HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 自动焊接

自动焊接

时间:2022-06-21 03:47:31

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇自动焊接,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

自动焊接

第1篇

关键字:薄板直缝 焊接变形双面成型自动焊接

中图分类号:TU74 文献标识码:A 文章编号:

引言

一般的焊接工艺中,为保证根部焊透并获得两面完好质量的焊缝,大多采用双面焊接的方法,但在压力容器、管道焊接等行业由于焊缝位置的影响无法进行双面焊接。并且双面焊接的工艺方法效率较低,耗费工时,在批量生产的企业是一个严重影响生产成本的问题。并且在焊接类似薄板对接的结构中,均具有面积大、重量大、焊缝长和焊接质量要求高等特点,如果采用较为原始的手工方法或使用一些自制的简陋设备,会存在劳动强度大、工作效率低、焊接质量及安全性较差,操作不熟练还可能造成将焊接工件和将其支撑的金属物焊为一体等弊端。为解决这些问题,日本在上世纪50年代就开始研究单面焊接双面焊缝成形的技术。本文所介绍的就是基于解决以上问题所研制的设备。此设备用于薄板直缝自动焊接,可实现薄板单面焊接双面成形的功能,提高产品质量和工作效率。

概述

设备机械结构组成如图1所示,由基本框架、左右进出料的辊道支撑架、焊接移动小车、焊缝冷却成型系统等几部分组成。焊接作业前的进料、定位等准备工作由人工实现。焊机安装在小车上能够沿焊缝方向移动,并能够在左右方向调节位置,使焊枪对准铜板上的沟槽;需焊接的两部分薄板分别在两端辊道上进料,在冷却水道沟槽处对接,对接处应留出合适的间隙,焊接时融化的液体金属会流到下面的铜板沟槽上,在循环的冷却水作用下迅速成形。压板固定工件的动作用人工操作气控阀控制气缸实现;控制系统采用手动启动小车的行走和焊枪的升降及启动焊机送丝进行焊接作业;焊机启动前,应确认已启动水冷循环系统;一次焊接作业完成后关闭焊机升起焊枪、停止小车行走、继续冷却一段时间后松开压板,取出焊好的工件。

图1 设备机械结构组成

基本框架结构

如图2所示,框架部分主要包括左中右三条横梁构成的主框架。两侧还有进料及出料用的辊道支架,进料时需焊接的两部分薄板自两侧分别进入,出料可根据现场情况选择任一侧均可;

左右两侧横梁(序3、5)等高对称,其上安装轨道供小车行走,并在长度方向上安装有多组气缸(序2)、压板(序1)等装置和元件组成的定位夹紧装置,进料定位完成后,手动控制气动阀开启使气缸带动压板压紧工件以防后序作业中工件移位或焊接变形;

中间横梁(图2序6)位置较低,与进料的辊道等高,上面安装焊缝冷却成形的铜条板等装置。小车(序4)移动时带动焊机沿焊缝方向行走,同时焊机工作完成焊接作业。

1.压板 2.气缸 3.左横梁4.移动小车 5.右横梁 6.中间梁

图2基本框架

焊接移动小车

如图3所示,移动小车由车体框架(序5)、两组电机减速机(序6、7)、气缸(序3)、滑板支架(序4)、十字滑板(序2)、压紧导轮(序1)、焊枪(序8)等组成。

小车框架是用槽钢和上下板焊接而成的机械结构件。小车的移动由安装其上的电机减速机组完成。在框架的底部安装有行走导向轮;前后安装有行程开关控制小车的移动范围。大减速机组(序6)运行时通过齿轮齿条带动小车行走。

焊枪位置可通过十字滑板在左右及前后方向调节。压紧导轮安装在十字滑板上,焊枪及小减速机组件也安装在十字滑板上。气缸的上下伸缩动作可控制滑板的升降,焊接时焊枪下探到焊缝位置,结束时抬起焊枪;小车行走时,压紧导轮位于焊枪的前方,气缸伸出时导轮降下压紧工件,随后的焊枪进行焊接。小减速机运行时可带动焊枪左右移动,当焊道偏离时随时调整焊接的最佳位置。

1.压紧导轮2.十字滑板3.气缸4.滑板支架5.小车

6.减速机7. 小减速机 8.焊枪

图3 焊接移动小车

水冷焊缝成型系统

如图4所示,水冷焊缝成型系统主要由水泵、进水管、储水箱、带温度计的水位计、上铜条板、紫铜管、下垫板、出水管、接头等组成循环回路。

焊缝单面焊接双面成型的关键工作部位在于铜垫及水管结构,见图4的A-A视图,下部的垫板固定在框架的中梁上,上部的铜条板与下垫板用螺钉紧固在一起,紫铜管被压在两层板形成的圆孔中作为冷却水的循环通道。焊缝处铜垫微凹,焊接时高温溶化的液态金属会注满凹处,同时水冷系统又能保证焊缝处的热量迅速冷却,作为焊缝成形的位置。

进水管的一端与水泵连接,另一端与覆盖在焊接位置内的紫铜管连接,并在进水管上装有流量计;水泵固定在储水箱上。水流经过过滤器,被水泵抽送到紫铜管一端,冷却焊缝部位后从另一端流回储水箱行程循环冷却回路。焊缝单面焊接双面成型的关键工作部位在于铜垫及水管结构,如图,焊缝处铜垫微凹,焊接时高温溶化的焊材会注满凹处,同时水冷系统又能保证此处迅速冷却,从而达到快速凝固成型目的。

1.进水管2.水泵3.储水箱4.水位计5.出水管

图4水冷焊缝成型系统

工作过程

初次使用前或使用一段时间后再次使用应预先检查设备完好,各活动部件运行正常。

首先在设备左右两侧的辊道上分别送入需对接的钢板,手动控制压紧装置的气缸使所有气动压紧机构抬起,焊接小车回到初始位置;把首端定位块放在焊接起始位置;在短棍道上料薄板件;在焊接开始端薄板件的侧边与短棍道上的侧向导向轮靠齐;且把首端定位块靠上去;把尾端定位块沿薄板件的另一侧边靠上去并卡紧定位;用顶紧机构顶紧工件;调节安装在左横梁端的气动阀压紧机构压紧工薄板件;取下首尾定位板,把首端间隙定位板放在焊接开始端;把尾端间隙定位板在接近薄板件的另一侧沿压板空隙伸进去并卡在工件焊接边上放好;在长棍道上另一块料薄板件;另一块薄板件的侧边与长棍道上的侧向导向轮靠起;用顶紧机构顶紧工件;扳左横梁上的气动阀压紧机构压紧工薄板件;取下首尾间隙定位板,在首尾端放置各放置一块与工件一样厚度的引弧板和收弧板,大小可根据现场实际空间确定,不需特殊设计。在焊缝成型的位置留出约2mm的间隙,焊接时融化的液态金属会通过此间隙流到底面冷却后形成另一面的焊缝;

其次将小车移至一端,控制小减速机运行,正反旋转电机调节焊枪左右位置,使之对齐铜条板的凹槽;手动控制打开气控阀使气缸伸出,压紧导轮降下,保证导轮能够压紧两侧的工件。同时观察焊枪与工件距离是否合适,需要调整时可松开焊枪重新固定即可;

然后启动大电机减速机组使小车移动,观察压紧导轮是否能压在焊缝处行走,且焊枪能一直对准钢板对接的缝隙处;小车行走至移动范围的另一端,行程开关反馈信号使小车停止;

调整好检查过程中出现的问题,准备并连接好焊丝等焊接器材,调整好电器控制系统,确保冷却水循环系统开启并运行正常,准备施焊;整个焊接过程即重复检查的过程;

焊接完成后停放一端时间使焊缝彻底冷却成型并避免焊接变形。然后控制气缸打开压紧装置的压板,工件被松开后即可被移走进入其它工序;

清理焊缝成型处的铜条板上的焊接残渣,重新由两侧装入钢板重复上述步骤进入下一个焊接过程。

结论

本文介绍的薄板直缝自动焊接系统具有以下特点:

结构简单,使用安全。三条主梁结构均采用槽钢框架,质量轻,刚度大。移动定位机构可适应多种不同尺寸的工件,定位精确;带有导向的辊道支架使上下料方便;移动小车起始点等关键位置装有行程开关;有随焊枪移动的焊接监控摄像头等保证工作过程的安全。

自动化程度高,操作方便。上料后的工件定位、压紧直至焊接过程,操作人员只需使用几个指定的按钮即可完成。

第2篇

关键词:管道环缝;自动焊;自动跟踪

前言

我国管道在焊接过程中仍普遍出现手工焊接现象,直接影响管道使用的整体性能。手工焊接需要较长工期,同时需要投入大量成本。管道使用手工焊接直接影响管道的使用效率,而自动焊接不但能减少焊接工期,同时也对管道使用提供有效保护。

1.全位置管道自动焊接技术现状

1.1.自动焊接技术发展现状

全位置焊接主要将管道进行固定,运用机械与电气方法,使焊接设备有效带动焊枪进行焊缝环绕工作,实现全位置管道自动焊接技术。目前我国全位置管道焊接工作存在一定难度,从而不能有效运用在管道焊接工作中,其主要原因是由于直径厚壁压力管道难以到达环缝组装达到一致的精准度,因此需要全位置焊接设备自动调整焊枪位置,将坡口尺寸偏差进行自动调节[1]。焊接工作容易产生弧光、灰尘、振动等现象,因此自动调节跟踪无法达到理想要求。

美国已经成功研制出自动焊接设备,大量应用于石油天然气管道的建设中。管道主要作用是将水流进行传输工作,因此有效控制管道缝隙衔接尤为重要,如出现偏差将产生严重影响,我国管道多数建设在地下,如出现破损将加大施工难度,需要工人长时间排查工作,因此管道焊接工作尤为重要。

焊接技术自动调节方面,我国相关部门研制出自动自动焊接工艺,并且建立在大量焊接工艺初期试验中,并且实际数据与试验数据存在一定数差现象。这种现象不但降低管道自动焊接效果,同时加大管道焊接施工难度,为工作人员带来大量的工作难度。其次我国自动焊接技术多数采用摆钟式原理,需要左右摆动进行交替工作,这种现象将提升数据偏差数值。

1.2.新研制管道自动焊接设备特点

针对我国管道自动焊接存在的问题,相关部门进行研究,研制出新型自动焊接设备,主要对管道环形位置进行细致检测,同时减少焊枪存在的偏差问题,有效进行管道焊接工作。近年来随着高科技技术的成熟,以及相关部门对焊接工艺的重视,自动技术已成为一种先进的焊接技术,并且成功运用在管道焊接工作中。自适应焊接技术是一种高科技技术含量较高的焊接工艺,此技术配有高科技的传感器与电子检测线路,在管道焊接过程中能有效控制焊缝出现误差现象的发生,同时实施自动导航与跟踪系统。管道焊接工作前期只需要将工艺参数进行预先设定,自动焊接设备将自动完成管道焊接工作,不但能减少大量人工作业,同时能有效提升管道使用寿命。

2.自动焊接设备的构成

2.1.自动焊接设备的重要组成部分

自动焊接设备的组建比较繁琐,零件之间需要紧密配合才能更好的完成焊接工作[2]。使用自动焊接的初期要保证其电源的稳定性,其输出功率与焊接设备进行结合,通过电源输出功率有效带动自动焊接设备的使用,并装有与主控器相接的接口。自动焊接在设计过程中需要配备专业的自动调速系统,焊接工作属于细致工作,尤其体现在焊缝焊接中,对焊接面积较大的施工应采用快速焊接工艺,针对细小的工作能选用较慢的自动焊接技术,自动焊接调速系统能有效改善管道焊接的整体工艺,确保管道正常使用的同时降低成本开支。

焊接工艺的机械化与自动化是近代焊接技术的一项重要发展,它不仅能提升焊接生产效益同时也能保障焊接质量,而且大大的改善了生产劳动条件。以往手工电焊是引燃电弧,送进焊条以维持一定的电弧长度,焊接工作中向前移动电弧,如采用机器完成焊接工作,则成为自动焊接。

自动焊接分为明弧与埋弧两种形式,焊接工作中如采用明弧焊接工艺,其生产效益将提升两倍左右,而使用埋弧工艺其生产效益将达到5-10倍[3]。埋弧主要是利用焊剂层下的电弧,通过加热并融化焊丝、焊剂与母材,而进行焊接工作的一种工艺手法,电弧在焊剂层下进行燃烧,自动焊机头将焊丝自动送入电弧区,确保使用电弧的长度,电弧通过焊机的有效控制,均匀向前移动,从而完成自动焊接作业。

2.2.自动焊接工艺的优点

自动焊接主要优点体现为生产效益高,自动焊接工艺在焊接工作中将使用较大电流,因此电弧整体穿透力较强,将管道缝隙进行有效融合,降低在使用过程中出现裂缝现象,由于埋弧焊的热量较为集中,并且焊接速度较快,因此生产效益与手工焊相比提升幅度较大。自动焊接工艺能有效控制焊接工艺流程,通过自动化进行焊枪调整,保证其稳定性。在自动焊接过程中焊剂的保护尤为重要,应防止空气对熔池金属造成的侵害,埋弧焊焊缝金属质量较高,性能稳定,并且外表成形美观。

使用自动焊接工艺能有效降低材料与电能消耗,是由于电弧在焊剂层下燃烧,将热量散失较少,同时能有效较少电能的消耗,同时中薄板焊接时可以不开坡口,焊丝金属不存在飞溅损失,没有焊条头所以能节省大量焊接金属材料。

以往手工焊接工艺制作过程中,存在人工控制焊接过程的不准确、不稳定导致焊缝成形不好的现象,容易在焊接部位产生气孔、裂纹、未融合现象的发生。自动焊接工艺在制造过程中,由于电弧燃烧程度稳定,连结处成份均匀,焊缝成型好的优点,因此被广泛的使用在焊接工作中。

3.总结

自动焊接技术不但能提升生产质量,同时能大幅度的减少焊接工作量。在我国全为管道建设中应充分利用自动焊接技术,确保管道使用寿命,为社会带来经济效益。为了有效提升焊接工艺的生产质量,在工作中应全面使用自动系统,减轻工人的劳动强度。

参考文献:

[1]刘守龙.长输管道全位置自动焊接技术[J].焊接技术,2012,5(01):101-254.

第3篇

1焊接小车

焊接小车是实现自动焊接过程的驱动机构,它安装在焊接轨道上,带着焊枪沿管壁作圆周运动,是实现管口自动焊接的重要环节之一。焊接小车应具有外形美观、体积小、重量轻、操作方便等特点。它的核心部分是行走机构、送丝机构和焊枪摆动调节机构。行走机构由电机和齿轮传动机构组成,为使行走电机执行计算机控制单元发出的位置和速度指令,电机应带有测速反馈机构,以保证电机在管道环缝的各个位置准确对位,而且具有较好的速度跟踪功能。送丝机构必须确保送丝速度准确稳定,具有较小的转动惯量,动态性能较好,同时应具有足够的驱动转矩。而焊枪摆动调节机构应具有焊枪相对焊缝左右摆动、左右端停留、上下左右姿态可控、焊枪角度可以调节的功能。焊接小车的上述各个部分,均由计算机实现可编程的自动控制,程序启动后,焊接小车各个部分按照程序的逻辑顺序协调动作。在需要时也可由人工干预焊接过程,而此时程序可根据干预量自动调整焊接参数并执行。

2焊接轨道

轨道是装卡在管子上供焊接小车行走和定位的专用机构,其的结构直接影响到焊接小车行走的平稳度和位置度,也就影响到焊接质量。轨道应满足下列条件:装拆方便、易于定位;结构合理、重量较轻;有一定的强度和硬度,耐磨、耐腐蚀。轨道分为柔性轨道和刚性轨道两种。所谓刚性轨道就是指轨道的本体刚度较大、不易变形,而柔性轨道则是相对刚性轨道而言。两种类型的轨道各自有各自的特点。刚性轨道定位准确、装卡后变形小,可以确保焊接小车行走平稳,焊接时焊枪径向调整较小,但重量较大、装拆不方便。而柔性轨道装拆方便、重量较轻,精度没有刚性轨道高。

3送丝方式

送丝的平稳程度直接影响焊接质量。送丝方式可以简单分为拉丝和推丝两种方式。拉丝时焊枪离送丝机的安装位置较近,焊接过程中焊丝离开送丝机后受到的阻力较小,因此可以保证送丝过程平稳,但送丝机和焊丝盘均须安装在焊接小车之上,增加了焊接小车的重量,给人工装拆增加了困难,重量增加还容易造成焊接小车行走不平稳。使用直径为0.8mm或1.0mm的小盘焊丝(重量约为5kg)减轻了焊接小车的重量和负载,又使得焊接过程容易控制,但对焊接效率有一定的影响。采用推丝方式时,将送丝机构安装于焊接小车之外,减小了焊接小车的体积和重量,可以使用大功率的送丝机和直径为1.2mm的大盘焊丝(重量约为20kg),从而提高焊接效率。然而,由于推丝时送丝机离焊枪较远,两者之间须有送丝软管相连,当焊丝被连续推送到焊枪嘴处时,焊丝受到的摩擦阻力较大,而且,焊接过程中送丝软管的弯曲度对送丝的平稳程度有一定的影响,严重时造成送丝不畅,因此使用推丝时须充分考虑述因素。

4焊接工艺的选择

目前,除采用手工焊接外,管道焊接较多的是采用埋弧自动焊接工艺和气体保护焊工艺。

埋弧自动焊有焊缝成型好、焊接效率高、焊接成本低等特点,对于管道施工而言,埋弧自动焊可用于双管联焊,简称“二接一”,即焊枪固定在某一位置,管子转动。显然长距离管道焊接时不可能让管子转动,因而“二接一”只能用于管子的预制。如果管道全位置自动焊采用埋弧焊工艺,那么焊接装置上必须配加焊剂的投放、承托与回收机构,使得焊接装置的结构变得较为复杂,给操作与装拆带来不便,而且增加了行走小车的负载,影响小车行走的平稳性。埋弧焊一般采用粗焊丝、大电流的焊接方式,用于全位置自动焊可能会由于熔敷率较高出现熔滴下垂、流动等焊接缺陷,影响焊缝的成型与质量,因此将埋弧焊应用于管道全位置自动焊接实现起来困难较大。

采用药芯焊丝加气体保护的焊接工艺,若是多遍成型,则每次焊缝表面清渣费工费时;若是强迫成型,则须配加一个与焊枪一起运动的成型铜滑块,并通入循环冷却水,可以大大提高焊接效率,这样一来不仅焊接装置的结构复杂,而且重量增加。因为药芯焊丝的价格较高,同时还要解决保护气体的气源,所以焊接成本较高。单一使用自保护焊丝,虽然节省了保护气体,但存在清渣困难问题。

采用实芯焊丝加气体保护的焊接工艺,若是多遍成型,则焊接过程可简单分为打底、填充、盖面三个阶段,无须对焊缝表面进行清理而直接进行下一道工序,但焊接速度相对强迫成型而言慢一些。保护气体一般为纯二氧化碳气体、二氧化碳和氩气或二氧化碳和氧气的混合气体。二氧化碳和氩气的混合气体可以使得焊接时的电弧燃烧稳定、飞溅较小,但在野外施工时氩气气源难寻、价格较高,从经济方面考虑,在焊接输油管道时,最好尽量使用纯二氧化碳作为保护气体。在有条件的地区施工,使用二氧化碳和氩气作为保护气体较为理想。

5控制方式

第4篇

关键词:高压油管;焊接;PLC;自动控制

中图分类号:TB

文献标识码:A

文章编号:16723198(2015)19022201

高压油管是高压油路的重要组成部分,对耐压性、抗疲劳强度,以及密封性都有较高的要求。高压油管自动焊接机是通过设计合适的自动焊接装置、配套的焊接工装,在合理的焊接参数下,由控制系统控制操纵台,实现油管的自动焊接。因此,控制系统的好坏对焊接品质、焊接效率、缩短操纵台的生产周期,保证焊接的稳定性和一致性等方面起关键性作用。本文研究一种基于PLC的高压油管自动焊接机控制系统。该系统采用立式环焊缝焊机结构,以PLC为控制核心,实现焊接丝和主机的自动控制,通过机械手及固定模具,进行工作的快速装夹与焊接,采用CO2气体保护焊接工艺、自动控制焊接速度等,以达到自动、精密、清洁、高效的焊接质量要求。

1 高压油管自动焊接机工作原理

高压油管自动焊接机主要包括CO2气体保护焊接设备、气缸、自动送焊接丝设备、旋转焊接机构及控制系统及机架等,通过操作面板对焊机的电流、电压的调控,进而实现对自动焊接参数设定,气缸部分控制机械手的伸缩以夹紧工件,使其固定在模具中,从而满足焊接零件之间的精确对接与焊接工艺要求。旋转式焊接机构为焊接机械的关键部件,有立式和卧式结构之分,本设计采用立式结构,其旋转焊接机构示意图如图1所示。

图1 高压油管自动焊接机旋转焊接机构示意图

图1中的旋转焊接机构由工作台及与其相固联的立柱与卡盘等部件,通过卡盘固定模具,进而因定焊接件,工作台下端联接直流电机以驱动转台,进而带动焊枪绕卡盘中心旋转,实施匀速焊接,气缸用于控制进退枪动作。在主轴的转台内侧装有一接近开关,可保自焊枪转动一圈后自动停止。焊枪由CO2气体保护焊接机引出。

2 系统控制方案分析

本系统主要控制项目有焊接机的电流、电压控制、送丝速度控制、焊接速度控制即旋转台速度控制,工件夹紧气缸控制和进退枪控制等,还需具有手动与自动控制两种功能。

焊接机电源、电压的调整通过控制面板设定完成,操纵台采用直流电机驱动,电机速度控制通过控制PWM直流调速电源的输入量实现。该三项功能由于手动十分困难设定,正常作业前,根据工件的情况进行调整,正常作业时无需调整。PLC控制系统部分主要用于实现控制直流电动机的正、反转,气缸伸、缩以控制进、退枪,点焊控制,起停,实现手动与自动功能等。

3 基于PLC的控制系统设计

3.1 PLC电气控制原理图设计

由上述分析知,系统具有基于PLC的手动与自动控制性能。因此,通过PLC可实现系统焊接工作模式设置、控制系统的各种功能,从而实现对焊接机进行上述的控制。结合集成部件中的设定电流电压及电机速度,可以得出,本设计中至少需要10输入点和7个输出点,如果将所有信号均通过PLC控制,这时不仅开关IO的端子数有所增加,还需增加三个通道的模拟输入输出模块,目前可采用最为适用的方法进行端子分配与设计。

结合现有情况,系统选用PLC的型号为:FX2N-32MR。PLC电源电压为AC220V。信号输入均为开关量,采用内部提供的DC24V电源。系统中的输出端子直接控制继电器线圈,选用继电器线圈额定电压为DC24V,且由外电源对输出端供电。I/O的端子及地址分配表如表1所示。

在控制电路的设计中,根据端子分配表中对应关系进行电路设计,对于正常工作时不动作的输入信号,输入端子尽量用常开触点接入,以实现编程时内部触点状态与外部保持一致,且可以达到减小输入端子通电时间的效果,本设计中,SB7分别指示手动和自动,使用拔钮开关或带自锁的按钮开关,由于焊接过程到

达挞接处时,还需要焊枪运行一适当的距离,从而使接头充分对接,这就需要在旋转支架到达传感器时还需要有一定的延时,且这一延时时间随加工工件的大小而异,需要便于调整,而使用PLC中的定时器不便调整,这里使用一个独立的时间继电器完成此项功能。为了避免正反转,进退枪同时动作,除梯形图互锁外,还需要电气互锁,且体电路如图2所示。

图2 PLC控制电路的电气接线图

3.2 PLC程序设计

本系统中,由PLC控制部分的主要功能有进退枪、正反转,且可点动控制,点焊功能在点动正转基础上,增加焊机的控制;手动控制为手点情况下:在点动正转基础上,增加焊机与电机的控制;自动状态下:如果在起动工作过程中,只能由停止按钮或急停按钮使其停止,其他按钮不起作用,可调速和调电流电压如在停机状态,可以对任何按钮进行操作。经过上述分析,可应用经验设计法完成PLC梯形图设计,并在脱机状态进行调试,合格后进行现场调试。

4 现场调试

在高压油管自动焊接机安装完成后,首先检查自动送丝机、气缸、电动机、面板、焊接旋转支架等是否连接正确。具体调试步骤:(1)按下夹紧按钮,观察夹紧气缸能否夹按照给定的速度进行伸缩,夹紧机构可否灵活调节,如将工件一起夹紧,观察能否与卡盘上的模具中的接头工件紧密配合;(2)按下电机启动按钮,观察电机能否带动齿轮进行正传、反转以及停止;(3)观察能否通过PWM调速电源来调节转动速度;(4)按下面板中的进枪按钮,进行焊接,观察电流、电压大小是否符合焊接的速度要求;(5)观察自动送丝机是否正常送丝且送丝速度正常;(6)在气体保护焊设备下观察焊接时是否存在焊丝飞溅的问题;(7)按下急停按钮,观察能否断电停止,焊接工件能否保持停电前的状态;(8)焊接完成后观察焊口是否平滑且无缺口。

在确认硬件安装连接无误后,检查PLC编程,严格按PLC端子分配表与接线原理图装接主电路与控制电路。应用GX Developer8.34L-C三菱编程软件,打开工程,并在STOP状态接通PLC电源,将梯形图写入PLC中,如果计算机与PLC保持连接状态,此时将程序显示窗口置监控状态。按照被控设备的动作要求利用按钮开关进行调试,修改程序直到达到设计要求。

5 结论

本文对基于PLC的高压油管自动焊接机的控制系统进行了分析与设计,具体分析了高压油管自动焊接机的工作要求,确定了以高压油管和接头、气体保护焊和自动焊接机的设计方案,着重设计了PLC自动控制系统的软、硬件,给出端子分配,并设计出外部接线图及程序。经现场安装调试表明,本文提出的设计方案可以满足生产要求,并能提高生产效率,提高焊接质量,并有一定的灵活性和适应性。

参考文献

[1]毕宗岳.连续油管及其应用技术进展[J].焊管,2012,(09):512.

第5篇

关键词:自动化;焊接技术;机械制造;应用策略

在机械制造生产作业中,焊接是其中应用比较普遍的一项制造工艺,随着当前我国科学技术的快速发展,自动化技术和焊接技术的不断优化,使得自动化焊接设备逐步应用于机械制造产业中,就此本文对自动化焊接技术在机械制造中的应用策略进行详细探讨,具有一定现实意义。

1自动化焊接技术

在我国,制造业占比较大,对我国的经济发展起到了一定的推动作用。在工业制造业中,自动化焊接技术的运用是关键,也是我国工业制造业的核心。在工业制造业中运用自动化焊接技术,主要是指焊接操作实现自动化,即在工业生产期间,对需要焊接的材料通过电脑控制进行操作,焊接质量较高,还能对焊接的时间、质量等进行标准化控制。不过,目前自动化焊接技术还未普遍运用,如果自动化焊接技术不到位,将造成资源的浪费,因此需要对不足之处进行研究改进。为了促进自动化焊接技术的发展,要对焊接生产实施管理,满足自动化的要求标准,确保自动化焊接技术运用的稳定性。在工业制造业生产过程中利用自动化焊接技术,能够提高我国工业生产环境适应力,有助于工业制造业进一步实现自动化作业。自动化焊接技术的实施需要工作人员较高的能力,较强的技术操作能力,能够熟练操作自动化焊接技术相关设备,确保自动化焊接技术在工业生产过程中的全面推广。自动化焊接技术的运用有助于我国实现工业生产自动化,解放劳动力,降低工业制造业的生产成本,提高工业制造业的经济效益。

2自动化焊接技术在机械制造中的应用意义

当今时代,我国科学技术大力发展,特别是机械制造领域的发展更为迅猛。就当前机械制造产业发展现状来看,相关科研人员已经成功的将自动化、智能化控制系统与机械设备两者相结合,一方面进一步强化了整个机械产品的生产质量和效率,另一方面,因机械设备生产模式的转变,其中投入的劳动力和生产成本也因此降低[1]。除以上之外,通过自动化的机械制造生产模式,促使机械制造产业经济朝向规模化的方向生产,在批量化生产背景下进一步提升了企业的经济效益。对于机械制造中所使用的自动化焊接设备,主要有自动焊接机、全自动智能型焊接机器人等等,通过这些设备,不仅仅可减少劳动者的工作强度,同时还可通过当前比较先进的编程技术和智能化控制设备实现全天不停转开展焊接生产作业,有助于提升整个企业的运行效率。

3自动化焊接技术在机械制造中的应用策略

3.1 新材料自动化焊接技术

随着我国工业制造业的发展,制造业的生产材料也不断变化,针对新型材料,需要采用不同的焊接技术,但传统的焊接技术对新材料的运用存在许多不足,容易出现质量问题。采用自动化焊接技术,因操作对象为机器人,可以将研究的数据结果输入自动化系统中,设定相应的数据,利用新材料自动化焊接技术快速提高生产效率,促进工业生产的创新发展,也能促进工业制造业的进一步转型。自动化设计能够提高工业制造业的生产效率,提高企业生产的经济效益。

3.2 自动化焊接专机

在进行大型机械设备的大规模、大批量生产制造过程中,通常采用自动化焊接专机作为辅助完成生产。自动焊接专机在进行焊接作业过程中,具有非常强的焊接控制能力,在实际应用中,将传感器、电子电路安装其中,能够对整个焊接专机的焊接作业过程进行全自动化的跟踪[3]。除以上之外,还可结合机械制造生产作业实际需求来对自动化焊接专机进行相应调整,以此来进一步提升整个焊接作业的工作成效。将其应用于自动焊接和旋转机械中,一般选择双丝焊接技术作为主要焊接方式。相比较于以往传统模式下的手工操作技术而言,通过双丝焊接技术,进一步提升了机械制造生产效率,同时对生产过程中出现焊缝断弧问题起到了一定的避免作用,与此同时,双丝焊接技术在进行焊接作业时的烙深相对比较深,更能突出焊缝在其中的力学性能优势,能够应用于直线、曲线等多种类型焊缝焊接作业中,具有非常高的焊接工作效率,在实际焊接作业时,焊件变形越小越能保证焊接作业质量,特别适用于规模化机械加工生产作业中。从整体上来讲自动化焊接专机在机械制造领域中的应用,还具有非常高的智能化程度,主要体现在将更高等级传感器应用于自动焊接中,能够实现人与机器之间的互动,根据需求来调节其中的参数信息,更好的将自动化焊接专机的作用发挥于实际机械制造生产中。

3.3 焊缝跟踪技术

焊接机器人在焊接时,为保证焊缝轨迹的准确性,需要进行焊接缝隙实时跟踪,机器人焊接时要能够及时改变调整机器人焊接姿态情形,向着缩小焊接热变形、减小轨迹偏差的方向补偿,这样能够确保焊接质量,该技术目前已经普遍用于机器人焊接的生产环节。(1 )被动式为主的视觉传感器,能够及时提取焊接缝隙边缘区域和金液熔池区域的图像信息,从而使机器人焊接过程中的轨迹能够随着关节移动而纠偏。(2 )主动式视觉传感器处理后的激光条纹图像,机器人焊接视觉传感器所采集的图像信息都是关于焊缝特征的变化情况,通过观测和分析可以得到焊接空间坐标的焊缝轨迹路径。

3.4 自动化在线监测技术

为了提高焊接产品的质量,应加强焊接产品质量的检测,而在传统焊接技术生产过程中,检测工作主要由专人负责,实际检测需要通过复杂的工序实施,按照一定的频次进行抽检,无法对每一件产品进行检测,所以无法确保每一件产品的质量。采用自动化焊接技术能够及时反馈质量信息,实现自动化在线监测,对焊接的每一件产品进行精准地检测,确保产品的质量。

4未来发展趋势

随着近年我国科学技术的不断进步,在自动化焊接领域中,各种焊接设备类型也因此获得相应的研究和发展,从以往传统焊接工作中所使用的焊接机械手、座椅式位移计等逐步发展至今天比较智能化、系统化的焊接操作设备;对于焊接操作机,也逐步迎合时展对机械设备提出的需求,通过以上能够看出当前所使用的自动化焊接设备的应用越来越满足机械制造提出的生产需求,不断优化和改进,降低在以往手工作业模式下对工人身体带来的危害影响,降低劳动强度,更好的满足当前对质量方面提出的要求,对提升企业在市场中的竞争实力起到非常关键的作用。

结束语

我国社会经济快速发展,人们的生活水平在不断提升,人们对各种事物的探索越来越深入,工业制造业在我国经济发展中占据非常大的比重,从事制造业生产的工作人员数量也较多,就焊接技术操作而言,工作人员的工作环境比较差,容易对工作人员的身体健康产生影响。实施自动化焊接技术能够改善工作人员的工作环境,提高工业制造业的生产效率,降低工业生产成本,有助于促进我国的经济发展。

参考文献

[1]崔云龙.浅析激光焊接技术特征及实践应用[J].广西农业机械化,2019(06):53.

[2]周尧.工业级锆及锆合金焊接技术的最新研究进展[J].中外企业家,2019(34):87.

[3]孙墚.试论工业机械设备加工过程中的焊接工艺[J].科学技术创新,2019(32):155-156.

第6篇

1、前言

扁平电缆超声波焊接早期采用人工方法,工人将扁平电缆与接插件对住放于工作台上,手将之对准焊头,然后脚踩脚踏开关,焊机低头焊一点后抬头,人工再移动扁平电缆与接插件,再脚踩脚踏开关再焊…….这样一一焊接。这种纯手工,除了质量方面出差错率高外,人的劳动强度相当大,容易疲劳操作。

随着目前数控设备进入市场,我们对此类工作也有了数控工作台想法:一次性装夹,一个按钮焊机自动完成焊接工作。这样质量准确率高本文由收集整理,又降低人的劳动强度。

2、功能

扁平电缆超声波自动焊接工作台主要是用于扁平电缆与接插件之间的自动焊接,并且还可以通过更换夹具的方式来适应扁平电缆与不同接插件之间的焊接,从而达到提高产品生产能力的需求。

3、设备组成与选型

该设备主要包括以下几个部分:电气控制部分、软件部分、伺服电机控制滚珠丝杠传动等机械部分等。

伺服电机选择台达伺服电机ecma-c30807ps(自带转轴编码器,编码器精度为1/10000),功率为0.75kw,额定电流为5.1a,电机转速为3000r/min;伺服电机驱动器选择台达伺服电机驱动器acs-a0721-ab,具有内部回原点功能。plc模块选用高速脉冲输出型(10hz~200khz),dvp40eh00t2;7寸触摸屏选用7寸彩色触摸屏dop-b07s211。

4、设备的电气部分工作原理

4.1 伺服驱动系统

由于伺服驱动系统具有良好的速度与位置控制的特点,因此常用于需要精密控制的系统传动中。伺服驱动器本身接受plc脉冲指令即脉冲的个数及频率,分别控制伺服电机旋转的角度和速度。

伺服位置闭环系统:plc来的指令脉冲经过电子齿轮输入到偏差计数器,偏差计数器计算该脉冲个数(作为给定值),与另一输入反馈脉冲个数(即伺服电机内部转轴编码器输出的脉冲信号)相比较,通过pid闭环控制原理来控制调节伺服电机的运行,直到输入脉冲与反馈脉冲个数相同。

4.2 回原点

台达ab系列伺服系统特有内部回原点功能,伺服马达回零动作规划均由伺服驱动器参数p1-47设定规划,plc不需发送脉冲即可完成,并可以定位于编码器的z相脉冲,定位远比plc回原点精度高。plc只需发出回原点触发信号和等待伺服回原点完成信号,然后将内部脉冲存储器d1336和d1337清零、复位一些中间状态,从而结束回原点过程。

4.3 程序的主要工作过程分析

同样自动设备也要达到人工焊接过程:对准首点焊接,走一步焊机再低头焊接,抬头后再走一步,再焊…..直到全部焊完。

(1)准确走位是第一要素。

针对1、2、3、4四个工位,分为(1、2)和(3、4)两组,一组一组工作。四个工位初点采用绝对定位编程,每个工位各焊点间走位,采用相对走位编程,它们的相对位移值对应接插件的每一种型号,扁平电缆很多种,基本三种距离值,两个宽片间距、宽片和窄片间距和其余等宽的窄片等距离。焊机绝对走位到每一工位初始焊点,再就是相对走位到其他焊点。如果一直采用绝对走位,位移值一直累加,容易出错。不像相对位移值对应接插件的每一种型号,是固定值,简单明了。那么换型号,只要把相对位移值更换即可,每个工

位的绝对位移值基本不变。

自动程序构架:基本从中心点开始运行,分为左启动和右启动。左启动,先到工位1初点,一步一步把工位1焊点焊完,再快速移动到工位2,再一步一步把工位2焊点焊完,最后返回中心点。同样右启动,先到工位3初点,一步一步把工位3焊点焊完,再快速移动到工位4,再一步一步把工位4焊点焊完,最后快速返回中心点。工位间的移动速度,参数画面可人工设定,最高200毫米每秒=200khz;工位内焊点间的移动10khz,由程序内部指定。

(2)反向串动消除滚珠丝杠间隙误差。

(3)上电回原点和复位回原点都为消除累计误差。

(4)保证焊接质量和安全因素更重要。

伺服每走到位后均会发出焊接信号,但何时焊接完成,如何得到这样的信号才是关键,准确得到后才能走下一步。焊机低头不能走位在程序中各处连锁,以保证焊机焊头不被打断,造成安全事故,并且焊机焊头属贵重器件。

(5)除了准确性、可靠性、安全性考虑,还有其他一些智能性。

第7篇

改革开放以来,我国化工装备制造业得到了长足的发展,但由于各种原因,现阶段国内多数压力容器制造企业,其制造加工手段现代化、自动化和专业化程度仍显不足,压力容器制造加工方式仍处于低端低层次水平,压力容器制造企业的效益产能多依靠劳动力的巨大消耗来换取,压力容器加工成本高,经济效益低,产品品质不足。在此背景下,革新传统压力容器制造方式、推广应用智能自动化工装设备生产线具有重要的现实意义。在不较大调整压力容器制造厂现有组织架构、资源配置的前提下,更新自动焊割工装设备(特别是焊接设备及焊接辅机),是迅速提高公司竞争力、提升压力容器产品品质的最有效手段,对推动压力容器制造业技术进步意义显著。

1传统制造工艺分析

1.1材料切割工艺使用数控火焰切割机进行筒体钢板下料,使用刨边机进行不锈钢筒体钢板下料,使用手工气割方法进行碳钢筒体开孔切割,使用手工等离子切割方法进行不锈钢筒体开孔切割,使用数控火焰切割机进行保温支撑圈、裙座、鞍座等零部件下料。1.2筒体组对工艺使用传统工艺进行筒体组对,即利用千斤顶、多功能卡具、倒链等工机具进行人工组对。1.3焊接工艺DN1000以上筒体外环缝和DN1200以上筒体内环缝使用埋弧自动焊接方法,DN1000以下筒体外环缝和DN1200以下筒体内环缝使用手工焊接方法,鞍座、裙座等部件使用气体保护焊接方法,接管、法兰组焊以及所有管嘴安装采用手工焊接方法,单台设备自动焊覆盖率接近70%。

2改进实施方案

2.1总体要求改进切割及焊接工艺方法,提高自动焊利用率,以此为指导原则,确立了以纵缝焊接、环缝焊接、接管法兰组焊、管嘴安装(开孔)等工序为改进对象,适当配置自动化焊割设备,统筹规划压力容器自动化生产线,改善作业环境,实现切割和焊接自动化,压力容器自动焊覆盖率达到95%左右。2.2目标效果2.2.1小工件自动化预制实现DN80~DN400管-管、管-管件(法兰、90°弯头、三通、四通)等对接焊缝和角接焊缝的CO2气体保护焊接;实现人孔法兰接管环缝埋弧自动焊接;实现DN400~DN1200较短接管的环缝连续埋弧自动焊接;实现DN1200以下法兰盖及法兰(密封面)等板状圆形工件表面堆焊;实现触摸式焊接视屏操作监控。2.2.2筒体相贯线自动开孔和焊接实现容器马鞍形开孔(坡口)自动切割、马鞍形焊缝自动焊接;实现筒体DN250以上插入式管嘴角接接头及补强圈搭接接头自动焊接;实现筒体其他规则性搭接接头的自动焊接;实现封头相贯线开孔;实现触摸式焊接视屏操作监控。2.2.3筒节纵、环缝自动化焊接实现DN500~DN5000以上纵、环缝焊接(焊剂自动输送回收);实现整机联动和远距离无线操作;实现触摸式焊接视屏操作监控。外缝埋弧焊机与内缝埋弧焊机配有触摸式人机界面、高清工业摄像头、无线控制式的精密焊接滚轮架或变位机能够联动,实现远程监控焊接。2.3实施方案2.3.1设置小工件自动化预制工位,需求见表1。2.3.2设置筒体相贯线割焊工位,需求见表2。2.3.3设置筒节纵缝、环缝自动化焊接工位,需求见表3。

3应用效果分析

3.1小工件埋弧焊工位应用效果分析见表4。3.2小工件二保焊工位应用效果分析见表5。3.3筒体相贯线割焊工位应用效果分析见表6。需要说明的是,保证人孔筒节圆度是高效使用相贯线割焊工位的必要条件,仅就提高焊接工效而言,精确开孔比采用二保焊焊接方法更重要,精确开孔是实现相贯线自动焊接的前提,其对降低压力容器制造成本作用显著。3.4筒节纵缝、环缝自动焊焊接工位应用效果分析见表7。

4结语

改进提升后的压力容器自动化生产线由六个数字化制造工位组成,需配备专业维护人员进行常态维保,此类装备对操作使用环境有较高要求,压力容器制造厂必须设法减少厂房烟尘粉尘,特别是探索研究焊缝不清根焊接工艺的应用。压力容器制造厂需制作若干项自动焊焊接工艺评定,后期在生产组织中以最大化提高其设备利用率为主导,将传统生产工艺作为一种辅助补缺的手段。需要说明的是,使用该系列装备并无助于提升压力容器制造厂电焊工的手工电弧焊接技能,该智能化自动焊接设备的操作者仅是操作工而非电焊工,应用此智能自动化割焊装备,可显著提升国内压力容器制造自动化水平,推动压力容器装备制造行业进入新的发展阶段。

作者:于盛开 单位:新疆炼化建设集团有限公司

第8篇

关键词:天然气;管道;施工;焊接

引言

天然气是我国重要的能源之一,在国民经济发展和人们日常生活中都占据着重要的地位。随着天然气的普遍使用,天然气管道建设项目也逐渐增多,在天然气管道建设过程中需要应用焊接技术保证管道的严密性,防止天然气的泄露。目前,我国普遍应用的焊接技术有:手工焊、半自动焊及自动焊。在天然气管道施工中,只有不断提高焊接技术水平,才能确保管道施工质量。

1手工焊技术

手工焊是最早在天然气管道施工中被使用的焊接技术。该技术具体要分为下向焊技术和上向焊技术。上向焊是最初传统的手工焊接技术,随着技术水平的不断提高,下向焊技术以其效率高、质量好的优点逐渐代替了上向焊技术。如图1所示为上向焊与下向焊示意图。在下向焊技术中根据焊接条件不同又分为多种焊接技术,其中目前最常用的是低氢下向焊接技术和纤维素下向焊接技术。低氢下向焊接技术的优点就是冲击力强、焊缝质量好,能够保证天然气管道的质量。但是该项技术难度较大,并且焊接过程中融化速度较慢。与低氢下向焊接技术相比,纤维素下向焊接技术在工艺上较为简单,并且熔透能力强、焊接背面成型较好,同时,对于保证天然气管道质量有积极作用,因此,在天然气管道施工中被广泛应用。俗话说,事物都有两面性,纤维素下向焊接技术也有其不足之处,比如焊条熔敷金属后会扩散大量氢,在焊接过程中必须要对温度有较强的把控,否则很可能会出现冷裂纹,影响天然气管道的整体质量。

2半自动焊接技术

在国外半自动焊接技术被广泛应用,随着经济的发展,我国也从美国引入了半自动焊接技术。与手工焊接技术相比,它的应用大大提高了施工效率,逐渐成为天然气管道施工中最为常用的焊接技术。但是,半自动焊接技术也有其弊端,就是它的焊缝质量并不高,因而通常都将其应用于盖面焊接和填充物的焊接。半自动焊接技术中最常用的两种技术是CO2活性气体保护焊技术和自保护药芯焊丝半自动焊。CO2活性气体保护焊技术的主要优点就是效率高、焊接质量好,并且由于其熔滴过渡成型过程是通过电压基值和峰值控制的,因此焊接过程稳定性较强。但是在应用CO2活性气体保护焊技术时要对施工现场的风速进行控制,尽量保证风速低于2m/s,有利于施工的顺利进行。自保护药芯焊丝半自动焊能够降低熔池中氮元素对焊接的影响,因而,其焊接性能较强,同时它与其他焊接技术相比,焊接成本较低。但是,自保护药芯焊丝半自动焊的焊缝质量较差,要想提高其焊缝质量,就要通过改变相关参数。具体参数调整如表1所示。

3自动焊技术

自动焊技术就是指在焊接过程中完全借助机械设备进行,其焊接效率和焊接质量都较高。但是考虑到机械设备投资过高,并且设备在后期的维修费用也很高,因此,目前没有收到普遍应用。常见的自动焊技术有:实芯焊丝气体保护自动焊接、药芯焊丝自动焊接技术等。在天然气管道施工中一般大型管道焊接才会使用实芯焊丝气体保护自动焊接技术,并且在应用该技术时对外部环境要求较高,由于室外的风速会严重影响焊接质量,因此在采用该技术施工时要搭设防风棚。药芯焊丝自动焊由药芯焊丝气保焊和药芯焊丝自保焊所组成,其焊接原理和实心焊丝气体保护焊有着异曲同工之处,是目前而言集焊接效率与焊接质量于一体的高性能焊接技术,在天然气管道施工中常常被应用于管道填充以及盖面焊道上。

4结束语

总而言之,焊接技术对于天然气管道建设而言具有非常重要的意义。随着天气然使用量的增加,天然气管道建设项目也会越来越多,我们只有不断提高施工技术,加强管道焊接水平,才能保证天然气的安全运输。

参考文献:

[1]张日森.天然气管道施工中的焊接技术应用实践[J].中国新技术新产品,016,(09):71~72.

[2]张宝林.天然气工程管道施工技术探讨[J].中国绿色画报,2015,(10):56.

[3]梅伯全,叶广岳.试论焊接技术在天然气管道施工中的应用[J].中小企业管理与科技(中旬刊),2015,(09):83.

[4]唐家旭.天然气管道施工焊接技术的探讨[J].化工管理,2015,(13):161~162.

[5]唐强.天然气管道焊接技术应用[J].科技资讯,2014,(29):80.

[6]胡向红,李奇.论高水位地区对管道施工中工程量的影响[J].化工设计通讯,2016(07).

[7]刘晨.浅析油田管道施工质量的控制[J].中国石油和化工标准与质量,2016(22).

[8]胡新节.有关石油管道施工中存在的安全问题研究[J].中国石油和化工标准与质量,2013(05).

[9]董家兴.用“管道施工卡片”指导管道施工[J].石油工程建设,1989(06).

第9篇

关键词:半自动;焊接;方法;长输管道

中图分类号:P755文献标识码: A

一、半自动焊接方法

半自动焊接是焊丝连续送进,电弧的运动由焊工手工操作的焊接方法,设备比较简单,移动方便,焊接准备时间短,焊接操作灵活,焊接质量稳定可靠,生产效率高,适用于全位置焊接。半自动焊接方法很多,目前主要有CO2气体保护半自动焊,药芯焊丝CO2气体保护半自动焊及自保护药芯焊丝半自动焊等。为了选出适合于焊接API规范的大口径长输管道的焊接方法,本文对目前常用的半自动焊接方法进行全位置管道焊接的试验研究。

1、CO2气体保护半自动焊接

CO2气体保护半自动焊接采用实芯镀铜光焊丝,纯二氧化碳气体,焊丝本身对电弧不起保护作用,完全依靠二氧化碳气体保护电弧及熔池,以防止空气的侵入,同时二氧化碳气体又起到使电弧稳定燃烧的作用,由于二氧化碳气体保护焊的电弧气氛是氧化性气氛,因此对铁锈、油污不敏感,焊缝含氢量低,但是对熔敷金属的合金元素烧损严重,所以焊丝中含有较高的锰和硅等合金元素。

2、药芯焊丝CO2气体保护焊

药芯焊丝CO2气体保护焊的焊丝中含有相当于焊条药皮成分的焊药,焊丝中的焊药在电弧燃烧时产生气体和熔渣,熔渣堆焊接熔池有保护作用,气体具有稳定电弧燃烧和保护电弧气氛的作用,焊药中的合金元素对熔敷金属有冶金作用,能够改善焊缝金属的化学成分从而改善焊缝金属的机械性能。药芯焊丝气体保护焊比实芯焊丝CO2气体保护焊最大的优点是熔敷金属的机械性能好,焊缝的熔合性好。

3、自保护药芯焊丝焊接

自保护药芯焊丝焊接是一种技术含量很高的焊接方法,该焊接方法完全焊丝中的焊药在电弧燃烧时产生的气体和熔渣保护电弧和熔池防止空气的侵入,并使电弧稳定燃烧,对熔池金属具有冶金作用;该焊接方法与手工电弧焊一样具有抗恶劣环境的能力。自保护药芯焊丝焊接时的电弧吹力大,熔深大,熔敷效率高,熔渣少,易清理,焊缝金属的机械性能好。生产效率高。自保护药芯焊丝下向焊用于管道全位置焊接时,焊道薄,焊接层次多,后一层焊道对前一层焊道有热处理作用,焊接速度快焊缝金属的机械性能好。焊缝X射线探伤合格率高。自保护药芯焊丝下向焊与合适的管道打底焊工艺相配合用于大口径长输管道的焊接将会有很好的前途。

二、半自动焊焊接质量的控制

曲率半径相对较大,比较有利于半自动焊操作,而现在的焊接对象管径小,曲率变化较大,半自动焊操作难度增大,焊接质量控制要严格。

加大焊接前的管端清理工作,确保管端两侧25mm内的防锈漆和油污清理干净。管口组对时严格控制错边量,错变量控制在壁厚的0.15倍以内。错变量超标,严重影响焊接质量。在管道焊接施工过程中,应考虑环境温度、湿度和风速对不同焊接方法的影响,采取必要的措施保证焊接质量。在环境温度较低且湿度较大的地段,应加强焊前预热和层间预热,减缓焊缝的冷却速度,使焊缝中的气体充分溢出;风速较大的地方可以制作专用防风棚,减小风对焊接过程的影响。加强焊接材料的管理,严格控制焊接材料的质量,杜绝变质焊接材料的使用。适当加大焊接电流,放慢焊接速度,增加焊接热输入,以改善熔渣溢出条件。调整焊枪角度,正确运条,有规律地搅动熔池,促使熔渣与铁液分离。

选择合适的焊接坡口角度,对口间隙不宜过大,钝边不易过小,焊接电流适当,在焊接过程中要调整好电流,尤其是在焊缝的5点位和7点位。当焊接坡口角度小、钝边过大或对口间隙过小时,应加大焊接电流,适当放慢焊接速度,增加焊接热输入。清根要彻底,每个接头点要打平,清根时,要将根焊道打磨成“U”行槽。

每条焊缝宜采用连续焊接,不得随意中断。如因故中断,在继续焊接前,首先应确认焊缝无裂纹,同时采取预热措施,方可继续施焊。

三、管道半自动焊工艺选择

1、管道焊接的半自动填充盖面焊

实心焊丝CO2气体保护半自动焊进行全位置焊接时,要从管道底部引弧向上焊接,每层焊道的厚度较厚,可达4~5mm,焊接速度较慢,每分钟只有6~10cm,对有层间温度要求的材料不能满足要求,同时由于CO2气体保护焊的熔池冷却速度快,焊熔深较浅,焊缝的抗拉强度和屈服强度较高,延伸率和冲击韧性有所下降,甚至在弯曲试验时从熔合线发生断裂。因此,认为实芯焊丝CO2气体保护焊不适合于X60等材质的油气长输管道的焊接。

药芯焊丝CO2气体保护半自动焊熔敷金属的机械性能虽然好,但是由于熔敷金属的过渡为颗粒过渡,焊工不易掌握,因此也不适合于管道焊接。

自保护药芯焊丝半自动下向焊,该方法采用自保护药芯焊丝,没有外加的保护气体,完全依靠焊丝中的焊药在电弧燃烧时产生的气体及熔渣保护焊接电弧及熔池,并对熔敷金属有冶金作用,此方法的电弧吹力较大,焊接熔深大,抗风能力强。焊接时电弧自上而下运动,焊接速度快,每层熔敷金属的厚度较小,需要多层多道焊接。

2、管道打底焊工艺

CO2气体保护焊由于二氧化碳气体对熔池的冷却作用,使得短路过渡时焊接熔池特别小,容易控制,因此也适合于管道打底焊,近年来还发展了专门用于管道打底焊接的能够控制电流波形的STT下向焊设备,已开始用于管道打底焊接。不论何种二氧化碳气体保护焊打底方法都有一个共同的弱点,就是对管道的组队要求高,必须非常严格的控制对口间隙以及钝边,否则容易产生烧穿、未熔合、未焊透等焊接缺陷,另外CO2气体保护焊打底要求焊工必须全神贯注的盯着熔池,控制电弧始终在熔池上方燃烧,否则容易产生穿丝现象,也就是焊丝直接穿进管道内,形成异物,这对以后的调试运行有极大的危害。

CO2气体保护表面张力(STT)下向焊打底。CO2气体保护焊的熔滴过渡在小电流情况下是一种频率很高的短路过渡;表面张力过渡是采用弧焊电源外特性的波形控制技术,使得焊接规范随熔滴的形成、长大、和过渡而改变,使熔滴的过渡不同于一般的短路过渡需要爆断小桥,而是依靠表面张力平缓的过渡到熔池中去,电弧由上而下运动,不作横向摆动或仅作轻微的横向摆动,这样可以形成一层薄而均匀的打底焊道。实践证明用这种方法进行管道打底焊接焊缝成形好,合格率高,焊接效率高。表面张力焊接是CO2焊接技术的新发展,特别适合于管道打底焊。

结束语

半自动焊焊接方法是综合了焊条电弧向下焊的灵活、手法简单,焊层薄、缺陷少以及半自动药芯焊丝自保护向下焊,焊接电流大,熔深大,焊接速度快,自保护效果好,缺陷少,抗风能力强,生产效率高,盖面层成形美观的共同优点。该焊接方法不仅改变了传统焊接方法速度慢、焊口合格率低的不足之处,同时提高了油气管道工程施工的生产效率和焊口质量。

参考文献

第10篇

【关键词】地线;合金;护套;工艺;分析;控制

一、概述

铁路贯通地线是铁路综合接地系统中的接地主线,用以实现铁路通信、信号、电力、牵引供电等各系统、设备之间的等电位连接,防止回流电流造成地网电位不相等而引发测量、信号装置的误动或拒动,确保设备安全稳定运行和人身安全,从而确保铁路运输行车安全。

铁路贯通地线工艺结构较为简单,由绞合铜导体外紧密包覆一层合金护套组成。合金护套是确保铁路贯通地线电性能、机械物理性能、环保性能、耐腐蚀性能和弯曲性能的关键结构,它的好坏直接影响贯通地线甚至于整个综合接地系统的使用安全,因此它的工艺实现在整个铁路贯通地线中至关重要。

本文着重从合金护套工艺技术角度逐一进行分析,并提出相应的控制实现方法。

二、合金护套材料的确定

1、铁路贯通地线合金护套的技术要求如表1:

2、根据表1的技术要求,同时考虑到材料的加工性能,确定合金护套采用的材料是黄铜合金材料。该材料的主要成份是铜和锌,它具有较高的耐腐蚀性能,同时具备较高的强度和塑性,能良好地承受冷、热压力加工,可以满足铁路贯通地线的使用要求。

三、合金护套的工艺控制

1、传统工艺

黄铜合金材料如何紧密包覆在导体外面目前还没有成熟的工艺。传统的工艺主要有两种:

1)连轧连铸工艺。此工艺可满足无缝、紧密包覆导体的工艺要求,但由于是合金材料,组成材料的熔点不一致,使其工艺温度控制很难达到要求,产品会出现厚度不均匀、偏心等质量问题,同时由于温度高,导致熔点低的材料成分有挥发现象,使材料性能有所下降,并且不具备连续生产条件。

2)传统的纵包焊接工艺。由于铜合金带材厚度为1.0mm,且硬度大,变形困难,传统的工艺变形方法易造成合缝不稳定,导致偏弧、穿洞等焊接缺陷,不能保证产品质量,甚至会造成很大浪费,再者焊接电流的大小和焊弧位置靠目测和人工调整,根本无法有效控制和跟踪焊接质量。

因此,目前传统的工艺方法还无法满足合金地线连续稳定正常生产的要求,对产品质量也会带来严重的影响。为确保铁路贯通地线合金护套能整体无缝紧密包覆在导体外,且满足合金护套的技术要求,我们根据黄铜合金材料的特点,确定铁路贯通地线合金护套的工艺控制按铜合金带分切面刮削处理、铜合金带纵包变形包覆导体、铜合金带纵包缝隙自动焊接以及铜合金护套的定形四个阶段进行。

1、铜合金带分切面刮削处理

由于铜合金带分切面有毛边,在受力纵包变形时,极易产生不规则翘起的铜合金细丝,导致合缝成形焊接时,焊弧瞬间短路产生很大的短路电流,造成焊缝表面产生穿透性的孔洞,因此在铜合金带变形前先利用两组带有稳定限位的刮刀组成刮削装置,分别刮削走行平稳的铜合金带左、右侧分切面,去除毛边,使铜合金带的左、右两侧分切面光滑平整,保证铜合金带变形合缝后缝隙均匀稳定。

2、铜合金带纵包变形包覆导体

由于铜合金带硬度大,厚度为1.0mm,因此它的纵包变形采用的是由优质模具钢制作并经调质处理而成的变形模具――轧辊来完成。轧辊由水平辊和立辊组成,它的圆弧尺寸、开槽位置和深度都是根据铜合金带宽和后续的变形外径来设计确定的。为保证合金带材变形走行平滑、顺畅且变形稳定,各变形辊之间的距离是按照一定比例间隔前后顺序排列的。

铜合金带纵包变形主要包含以下三个阶段。

1)铜合金带U形变形阶段

通过两道立辊、一道水平辊将铜合金带进行初步挤压变形,使铜合金带的左右两侧边沿向上翻起,且铜合金带的中部呈弧形下凹,最后由平板形变为U形。

2)铜合金带圆形变形阶段

采用三道立辊、四道水平辊将铜合金带进一步整形。通过水平辊左右圆弧尺寸由大到接近定径尺寸的渐变和立辊上下圆弧尺寸由大到接近定径尺寸的渐变,使铜带在变形过程中,受到上下、左右均匀的挤压力,逐渐将铜合金带材由U形变为圆弧状,随着圆弧合缝间隙的逐步缩小,最后变为类圆形状态,纵包于铜导体外表面。

3)合金护套成型阶段

铜合金带经过多次轧辊变形,纵向包覆于铜导体外表面后,经三道水平辊对合缝后的圆形铜合金管进行固定,确保圆形铜合金管的合缝位置控制稳定准确,为下一步的自动焊接作好了准备。

3、铜合金带纵包缝隙自动焊接

合金护套成型后,启动已设定好焊接工艺参数的焊接装置,将焊枪始终处于合缝的中心线上;对圆形铜合金管的合缝进行在线自动焊接;自动焊接的控制系统采用PLC可编程控制器为核心控制单元,对焊接速度、焊接电流通过可编程的PLC进行自动跟踪控制;合缝进行在线自动焊接时,焊枪与焊缝的相对位置实施自动跟踪和监视,控制信息经过显示器监视系统采集反馈到焊枪自动控制系统,焊枪可自动调整位置,保证焊弧始终处于焊缝中心位置,并使得在同一焊接速度下,焊接电流稳定,保证焊接质量。焊接时采用氩气作为保护气体,可以隔绝空气对电弧和熔池产生的不良影响,减少合金元素的烧损,确保焊缝平整、无缺陷。

4、合金护套的定形

焊接完成后的圆形铜合金管进入两道立辊组成的环形凹槽内,进行最终整形;再通过由硬质合金制作而成的缩径拉拔装置使铜合金护套紧密包覆在导体外,形成光滑圆整、线径均匀一致的铜合金护套,克服了变形焊接过程中可能导致的线径不均匀、不圆整的问题,确保铁路贯通地线接地电阻小于1Ω。

四、结束语

本文根据铁路贯通地线合金护套的使用要求,分别从护套材料的选择和护套工艺实现的角度进行了分析,确定了铁路贯通地线铜合金护套工艺控制的四个阶段分别为铜合金带分切面刮削处理阶段、铜合金带纵包变形包覆导体阶段、纵包缝隙自动焊接阶段以及合金护套定形阶段。该工艺控制采用的变形轧辊组成的变形装置使铜合金带变形合缝的稳定性大大提高;采用的自动跟踪焊接装置,操作简单,克服了人为因素对产品质量的影响,保证了焊接质量的稳定可靠,充分满足了铁路贯通地线产品技术要求,同时由于变形稳定可靠,焊接自动跟踪,有效提高生产速度,在提高产品质量的同时,提高了效率和经济效益。

参考文献

第11篇

只有保证较高的焊接质量,才能保证各种压力容器的安全运行,防止各种事故的出现,最大程度保障操作人员的安全。因此,不断分析研究各种新型的焊接技术,提高焊接技术的水平,是各压力容器制造厂家十分关注的课题。而通过不断的研究与努力,近些年来,我国的压力容器焊接技术也取得一定的发展与进步,涌现出不少新型的焊接技术。本文,我们即围绕压力容器焊接新技术进行分析,并研究其具体应用。

一、窄间隙埋弧焊技术分析及应用

在实际制作压力容器的过程中,有时会遇到压力容器壁较厚,例如厚度超过100mm的情况。在这样的现实情况之下,如果利用以往的焊接技术,使用常规的U型坡口的方式进行焊接,很难达到令人满意的焊接效果,影响到压力容器的最终品质。并会浪费大量的宝贵资源,例如能源和人力、时间等。但新型窄间隙埋弧焊技术的应用,可以使这一难题迎刃而解。

1、窄间隙埋弧焊。窄间隙埋弧焊技术是在传统焊接方法和工艺基础上发展得到的,综合利用了特殊的焊丝和保护气,以及先进的导入技术和焊缝自动跟踪技术等。应用以来,不少企业都在积极的关注并应用窄间隙焊接技术。但是,厚壁压力容器的焊接质量需要具备较好的稳定性,一旦出现焊接缺欠,修复小间隙的焊缝十分困难,极易导致无法处理而最终予以切断,降低了生产效率。

2、窄间隙埋弧焊技术的优势和缺陷。应用优势:(1)焊接速度较快,生产效率较高;(2)节约了大量资源,例如母材和焊丝以及电能等,可有效降低生产成本;(3)焊接过程中,前道焊道过程可以有效的对后面的工序进行预热,而后道焊道还可以对前一道焊道进行回火,从而保证焊接的接头机械性较高;(4)有效减少残余应力和形变;(5)有利于实行自动化生产制造。(6)熔敷率较高,可以有效提高焊接效率。但是,窄间隙埋弧焊技术也存在一定的应用缺陷,例如后期的修补困难较大,装配所需要的时间较长,对工作人员的技术水平要求较高等。

3、窄间隙埋弧焊技术的应用要点。(1)要具备可靠的双侧横向,并具有较强的自动跟踪功能;(2)每条焊道与坡口侧壁的熔合都要保证均匀良好,且因为母材大多具有较高的含碳量,所以要保证熔入的母材金属含量要适当;(3)焊道要尽量保证薄而宽,以对过热粗晶区的实际性能进行充分的改善。

二、接管自动焊接技术分析及应用

1、接管与筒体自动焊接。在传统的焊接出咯过程中,经常会用到马鞍形状埋弧焊接设备,但实际的运动轨迹无法满足 实际需求, 并且在厚度较大和存在窄间隙坡口的时候应用效果较差。此时,我们便可以利用接管自动焊接技术。接管马鞍形埋弧焊接设备 自动化程度各适应性都较高,且操作方便,控制迅速。其中,接管的实际内径采用四连杆夹紧的方式保证自动定心;焊接对象的筒体和接管直径是焊枪运行轨迹的主要参数,从而保证焊接的自动化;同时,通过人机交互的操作界面,可以直接控制各项焊接参数,有效实现连续焊接。而且,利用接管马鞍形埋弧焊接设备得到的焊道能够进行自动排列;接管马鞍形埋弧焊接技术还具有断点记忆和自动复位的功能;在实际应用过程中,大厚度、窄间隙坡口适合使用超薄大功率焊枪,对窄间隙坡口则适合采用一层两道自动埋弧焊方法。

2、接管与封头自动焊接。具体来分,接管与封头的焊接有两种形式,即向心接管和非向心接管的焊接。封头接管埋弧自动焊机 一共有6 个悬挂于十字操作机上的运动轴。在开始自动焊接之前,要先进行设备的自动定心,利用焊枪在接管的外壁进行自动寻位,保证焊枪的旋转中心自动定位于接管的中心线上。自动定心的方式极大的缩短了原有人工定位所花费的时间,提高了工作效率。自动定心结束之后,要通过焊丝端部进行自动寻位,将焊缝高度方向上出现的改变记录下来,实现自动跟踪,完成非向心接管焊接;设备中还包括了横向跟踪传感器,在焊接的时候,可以跟踪接管外壁,使焊丝与坡口侧壁的距离保持较高的一致性。

三、弯管内壁堆焊技术分析及应用

在实际使用过程中,在经历长期的使用之后,不少压力容器的接管内壁都会出现不同程度的腐蚀现象。所以,在制造各种压力容器的过程中,需要在其接管内壁堆焊不同的不锈钢耐磨层。但是,在实际操作过中,会极大的提高弯管内部堆焊设备的设计难度。在实际进行焊接的时候,如果对30°弯管内壁的堆焊无法满足90°弯管实际焊接要求的时候,则需要将90°的弯管分为三部分,对三部分进行分步焊接之后,才能组合在一起,完成对90°弯管的焊接工作。于是,随着焊接技术的不断发展,弯管内壁自动堆焊技术开始被应用到实际生产过程中。

1、30°弯管内壁堆焊。30°弯管内壁堆焊的具体方式是沿圆周环自动堆焊,具体操作为:自动堆焊机利用5轴进行协调运动,按照叶定的数学模型对焊道进行自动排列。工件保持3轴运动,第一,保持匀变速旋转,并保证与焊枪的摆幅宽窄变化情况一致相,焊接速度保持恒定;第二,每焊一圈,便对摆角进行变位,保证下一圈焊缝位于与焊枪垂直的平面之内;第三,工件焊一圈,进行平移变位,保证下一圈焊缝的圆心位于旋转中心。焊接机头进行2 轴运动,完成一圈堆焊,焊枪即需要后退一个位移,然后进行下一圈堆焊;焊接的时候,焊枪要保持变摆幅运动,保证堆焊层厚度的均匀性和一致性。具体参照的数学模型要以弯管的曲率半径和内径为参考。

2、90°弯管内壁堆焊。90°弯管内壁堆焊 是沿着弯管母线的纵向自动堆焊,具体方法为:将工件安装在二维变位机上,通过工件的旋转来进行焊接;工件翻转,每一条焊道都保持平焊位置;90°弯曲焊枪安装于三维导轨上,保证焊枪的自动变位。

四、结语

总体来看,焊接技术的应用效果会对压力容器的最终品质产生极大的影响。所以,在实际制造过程中,我们要积极的分析研究各种焊接新技术,并积极的应用于实际制造过程中,以不断提高压力容器的品质。我们相信,随着技术的不断发展和各种实践经验的不断积累,压力容器的焊接技术将会得到进步一的发展,压力容器的最终品质也将得到不断的提高。

参考文献

[1]王绍霞.徐国军.张海涛.浅谈压力容器焊接质量控制措施[J].中小企业管理与科技:下旬刊,2011(02):23-24.

[2]陈冰川.陈伟民.朱伟青.在役压力容器焊接裂纹的成因分析及预防措施[J].理化检验:物理分册,2011(05):72-73.

第12篇

【关键字】水电站;压力钢管;自动化焊接;工艺探析

压力钢管对水电站的作用十分重要,是水电站的主要组成部分之一。压力钢管由于需要承载着较大的水压力,因此经常用于大中型的水电站。对于大中型水电站而言,水流在多数情况下是不稳定的状态,因此对压力钢管的质量要求极高。如果使用传统的焊接方法,就会极易造成压力钢管的焊接质量问题,因此就需要使用自动化焊接的方法来对压力钢管来进行焊接,保证水电站能够正常进行发电活动。

1 水电站压力钢管技术现状以及技术特点

1.1 水电站压力钢管的技术现状

对于国内水电站而言,约有80%的水电站压力钢管在焊接过程中仍然是使用焊条电弧焊进行焊接。这种方法的劳动强度大、技术含量低、焊接生产率低,同时采用焊条电弧焊接在拼装现场,钢管的纵缝大多数是使用焊条电弧焊以及埋弧自动焊技术来进行。如果钢管的直径大于8.0m,钢管安装焊缝的焊接就无法使用埋弧焊技术。因此安装位置的环缝全位置焊接有95%以上是使用焊条电弧焊技术来完成的,只有极少数水电站使用半自动焊接工艺来进行的。

国外水电站在压力钢管的焊接过程中,为了降低成本、缩短工期,往往是使用效率较高的焊接方法。国外水电站在压力钢管制造焊缝焊接过程中不仅广泛使用埋弧焊技术,同时还广泛使用半自动立焊技术、自动立焊技术以及药芯焊丝电弧焊技术,安装环缝大多数仍使用焊条电弧焊技术。

我国在梨园水电站钢管(直径φ12.0m)制作过程中使用了钢管自动组焊专机进行钢管的自动组装和焊接,焊缝质量优良。我国在黄金坪水电站压力钢管安装施工中,采用钢管自动组焊专机在引水隧洞内对直径φ10.0m的钢管进行了自动组装和焊接,并采用整体提升技术,将下弯断(每条钢管下弯断共10节钢管)钢管在水平段采用自动组焊专机组装成两大段(每段5节)后,用自动液压顶升装置将其整体顶升至安装位置进行安装和焊接。大大改善了钢管安装现场焊接的施工作业环境,提高了工效,施工质量优良。值得在国、内外水电站直径φ5.0m以上压力钢管施工中广泛推广和应用。

1.2 水电站压力钢管的技术特点

在建设水电站的过程中,由于机组向大容量高参数的方向发展,因此压力管道的结构尺寸也在不断增加,目前在建设水电站的过程中所使用的压力钢管结构尺寸已经变得十分巨大(向家坝水电站压力钢管直径达φ14.4m)。因此对水电站压力钢管的质量要求也在不断增加。

压力钢管加工无法全部在工厂中进行,一些工作量需要在工地进行,例如卷板、组圆、焊接纵缝以及焊接环缝等工作。由于现场的劳动环境以及劳动条件都比较差,水电站压力钢管的焊接工作就显得更加困难。因此改善钢管焊缝焊接作业环境,提高钢管焊缝自动化焊接作业程度,保证钢管焊缝的焊接质量、提高安全和质量管理指标,是目前钢管制造安装焊接工艺探析的重点。

2 目前水电站压力钢管自动焊接技术出现的主要问题

2.1 直径过大的压力钢管无法使用常见的自动焊接技术

大直径厚壁的压力钢管在进行安装的过程中,安装环缝时极难以达到较高的精度,在这样的情况下就需要自动焊接的设备需要可以按照坡口的尺寸以及错边的偏差来对相关的工艺参数进行相应的调整,从而降低或是直接消除不均匀的参数对于焊接的影响。

2.2 焊缝的位置会不断变化

由于在实际的对水电站压力钢管进行自动焊接的过程中,焊缝的位置是会不断地变化,因此也就要求焊接系统必须能够按照焊枪所在的位置进行自动调整,以满足焊接工艺参数能够达到要求,从而实现压力钢管各部分的焊接成型后能够实现基本一致的效果。

2.3 焊缝参数匹配要求较高

由于压力钢管在使用过程中需要承受极大的压力,因此焊缝的参数的匹配要求极高,需要实现焊接熔池形状、焊接工艺参数以及坡口尺寸三者相匹配,从而保证焊缝的质量。在这样的情况下,为了保证焊缝参数匹配的要求,对压力钢管的焊接自动控制技术难度极大。

3 如何解决水电站压力钢管自动化焊接工艺中存在的问题

3.1 使用实心焊丝技术

由于药芯焊丝技术的不断发展,目前在压力钢管的自动化焊接过程中也较多的开始使用药芯焊丝技术,尤其是自保护药芯焊丝技术。药芯焊丝相比实心焊丝,加入了造渣剂、合金剂以及稳弧剂,因此就能够让压力钢管的自动化焊接工艺得到极大地改善,将以往焊接过程中成型差以及飞溅大的特点进行较好的克服,让焊缝的力学性能更加,其中改善最大的是焊缝的冲击韧性。

3.2 使用混合气体进行焊接

在使用实心焊丝焊接的过程中,为了保证焊接的质量,可以使用氩气联合二氧化碳的混合气体来保护焊。在使用氩气和二氧化碳的混合气体后,就有电流密度大、明弧、无渣、热量集中等特点,在实际的焊接过程中可以让焊缝的抗裂性能更好,质量也更好。

3.3 使用高级焊机来进行焊接

使用了先进的焊接技术,也需要使用可靠的焊接电源才能够保证焊接的质量。在焊接电源的选择上,一般是选用美国林肯DC系列的焊机。这种焊机为直流弧焊电源,具有电弧稳定、焊缝质量有保证以及飞溅少等特点。在实际的使用过程中也具有陡平缓三种外特性。在使用小电流时,电弧也十分稳定,在额定电流的状态下可以保证100%的暂载率输出。在使用的范围上,能够用作熔化极气体保护焊、焊条电弧焊、非熔化极气电弧焊、药芯焊丝自保护焊、碳弧气刨以及埋弧焊等各种常见的焊接工艺,可以对水电站压力钢管较好的进行焊接。

3.4 使用钢管自动组焊专机对钢管及附件实行全方位埋弧自动焊接技术

钢管组焊专机是一种集瓦片组圆、调圆、自动焊接、加劲环组装焊接于一体的大型综合设备,可适用于钢管加工厂内和钢管安装现场的施工。我国的梨园水电站和黄金坪水电站已成功应用。在提高钢管组装和焊接工效、保证焊接质量和安全施工等方面有了质的飞跃,适合在国、内外水电站压力钢管制造安装施工中广泛推广和应用。

4 结语

目前我国的水电站压力钢管在使用自动化焊接的过程中,仍然会出现各种问题,尤其是一些焊接技术的范围小,无法在直径高于8.0m的钢管中使用。因此就需要对自动化焊接技术进行讨论。文章对目前水电站压力钢管常见的问题提出了解决办法,能够帮助水电站压力钢管的建设。

参考文献:

[1]童玉龙.自动式回转焊接中心焊接技术压力钢管制作应用[J].技术与市场,2013(10).

[2]漆卫国,张为明,雷家琦等.压力钢管全位置自动焊机的研制与应用[J].焊接技术,2000(z1).

[3]杨倩,李桓,刘辉等.水电站压力钢管的自动化焊接工艺[J].焊管,2005(4).

[4]李林,李正江,鲍云杰等.三峡压力钢管的自动化焊接[J].焊接技术,2004(6).

[5]钟艺谋,杨永奎,谢京华等.三峡引水压力钢管的自动化焊接[J].焊接,2006(2).