对电网可靠、经济、稳定运行的要求也越来越高,传统的机械控制方法越来越不适应电网的发展需要[6]。

2.2.2 智能变电站无功优化框架

智能变电站无功优化属于智能变电站高级应用的一个部分,它的应用建立在一体化信息平台和智能决策系统上。首先由一体化信息平台提供变电站运行数据和设备状态信息、提供智能决策所需要的一切数据信息,然后由智能决策系统综合分析站内信息、综合评估,最后给出无功优化的策略和操作指令。智能变电站无功优化在智能变电站的位置如图3 所示。

3 基于FACTS 技术的智能变电站无功补偿

110kV 上海蒙自智能变电站(下称蒙自站) 是首座服务上海世博会的智能变电站,是国内首座节能型、智能化、无油化的集成新型高科技示范变电站。它是上海世博园区内与中国国家电网企业馆一体化建设的全地下降压变电站。其建设规模为2 台40MVA SF6 主变,110kV/10kV 电压等级。

SVG 有着优良的动态性能,能够显著提高系统的动态性能,即系统抗扰动能力。根据不同的系统要求,SVG 可实现节点无功电压控制、功率振荡抑制、提高系统静态(暂态)稳定极限等功能。对于节点无功电压控制,SVG 通过快速、连续地调节SVG 无功出力,实时改善系统无功分布,进而实现在SVG 容量范围内的节点电压控制[7]。对于功率振荡抑制,线路电磁功率正比于节点电压,SVG 控制注入节点的无功来改变节点电压,实时改变线路输送功率,不仅可以阻止低频的功率振荡,还可以阻止次同步振荡和超同步振荡。对于提高系统稳定极限,采用SVG 后,可以提高系统功角特性曲线,增大静态稳定极限;系统故障时,运用合适的控制策略,可以减少加速面积,增大减速面积,提高系统暂态稳定极限。

3.1 SVG 的数学模型

SVG 大体分为电压型和电流型两种类型,在实际应用中大多使用电压型,因此接下来的模型以电压型SVG 为例,电压型SVG 基本原理图如图4 所示。

假设三相平衡,则SVG的等效电路如图所示。usa、usb、usc分别为电网系统的三相电压,Udc为直流侧电容电压,uoa、uob、uoc分别为SVG输出的三相基波电压,R、L分别为连接电抗器的电阻和电感。可以得到SVG三相输出电压的表达式为:

(7)

式中k为逆变器的比例系数,ω=2πf,f为逆变器输出基波或者电网的频率,θ为SVG输出电压与系统电压的相位差。系统电压的表达式为

(8)

式中为系统相电压有效值。

3.2 无功补偿仿真实验

仿真系统如图5、图6所示。

仿真说明如下:第一次仿真时断开SVG此时SVG的无功输出为0,系统接入200MW的负载,变压器低压侧a相电压只能达到基准值的80%如图5中红色曲线所示;第二次仿真接入SVG,从图6中可以看到在经过大概0.02秒的响应时间后,SVG向系统注入无功,系统电压也随之得到提高接近基准值(如图5黑色曲线所示),SVG的调节过程在0.1秒时结束,补偿系统80Mvar的无功功率。SVG能动态补偿无功明显改善系统电压质量,并且响应和调节的速度非常快,在上面的仿真系统中,由于控制环节的问题,响应时间要0.02秒,如果能对控制环节进行优化,响应速度将更快。

4 总结与展望

对智能变电站的关键技术和特点进行研究,分析了传统变电站无功优化技术的不足,提出智能变电站无功优化的框架和要求。本文在MATLAB/SIMULINK下搭建仿真系统,进行了无功补偿和抑制电压跌落的仿真实验,SVG 的动态性能和快速响应能力得到证实,具有传统无功补偿设备无法达到的技术水平,只有FACTS 无功补偿设备能够满足智能变电站的技术要求,更加明确了智能变电站无功优化必然是应用FACTS 技术的无功优化。

参考文献

[1] 国家电网公司. Q/GDW 383-2009智能变电站技术导则[S]. 国家电网公司2009.

[2] 史保壮, 杨莉, 冯德开, 等. 智能技术在绝缘在线诊断系统中的应用[J]. 高压电器, 2001, (1).

[3] 马仕海, 荆志新, 高阳. 智能变电站技术体系探讨[J]. 沈阳工程学院学报(自然科学版), 2010, 6(4).

[4] 靳龙章, 丁毓山. 电网无功补偿实用技术[M]. 北京: 中国水利电力出版社, 1997.

[5] 杨剑. 新型电压无功综合控制装置的研制[D]. 华中科技大学, 2004.

[6] 程汉湘. 柔流输电系统[M]. 北京: 机械工业出版社, 2001.

[7] 王轩, 赵国亮, 周飞, 等. STATCOM在输电系统中的应用[J]. 电力设备, 2008, 9(10).

作者简介:

徐进东(1980— ),男,硕士,研究方向为电力系统运行与控制。

史静(1990—),女,硕士研究生,研究方向为电力系统运行与控制。

蒋丹(1988—),女,硕士研究生,研究方向为电力系统运行与控制。

第2篇

摘要:

近几十年来,智能电网吸引了大量电力市场参与者与研究人员,它被认为是能源可持续发展战略的重要组成部分。对可再生资源的整合、实时需求的及时响应及间歇性能源的配置管理,是智能电网工程的主要挑战。近年来,信息和通信技术的发展极大推动了当代智能电网的新成员--微电网技术的发展,但微电网的发展还需考虑到诸如系统性能优化、系统建模、实时监控、控制方法等问题。该文阐述了智能电网的概念和主要特征,简述了近年来国外主要微电网实验工程的发展概况。

关键词:

智能电网;微电网;分布式发电;微电源仿真

0引言

随着人们的焦点转向气候变化和能源安全,分布式发电(DG)变得越发引人注目。分布式发电大量采用环境友善的可再生能源,以能源利用最优化及环境效益最大化为目标,来确定分布能源的容量和发电方式[1]。此外,日益增长的全球资源环境压力与公众的节能减排意识,电力市场自由化进程的推进为分布式发电的发展提供了机遇。智能电网将成为促进经济发展的重要工具,它潜在经济与环境效益包括增加技术投资以促进就业、减少二氧化碳排放水平以及劳动与社会生产的发展[2]。智能微电网基于面向系统服务架构,它包含了系统建模、系统监测与系统控制,如图1所示[3]。研究人员提出了许多创新的概念和方法,这些对于建设智能电网中可持续电力系统具有重要价值。智能微电网的建设对实现可持续电力系统有着重要的意义,迄今为止,各国科研人员对智能微电网的建设提出了种种设想和思路,并在实验室中逐一测试和探索[4]。本文回顾了智能电网的特性,并对国外微电网实验工程做了简要介绍。

1智能电网系统概述

1.1智能电网的技术要求

智能电网是综合信息网络和电力网络的网络,即整合能量与通讯体系。在智能电网中,输电网和配电网上的潮流都是双向的,电网输电及配电线路上均有可靠的双向通信。所以,可靠快捷的通信技术对未来智能电网的项目成功实施至关重要。智能电网面临的主要挑战之一,就是将现有的传统的“被动配电网”升级到具有双向通信能力的“主动配电网”。对照智能电网的基本特性,传统电网升级到智能电网具有需要采取的措施如下[5]:

1)自愈性

电网需具有高可靠性,以及各个层次上具备固有安全性;

广泛使用传感器和控制设备,进行连续的评估自测,实现电网中问题部分的隔离及恢复。

2)经济性

资产的最优化利用以及采用应用响应需求和需求侧管理;

电力生产不再采用分层分布,使用消费驱动的分布式发电;

使用网络自动化技术减少人工干预。

3)低碳环保

对多种能源资源进行整合;

对污染物和二氧化碳的排放进行管理。

4)双向通信

在双向高速通信网络上使用智能设备传输信息;

电力消费者与供电公司可以双向沟通,电力消费者可以查询用电情况以及定制合适自身需求的消费方案。除此以外,降低输电网上的电能损耗及环境保护问题也是建设智能电网需要考虑的因素。

1.2从传统电网走向智能电网

智能电网是一种具备自愈性的先进数控输配电网,不仅实现了电网内部信息的数字化通信,还能够与电力市场和用户进行交互和实时响应[6]。在智能电网中,设想包含了成千上万的分布式微电源及大型电力生产企业,安装了分布式发电设备的家庭及个人用户甚至可以将自身富余的功率出售反馈给电网。它类似与互联网模式,无论自何种资源生产的电能,不论其生产方式,不管是传统能源还是可再生能源,都可在电网各处被生产及消耗。与智能电网相比,传统电网是一个刚性系统,没有动态柔性及可组性,主要表现在电源的接入和开出、电能的传输等方面。在传统电网中,电力企业垂直集成独立运作,多级控制机制反应迟缓,系统的实时性差,同时也不可重配制和重组;系统的自愈能力差;对客户服务内容少,信息交流单向;系统内部缺乏信息共享,使得系统中多个子系统被孤立,不能构成一个实时的有机统一整体[7]。智能电网与传统电网的比较详如表1所示。建立一个功能完整的智能配电网有着如下挑战:

1)对配电网所有关键元素安装智能传感器或计量设备,保证其与电网具有双向通信功能;

2)高级测量体系(AMI)系统与测量数据管理系统(M-DMS)及用户室内网(HAN)的集成和同步;

3)用户服务门户系统、企业能源计划系统、客户语音服务系统的建设;

4)智能的在线实时故障检测系统的建设;

5)根据用户响应制定、实行实时电价策略;

6)对高低压电网的SCADA系统进行整合。

2微电网技术的研究和智能电网工程

要实现进化智能配电网络的灵活和智能操作和网络控制,广泛的研究是必要的。电器可靠性技术协会(CERTS)成立于美国,目的是提高电力系统的可靠性,关注电力市场、监管制度与环境影响。CERTS最早提出了微电网的概念,得到了美国能源部的高度重视。微电网是一种将分布式电源、负荷、储能装置、电力电子变换设备及监控保护装置有机结合在一起的小型发配电系统。分布式电源最有效的利用方式之一,就是通过微电网的形式接入配电网。利用微电网的形式将分布式电源接入配电网,将促进分布式发电技术的发展,对电网的性能具有较大改善,包括减少输配电损失,提高输配电容量,便于提高电压等级及电能质量。虽然采用分布式发电技术有着突出的优势,但目前在实际应用上仍有一些问题有待解决,例如,由于目前智能电网的建设并没有达到预期的水平,在正常情况下,“孤岛”运行方式一般只在主网受到扰动或故障时才会发生。当电网中接入间歇性能源进行分布式发电时,会出现从主网脱离而进入“孤岛”模式运行的情况。美国田纳西州库克维尔大学建立了一个微电网实验工程,开始对电网中这两种不同的孤岛模式的检测区分进行研究,通过本地检测和远程检测相结合实现了孤岛检测,将智能算法及模式识别引入孤岛检测是未来的研究方向之一[8]。在欧洲在各大实验室,微电网实验项目正在如火如荼的进行着。例如希腊的国立雅典理工大学(NTUA)的单相试验型微电网[14],德国ISET研究所中DeMoTec实验室开发的采用太阳能技术作为分布式电源的微电网实验项目,曼彻斯特大学的分布式能源与飞轮储能技术试验系统。这些项目涉及了实验室规模的微电网的运行和模拟[9]。NTUA已经将多系统(MAS),可控负载和综合监控系统成功整合至微电网实验项目中。MAS是一种适用于自治的多个智能之间行为协调的系统,随着智能电网建设进程的推进,电力系统的控制逐渐由集中式转向分布式,原有的以EMS系统为代表的集中式控制系统将被逐步取代。在NTUA的实验系统中,将复杂的电力系统结构简化为由4种不同的节点组成,包括电能生产单元、电能消费单元、电力系统及微电网中心控制器(MGCC)。DeMoTec微电网实验室将采用风机、光伏、热电连供等多种分布式电源供电,若使微电网成功运行在孤岛模式,系统中的储能设备是不可或缺的,因此系统配备了30KW的铅酸电池储能设备。该实验室证明了合理利用可再生能源进行微电网的系统设计可行可控的,更多的相关信息请参阅文献[10]。在日本,该国最主要的官办新能源开发机构NEDO于2005年开始在青森、爱知县和京都三个区域开展使用分布式可再生能源发电的电网项目。而这些项目侧重于发展与优化系统的控制与能源管理系统。尽管微电网的技术可行性已经在工程中多个实际测试项目中被证实,但是还是所带来的经济效益和环境改善还有待进一步研究[11]。马六甲马来西亚技术大学(UTEM)的电气工程系近期设想了一个实验室级的微电网系统。如图2所示[12],该系统包含发配电网及数据网络,系统的潮流变化及运行状态都通过传感器和变送器读取,然后使用标准通信协议由以太网送至服务器进行处理,根据实验的需要,在服务器上可以使用自定义的控制算法。

3实验室中的微电源仿真

微电网中使用的电源包括太阳能电池阵列、微型燃气轮机、燃料电池、飞轮储能装置、小型风力发电机等。在实验室环境中直接使用可再生资源进行发电是不合适的,因为取得这些资源的投资是昂贵的,而且需要大量的安置空间。另一个不利因素是可再生资源的重生成是难以准确预测和不可控的。实验室中的微电源仿真对于了解微电源系统的动态特性十分重要,可作为其他研究的实验平台。以下对太阳能电池阵列、风轮机及微型汽轮机的模拟仿真做简要介绍。

3.1太阳能电池阵列的模拟

图3所示为一个太阳能电池模型伏安特性曲线,仿真器模拟直流电压输出的变化调整。光伏模拟器包含一套直流发电机(4000rpm,42V)及一台120V2KW的直流可调电源。

3.2微型涡轮机

微型涡轮机在分布式发电系统中广泛使用,并且在电热联产(CHP)系统中提供电源。微型涡轮机结构简单,是一种单循环燃气轮机,它可以驱动单轴和分轴机组。微型涡轮机可以用直流电机驱动一台同步发电机来模拟。

3.3风轮机模拟

图4所示为一种风轮机模拟的实施方案,它包含了3个部分:风速模拟器、发电机、电力电子转换器。直流电动机和异步电机都使用电力电子调速装置。

4未来研究的方向

智能电网的发展至今仍有许多问题有待解决,全面实现电网的智能化建设是一个循序渐进的过程。通过对更多更复杂的实验系统及对运行数据和并网与孤岛模式过渡的研究,智能电网的可靠性和安全性将进一步提高。下面简要介绍未来智能电网与微电网相关领域的研究方向。

4.1替代能源的管理

建设智能电网的最终目的是实现能源兼容与替代,智能电网使用的各种类型的可再生能源,如太阳能和风能等。丹麦在全球风能领域一直都位居世界前列,据丹麦政府公布的策略计划书,至2025年,丹麦风力发电比例将提高至50%以上[13]。加利福尼亚州州长杰瑞•布朗(JerryBrown)在2015年宣布了新的能源计划目标,在2030年之前将可再生能源电力的比例提高到50%,加利福尼亚州在光伏发电、太阳热发电和地热发电的引入上迄今一直走在美国的前列。由于分布式替代能源位置分散,难以实现大容量储能及系统具有随机性的特点,需要建立用以协调统一控制的虚拟电厂(VPP),促进可再生能源未来的高效和可靠的发展,实现智能电网的集中调度和市场运营[14]。

4.2能源效率与需求响应

提高智能电网的能源效率,一方面是通过使用节能高效的仪表和通信设备,使同时具备通信的可靠性和时效性;另一途径是通过需求响应机制。需求响应要求客户改变他们的正常的消费模式,使供电部门和电力用户可以同时监控和调整用电行为,以响应系统的要求的变化。例如将尖峰时段的用电需求转移到低谷时段,显著提高系统的利用率。为了实现上述功能,需要开发从能源计量解决方案,到动态电网整合管理和可靠的通信系统一整套智能系统。

4.3自愈系统

在传统的电力网络中,自愈是难以实现的,在传统电网中的细小故障就可能会导致长时间大规模停电。随着智能电网的概念的提出,未来配电网将以更有效的方式来监测和处置故障,包括故障检测、故障定位和自我恢复。这些都需要强大的通信系统为电力安全提供保障,更重要的是对电网稳定控制体系及故障协调的模型和算法的研究,总结以往大停电事故的相关演化规律。

5结语

本文简述了智能电网的主要特征,总结比较了传统配电网与智能电网的关键技术及实现手段。此外,通过介绍美国、欧洲、亚太地区微电网实验项目的研究概况,能够对当今国外微电网研究进展及先进理念有更加直观的了解,这也是进一步研究和拓宽研究思路的有效途径。最后,本文对智能电网未来的研究方向作了简要的总结和展望。

参考文献:

[1]李树青,陈培育.分布式发电现状及发展趋势分析[J].甘肃科技,2014,30(16):68-71.

[6]陈德桂.智能电网促进了低压电器新品种的发展与新技术的应用[J].低压电器,2010,(23):1-7.

[7]张强.展望智能电网与智能电能表的发展[J].中国计量,2012,(8):38-40.

[13]陈柳钦.国内外新能源产业发展动态[J].河北经贸大学学报,2011,32(5):5-13.

第3篇

关键词:智能电网;特征;现状;发展趋势

DOI:10.16640/ki.37-1222/t.2017.13.139

在提倡绿色节能,实现又好又快发展,最大限度的开发电网系统的能源效率的时代号召下,智能电网应运而生。智能电网的发展也和国家安全,经济发展及环境的保护息息相关。目前,包括美国、欧盟为代表的不同国家和组织均将智能电网视为21世纪电力网络的发展方向,提出建设具有灵活、安全、清洁、经济、友好等特征的智能电网。

国内外相关的电力行业已经迈开了探索和建设智能电网的步伐,本着从实际出发,实事求是的原则,不同国家和地区采取了不同的实践方式,制定了适合本国的智能电网的发展蓝图。

1 智能电网概述

智能电网是什么?美国电科院是这样定义的:一个由众多自动化的输电和配电系统构成的电力系统,以协调、有效和可靠的方式实现所有电网的运作;具有自愈功能;快速响应电力市场和企业业务需求;具有智能化的通信构架,实现实时、安全和灵活的信息流,为用户提供可靠和经济的电力服务。可见,智能电网融合了信息、数字等多种前沿技术的输电和配电系统。

2 智能电网特征

2.1 自愈性

智能电网的自愈是指能够实时掌握电网的运行状态,能够及时发现、诊断和消除故障,在尽量少的人工干预下,快速隔离故障,自我恢复,避免出现大面积停电,从而提高系统运行的稳定性。

2.2 互动性

在智能电网中,实现电网和批发零售电力厂商之间的平稳连接,从而完成电网和客户的智能互动。电能交易的方法和定价方式正逐步改变,供需双方在市场中的互动也愈加频繁,这就要求电网必须能够灵活支持各种电能的交易与往来。

2.3 可靠性

智能电网能够更好地应对包括自然和人为因素在内的各种干扰,在出现扰动后,能够迅速地采取一系列措施,使人身、电力设备以及电网的安全得到保障,最大限度的减少干扰带来的影响,并能快速恢复正常供电。

2.4 兼容性

智能电网的兼容性是指允许不同类型的电力系统友好接入,涵盖了分布式发电和集中式发电,可以解决日益增长的电力需求和环境保护这一时代主题的矛盾。集中式发电厂可实现远距离输送电能,分布式电厂可减少对其他能源的依赖性,满足社会和谐、友好发展的要求。

2.5 经济性

智能电网通过市场机制的运用,采取推动节能减排、供需互动等措施,实现对资源的合理规划、建设、投入运行和后期维护的良好管理,可提高发电的效率,降低网络损耗,来解决负荷率不高以及设备闲置等现存问题。可见,智能电网可有效提高资产的利用率,降低运行成本,减少投资,为更好实现经济性运行提供了可能。

3 现阶段我国智能电网的发展情况

近年来,我国已经迈开了智能电网发展的步伐。2007年,华东电网首当其冲开展了我国智能电网的研究,并提出了“三步走”的战略:2010年初步建成高级调度中心;2020年全面转型,建成具有初步智能特性的数字化电网;2030年将建成具有自愈能力的智能电网。2009年,国家电网公司首次公布了我国智能电网的发展计划。

但基于我国资源分布不均,电网基础设施较薄弱等因素的影响,我国智能电网的建设还处于发展不平衡的初级阶段。并存在以下问题:(1)对智能电网缺乏准确的定义,对其发展方向尚不明朗。(2)实现智能电网的许多关键技术还没有得到解决。(3)配电网自动化水平较低,许多新技术应用尚待提高(4)用电的营销模式目前仍以人工为主,相对落后(5)我国的调度系统不能满足当代能源建设以及特高压电网的需求。(6)我国电能具有电源和负荷相对较远的特点,故需采用大容量高电压的输电,这也意味着对输电线路的更高要求。

4 智能电网的发展趋势

随着经济社会的发展,由于智能电网将会使电能的利用更加安全、环保、高效,所以被越来越多的国家和地区所接受和认可。基于不同的国情和发展侧重点,其制定的发展战略也各具特色。

我国的智能电网应在总结西方发达国家的技术经验之上,结合我国的具体国情,从实际出发,积极推动智能化电网的研究和建设。目前,我国已将智能电网纳入国家的发展战略并推进实施,可以预见,我国智能化电网将步入快速发展阶段,正在迈向另一个新时代。

从社会发展的长远角度来看,新技术的出现和经济的发展是智能电网产生的先导条件。智能电网的发展是提升电力系统的安全性与可靠性的内在需求,发展智能电网是实现可持续发展的重要举措,智能电网的发展也能够调动市场经济的发展,实现相关电力企业利润的最大化。智能电网的发展势必会带动社会的巨变。

参考文献:

[1]王振.智能电网技术现状与发展趋势[J].企业科技与发展,2011(06).

[2]吴疆.对智能电网若干基础性问题的思考[J].中国能源,2010,32(02).

第4篇

【关键词】 智能电网 新技术 信息化 发展

随着我国经济发展,工业化的推进,生活水平的改善,人们对电力资源的需求日益高涨。但是资源终归有限,我国电力形势也显得日益严峻,人们对智能电网的关注程度越来越高。实现电网的智能化运作,提高电力资源的利用效率就成了当前我国电力行业的基本要求。随着信息技术以及自动控制技术的发展,智能电网的概念也呼之欲出。智能电网能够有效提升工作效率,对节省电力资源,实现电力系统的智能化运作具有重要意义。

1 智能电网概述

智能电网是建立在集成的通信网络的基础上的,它主要是通过利用传感器,测量技术以及自动控制技术对发电、输电、配电、供电等关键设备的运行状况进行实时监控,从而实现电网的安全,可靠,高效运行。智能电网本身具有能耗少,安全性高,稳定性强,电力资源利用率高的优点。智能电网是电力技术进一步发展的产物,因而也可以称之为第二代电网。

由此可知,智能电网有如下几个特点:

(1)自愈和自适应。能够及时发现、快速诊断和消除故障隐患,并且能够在尽量少的人工干预下,快速隔离故障、自我恢复;(2)保证电网安全稳定和可靠运行;(3)使用双向信息流,实现发电与用电的互动,从而可以进行发电与用电的综合调度;(4)设备利用率得到提高;(5)间歇式可再生能源的接入。

2 智能电网与传统电网的差异

传统电网是一个刚性系统,电源的接入与撤出、电功率的传输等都缺乏弹性,调控性能差;垂直的多级控制机制反应迟缓,无法构建实时、可配置、可重组的系统;系统自愈、自恢复能力完全依赖于实体冗余;对客户的服务简单、信息单向;系统内部存在多个信息孤岛,缺乏信息共享。,所以传统电网不能构成一个实时的有机统一整体,所以整个电网的智能化程度较低。

与传统电网相比,智能电网将进一步拓展对电网全景信息的获取能力,整合系统各种实时生产和运营信息,通过加强对电网业务流实时动态的分析、诊断和优化,为电网运行和管理人员提供更为全面、完整和精细的电网运营状态图,并给出相应的辅助决策支持,以及控制实施方案和应对预案,最大程度地实现更为精细、准确、及时、绩优的电网运行和管理。另外智能电网将进一步优化各级电网控制,构建结构扁平化、功能模块化、系统组态化的柔性体系架构,通过集中与分散相结合,灵活变换网络结构、智能重组系统架构、最佳配置系统效能、优化电网服务质量,实现与传统电网截然不同的电网构成理念和体系。

同时在能源上,智能电网也在传统电网的基础上进行了优化,用户侧能源开始精细化管理,分布式能源(风能,太阳能)更普遍的运用。

3 智能电网的发展趋势

总的来说,智能电网还是处于研究阶段,尚还不能投入到电网运营中去。接下来就来详细探讨智能电网的发展趋势。针对智能电网的发展趋势的研究,现在从智能电网的决策系统,系统集成,监控方式三个角度来分析。

3.1 决策系统

未来对决策系统的要求必然是要高效可靠。快速仿真决策技术就是基于事件响应研究出来的,在实际应用中将明显优于传统的静态安全分析系统。快速仿真决策系统,它能够通过为智能电网提供数学支持,从而使电网对各种故障及早预判,及早发现,及早处理。

对于智能电网的决策系统还要基于知识共享系统,通过互联网,将大数据传到云端供各地系统共同使用。在未来的智能电网中,电力网络系统中的信息将以几何级的数量增长,信息之间的关联度也将越来越紧密。要想实现及时高效的决策就必须要综合这些信息。广域,多层次的知识资源共享系统的建立就显得非常重要。基于知识的智能电网决策系统,能够实现对资源的高效利用。

3.2 系统集成

智能电网在系统集成方面表现出分布式,分布式系统集成主要包括分布式发电,分布式储能,需求响应等三部分。在未来的分布式发电系统中既可以接入配电系统,也可以不接入,即发电机同时也可以自行运行。这就对集成技术有了更高的要求,是日后研究的重要课题之一。其中的研究难点是对DG的接入,这需要引起我们高度重视。

需求响应也是未来智能电网要发展的重要方向。用户对电能有不同的需求,针对需求响应,智能电网要实现在正常,紧急与恢复状态下的协调运行,这也进一步提高了设备的利用效率。

3.3 监控方式

从监控方式的角度来进行分析。当前的监视控制方式是各母线上相对独立的控制,仅仅是针对部分环节上的变动进行监测然后合理控制。随着电力形势的日益复杂,过去技术的局限性也越来越明显,新的监控技术就应运而生。在今后的发展过程中我们主要是要采用MAS形式的监控系统。MAS监控系统与传统的监控方式相比更具有伸缩性,遗留系统之间的关联度也有所增强。当前MAS系统在人工智能领域得到了深入研究 ,相信在今后的发展中MAS监控方式将得到有效利用。

4 民营企业如何把握智能电网所带来的机遇

智能电网虽然主题是“电网”,但实际上是一个非常综合的领域,是通信、材料、控制、计算机等相关的前沿技术与电网技术的融合和统一。对于一次侧和二次侧的纯电力设备,已经被国内外大型企业占领,而且技术含量和稳定性要求都很高。而在电力通讯领域和信息化建设方面,这些企业的研究能力相对弱一些,给了新兴企业突破口。同时通信和信息技术作为智能电网发展的重要技术支撑部分,以后有很大的发展潜力。

可再生能源的开发,例如水电,风电,太阳能,也是国家大力扶持的项目,但由于资金门槛高,要在此突破还是有难度。目前在分布式发电的研究上,主要问题是缺乏有限的接入方式和营运模式,也是在技术上的一个突破口。而需求侧管理,是在智能电网建成后,对用户上的负荷调度进行管理,更多地给用户提供便利,从而获取利益,这也将是一个很不错的研究方向。

5 结语

就智能电网本身的前景来看,目前至少是电力领域内最热门和前沿的问题,国家也在这方面投入了很多。考虑到电力毕竟是现代一切工业的基础,所以在未来20年成为引领电力乃至整个工程界发展的母题,应该说问题不大。

参考文献:

[1]谢开,刘永奇,朱治中等.面向未来的智能电网[J].中国电力,2008(6).

第5篇

一、引言

在20 世纪90 年代初兴起的宽带电力通信,是在1Mbps 以上通信速率、在2~30MHz 之间的带宽限定的电力线载波通信。在这一技术中,把将原有的电力线网络改装成电力线通信网络,不需要重新布线,现有的配电网配置上PLC终端、中继、局端设备及附属装置,插座被转化为信息插座。通过电力线路这一技术构建高速因特网,使“四网合一”最终实现,能够完成多业务如视频、语音和数据等的承载。把电源插头插上终端用户就能够接入因特网,进行电视频道节目的接收、打电话等。

二、发展历程

国内外目前主要有两大阵营美国和欧洲,在智能电网和智能小区上的应用是美国主要研究的方向,在Internet高速接入网方面的应用是欧洲的主要研究方向。我国在这一技术方面的研究起步比较晚,但是有较快速度的发展。(1)中国电力科学研究院1999年5月对相关技术开始进行开发研究,并且和韩国KEYIN公司2000年在华北电科院宿舍和电力大学进行测试,测试结果为1Mbps速率。(2)中电飞华2002年在北京建立了三个Internet网试验点,采用具有良好的稳定性和速度的电力线接入方式。(3)国家电力调度通信中心电网调度自动化系统在2003年被研发出来,在理论上为开展国家智能电网打下了基础,而且同年对低压配电网电力线高速通信技术进行了研究。(4)2005年对电力线通信宽带接入系统进行了完善。国家电网公司和Intellon公司与DS2公司这两大国际厂商进行了全面的合作,在国内多个省市中基于DS2方案的AMI系统已经被成功试用。(5)国家电网公司在2009年5月对坚强智能电网的发展进行了规划:坚强智能电网的发展在2009-2010年进行规划试点;全面建设是在2011-2015年,对城乡配电网和特高电压网加快建设;统一的“坚强智能电网”建成是在2016-2020年。

三、宽带电力线载波通信系统的应用现状分析

(1)电力通信系统。该系统的接入通信的主要手段是宽带电力通信技术,公网无线通信、中压宽带载波、光纤为补充接入通信手段,对电力终端用户实现了采集与监控用电信息,提供实时双向的通信通道给智能家居和智能用电管理。对智能化电力供应电力终端用户在使用的时候,一方面能够与电网等企业随时进行信息的全面互动,另一方面也能体验远程教育、IP电话、电力宽带上网、远程医疗、远程办公等信息服务。随同用电一起享用这些服务和资源,快捷方便。(2)智能家居服务系统。智能电网中智能家居服务系统是用电环节的主要组成部分,其组成包括用户交互终端平台和社区主站管理平台。电网和用户之间的互动通过家庭智能交互机顶盒或交互终端系统完成,一系列特色服务得以实现如医疗、网络增值、配送、物业、查询等,对家庭灵敏负荷进行功能控制和用电信心的采集如电冰箱、空调、电热水器等,并建立家庭安防系统,该系统集红外探测、烟感、燃气泄露、紧急求助于一体。智能电网技术的友好开放、灵活互动、服务多样、经济高效、先进性的特征在这个系统中得到了集中的体现。

四、系统中采用的技术

(1)在传输媒介中,与无线、电缆、光纤、电话线等相比,电力线载波进行网络信息的传送,不受无线环境影响和布线困扰。(2)信号调制手段。采用OFDM 技术是主要的宽带电力线通信信号调制手段,它的优势是适合高速数据传输、抗噪声能力强、频谱利用率高等,是系统的核心技术。

五、技术优势

(1)安装简单,使用便捷;(2)功耗低,无辐射;(3)稳定的传输;(4)低成本组建,不需要布线;(5)广阔的覆盖范围。

六、结束语

通过上述内容对目前国内外宽带电力线载波通信系统的现状、实际应用效能、前景、相关技术有了初步的了解。随着不断发展的互联网,剧增的宽带接入,宽带电力线载波通信系统所具有的优势,在未来将得到广泛的应用和普及。

参 考 文 献

[1] 国家能源局. DL/T 395-2010,低压电力线通信宽带接入系统技术要求[M]. 北京:中国电力出版社,2010.

[2] 李祥珍,齐淑清. 电力线通信( PLC) 技术的应用及未来[J]. 中国电机工程学会2005 年学术年会.

[3] 吴新玲,张伟,侯思祖. 电力线接入技术与接入网的发展[J]. 北京工业职业技术学院学报,2006, 15(4):24-26.

第6篇

关键词:电气自动化技术 电力系统 运用

中图分类号:TM76 文献标识码:A 文章编号:1007-9416(2015)07-0000-00

1 电力系统中电气自动化技术的运用方向

1.1 电力系统自动化实时仿真系统方向

仿真系统作为一个能够独立运营并且模拟实际运营情况的系统,通过对电力运营仿真系统的研究,我们可以创造出一个全方位封闭的系统网络,如果配合数字系统的使用,可以构建一个足够真实的环境来进行相关研究,能够很方便地进行各种潜在错误的排查,提高实验的真实性,为后来实验的开展提供帮助。

1.2 电力系统中的人工智能方向

电力工业作为我国现代化产业的基础,在国民经济体系中发挥了无可替代的作用,因此电力系统的调整和升级也势在必行,人工智能作为一种新型产业能够最大程度地提高电力系统的运营效率,通过对人工智能的应用,不仅能够让电力系统稳定运行,还能提高整个系统的稳定性和智能型。

1.3 电力系统配电网自动化方向

国际上自动化技术在电网系统的运用已经发展到相对比较成熟的阶段,如果搭配上各种软件,完全可以引进到国内,为我们的电力系统所用,再加上输电网的理论算法的一项技术。在进行负荷预测时,主要是适用人工智能灰色神经元算法,而过配网递归虚拟流算法则一般应用于潮流的计算。这两个技术支撑起了整个电网运行算法,这一技术的运用也是整个自动化技术发展的关键所在,该技术能够有效地为应用于配电网上的路由、衰耗等问题提供行之有效的解决办法,将载波接收得到灵敏度提升到了一定的水平。

2 电气自动化技术在电力系统中的应用

2.1 智能电网技术中的应用

智能电网的技术能够和其他技术相互配合,尤其是和计算机系统的配合,能够最大程度地发挥出智能技术的优势。因此这一技术在实践中的运用也越来越广泛,智能电网技术是一个比较大的概念,能广泛涉及电力的配给和输出、调度运营等方面,通过对电力系统的自动化升级,能够让整个电网技术的稳定性和效率大幅度提高,能让整个电网系统都划归中央电脑的管辖之下,促进我国电网系统的完善和发展,而在这之中,通讯技术也使电网系统运行的一个热门领域,计算机可以促进系统的零延时通讯,提高信息监管的质量。

2.2 变电站自动化技术的应用

变电站在整个电网系统中无疑处在核心地位,而计算机技术能够最大程度上地提高变电站系统的运用,变电站系统在设计之初就建立在计算机系统的基础上,而计算机系统也随着变电站的完善和发展而不断完善着。随着通讯介质的革新,比如光纤取代传统的电力信号,能够大幅度提高信息的传输效率,并且减少传输中的损耗,完全有可能实现用户和变电站的直接连接,有利于变电站直接通过客户反映的需求来进行电力的配给活动。

2.3 电网调度自动化技术

电网调度也是整个电网系统无可取代的环节之一,自动化的电网调度能够很方便地投射电力给需要的用户,这种智能化的电网调度总共分为五个层次,即县级调度、地区级调度、省级调度、大区调度和国家电网调度。计算机的运算能力是这五个调动层次的基础和核心,只有计算机信息系统的运用和普及才能支撑起整个电网电动自动化的改造,以计算机系统为核心的电网调动能够充分发挥电网系统各个环节的功用,实现对整个电网系统的整合优化,通过将各个部分,无论是供电所还是工作站、变电站,都可以纳入到智能电网系统当中,实现整个电网的一体化运行,不仅如此,在电网调度自动化中,计算机还应当监控电网的运行,及石材及数据,并对电力负荷状态进行有效的预测。如图1所示。

2.4 电力系统自动化中PLC技术的应用

PLC技术是通过继电接触控制技术和内部存储系统相结合,诞生出的一个新型技术。这项技术一开始是从工业不断发展的背景下被研究出来的,可编程逻辑给了这项技术极大的便利,并且这一技术在最近渐渐地被运用到电力系统领域。系统极高的灵活性和适应性能够很快契合不同的电力网络,展现出极大的控制能力,减少电网的能源损耗,并且可以实时地采集电网运行时的各种数据,实现系统的传送与转换。

3 电气自动化技术在电力系统中的应用发展趋势

新型的电气自动化技术给我们提供了更为广阔的视野,也为我们进一步把计算机融入到电网系统当中提供了一个崭新的思路,这一思路能够帮助我们进一步普及电力网络系统,譬如LED电力自动化技术的使用,这项技术能够完成多个厂家的信息整合,实现信息和技术的交流与共享,极大地提高几个企业的竞争能力和市场适应能力。未来多媒体和计算机系统必将和电力网络系统合二为一,成为我国国民经济发展的基础和支柱。

参考文献

[1]胡荣荣.电气自动化技术在电力系统中的应用探析[J].机电信息,2012(30).

[2]董娜,李函霖.电力系统中电气自动化技术的探索[J].科技与企业,2011(07).

[3]张俊.电力系统中电气自动化技术的探索[J].中国新技术新产品,2011(03).

第7篇

关键词:电网智能化;节能减排;供配电网络

中图分类号:TM727 文献标识码:A 文章编号:1009-2374(2013)16-0004-02

随着经济的迅猛发展,各国对能源的需求越来越高,而与之对应的是能源短缺与环境问题,因此,对能源进行调整和优化,实现社会可持续发展,是各国政府都亟待解决的问题。我国党的十明确要求在节能减排的前提下,实现我国经济的可持续发展。基于此,电网智能化是非常重要的。利用数字化信息网络构成的智能化电网,能够实现能源开发、能源发电、电力输送、电力供应等,可以保证电网供电的稳定性与安全性,确保电网电能的质量,提高电能的利用率,因此,电网智能化无疑是未来电网发展的必经之路,对于节能减排有着举足轻重的作用。

1 电网智能化的特征

电网智能化采用了先进的信息通讯技术、测量技术、计算机监控技术,可以实现对电网的运行进行优化,并且能够对电网扰动进行预测和应对。电网智能化具有以下优势:

(1)电网的智能化使得电网抵抗故障与干扰的能力增强。当电网在遭受外界天气条件、人为破坏等情况下,不会造成大面积的停电,确保电网能够正常运行;同时,电网智能化使得电网信息安全能力提高。

(2)电网智能化能够提高电网系统的预警能力与控制能力,通过进行在线安全分析,电网能够进行故障的自我诊断、隔离,并且能够进行自动恢复。

(3)通过电网的智能化,使得可再生能源的接入以及微电网的接入变得简单,使得用户与电网的交互更加高效。

(4)通过电网的智能化使得能够有效开展电力交易,从而确保了资源配置的合理性,并且电网损耗降低,电能利用率提高。

(5)电网智能化能够使得电网运行的成本降低,优化了资产,并且由于便于接入可再生能源,从而使得用户电价降低,同时排放水平降低,保护了环境。

(6)电网智能化促进了电网信息的高度集成,使得电网管理能够实现标准与规范化。

2 电网智能化的发展前景

(1)基于先进的通讯技术,构建高速、集成、实时以及双向的通信系统的电网,是电网智能化的发展趋势。电网数据的获取、保护离不开通信系统,因此,电网智能化必须以完善的通信系统为基础。实现电网智能化需要将电网通信系统和用户紧密联系起来;电网不同智能电子设备、集控中心、卫星定位系统、智能化测量仪表、电网后台控制器、电网智能化的计量设备,与电网用户实现网络通信。电网智能化的通信系统要求基于通信网络开放的结构,从而能够实现具有统一性的即插即用的环境,使得电网电器件之间网络化的通信得以实现;另外,电网智能化通信系统实现了技术规范的统一性,电子设备、传感器等在电网实现了智能化的通信,系统和设备的信息实现无缝对接,从而利于电网系统之间、设备之间以及系统与设备间的操作。

(2)电网智能化的另一个发展方向是电网先进的控制技术。在电网中发展控制技术,能够实现对电网的诊断、分析、预测以及控制,从而根据分析的状态采用智能化的算法,对电网中有影响的因素进行减轻或者消除,同时利用先进的控制技术,使得电网能够实现电能质量的智能化优化。通过电网智能化控制技术,能够使得电网输电、供电、配电以及用户侧得到有效控制,同时对于电网的有功与无功进行管理;而电网智能化的先进控制技术,能够和电网的事件进行快速响应,并进行诊断,同时对于市场报价也能够支持,从而使得电网资产管理水平得到了提高;电网的智能化的控制的自愈性质使得电网可靠性得到大幅度提高。

(3)供配电网络的集控是电网智能化发展的一个重要方向。电网智能化应用先进的电子技术、大容量的储能技术以及超导技术,使得输电网络性能极大提高。通过电网智能化,使得电网与负荷之间能够获得平衡点,使得电网电能质量不断提高。基于智能化的新技术与新设备的集成应用,使得电网输配电的可靠性以及容量得到改善,并且能够在电网中引入更多的储能设备,而电网中引入的微电网不但使得电网的可靠性提高,同时也提高了电网的经济性。

(4)电网中多功能计量表的应用是电网智能化发展的一个方向。电网实现智能化,必须基于可靠安全的物理电网结构以及安全的信息交互平台,将电网各种数据信息进行整合,从而可以获取准确、完整的电力流信息以及业务流信息等全景信息。利用对电网系统实时的生产数据以及运营数据的分析整合,从而加强电网动态数据的分析与诊断,不但能够确保电网的安全运行,同时也有利于电网管理人员获得完整的电网运行状态图,同时给电网运行提出智能化的辅助措施,为电网安全、稳定运行提供尽可能大的精细、及时、精确的控制方案。电网智能化可以将风能发电、太阳能发电等清洁能源发电引入电网,从而形成分布式的电网系统。人性化的智能计量表,是电网用户和电网的连接点,通过电网智能化的计量表,实现了对电能的双向管理,能够促进供电方和用户进行互动,用户可以通过电网智能化的电表的连接,及时获得用电信息;同时,用户也可以及时了解电网的运行状态、电网电压、功率等数据,从而使得用户能够对用电进行及时的调整;通过动态的计费方式,用户能够根据用电情况制定符合自身实际情况的用电方案,对用电设备的用电进行及时的调整,实现用户节能的目标。

(5)基于信息化技术的发展,无人化管理也已经成为电网智能化发展的一个重要方向。电网中通过智能开关设备,能够实现报警信号数字化的传输、信号指示等,另外能够实现智能开关设备操作控制、联锁、闭锁以及和其他设备的通信等。电网设置自动化的在线监测与专家检测系统,实现了对电网无人化的智能化监控。通过电网通信网络实现数据传输信息化,将采集的数据进行共享;电网检修专家系统基于设备的实际情况,对缺陷进行检修,根据设备历次的实验数据、运行数据以及在线数据等的分析与比较,对电网的运行状态进行评估,同时根据评估的结果制定相应的方案,从而实现了无人化管理,也使得维护工作量降低。同时,电网中安装数字化的继电保护装置,具有可以远方投退保护的软压板,从而实现了保护定值区远方切换,从而实现了电网保护装置运行无人值班化。

3 结语

随着世界性能源危机的出现,电网智能化发展已经成为了关系到各个国家发展的重要课题,通过现代化的信息技术、控制技术、先进的设备,智能化的电网计量设备实现电网智能化已经成为人们的共识。通过发展电网智能化,实现电网用电的优化,不但能够使得用户的电费支出降低,更重要的是能够使得电网稳定高效运行,从而提高电能利用的效率,降低了能耗,实现了节能减排的目的。

参考文献

[1] 崔勇,李善文,胡文艺,等.农村智能化电网规划

[J].电工技术,2011,(2):68-70.

[2] 寿颐如.智能电网关键技术研究展望[J].科技促进发展,2009,(6):35-39

第8篇

关键词:西部;电力系统;电气;自动化

0 引言

西部地区相对于东部地区,经济与技术的发展相对滞后,这一点是毫无质疑的。然而,西部地区在电力系统输出方面也有着较多的优势,比如可再生能源发电的能力则是东部地区不可比拟的。因此,西部地区电力系统构建过程中,除了考虑东部地区电力发展经验外,还要考虑到西部地区电力发展自身特点,来进行电力系统的优化和整合。从现行国内电力系统地发展来看,智能电网是近年来较为新兴话题之一,渐进成为现行电力系统发展的主流,作为电力工业的最新发展方向为人们所关注。众所周知,保障电力供应,降低公众使用成本是电力行业不得不面对的话题。而电力系统由于各类技术的相对欠缺。电气自动化一直处于相对薄弱的环节。当前,电力系统相对较为完善,而电力工业系统技术也相对较为提升。智能电力系统成为电力工业发展的社会需求。为应对气候、能源、灾害危机,智能电力系统地建设更为人们所关注,智能系统在一定程度上的安全、自救、环保等特点能够在各方面环境中系统的优化能力优先于传统电力系统。

1 智能电力系统构建基础

智能电力系统其优化特性,表现为两个方面。一方面表现为发电侧,另一方面表现为用户侧。智能电网表为集权与分权方式调适性进行,通过可再生能源如风力、水力进行大规模的比重的电网接入,通过大量分布式小量集团式与大量集成供给相结合输出到用户侧,缓解了原来火力发电为主体的电能获得困境的瓶颈性问题,使电能输送更加随机性和调控性。在用户侧一方,发挥智能家居“即插即用”的特点,采用家用电器单向受电转向双向互供电方式 ,形成了相对较为合理化、人性化配电和应用系统。智能电力系统的技术构建基础源于三个方面,一个是源于当前数字化系统的出现,通过在公共信息调控基础上进行上从供电到用电两个层面进行一系列信息反馈、测算、传感和调节,其中,测算与控制技术成为智能电力系统存在的重要前提和基础。二是,源于现行系统管理软件的出现,为智能电网的管理提供有力的管理工具,在电力输送与用户作用的体系中,管理系统通过流量的管理进行主动的测算,借助网络分析方法,即时性对网络电流形成一系列的监控,从而,了解电力输出和应用的总体情况,从而进行智能性调度和主动性调控,来满足市场性电力需求。

2 智能电力系统发展必然要求

从定义上来界定,智力电力系统是一个信息化、自动化、数字化与个性化整合性的电力供给和调控系统,针对电力作业的具体环境可以进行自我维护、自我预防和兼容性相对较好的电力整合体系。在很大程度上,可以说智能电力系统是智能系统与电力系统完美结合,或者说电力系统的智能化建设。智能电力系统的建设一方面基于技术原因,另一方面也是基于市场方面的考虑。作为国计民生重要组成部分电力系统,满足人们日常生活电力需求外,市场需求也是电力系统发展的重要方面。电力市场多源化也给区域性电力系统本身造成一定程度上的竞争。若是想在局部区域内获得电力系统的竞争力,智能电力系统的引入也是电力系统发展必然要求。智能电力系统的稳定性特点,为市场电力需求主体提供相对稳定的动力来源,保障其生产的正常进行,这一点具有着足够的竞争力。电力市场改革则引导着智能电力系统出现在电力市场中。同时,市场用户选择权放开,也是促发智能电力系统选择权出现的重要方面。智能电力系统通过新技术的应用保障电力系统的安全性和稳定性。同时,能够为适用用户的电力需求而自行调节,这一方面尤其受到用户所青睐。

3 智能电力系统电气自动化应用

传统的电网按照需求量进行大电源流的固定方向输出,相对较难预测电力负荷。从电网运行能力和承载负荷能力都较难适应突然高峰用电的需求,同时,随着电力系统用户需求的增加。计划性、预测性和干扰性必然成为未来电力需求要面对的重要问题。智能电网则在诸多方面解决了以上问题。从长期投资来看,可再生能源的大量介入,则完成解决了电源短期上升,而供给难以实现的问题,尤其是在西部地区,风力、水力发电的能力是相对较为充足的。通过智能电网的主动监测能力来实现机组和用户侧运行情况,并且,可以实现用户侧和输出侧进行调控,通过适度调整不必要的报修或不适当的检修来提高电力供应能力。同时,智能电力检测系统可以实现全方位、实景式电力系统全监测,为间隔式电力系统调整提供了全面的参照,监测数据也能使电力系统进行及时的自我维护,调整其运动能力则保障了供电能力的最大化输出。

电气自动化在智能电力系统中占有核心性地位,存在于智能电力系统中,又独立于智能电力系统之外。除了以上所提到的智力监测部分,同时,还表现在仿真性工作中和配电网统内。通过实时仿真性电力实验室的应用,可以用来检测电力系统的运行情况,当然,电力人员也能够通过仿真系统的电力装置来测试电力系统的稳定情况。当然,可以预见的是计算机技术在智能电网的电气自动化应用过程中,表现会越来越突出。同时,电气自动化也随着计算机技术的发展在各个方面进行全方位的应用。PLC技术则就体现了的电力系统对电气自动化主体性应用,从顺序控制、温度、信息化诸多方面都表现出电气自动化的优势。

参考文献:

[1]林晓明,郭进利,肖勇.智能电网建设中加强电力需求侧管理研究[J].科技创新导报,2011(22).

[2]高明华,王冬,王学峰,张勇.智能变电站设备在线监测系统[J].山东电力技术,2011(01).

[3]姚建国,严胜,杨胜春,杨志宏,高宗和.中国特色智能调度的实践与展望[J]. 电力系统自动化,2009(17).

[4]石亚磊,任倩.电力系统预防触电的措施[J].技术与市场,2013(08).

第9篇

【关键词】智能电网;研究现状;发展趋势

1.智能电网技术概述

智能电网(Smart Grid),就是电网的智能化,也被称为“电网2.0”,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,其主要特点包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。智能电网在技术上包含4个基本特征:信息化、数字化、自动化、互动化。其中:信息化是指实时和非实时信息的高度集成、共享和利用;数字化是指电网对象、结构及状态的定量描述和各类信息的精确高效采集与传输;自动化是指电网控制策略的自动优选、运行状态的自动监控和故障状态的自动恢复等;互动化是指电源、电网和用户资源的友好互动和协调运行。

2.国内外智能电网技术的研究现状分析

由于不同国家的国情不同,所处的发展阶段及资源分布的不同,因而各个国家的智能电网在内涵及发展的方向、重点等诸多方面有着显而易见的区别。美国在智能电网建设中更加关注电力网络基础架构的升级更新,以提高电网运行水平和供电可靠性,同时最大限度利用信息技术,实现系统智能对人工的替代。其发展智能电网的重点在配电和用电侧,注重推动可再生能源发展,注重商业模式的创新和用户服务的提升。欧洲国家发展智能电网主要是促进并满足风能、太阳能和生物质能等可再生能源快速发展的需要,把可再生能源、分布式电源接入及碳零排放等环保问题作为侧重点。而日本构建智能电网则以新能源为主,日本将根据自身国情,主要围绕大规模开发太阳能等新能源,确保电网系统稳定,构建智能电网。

目前,我国已经具备发展智能电网的条件,电网的发展已经发生深刻变化。通过智能电网建设,电力各领域已经发生飞跃和提升。我国智能电网的发展更多地关注智能输电网领域,把特高压电网的发展融入其中,保证电网的安全可靠和稳定,提升驾驭大电网安全运行的能力。另外,我国电网企业正在转变电网发展方式,用户的用电行为也在发生变化。以建设智能电网为抓手,能够比较方便地建成满足未来需要的下一代电力网络。要实现电网智能化目标,有许多技术需要进行研究。其中输电网中基于相量测量单元的广域测量系统、柔流输电和配电网中分布式发电、自动抄表、需求侧管理等很多技术,在智能电网概念提出前就已经在研究,并且取得了不错的成绩。智能电网的发展,会让这些技术提高到新的层次,并使研发工作更有用武之地。此外还要开发诸如储能技术、先进的双向式自动计量表计设施、风能和太阳能等可再生能源的接入技术、微电网等一系列新的技术。智能电网也需要不断整合和集成企业资产管理和电网生产运行管理平台,从而为电网规划、建设、运行管理提供全方位的信息服务。国家电网公司建设的SG186工程,为构建智能电网打下了基础。

国家电网公司近日建成投产了110千伏四川北川和220千伏青岛等7座智能变电站,这是中国在智能变电站核心技术研发、关键设备研制和产品制造等领域实现的重大突破,也是中国坚强智能电网建设实现的重大突破。这一突破使我国占据了智能变电站技术的国际领先地位,成为世界智能变电站技术的引领者。

2009年5月,在北京召开的“2009特高压输电技术国际会议”上,国家电网公司正式了“坚强智能电网”发展战略。2009年8月,国家电网公司启动了智能化规划编制、标准体系研究与制定、研究检测中心建设、重大专项研究和试点工程等一系列工作。坚强智能电网是以特高压电网为骨干网架、各级电网协调发展的坚强网架为基础,以通信信息平台为支撑,具有信息化、自动化、互动化特征,包含电力系统的发电、输电、变电、配电、用电和调度各个环节,覆盖所有电压等级,实现“电力流、信息流、业务流”的高度体化融合的现代电网。“坚强”与“智能”是现代电网的两个基本发展要求。“坚强”是基础“,智能”是关键。强调坚强网架与电网智能化的高度融合是以整体性、系统性的方法来客观描述现代电网发展的基本特。电网的“坚强”与“智能”本身也相互交叉,不可拆分。坚强智能电网是坚强可靠、经济高效、清洁环保、透明开放和友好互动的电网。坚强可靠,指具有坚强的网架结构、强大的电力输送能力和安全可靠的电力供应;经济高效,指提高电网运行和输送效率,降低运营成本,促进能源资源和电力资产的高效利用;清洁环保,指促进清洁能源发展与利用,降低能源消耗和污染物排放,提高清洁电能在终端能源消费中的比重;透明开放,指电网、电源和用户的信息透明共享,电网无歧视开放;友好互动,指实现电网运行方式的灵活调整,友好兼容各类电源和用户接人,促进发电企业和用户主动参与电网运行调节。坚强智能电网的总体发展目标是:建成以特高压电网为骨干网架、各级电网协调发展的坚强电网为基础,以信息化、自动化、互动化为特征的自主创新、国际领先的现代电网。

3.我国智能电网技术的发展趋势

智能电网已被国际上众多国家所认可,都在基于不同的国情、出发点和认知程度,对其发展和实施内容上各具特色。我国的智能电网又该如何发展呢?

中国的智能电网发展,应在博采众家之长的基础上,遵循中国特色进行规划实施。既要立足于目前处于发展期的现实,又要兼顾未来成熟期的前景。要积极推动坚强的智能化电网的研究和建设。

虽然各国对智能电网的认识和理解并不统一,但利用现代信息技术、控制技术实现电网的智能化已成为普遍的共识。我们要密切跟踪这一趋势,从中国国情和实际出发,在充分调研国际、国内智能电网研究和发展现状的基础上,统筹特高压电网发展和信息化企业、数字化电网建设等工作,按照安全可靠、清洁高效、自愈可调的要求,尽快研究提出以信息化、数字化、自动化、互动化为特征的智能电网目标框架和技术路线,积极推进相关工作,加快构建国际领先、自主创新、中国特色的智能电网。

2010年“加强智能电网建设”被写入政府工作报告之后,2011年又被纳入国家国民经济和社会发展“十二五”规划纲要,这表明智能电网已作为国家战略推进实施。多个省市将智能电网作为重要发展内容,依靠国家力量全面建设智能电网的在经过多年的电网发展积累和近两年来的智能电网创新实践的基础上,我国智能电网将进入快速发展轨道,前景十分值得期待。

2011年我国坚强智能电网进入全面建设阶段,将在示范工程、电动汽车充换电设施、新能源接纳、居民智能用电等方面大力推进。“十二五”期间,国家电网也将投资5000亿元,建成连接大型能源基地与主要负荷中心的“三横三纵”的特高压骨干网架和13回长距离支流输电工程,初步建成核心的世界一流的坚强智能电网。国家电网制定的《坚强智能电网技术标准体系规划》,明确了坚强智能电网发展技术标准路线图,是世界上首个用于引导智能电网技术发展的纲领性标准。可以看出我国大力发展坚强智能电网的信心与决心,同时也在政策、技术、标准、研发等方面全方位多角度大力支持,中国的坚强智能电网发展必将迎来崭新的一页,引领世界电力系统的发展。

4.结语

从发展的角度看,智能电网还是一个新生事物,全球的智能电网也还处于发展的初期,还在逐步完善和丰富的过程中,其发展也将面临一系列问题的挑战。智能电网不仅在于推动我国经济、能源、气候等领域的发展,还将体现在建设以特高压为骨干网架的坚强电网和清洁能源的开发利用等诸多方面。我们有理由相信智能电网的发展必将推动电力系统的升级变革,同时也为世界能源、环境的发展产生深刻的影响,为人类生活质量的提高产生积极的作用。

参考文献

[1]邢孔苗.智能电网技术的现状与发展[J].科技资讯, 2011(08).

[2]魏林,李博,李杨.智能电网发展现状及探讨[J].电工技术,2010(08).

[3]卢杰.智能电网的现状和发展前景分析[J].中国科技信息,2013(06).

[4]王立谦,朱明清.浅谈智能电网的现状与发展[J].黑龙江科技信息,2011(19).

[5]李柄汝,王志刚,王胜利.智能电网产业的发展现状和趋势[J].科技资讯,2012(17).

第10篇

关键词:电气自动化技术;电力系统;应用

中图分类号:F407.6 文献标识码:A

0 引言

随着科学技术的发展,电气自动化技术在电力系统中的应用与日俱增。目前,电力系统中电气自动化技术主要涉及以下3 个方面:变配电站集中监控、继电保护和远程调度管理部分。我国对电力系统中电气自动化技术的研究起步较晚,近年来虽取得了一定的成绩,但与国外先进水平相比仍存在较大的差距。因此,对电气自动化技术在电力系统中的应用展开研究迫在眉睫,我们必须在结合本国实情的基础上,研究和开发出更加符合我国国情的电气自动化综合技术化系统。

1 电气自动化技术在电力系统中应用的研究方向

目前我国对电力系统中电气自动化技术开展的研究,主要可以概括为以下 4 个方面:

1.1 对电力系统智能保护和综合自动化技术开展的研究

我国对智能保护和综合自动化技术的相关原理展开了大量研究,将先进的综合自动化控制理论、人工智能理论、自适应理论、微机和网络通信技术等引入到电力系统的自动化保护装置中,使得保护装置更加智能化,极大地提高了电力系统的可靠性和安全性。经过多年努力所研制成功的分层式综合自动化装置,突破了传统装置所受的限制,能够广泛应用于各种电压等级的电站,极大地拓宽了综合自动化装置的应用范围。

1.2 对电力系统配电网自动化技术开展的研究

我国对电力系统配电网自动化技术开展了大量的研究,主要表现在配网模型、中低压网络数字、信息配网一体化、高级应用软件等方面的突破。其中,高级应用软件将配电网的实际情况和输电网的理论算法结合在一起,使用最新的国际标准公共信息模型,利用配网递归虚拟流算法对潮流进行计算,利用人工智能灰色神经元算法对负荷进行预测,极大地提高了计算结果的准确性和可靠性。数字信号处理技术能够提高载波接收的灵敏度,解决了载波在配电网使用中的路由和衰减等难题,提高了信号的处理速度和准确度。

1.3 对电力系统人工智能技术开展的研究

我国对电力系统人工智能技术开展了大量的研究,主要体现在将模糊逻辑、专家系统和进化理论等先进理论运用到电力系统及其设备的故障分析、运行分析、规划设计等方面,确保了电力系统运行的安全性和可靠性,并能及时诊断各种故障信息,将损失降低到最小,提高了电网规划设计的科学性和合理性。

1.4 对电力系统自动化实时仿真技术开展的研究

我国对电力系统自动化实时仿真技术开展了深入的研究,重点研究了电力系统实时仿真建模和负荷动态特性建模,同时将国外先进的电力系统数字模拟实时仿真系统引入到国内,构建了基于混合实时仿真环境的实验室。电力系统自动化实时仿真系统不但能够对电力系统的暂态和稳态进行试验,而且能够联合多种控制装置,形成闭环系统,从而确保科研人员能够完成对新装置的测试实验。

2 电气自动化技术在电力系统中应用的设计思想

2.1 电气自动化技术在电力系统中应用的选型原则

电气自动化技术在电力系统中应用的选型原则,主要从远程调度和自动化系统监控这两个方面进行考虑。电力系统的保护装置一般优先选用微机保护综合自动化系统,电力系统中电气自动化的选型接线比较简单,通常以常规继电保护装置为主,选用性能可靠且价格合理的智能化开关。

2.2 电气自动化技术在电力系统中应用的设计原则

电气自动化技术在电力系统中应用的设计原则主要应从以下几个方面进行考虑:

(1)电气主接线方式按照原设计来执行,要将采用监控系统后所增加的设备种类和数量(如电力监控器、电量变送器等的数量)在单线系统图的设备型号说明中加以标注;

(2)凡是需要利用计算机监控系统进行远程遥控操作的开关,一定要使用具备远程分闸和合闸功能的智能开关,从而确保远程遥控操作功能得以实现;

(3)运行状态需要进入计算机监控状态的开关,通常需要使用一对独立的常开接点引入计算机监控系统,此外,低压自动开关还需多选用一对常开辅助接点;

(4)对继电保护进行设计时,供电系统应该优先考虑使用变压保护和综合电气自动化技术。

3 电气自动化技术在电力系统中应用的研究趋势

我国对电力系统中电气自动化技术的研究还存在很多不足,未来的研究工作还有很多。电气自动化技术在电力系统中应用的研究趋势,主要包括以下 3 个方面:

3.1 国际标准的大规模推广和使用

近年来电气自动化技术在我国有了广泛的应用,但是由于电气自动化设备的生产厂家众多,导致这些设备的信息共享和相互操作间存在诸多障碍。为满足不同厂家所生产设备的兼容性,电子工业协会制订了 IEC 61850 标准,作为站端与站间进行通信的标准,从而实现站内的无缝通信。我国要大力推广和使用 IEC 61850 标准,并基于此标准开发出电气综合自动化系统的相关产品。

3.2 将测量、保护和控制工作融合为一体

长期以来,受电力行业专业分工、人员配置和运行机制的影响,我国电气自动化系统主要通过站内监控采集相关数据、单独进行保护的工作模式。这种工作模式虽然能对事故进行清晰的分析和处理,但是增加了工作量,降低了设备的利用率。为了减少设备的重复配置率和操作人员的工作量,提高事故的处理效率,必须将测量、保护和控制工作融合在电气自动化综合系统中。

3.3 以太网技术的使用

随着经济和社会的发展,人们对电力的需求与日俱增,加之电网系统越来越复杂化,其涉及的数据和信息也越来越多。在这种背景下,电气综合自动化系统所需要采集和传输的数据日益庞大,对通讯的实时性和传输速度提出了更高的要求。以太网具有传输数据量大、传输数据快的优势,能够满足电气综合自动化系统的发展需求,因此,以太网在电气综合自动化系统中必然会有更多的应用。

4 结语

信息技术、控制技术和计算机技术的发展,极大地促进了电气自动化技术在电力系统中的应用。经济和社会的发展,使得人们对电力的需求与日俱增,同时也对电力系统运行的可靠性和安全性提出了更高的要求。电力系统自动化技术不断向前发展,在控制策略上更加智能化、协调化、适应化和区域化;在理论上更多地使用现代控制理论;在控制手段上更加重视对远程通信、微机和电力电子器件的使用;在分析设计上更多地使用多机系统模型来处理复杂问题。

[参考文献]

[1]董娜,李涵霖.电力系统中电气自动化技术的探索[J].科技与企业,2011(7)

[2]潘小丽.综述电力系统中电气自动化技术[J].城市建设理论研究,2012(4)

第11篇

关键词:智能变电站;运维管理;电网建设;智能化建设;电力系统 文献标识码:A

中图分类号:TM63 文章编号:1009-2374(2016)12-0114-02 DOI:10.13535/ki.11-4406/n.2016.12.053

依据国家电网公司的“十二五”规划纲要,未来的电网建设要以特高压电网建设为骨架,各级电网要协调发展,并且建设出的电网要具有高度自动化、智能化的特征。坚强智能电网将作为未来电网发展的主要方向。而变电站作为电网中的一个重要节点,它在整个电力系统中占有重要地位,变电站智能化水平的高低将直接影响到整个电网的智能化建设。近年来,随着大量智能变电站的投入试运行,各种各样的问题也开始层出不穷,为了进一步促进智能变电站的发展,分析探讨智能变电站的主要技术特点以及在建设运维管理中遇到的问题显得十分必要。

1 智能变电站的发展现状及主要技术特点

随着智能变电站的飞速发展,光纤设备、智能模块、网络通信、在线监测、一体化电源等新技术也开始大量应用于智能变电站中,这些新技术的应用使传统变电站的主系统至辅助系统的智能化得以实现,智能变电站的系统大致可以分为综合自动化系统、在线监测设备状态的系统、智能监测以及辅助控制系统。

1.1 精简了二次回路,使用网络结构实现了数据共享

通常智能变电站的二次组网采用的是图1结构,图1网络结构的应用使得智能变电站的“三层两网”结构得到了实现,SV以及GOOSE网络是间隔层设备与设备连接的主要方式,同时间隔层连接设备层时主要采用的也是这种连接方式,采用MMS网络来连接间隔层与站控层。对于软压板的投入与退出以及切换定值区等,都可以通过继电保护借助MMS网络来完成,与常规保护相比,智能变电站保护系统把硬接点警告输出取缔了,报文形式成为了传送警告信息的主要方式。

1.2 采用OCT以及EVT设备,简化了相应的电流、电压回路,实现了数据共享

采用电子式互感器代替传统的电磁式互感器,这样大大简化了二次回路,使用光纤代替电缆传输信号,精简了系统的线路结构。双AD采样是当前智能变电站主要使用的采样方式,并且保护配置也采用了双重化的。当前OCT的输出通常使用的是4个光敏环,从4个电气单元分别向各自对应的合并单元传输信号,而EVT的输出通常使用的是2个电气模块,保护装置的采集方式最终决定了从合并单元输出的电压、电流回路数量。

1.3 倒闸操作方式与习惯都进行了改变,一、二次设备顺控、遥控得到了大量应用

与传统的倒闸操作相比,智能变电站的操作人员的操作对象变化较大,后台监控画面成了日常操作的主战场,软压板操作成为了保护装置主要的压板操作,保护屏柜上安装的二次压板也被取缔了。此外,应用顺控操作以后,大大降低了运维人员误操作事故的发生,有效保障了系统的安全。

2 运维工作中的常见问题及应注意的事项

2.1 二次压板的操作与设置

2.1.1 对于保护装置的初始状态压板运维人员最好不要随便更改。通常应在压板退出状态下,再对保护装置的定值压板进行远方修改操作,应在投入状态下,对压板进行远方控制,远方切换定值区。

2.1.2 在智能组件正常运行的情况下,“置检修”压板严禁投入。

2.1.3 在进行设备开关时,应先把本间隔保护失灵压板以及母差本间隔投入压板退出。

2.1.4 应在确定已全部取下“置检修”压板后,再进行各设备的启用。

2.1.5 在保护投退时,严禁借助投退断路器跳合闸压板来完成。

2.2 电子式互感器直流电源的管理

一旦光电互感器的直流电源发生中断,必然会引起继电保护、测控装置等不能正常工作,一次设备的工作工况也就不能正确反馈,造成一次在失去保护的状态下工作。根据配置的双重化,当前OCT电源的主要来源是由两组直流电源分别提供的,若某一路电源中断,就会引起其所对应的元件保护与母差保护接受不到采样信息,最终导致保护装置发生闭锁的现象。为此,当某路直流出现接地后,不要轻易采用拉路检查的方式来进行检查,若以上电源必须进行断电,也应把相应的保护装置先停用后,再进行操作。

2.3 全光纤式电流互感器运维稳定性与合并单元电磁兼容性问题

全光纤式电流互感器在智能变电站中的应用使各设备输出方式由模拟量转变为数字量,这样的输出方式不但安全、环保,而且提高了测量精度。但由于这种技术还属于一种新型技术,运维技术还不成熟,在投运以来这种设备及其附属装置经常出现问题,在今后的变电站运维管理汇总我们应重视提高电子式互感器的运行稳定性,改善合并单元设备的电磁兼容性。

2.4 智能设备就地布置运行环境有待改善

随着变电站智能化的推进,交换机以及大量微机系统都开始陆续引入变电站内,就地布置智能设备,不利于设备热量的扩散,设备温升现象比较严重,就地布置大量的智能设备,必然会影响到各自设备的运行环境,使设备的故障率大大增加,为了使得这些设备能更好地运行,应注重智能变电站内环境的改善。

3 智能变电站建设与运维建议

3.1 强化智能变电站的建设管理

在建设智能变电站时,应重视变电站运行的安全、可靠,建设出的变电站要简洁实用,便于运维人员操作,要不断提高设备的装备水平。若变电站采用的是普通的电流、电压互感器,建议应仍然使用电缆接入方式进行采样,这样可以避免由于过多中间环节,而引起系统可靠性的降低。同时相关的智能变电站科研单位应增大电子式互感器的科研力度,要注重其稳定性的提高,以便于这种高科技设备能更好地服务于智能变电站。

3.2 要不断完善智能变电站监控系统的功能

当前智能变电站的监控画面缺乏一致的标准与模式,这就导致了各后台厂家在监控画面的设置上容易出现不统一的现象,而智能变电站上报信息主要采用的是报文的形式,这就要求必须对各信息不断进行规范,此外在设置保护装置软压板时也应进行相应的规范化管理。应制定一个统一标准来明确变电站的各项内容,这样可以使变电站的运维效率得到进一步提升。

3.3 重视运维管理网络交换机等设备

智能变电站采用光纤进行连接后,这样可以大大简化屏柜与屏柜间的连接,但这也同时增加了变电站交换机的使用量。由于每个交换机上都有很多端口,若不能定位各端口连接的光纤,这将非常不利于后期的管理维护,可能会影响到设备的正常运行,所以施工方应定位各交换机端口的光纤,这些内容要具体体现在设计施工图纸中,另外在进行土建施工时严禁进行设备安装,这可以有效防止施工粉尘污染光纤设备接口,影响到设备后期的正常运行。

3.4 应重视整合智能变电站的辅助系统,促进应用实效的提升

当前数据的远传与监视功能在很多智能变电站的辅助系统中都已实现,但同一所变电站的辅助系统设备通常是由不同的厂家共同来设计制造的,这就形成了不同辅助系统服务器各自配置的现象,这样必然会增大变电站二次屏柜空间的占用量。建议应有效地整合变电站的监测、防火、防盗、防风系统,让它们实现集成应用,这样一方面可以精简变电站各设备的空间占用量,另一方面还可以有效提升智能变电站辅助系统的效能。

4 结语

通过分析与探讨智能变电站运维过程中产生的主要问题可知:当前智能变电站使用的全光纤式电流互感器与其附属设备在运行时还不是很稳定,对其技术、工艺水平还有待于进一步提升;高度集成智能变电站的二次设备后,引起了设备散热效果的下降,影响到了设备运行的稳定性,应在这方面多加研究;还应不断提升智能变电站的运维管理水平,只有把以上几点都充分做好,才能使智能变电站的工作效能得到充分发挥,才能促进电力企业生产效益的提升。

参考文献

[1] 马涛,武万才,冯毅.智能变电站继电保护设备的运行和维护[J].电气技术,2015,(6).

[2] 许永丰,陆国俊,许中.变电站智能化关键技术实现方案研究[J].供用电,2012,(1).

第12篇

关键词:智能电网;配电线路;监测诊断系统;配电自动化

中图分类号:TM247 文献标识码:A 文章编号:1009-2374(2013)16-0115-02

1 智能电网及智能输电概述

智能电网是以双向高速的、集成的通信网络为基础,利用先进的测量技术和传感技术、先进的决策系统、完善的控制方法来经济、安全、可靠、高效地进行电网的使用,因此也称为电网的智能化。智能电网主要的特点包括激励、自愈、抵御攻击、容许接入不同的发电形式以及促进资产和电力市场的高效优化运行。相比于传统的电网,智能电网具备了坚强的电网技术支撑体系和基础体系,能有效防御各种外部攻击和干扰,能接入大量的可再生能源和清洁能源,且能通过传感器技术、自动控制技术、信息技术与电网基础设施的融合,能对电网可能的故障及时发现,防止大面积停电现象的出现,使得电力设备的使用效率有效提高,电能损耗大幅度降低,从而使得电网的运行更加高效和经济。电力系统中配电线路的智能输电一般包括以下两方面:一方面,能广泛应用直流输电和柔流技术来对现有的电网资源进行充分利用,从而使得配电线路输送能力和稳定性提高,促进电网运行优化的同时使得输电成本降低。另一方面,配电线路能够建立起涵盖全国范围的能源输送及配电线路监测诊断系统,能对设备运行状态和微气象信息进行及时采集,促进电网配电线路输电效率的提高。

2 智能电网在配电线路中的应用

2.1 基于智能电网的配电线路监测诊断系统

智能电网配电线路在线监测与故障诊断系统由监测信息、通信网络、线路检测分机、地市局电网公司、省电网公司以及国家电力总部组成,此系统将多个检测设备的功能进行了综合,能够对影响风偏、绝缘子污染、导线温度、舞动、覆冰雪、杆塔倾斜和杆塔防盗等信息进行及时的采集。利用GPRS通信功能来将采集信息向地市局电网监测中心发送,电网监测中心人员分析相关的监测信息,按照配电线路智能算法的不同和实验结果得出功能不同的监测判断。智能电网配电线路在线监测与故障诊断系统能对配电线路设备运行状况和微气象信息进行及时全面的监控,系统的设计包括监测主分机和监测副分机,其中监测主分机主要进行设备运行状态参量、微气象信息的采集以及温度数据和节点加速度的无线传输。主要组成模块有微气象监测单元、微处理器、杆塔监测单元、绝缘子监测单元、GPRS通信模块和电源模块等。监测副分机主要进行节点加速度及导线温度的无线传输和采集,主要组成模块有温度传感器、加速度传感器和电路等。此系统以智能电网为基础,通过GPRS无线通信和ZIGBEE无线网的有效结合,使得配电线路在监测过程中数据传输引入的难题被解决,尤其是导线监测数据的传输与采集问题,从而成功实现了电网系统中配电线路运行状态的在线全面监测与故障及时诊断解决。

2.2 基于智能电网的配电线路多功能电能表

以智能电网为基础的配电线路多功能电能表主要是根据电能计量芯片加微处理器的方案来进行设计的。其主要组成结构有监控与计量传感器、用户标准计量设备、电能计量芯片和RS-485转换器等,此电能表能使得电力系统中配电线路实现电能计量、参数显示和计量监控等功能。其中计量和显示模块通过电能计量芯片的利用来进行用户消耗电能和电气参数的精确计量和采集,然后在微处理器中输入标准结果进行判断和运算。而且,微处理器的外部设备能将这些电参数实时显示;配电线路的配电监控模块利用RS-485总线来采集电能参数,通过微处理器分析软件来对采集到的数据进行比较和分析,以判断配电线路中有无违章用电现象。基于智能电网的配电线路多功能电能表中的计量芯片一般使用AITT026A,它是一种精度较高的三相电能计量芯片,有一个串行口,该芯片功能全面且精度较高,在配电线路合相和分相状态下都能精确地计量视在功率、无功功率和有功功率等电能参数,一般在三相电路中功率因数、有效值、能量和功率测量中应用广泛。应用智能电网所设计的配电线路多功能电能表,不仅能实现多种电气参数的计量和采集,还能实时监控用户的用电数据,有效地避免和控制窃电现象,使得电力系统的用电和售电实现合理化和公平化。

2.3 基于智能电网的线路配电自动化

基于智能电网的线路配电自动化改造是一项比较复杂和庞大的工程,该工程主要包括电网配电自动化终端系统、主站系统和子站系统的设计。主站系统主要由配电SCADA主站系统、配电AM/GIS/FM应用子系统和配电应用软件子系统组成。其中配电应用软件子系统主要是在配电线路的智能自动化改造完成之后,为了使得系统的技术标准满足要求,对配电线路智能自动化中关键系统的故障诊断和恢复功能进行调试。由于配电线路具有涉及面广、监控设施多的特点,配电主站无法和线路中的所有监控设施直接连接,因此需要在线路中配设中间级,也就是配电线路子站系统。子站系统能实现监控设备、环网柜和柱上开关的管理,使得配电线路馈线合闸、馈线监控和数据采集等功能得以实现。电网配电线路自动化的终端系统主要是对配电变压器、开闭所和柱上开关等进行监控,与主站系统和子站系统互相配合以保证配电线路的优化可靠运行。基于智能电网的线路配电自动化改造使得电网配电线路的运行状态得到及时的监控,促进了电网调度可靠安全性的提高,为配电线路的进一步智能化创造了条件。

3 结语

现代科学技术的发展以及电力系统的不断改革创新使得配电线路的运行也趋于智能化,本文首先对智能电网及输电智能化的定义和特点做了讨论,在此基础上,从基于智能电网的在线监测与诊断系统的实现、多功能电能表的设计和配电自动化的改造三个方面阐述了智能电网在配电线路中的应用,对于提高智能电网运行的安全可靠性、促进电网智能化的进一步发展意义重大。

参考文献

[1] 赵政洪.配网自动化系统设计[D].四川大学,2005.

[2] 黄新波,张国威.输电线路在线检测技术现状分析

[J].广东电力,2009,22(1):13-20.