HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 材料科学与工程

材料科学与工程

时间:2022-03-10 16:36:05

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇材料科学与工程,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

材料科学与工程

第1篇

英文名称:Journal of Materials Science and Engineering

主管单位:国家教育部

主办单位:浙江大学

出版周期:双月刊

出版地址:浙江省杭州市

种:中文

本:大16开

国际刊号:1673-2812

国内刊号:33-1307/T

邮发代号:

发行范围:国内外统一发行

创刊时间:1983

期刊收录:

CA 化学文摘(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

期刊荣誉:

联系方式

期刊简介

材料科学工程学报》是由国家教育部主管,浙江大学主办的材料领域学术性中文科技期刊(双月刊)。本刊主要刊登材料科学与工程科学研究领域的评论论文、研究论文和研究快报。

第2篇

材料科学与工程专业金属方向多进入钢企和相关研究院,材料科学与工程专业高分子及非金属方向多进入陶瓷、玻璃、涂料、家电等行业,多属大型国企、军工、民企和科研院校。

材料科学与工程下属三个学科,分别是材料物理与化学、材料学、材料加工工程。材料科学与工程专业是研究材料成分、结构、加工工艺与其性能和应用的学科。在现代科学技术中,材料科学是国民经济发展的三大支柱之一。主要专业方向有金属材料、无机非金属材料、高分子材料、耐磨材料、表面强化、材料加工工程等。

(来源:文章屋网 )

第3篇

所属学院: 物理科学与技术学院

专业班级: 应用物理0801班

学 号:

姓 名: 海宇泽亚

指导老师:

王 世 良

实习时间: XX.7.1—XX.7.2

实习地点: 长沙市太阳人电子有限公司

湖南科力远新能源股份有限公司

目 录

前 言 ……………………………………………………2

实习目的 ……………………………………………………2

实习内容 ……………………………………………………3

太阳 人 ……………………………………………………3

1.1 公司简介 ……………………………………………………3

1.2 产品介绍 ……………………………………………………3

1.3 实习见闻 ……………………………………………………4

科力 远 ……………………………………………………4

2.1 公司简介 ……………………………………………………4

第4篇

【关键词】化工材料科学与工程 发展现状 趋势分析 研究

化工材料科学与工程是社会经济发展的主要驱动力之一,同时能够带动信息技术与生物技术的发展。在以科学技术为主导的当今社会中,无论是高校中还是化工企业中,都需要培养化工材料科学与工程的专业人才,创新材料科学与工程的发展。从化工材料科学与工程的发展中找寻其中存在的问题,以便于后期的工程技术研发。

1 化工材料科学与工程的发展现状分析

1.1 化工材料科学与工程的发展历程

化工材料科学与工程的从个个单一分来的学术系统中,逐渐实现走向了科学之间的相互融合。在社会发展的进程中,材料科学的应用与社会建设步伐息息相关。单一化的材料科学发展不能适应社会发展需求,各个材料学科之间应该实现相互交叉、渗透、移植,从细分最终走向综合化的发展。在20世纪40年代,基础科学与工程之间的相互渗透较差,固体物理学与材料工程学之间的互不融合。从60年代起,材料科学与工程学能够实现交互,材料科学与材料工程之间的大部分内涵能够实现重叠,化工材料科学与工程得到了教育界的广泛认可[1]。

1.2 化工材料科学与工程在教育界的发展

化工材料科学与工程是高校教育中的重点内容,该门学科经过多变的研究与演变,衍生出中诸多的子学科。以美国麻省理工学院材料学科专业演变为例,与化工材料科学与工程相关的专业课程有:地质与采矿工程、采矿与冶金、冶金与材料科学等。欧美等国家将在材料教育方面的认识比较深,将很多高校中的冶金、陶瓷、电子材料等科目统称为材料,材料教学内容逐渐扩大,应用到社会建设中的诸多领域中。目前,我国重点高校相继设立材料科学与工程学院,针对于化工方面的教学改革,在原设置专业的基础上,补充了非金属的工程材料的内容。化工材料科学与工程的发展能够打破原专业设置的界限,加强专业间的渗透和联系,教学内容实现了更新。截止至2003年7月份,具备材料科学与工程的院校占据我国的高校的总数的34%。化工材料科学与工程的教学逐渐展现出了新思路[2]。

2 化工材料科学与工程的发展趋势

2.1 化工材料科学与工程教学中创新性人才培养

化工材料科学与工程的发展,以来社会化工企业的技术研发还远远不够,为了更好的促进化工材料科学的发展,在未来的科技社会中,化工材料科学与工程还需要与教育实现紧密结合。促进化工新材料的研发与应用,需要在高校中培养优秀的材料科学人才,与社会高精尖材料研发机构构成联动机制。对于材料科学的人才培养要求极为严格,一方面需要学生具有较好的结构力学基础,另一方面还要向学生传授学生微系统、纳系统、生物系统。同时还需要进行材料结构、性能、工艺等工程的研究,以计算机技术进行材料科学的模拟研发。高校能够为社会输送创新性的人才,是社会化工企业实现稳步发展的关键。创新性人才的能够促进化工新材料的研发,保障化工材料领域更新[3]。

2.2 化工新材料的研发

在科技信息不断发展的当今社会中,对于化工材料的研发技术越来越先进,我国化工材料科学与工程的未来发展,需要与科技信息技术相互融合,研发出具有更多功能的化工新材料。这些新材料的研发与应用能够在传统材料的优势基础上,为人们的生活提供更多的便利。

2.2.1 纤维材料

化工新材料“十三五”发展规划在即,很多具有高技术含量、高价值知识密集和技术密集的新型材料,在社会建设中能够发挥出无线的潜力。这些新材料与传统的材料相比,在质量上更加的轻便,在性能上的更加的好,在功能上更加的强大,附加值更加的高。那么何为化工新材料,化工新材料是指一些包含高性能纤维复核材料,这些才能够在国防军工、航空航天、新能源及高科技产业中应用广泛,同时化工新材料在建筑、通信、机械、环保以及海洋开发中用途更大。有专家指出,全球纤产量在近十年内的长幅为3%,而高性能的纤维在全球范围内产量增长能够达到30%,也就是说,在未来的几年间是高性能纤维发展的黄金期[4]。

2.2.2 聚酰亚胺

有机高分子材料也是化工新材料的另一类,与传统的高分子材料相比,聚酰亚胺的综合性比较强,特点突出。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、分离膜、纳米、液晶、激光等领域。在物理性质上,耐高温达 400℃以上,长期使用温度范围-200~300℃,熔点特征不明显。并且该种材料绝缘性能极高。通常情况下,103赫下介电常数为4.0;在化学性质上,聚酰亚胺可以被分为脂肪族、芳香族、半芳香族聚酰亚胺三种。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其在微电子领域发挥着重要的作用。

3 结语

综上所述,化工材料科学与工程化工研发领域中的重点内容,提升对于化工材料科学与工程的研发,能够有效的促进化工领域发展。本文对化工材料科学与工程的发展现状进行分析,与社会发展趋势相互结合,研究其在未来的发展方向。在未来,需要对化工材料科学与工程教学中进行创新性人才培养,鼓励化工新材料的研发,实现科技创造未来。

参考文献:

[1]刘海定,汤爱涛,潘复生,左汝林.材料科学数据库的研究现状及其发展趋势[J].材料报,2004,09:5-7.

[2]张钧林.材料科学与工程的学科发展、现状及人才培养[J].甘肃科技,2008,15:165-168+132.

第5篇

 

依据《北京科技大学2021年博士研究生入学考试综合考核(复试)与录取工作办法》等文件,制订我院2021年博士学位研究生拟录取方案如下。

一、学院研究生招生工作领导小组

组长: 张秋曼王鲁宁

成员:董文钧、曹文斌、李静媛、王海波、施振莲

职责:合理设置本单位录取管理组织及机构,合理配备人员;根据教育部及学校规定,制定本单位博士学位研究生招生录取工作方案或细则,并组织实施;受理考生申诉,协调本培养单位招生录取工作中出现的争议;负责解释本培养单位招生录取工作结果。

二、学院研究生录取工作小组

组长:董文钧

成员:强文江、刘泉林、宋仁伯、陈俊红、李立东、郭翠萍、鲁启鹏

职责:负责考核录取工作的具体实施。指导考核小组参考考生的申请材料审查评价结果、考生科研能力和已获学术成果的评价以及考核成绩、思想政治素质和品德考核结等对考生做出综合判断,提出拟录取名单并提交招生工作领导小组审定。

三、招生计划数

我院2021年材料科学与工程专业招生计划数为111(含5个联合培养招生计划,1个少数民族高层次人才骨干计划),其中定向就业计划数为9。

四、基本分数要求及总成绩计算办法

1.基本分数要求:外语水平考核、专业水平考核、综合素质考核均不低于60分,英语加试成绩不低于60分。

    2.总成绩计算办法:总成绩=外语水平考核成绩+专业水平考核成绩+综合素质考核成绩。

五、录取原则

1.根据教育部有关规定,博士学位研究生录取工作应坚持公平、公正、公开原则及择优录取、保证质量、宁缺毋滥原则。

2.明确和强化考核组在人才选拔中的学术权力和责任,规范和发挥考核组在博士学位研究生选拔中的作用。

3.考核成绩低于我院基本分数要求、思想品德考核不合格者均不予录取。

4.不破格录取,不跨一级学科、培养单位调剂。

5.学科专业内按导师招生计划数依据总成绩从高到低依次录取。

6.本院同一学科专业内可根据导师招生计划情况,在征得成绩合格考生、报考导师及拟调剂导师三方同意的情况下进行调剂。调剂需遵循原报考导师成绩排名。

7.少数民族高层次人才骨干计划录取原则:该专项计划考生单独排序,优先少数民族考生,同等条件下按总成绩由高到低依次录取。

    六、监督与咨询

工作小组电话:62332721;cly@mater.ustb.edu.cn。

监督举报电话:62332506;clxydw@ustb.edu.cn。

 

本方案由材料科学与工程学院负责解释。

                                                

第6篇

       technological studies

        (761)growth of zno nanostructures on biopolymer films bayram kilic didem

        omay ergin kosa levent trabzon huseyin kizil

        (769)heat-resistant composite with nano-reinforcement andrei smolikov

        alexander vezentsev vyacheslav beresnev mikhail dolmatovskiy viacheslav

        pavlenko alexander solokha

        (779)viscosity of (teo2)0.70-(wo3)0.22-(la203)0.08 tellurite glass melt

        in 780-830 k temperature range lyubov shabarova sergey smetanin gennady

        snopatin mikhail churbanov vasiliy shabarov

        (786)research of thermal stability of water mixtures of aliphatic

        alcohols dzhapparov tamerlan absalam-gadzhievich bazaev akhmed

        ramazanovich

        (791)a study of hardness change on 25 hrbw reference blocks due to the

        number of indentations tassanai sanponpute nitiwat sasom

        (799)study coefficient and optical application of kci single crystal

        with sn impurity growth on czochralski method under visible radiation

        feridoun samavat ebrahim haji ali somayeh solgi

        theoretical studies

        (803)broadband antireflective properties of two-dimensional

        subwavelength structures with cone shape on glass substrate keming jiang

        xiao yuan juntao liu guiju zhang kuaisheng zou xiang zhang

        review

        (807)theoretical study of strong and moderate hydrogen bonds within the

第7篇

在材料科学与工程专业的本科教学工作中,本科生进入大三和大四的学习生活中,就要学习材料科学与工程专业的专业课程和专业基础课程。其中在材料科学与工程专业的课程教学中,在讲述材料的合成与制备方法,材料科学基础等课程中都将讲述过金属间化合物材料。金属间化合物材料已经作为金属材料教学研究中的重要内容。金属间化合物材料是指金属与金属间形成的金属互化物或者金属与非金属元素间形成的化合物。金属间化合物的种类比较多,而且一些常用的金属间化合物已经在工程领域得到应用。金属间化合物材料中所含元素都是普通元素,是金属合金材料,所以可以将金属间化合物材料的制备和性能的知识内容引入到材料科学与工程专业的课堂教学和实验教学中,可以作为本科学生的毕业设计和专业课程设计教学内容。

一、金属间化合物材料的概述和应用

金属间化合物是指以金属元素或类金属元素为主组成的二元或多元系合金中出现的中间相。金属间化合物主要指金属与金属间,金属与类金属之间按一定剂量比所形成的化合物,金属间化合物有的已是或将是重要的新型功能材料和结构材料。金属间化合物的历史由来已久,金属间化合物的研究已经成为材料科学研究的热点之一。人们发现许多金属间化合物的强度并不是随温度的升高而单调地下降,相反是先升高后降低。因为这一特性,掀起了新一轮金属间化合物的研究热潮,使金属间化合物具备了成为新型高温结构材料的基础。现在已研究出许多方法和措施,用来改善和提高金属间化合物的塑性,为将金属间化合物材料开发成为有实用价值的结构材料打下基础。金属间化合物是航空材料和高温结构材料领域内具有重要应用价值的新材料。金属间化合物强度高,抗氧化性能好和抗硫化腐蚀性能优良,优于不锈钢和钴基,镍基合金等传统的高温合金,而且具有较高的韧性,因此金属间化合物被公认为是航空材料和高温结构材料领域内具有重要应用价值的新材料。金属间化合物材料作为近20年内才发展起来的新材料,相对于传统金属材料具有特殊的优点和规律,广泛用于制备金属间化合物基复合材料。金属间化合物相对于金属材料为脆性材料,相对于其他材料则具有一定的韧性,并且具有相当高的塑性。某些金属间化合物还具有反常的强度-温度关系,在一定的温度范围内,强度随着温度的升高而升高,这对高温结构材料的开发和应用给予很大的希望。此外许多金属间化合物材料具有良好的抗氧化性能,耐腐蚀性能和耐磨损性能,如Ni-Al金属间化合物和Fe-Al金属间化合物材料。因此采用金属间化合物和其他材料相复合制备复合材料可以提高金属间化合物材料的力学性能。

金属间化合物具有一系列的优异性能是最具有吸引力的新一代高温结构材料和表面涂层材料。金属间化合物的种类非常多,近年来国内外主要研究集中于Ni-Al金属间化合物,Ti-Al金属间化合物,Fe-Al金属间化合物等含Al金属间化合物的研究。目前金属间化合物材料已经研究和开发的较为广泛。许多金属间化合物材料已经用于铸造,锻压和高温熔炼等。金属间化合物材料具有高温强度好,高温抗蠕变性能强,抗腐蚀性能好,抗氧化性能好等优点,且在一定的温度范围内金属间化合物的屈服强度随着温度的升高而升高。但是金属间化合物材料作为使用的结构材料,还存在硬度低,断裂韧性差以及高温强度低等缺点。将金属间化合物与其他材料进行复合制备金属间化合物基复合材料,以制备出兼具有二者优点的复合材料是当前的重要研究和发展方向。金属间化合物材料具有较高的加工硬化率和较特殊的高温性能,因而被认为是下一代高温结构材料和高温耐磨损材料之一,特别是在改善金属间化合物材料的塑性后,更是受到了广泛的重视和研究。为了进一步提高金属间化合物材料的综合性能,很多研究工作者在金属间化合物材料中加入强化相制备金属间化合物复合材料,即形成金属间化合物基复合材料。可以向金属间化合物中加入碳化物硬质相制备耐磨损的金属间化合物基复合材料。金属间化合物材料具有许多优秀的性能而被广泛的应用到工程领域中。

二、金属间化合物在材料科学与工程专业教学实践中的研究和应用

金属间化合物材料由于具有许多优异的性能而被广泛的应用在工程领域中,所以应该在材料科学与工程专业的课堂教学和实践教学中增加一些金属间化合物的知识和内容。金属间化合物材料主要包括Al系金属间化合物材料,主要有Fe-Al金属间化合物,Ni-Al金属间化合物,Ti-Al金属间化合物等,还有其他的如Cu-Al合金,Cu-Zn合金以及Ni-Ti合金体系等金属间化合物材料。由于一般常用的金属间化合物是由两种金属元素形成的化合物并具有典型的二元相图,所以可以通过认识和了解金属间化合物学习和掌握二元相图的知识内容。此外金属间化合物材料的制备工艺方法也有很多,主要有金属熔炼法,高温自蔓延反应合成法,机械合金化法,反应烧结法,粉末冶金工艺等多种方法。其中反应熔炼法是将不同种金属元素放到熔炼炉中进行熔化形成金属合金熔体使其均匀混合并冷却形成金属间化合物材料。高温自蔓延反应合成方法是通过反应放出大量的热量维持反应继续进行最终形成所需要的金属合金材料。机械合金化工艺过程是利用高能球磨机把两种纯金属粉末放入球磨罐中并加入适量的添加剂进行球磨,粉末的制备由机械合金化过程完成,块体的制备则由烧结过程实现,机械合金化工艺是一种固态反应的过程。机械合金化技术是近年来发展起来的一种材料制备方法,机械合金化工艺通过对粉末反复的破碎,焊合来达到合金化的目的,由于合金化过程中引入大量的应变,缺陷以及纳米级的微结构,机械合金化制备的材料具有一些与传统方法制备材料不同的特性。通过机械合金化工艺就可以制备出金属间化合物粉末。粉末冶金技术是制备金属间化合物材料比较常用的一种方法。以单质或合金粉末为原料,一般是先用塑性加工的方法把粉末制备成所需要的复合材料制件,然后在烧结同时实现了制件的成型。反应烧结法是将不同种金属元素粉末通过热压烧结工艺或者常压烧结工艺形成金属间化合物块体材料。金属间化合物材料的制备通常采用粉末冶金工艺进行制备。

由于金属间化合物材料原料成本较低,制备工艺不复杂,所以对于金属间化合物材料的制备和性能的研究工作可以引入到材料科学与工程专业的实验教学工作中。可以在实验教学的课程中增加金属间化合物材料的制备和性能的研究内容,例如通过反应熔炼法,机械合金化方法和粉末冶金法等制备金属间化合物材料,并对金属间化合物材料的结构和性能进行研究。通过以上实验教学过程可以锻炼学生的实践能力和分析能力,还可以加深学生对材料科学与工程专业知识内容的认识和了解。在上述实验方法中,其中机械合金化工艺是比较实用并且能够在实验室里进行的。机械合金化工艺是将两种不同的金属粉末混合并经过高能球磨过程制成金属间化合物粉末,并通过烧结过程制备金属间化合物块材。机械合金化工艺可以在实验室里进行,可以安排学生通过机械合金化工艺制备金属间化合物材料。此外在本科学生的专业课程设计和毕业设计期间也可以安排学生进行金属间化合物材料的制备和性能的研究工作。通过对金属间化合物材料的制备和性能的研究工作,使得学生充分的认识和了解金属间化合物材料的性能特点,并加深学生对所学习的材料科学与工程专业课程知识内容的认识和了解,使得学生对材料科学与工程专业的课程内容有一定的掌握和熟悉,并通过实验教学过程提高了学生的实践能力和分析问题解决问题的能力,扩展了学生的知识面。所以本文作者认为应该在材料科学与工程专业的实践教学过程中增加一些关于金属间化合物材料的实验课程,并以金属间化合物材料的制备和性能的研究内容作为实验教学课程,这将有助于提高学生的实践能力并扩展了学生的知识面,这为本科学生以后学习材料科学与工程专业的知识内容打下坚实的实验基础。

三、金属间化合物材料未来的研究方向和发展趋势

金属间化合物材料由于具有许多优异的性能而被广泛的应用在工程领域中。近年来金属间化合物材料发展迅速,一些常用的金属间化合物已经被应用到实际的工程领域中,还有些新型的金属间化合物正在研究和开发中,而且有些金属间化合物作为结构材料进行使用,还有些金属间化合物成为先进功能材料和具有特殊性能的新材料。所以金属间化合物材料的发展和应用前景比较广阔。所以本文作者认为应该在材料科学与工程专业的实践教学过程中增加一些关于金属间化合物材料的实验课程,并以金属间化合物材料的制备和性能的研究内容作为实验教学课程。通过实验课程教学可以提高本科学生对材料专业课程内容的认识和了解。

本文主要讲述金属间化合物材料的概述和应用,并讲述金属间化合物材料在材料科学与工程专业实验教学中的研究和应用,并介绍金属间化合物材料的未来发展趋势和方向。作者认为在材料科学与工程专业的实验教学中增加金属间化合物材料的制备和性能方面的实验课程,通过实验课程教学可以提高学生对材料科学与工程专业所学知识的认识和掌握。

第8篇

摘 要:文章以安徽农业大学为例,分析高等农林院校新建材料科学与工程专业的特色,即在于以农林生物质材料为主要教研对象,因具有循环再生及环境友好等特征,成为21世纪热点发展领域,在时代需求、发展方向与专业依托等方面富有特色,并结合其专业创建过程中的师资队伍建设、专业性教材建设、实践教学与创新创业等问题,提出采取夯实学科基础、加大人才引进力度、加强专业基础建设、优化实践教学体系、开展创新创业教学等措施,提高学生的综合素质和能力,以实现人才培养目标。

关键词:高等农林院校;材料科学与工程;特色;路径

中图分类号:G642.3 文献标识码:A 文章编号:1002-4107(2017)05-0030-03

材料是国民经济建设的物质基础。材料科学是21世纪的支柱学科和技术先导,是众多学科发展的坚强后盾,材料在某些领域已成为制约我国关键技术的瓶颈。随着经济快速发展和国际竞争的加剧,高新材料的地位日益凸显,社会对材料科学与工程专业技术人才的需求越来越高。

材料科学与工程专业是一门主要涉及物理、化学、计算科学、工程学和材料学的综合叉学科,其内涵极为丰富,涵盖金属材料、冶金、无机非金属材料、高分子材料、材料物理和材料化学等二级学科,是研究材料的组成与结构、合成与制备、性质及使用性能、测试与表征等四个基本要素及其相互关系与制约规律的一门科学[1-2]。

目前,我国大部分院校开设有材料类及其相关专业,根据院校自身发展特点,大致分为两种类型:一类存在于理工院校,与冶金、机械、金属、非金属和高分子材料交叉融合,侧重于从实际应用领域来探求新材料的制备、性能评价与使用;另一类存在于综合性大学,由物理学和化学孕育并分化形成材料物理与材料化学,侧重于基础研究方向[3-4]。由此可见,基于不同起点和研究重点,这两类材料学科研究方向在发展中自我完善又相互靠近,形成了基础研究与应用研究逐步融合发展的方向。

一、新建材料科学与工程专业的特色

(一)时代需求方面

随着时代的发展,材料科学与工程研究方向正从传统领域向新型生物质功能材料拓展,农林生物质材料主要以木本、禾本和藤本植物及其加工剩余物和废弃物为原材料,通过物理、化学和生物等高科技手段,加工成性能优异、环境友好、附加值高的新型材料[5]。2010年教育部明确提出要大力发展互联网、绿色经济、低碳经济、环保技术、生物医药等关系到未来环境和人类生活的重要战略性新兴产业,要加大战略性新兴产业人才培养力度,支持和鼓励有条件的高等学校申报与战略性新兴产业相关的专业,其中新材料产业中的新型生物质功能材料就是优先申报的领域[6]。目前,高等农林院校每年向社会输送此类人才最多400人,远远不能满足国家未来战略性新兴产业发展对人才之需求,在此背景下,安徽农业大学成功申报了材料科学与工程专业。

(二)发展方向

所谓专业特色是指学校根据所具备的优势条件,经过长期的办学实践逐步积淀形成,具有优于其他学校的、独特的、稳定的、鲜明的个性特点并为社会所承认的专业风格[7]。高等农林类院校在农业和林业等方面积累了深厚的研究基础。

随着我国经济的快速发展,能源等资源供给存在巨大缺口,已成为可持续发展的瓶颈。目前,世界上每年主要以石油为原料生产约1.57亿吨的高分子聚合物,同时产生8000多万吨的塑料废弃物,从理论上讲,聚烯烃塑料在环境中自然降解需要200年甚至100万年的时间,大量的废弃塑料积累在环境中,给环境修复带来了巨大的压力和破坏,而且石化资源是有限的。可再生、可循环利用、无污染的植物资源在自然界中储量丰富,发展潜力大,加快生物质资源的培育、研究和利用,发展农林生物质材料产业,对缓解资源与环境压力意义重大,符合可持续发展和循环经济的理念,将成为不可逆转的历史潮流[8]。我国生物质资源品种及产量位居世界前列,年均生产量约21亿吨,其中仅农业秸秆年产量就达7亿吨,目前只有约5000万吨得到初级利用,发展潜力很大[9-10]。农林生物质材料作为材料科学与工程专业的研究对象,其发展前景具有不可替代的优势,专业性人才的培养势必能够推动生物质材料研究的步伐,满足社会对人才的需求。

(三)专业依托

全国大约有7所高等农林院校在木材科学与工程本科专业基础上,以新型生物质功能材料为方向新建材料科学与工程专业,借助木材科学与工程专业的传统优势,短期内提升材料科学与工程专业发展的水平和质量。安徽农业大学是一所具有80多年办学历史、学术积淀深厚的省属重点高等农林院校,长期以来,与林业生物质材料相关的林业工程、农业工程、纺织工程等学科得到了飞速发展,在木材功能材料、纤维功能、农作物秸秆改性材料等方面已取得了一系列的研究成果,具有较好的学术积淀和较强的师资队伍。安徽农业大学以木材科学与工程实验室、林产化学与工程实验室、高分子材料与工程实验室、纺织材料实验室等为基础,整合现有资源,进行优化组合,创建了材料科学与工程专业,培养生物质材料与工程专业人才,满足了国家和安徽省新型战略产业发展之需要。

二、新建材料科学与工程专业面临的挑战

新建材料科学与工程专业面临的机遇与挑战并存。如何抓住机遇迎接挑战,需要认真剖析建设过程中的诸多“障碍”,才能将挑战转化成机遇。

(一)师资队伍建设

新专业师资队伍存在的问题主要集中在教师资源少,专业教师年轻化,教学科研成果缺乏积淀上,因此如何在短期内建立起职称结构、学历层次、年g梯度合理的师资队伍,是新专业建设亟待解决的关键问题。

(二)专业教材建设

以生物质材料为发展方向的高等农林院校新建材料专业,由于办学时间短,针对生物质材料的系列教材缺乏,目前选择的或是理工院校,或是综合大学同类专业的教材,或是农林院校相近专业的教材,因此针对性、系统性不强,生物质材料特色不明显,教师和学生都不甚满意。

(三)实践教学

实践教学作为人才能力培养的核心,在“双创型”、“复合型”人才培养过程中起到十分重要的作用。新专业在建立之初,通常存在实验室建设不完善,实习基地建设不规范,实习点较少,创新实践活动缺乏新颖性等问题。如何建立“网络化”、“系统化”的实践教学模式是创新型人才培养的关键。

(四)创新创业教育

大学生就业形势严峻,缓解就业压力的一条重要途径是走创新创业之路,学校有责任培养他们的创新创业意识和能力。我们都知道要o学生一杯水,教师得有一桶水的道理,因此,创新创业教育的质量和效果,首先取决于学校及教师自身创新创业的水平,这就为学校和教师提出了新的更高要求。显然,对于新建专业,教师的精力更多尚在适应课堂教学的努力中,自身创业经验缺乏,教师和学生创新创业水平亟待同步提升。

三、新建材料科学与工程专业的发展路径

在新建材料科学与工程专业的过程中,为了弥补发展中的不足,解决发展瓶颈,提升专业发展层次,针对材料科学与工程专业知识特点,进行教学体系改革,调整专业知识结构,变革教学方式,不断优化专业基础建设,解决建设过程中出现的问题。

(一)夯实学科基础,拓宽专业口径

农林院校材料专业虽然以农林生物质材料为主要方向和特色,但课程的设置要充分考虑材料学科的共性基础,考虑多学科的交叉融合,使得培养的学生既有学科特色,又有广泛的社会适应性,如安徽农业大学开设了理论力学、材料力学、高分子化学与物理、物理化学、高分子材料学、生物质资源材料学、复合材料学、材料装备学和胶合材料学等基础课程,学生毕业后的就业或深造可在高分子材料、以植物资源为基础的生物质材料及复合材料等领域,为学生今后的发展奠定坚实的基础和宽广的空间。

(二)加大人才引进力度,建设结构合理的教师队伍

师资队伍的水平是办学质量的根本。新建专业的教师紧缺,是亟待解决的最重要的工作之一。虽然有校内传统相关专业部分教师能够承担新专业的教学,但仅仅是一种应急措施,教师知识构成的局限性、师资整体结构的系统性,都远不能满足新专业建设和发展的需求,因此师资队伍的建设刻不容缓,必须要加大人才引进的力度,采用灵活多变的政策广纳人才,包括从师资队伍充沛的老牌兄弟院校、科研院所等,通过人才合理流动,实现教师资源的优化配置。同时要加强对新进青年教师的培养,激励他们参与国际、国内访学交流和社会实践,促进师资队伍快速成长。如安徽农业大学在人事引进制度上采用“一人一议”政策,最近从国外著名大学引进1位材料专业的30岁博士后,并破格聘他为教授。

(三)加强基础条件建设,全面服务新专业的发展

在新专业建设之初,教材、实验室、实习基地等基础条件都很不足,对这些基础条件必须同步建设,才能在短期内适应新专业教学所需。

1.教材建设。教材是学生课堂前后预习和温故知新的物质条件,必须跟进,但新建专业教材的配套性总是不尽如人意,虽然现在教材版本繁多,表面上选择余地很大,但不可否认,粗制滥造现象也不罕见,因此对现有教材的选取必须高度重视,要充分发扬民主精神,集思广益,将真正优秀的、适合的教材甄别出来。同时加强教材编写力度,对尚不成熟的脚本,先作为讲义印发给学生,经过一届学生的试用,在修改完善后正式出版,逐步建立起一套针对性强的教材体系。

2.实验室建设。实验室建设是新专业建设中资金投入最大的部分,涉及实验用房的建设、实验仪器设备的购置及实验教师的培养等诸多方面,牵涉面广,需要学校多部门的磋商协调。往往基础课实验条件建设容易实现,因为基础课实验内容的刚性强,建设思想易统一;而专业课实验室建设弹性大,投入多,易受到挤压或拖延,但专业课实验室恰恰是体现专业特征的地方,是学生创新训练的主要场所,也是教师科研的主要依托,因此在实验室建设中,对建设目标的充分论证、建设过程的细致规划,是专业实验室建设得到学校理解支持的关键。如安徽农业大学在材料科学与工程新专业实验设备购置方面,近三年投入300多万元。

3.实习基地建设。实践教学离不开实习基地,离不开相关行业的企事业单位。让这些企事业单位乐于接收学生的实习,必须从实习安全、产学研合作、人才输送与就业等多方面为企业着想。学院动员所有领导和教师主动出击、多方联系,在诚信的基础上,解除企业对学生实习的顾虑。如安徽农业大学在竹材的基础研究方面具有较多成果,积极探讨竹材深加工的应用方向,因此与安徽龙华竹业有限公司达成了合作共识,建立了良好的校企合作实践教学基地。

(四)优化实践教学体系,提升学生的实践能力

实践教学是确保学生理论联系实际、学以致用的重要环节,这也是工科专业的一个重要特征,材料科学与工程专业更是如此[9-11]。如安徽农业大学为了学生将来更快地适应工作需要,成为社会需要的精英人才,在专业课设置中几乎都有配套实验,根据教学内容,加强理论与实践的结合,为了突出实验教学的全过程化,通过开设综合性、设计性实验,进一步提高学生的创新能力。

(五)开展创新创业教学,提升学生的创新能力

校内的创新创业教育需要鼓励和氛围,通过宣传大学生创业先进典型,培养学生创新创业的意识、信心和勇气;通过创新创业讲座和科研活动,形成以项目和社团为组织的“创新创业教育”实践群体,如安徽农业大学每年开展“创客”大赛,每个班级组成若干团队参赛,让学生在参赛过程中得到锻炼和提高。另外每年都有国家级、省级和学校创新基金项目,鼓励二年级以上的学生组团申报,到大四时,基本上每位学生都是创新基金项目的参与者。

此外,创新创业需要走出校园、走进社会,从专业的角度去发现问题、需求和不足,寻找专业的创新点,进而发现创业的切入点,提升创业的竞争力。要求学生走进社会,首先教师要密切与社会的联系,如安徽农业大学对新建专业给予一定经费上的投入,支持教师通过参加学术会议、加入行业协会等途径,开拓社会资源,为学生搭建创新创业训练的桥梁和平台。

四、结语

材料科学与工程专业已呈现出与多学科相互渗透、交叉综合的发展趋势,以生物质资源为材料主体是高等农林院校材料科学与工程专业的特色,顺应了当今社会经济对高素质人才需求。它在新建过程中出现了一系列的问题,这些问题要在实践中予以解决,最终目的是为了办好新专业,引领新专业走入正轨,迈向一个较高的发展平台。因此,我们要探索出一条适合我国国情的、具有国际化与工程背景、富有创新创业精神和实践能力的高素质材料类人才培养的路子,提高我国材料工业水平并使之具有可持续发展能力,使我国尽快从一个材料大国走向材料强国。

参考文献:

[1]何宇声.复合材料在材料科学技术中的作用和地位――迎接二十一世纪挑战[J].玻璃钢/复合材料,2001,(1).

[2]杨振华,彭万里.地方综合性大学材料科学与工程专业教学改革与实践[J].企业家天地,2013,(4).

[3]杜双明,王晓刚.材料科学与工程概论[M].西安:西安电子科技大学出版社,2011:1-3.

[4]赵东,王洋,洪翔飞等.农林院校材料科学与工程专业建设路径及规律探析――基于问卷调查结果和AHP分析[J].中国农业教育,2015,(4).

[5]鲍甫成.发展生物质材料与生物质材料科学[J].林产工业,2008,(4).

[6]陈礼辉.充分利用可再生资源、大力发展生物质材料[J].中华纸业,2009,(24).

[7]董先明,倪春林,禹筱元等.农林院校材料类专业实验教学平台的建设初探[J].实验室科学,2013,(4).

[8]杨文斌,宋剑斌,陈寒娴等.材料科学与工程专业培养模式探讨[J].中国校外教育,2013,(9).

[9]刘伟东,石萍,齐锦刚等.材料科学与工程专业实验教学体系建设与实施[J].辽宁工业大学学报:社会科学版,2014,(5).

[10]陈一伲张雪辉,朱志云.材料科学工程专业教学工程专业教学改革研究[J].中国电力教育,2011,(19).

[11]罗丙红,周长忍.浅谈材料科学与工程特色专业的建设思路[J].广东化工,2011,(3).

收稿日期:2016-08-29

第9篇

关键词:材料科学与工程;材料科学基础;应用型本科教育;课程改革

在现代科学技术中,材料科学是国民经济发展的三大支柱之一。近年来,我国在材料领域的发展突飞猛进。目前,国内众多知名高校已经开设了材料科学相关专业,如清华大学、北京科技大学等开设了金属材料学科;北京化工大学、浙江大学等开设了高分子材料;西北工业大学、中南大学等开设了材料加工学科等。2016年,合肥师范学院成功获批了材料科学与工程专业,并开始招生。作为应用型高校,该学科的建设处起步阶段,虽经过3年的教学实践,但在专业课程设置、教学方法以及考核模式等方面存在很多的问题亟待解决。

1课程教学的问题剖析

材料科学与工程是研究材料的成分、组织结构、制备工艺和使用性能以及四者之间相互关系的学科,因而将成分、组织结构、制备工艺和使用性能成为材料科学的四要素,把四者联在一起就构成了材料科学四要素的四面体结构,如图1所示。《材料科学基础》这一门课程便是以材料科学四要素为主要内容,从教学要求出发,着重于基本概念和基础理论,并引导学生应用理论解决材料工程中的实际问题。该课程中材料学知识十分复杂,理论性强,涉及大量的名词、概念等等,要求学生具有扎实的数学、物理和化学基础。而对于我校本科生而言,大多数同学数理化基础比较薄弱且在学习该门课程之前并未系统的学习过无机化学、物理化学等课程,因此在教学过程中会产生一系列的问题,主要表现为以下几个方面:第一,该课程的部分内容理论性强且难度大,涉及大量的数学推导过程和复杂的文字解释,使同学们难以理解和识记,因而易产生抵触情绪,教学效果不理想。第二,在国内大部分高校,包括我校,目前该课程的教学方式仍以板书与多媒体教学相结合的方式。这种教学方式以文字、公式推导和曲线图为主,图片、视频等影音资料很少,使得学生上课期间缺乏兴趣,难以集中注意力;第三,该课程的考核模式以考试为主,且占比很大。考试内容多以课本上的概念、定理以及理论计算为主,应用类题目较少涉及,因而难以达到指导学生应用已学知识解决实际工程问题的教学目标。第四,目前国内外材料科学发展更新迭代较快,新材料、新技术、新工艺层出不穷,书本上的内容较为有限,在教学上应用部分课时讲授材料前沿发展方向及应用,为学生就业及科研提供参考,培养学生的创新思维。第五,材料科学具有理论知识与应用广泛结合的性质,在教学上,应该适当培育学生们的科研及实践能力。因此,基于以上教学经验中出现的问题,结合材料科学的特点,本文将以“夯实基础、注重应用”为指导,探索该课程在教学内容、教学方法和考核模式等方面上的优化设计。

2课程教学的改革措施

2.1夯实理论基础

材料科学基础涵盖较多的基础概念,这些概念与科学研究及实际应用都有深刻的联系。基础知识的掌握程度对于学习材料科学非常重要。无论是前沿研究还是基础应用,都需要有扎实的基本功。如利用高分辨透射电子显微镜研究材料结构时,需要掌握材料中原子排列的相关知识,包括晶面指数、倒易空间等;针对材料的拉伸或压缩过程,需要掌握材料的弹性模量、屈服强度。同时,相关概念不仅仅只用于某一个领域,如关于材料结构,即可用于分析材料的相变,又可用于分析二维材料的电磁性能。原子的扩散,即可用于研究金属的热处理,又可用于研究锂离子电池。材料科学基础的相关概念复杂难懂,且课时有限,教师在授课时应将相关概念的背景、定义及应用讲清讲透,确保学生理解和掌握,积累扎实的理论基础知识。

2.2培养实践能力

材料科学基础是一门理论知识与实践相结合的学科。其中,相关内容是从实践的基础上总结提炼得到的,如材料的相变,相图的制作是根据各个成分及温度下,进行热处理得到的结果。本科生仅仅学习书本上的内容,很难建立起直观的认识。在课程学习初期,教师应将材料科学基础的理论知识与实际应用相结合、抽象概念与具体图像相结合,以直观性的事物或图像引导学生对抽象性的理论进行掌握。如在学习晶体结构时,可用实物模型展示晶体的FCC、BCC等结构。在讲解原子扩散时,提示学生通过想象构建原子在材料中运动的图像。

同时,为使学生更加全面的理解所学内容,建议学校开设一定学时的实验课程,如材料的热处理过程、材料的力学性能、材料的微观结构等等。使得在提升运用理论知识分析解决实际问题能力的同时,进一步巩固自己的知识体系。此外,本学院的教师均有科研经历,研究方向各有侧重,如计算材料学、太阳能电池,催化、二维材料等等,有丰富的实验经历及理论知识。因此可以鼓励学生在课外时间积极参与到教师的相关课题研究中,针对发现的问题,结合所学内容加以分析,进一步加深对知识的理解与应用。

2.3丰富教学方法

首先,科学合理控制每课时授课量。确保知识点高质量的被学生吸收,而非对学生进行数量上的灌输。其次,调节授课内容的输出速率。通过板书、调节语速等方式,在难点、重点如材料中的缺陷、扩散等知识点上讲懂讲透,使学生对所学内容充分吸纳和梳理。再者,利用多种方法将相關概念实物化、图像化。在学习材料的结构时,可以通过硬球模型展示材料中FCC,BCC等简单晶体结构。在学习材料的力学性能时,可以利用多媒体技术,展示材料在受到压缩或拉伸时的变形过程。此外,利用现状网络技术进行学习。利用微信、QQ等网络技术,建立课堂内容学习交流群,以便及时上传教学内容、作业,分享参考书目,解决问题等。让学生充分利用课余时间主动学习,及时解决遇到的问题,进一步提高授课效率。

2.4把握学科前沿

近几年,材料科学发展日新月异,前沿热点难点时常更新,新材料、新技术、新工艺层出不穷。然而书本上的内容较为有限,针对材料科学的前沿进展,在课堂教学时应设置部分学时介绍材料科学相关进展,讲授基础知识在相关领域的应用,启发学生的创新思维,为学生就业及科研提供参考。结合现有条件,可以邀请相关领域教师来校开展专题知识讲座,讲解本领域的研究现状、前沿进展。授课教师也可以利用网络技术,建立微信群或者微信公众号,向学生推送材料领域最新的成果,文献或者方法等等,营造良好的学习氛围,培养学生对材料领域的兴趣。

2.5完善考核方式

目前,对于材料科学基础的评分方法,总成绩中期末成绩占到70%,平时成绩占30%,其中在平时成绩中平时作业占主要比例。由此可以看出最终成绩主要取决于期末考试的成绩,而平时成绩主要取决于平时作业。结合教学经验发现以下问题:①关于期末考试。仅仅只在期末考核一次,会造成学生在期末阶段突击学习,而忽视了平时的积累;②关于平时成绩。平时作业在总分中占据20%左右的比例。学生往往偏重平时作业,而忽视其他课堂表现。教师难以对每个学生的课堂表现作出準确评价;③材料科学是一门实践性和应用性较强的课程,在本课程的教学过程中缺乏相应的实践课程。因此难以培养学生的实践能力。鉴于以上因素,可以在材料科学基础一课的成绩评定制度上进行如下改进。

一是引入阶段性考核。首先,建议在第9周前后增加一次期中考试。在检验前期所学内容的同时,及时发现问题并整改。将期中考试的成绩按照一定比例纳入到总成绩中。在期末考试中,主要考核后期的学习内容,前期的学习内容也要有所涉及。其次,提高课堂表现的分值比例,建立周期性的课堂问答方法,如按照学号让学生参与教学环节,确保至学习结束时每人都有机会能参与到课堂教学。对于主动提问,经常与教师讨论问题的学生给予较高的平时成绩。

二是设立相关实验课程,考核实践能力。材料科学是一门注重实践的课程,书本上的知识点最终要运到到材料的实际性能、制备及应用上。纸上得来终觉浅,通过实践考核可以综合考查学生对于材料科学基础知识点的掌握程度。如通过实验方法画制Fe-C相图及分析合金的力学性能等。在画质Fe-C相图时,培养学生学会对FeC合金进行热处理,得到不同成分下的合金相,并在显微镜下进行观察、分析合金相的形成过程。在分析合金的力学性能时,培养学生学会如何对合金进行拉伸或者压缩,并绘制应力应变曲线。进一步掌握根据得到的曲线分析合金的塑性变形、弹性变形及屈服强度等。

三是增加研究报告的考核形式。结合材料科学基础的特点,由教师罗列出热点领域,在班级分成若干小组,每个小组自行选取兴趣领域,形成研究报告,并在课堂上以PPT的形式进行报告。讲述该领域的发展现状及问题,形成PPT并向老师和同学做报告,最后形成综合评分。这一考核方式有助于培养学生的协调组织能力及团队意识。在促进学生自身思考以及激发学习主动性的同时,也能让学生及时了解最新的国际研究动态。

第10篇

作为一种现代工具,计算机技术在材料科学中的应用日益广泛,并在很大程度上促进了材料科学研究的深入发展。《计算机在材料科学中的应用》作为我校材料成型及控制工程本科专业的一门专业课,在整个课程体系中占有重要地位。为培养学生利用计算机分析和解决材料科学领域相关实际问题的能力,笔者对该课程的教学内容与教学方法进行了初步探索与设计,力争提高该课程的教学质量与效果。

1 课程教学大纲要求

《计算机在材料科学中的应用》课程共32学时,其中,理论教学16学时,上机实践16学时。本课程教学大纲要求:通过理论与实践教学环节,使学生了解计算机技术在材料科学领域的应用现状,初步掌握利用计算机进行数据处理、材料设计、材料成型过程模拟以及利用计算机网络技术对材料科学领域相关资料进行检索等,以培养学生利用计算机分析和解决材料科学与工程领域相关实际问题的能力,以期到达本专业对学生的培养目标。

2 理论与实践教学内容设计

结合材料成型及控制工程本科专业的培养目标以及课程教学大纲要求,本课程的理论教学内容主要包括四大模块,即:计算机用于数据处理、计算机用于材料设计、计算机用于材料成型过程模拟、计算机用于文献检索。

根据理论教学内容,与之配套的上机实践内容同样包括四大模块,即:数据处理模块,主要包括Origin、Excel软件的操作与使用;材料设计模块,主要包括Thermal-Calc相图计算软件、Materials Studio材料计算软件的操作与使用;材料成型过程模拟模块,主要包括ProCast铸造模拟软件、Deform金属塑性变形模拟软件、Moldflow塑料注塑成型模拟软件的操作与使用;文献检索模块,主要包括中国知网、维普、万方、ScienceDirect、SpringerLINK等中外文数据库的操作与使用。

3 教学方法设计

由于本课程是一门实践性很强的课程,因此,在实际教学过程中,我们采取软件介绍与操练为主、理论知识讲解为辅的教学思路,具体教学方式如下。

(1)充分利用多媒体技术,立体展现计算机在材料科学领域的应用功能

《计算机在材料科学中的应用》课程涉及了较多的计算软件及其在材料科学领域应用的具体案例,如果以单纯的口头述说方式或者在黑板上简单地画些示意图,来给学生介绍这些软件及其功能,则会让学生感觉到抽象乏味,达不到学习的效果。我们应该充分利用集声、光、电于一体的多媒体辅助教学手段[1],尽可能多地搜集计算机技术在材料科学领域应用的相关图片、视频、动画等,尤其在上第一堂课的绪论部分时,让学生更为清楚地了解各种软件的具体功能及其应用,则有助于增学生的感性认识,提高学生对该课程的学习兴趣。

(2) 结合具体案例,介绍软件的使用功能及其操作步骤

在课堂教学中,教师除讲解基础知识外,应结合材料科学研究中的具体案例,对相关软件的使用功能及其具体操作步骤加以介绍。如针对数据处理模块,我们可将学生熟悉的应力―― 应变曲线、X射线衍射图谱等作为案例,利用Origin、Excel软件对其图形绘制、样式编辑、图形导出等功能进行详细介绍;针对材料设计模块,我们可将学生熟悉的铝合金强韧化设计作为案例,利用Materials Studio软件对铝合金及其强韧化理论模型的构建、计算参数的设置、计算运行及结果分析等进行详细介绍;针对材料成型过程模拟模块,我们可将学生日常生活中经常见到的肥皂盒、钢管等作为案例,结合学生此前学过的《塑料成型工艺及模具设计》[2]与《金属塑性成型原理与工艺》[3]课程理论知识,利用Moldflow、Deform软件分别对其成型过程进行模拟与分析;针对文献检索模块,我们可将“计算机在材料科学中的应用”作为主题,让学生在了解文献数据库的基础上,查阅与该主题相关的国内外文献。通过结合具体案例对软件及其功能加以介绍,一方面使学生更易于掌握软件的操作与使用功能,另一方面,将实际问题引入到理论教学中来,更有助于增强学生的创新思维与创新意识。

(3)注重上机操练,培养学生分析与解决问题的实践能力

学生仅凭课堂上倾听或观看教师的软件操作过程,显然达不到软件学习的效果,必须经过一定的上机操练。教师可根据每一堂理论课所讲的内容,给学生布置相应的上机任务,具体任务可以是理论课所讲的具体案例操练,也可以增加与之相近案例的操练,一方面可以使学生对课堂讲解内容加以掌握,另一方面还有助于培养学生独立思考问题、利用计算机分析和解决材料科学领域相关实际问题的能力。此外,教师还应注重学生上机任务完成情况的考核,将每堂上机课学生完成任务情况作为平时成绩,即可以及时了解学生对软件知识的掌握程度,还可以督促学生充分利用宝贵的上机操练时间,提高软件的学习效果。

第11篇

【关键词】 材料学;材料科学基础;教学改革

材料是人类生存和发展的基础。纵观人类利用材料的历史,可以清楚地看到,每一种重要材料的发现和利用,都会把人类支配和改造自然的能力提高到一个新的水平,给社会生产力和人类生活带来巨大的变化,把人类物质文明和精神文明向前推进一步。可以说没有半导体材料的开发和工业生产,便不可能有目前的计算机技术和现代信息技术革命;没有现代的高温高强度结构材料,便没有今天的宇航科技;没有低损耗的光导纤维,便不会出现光纤维的长距离传输,也无当前的光通信可言。高等院校深刻感受到材料对社会影响的方方面面,深刻认识到现代社会对材料学方面人才的需求。

我国各大高校纷纷设立了材料学院,并建立健全了材料学方面各类培养课程。材料科学基础是材料学专业学生必修的专业基础课。通过材料科学基础课程的学习, 可使学生掌握材料科学基础领域的基本理论知识和实验操作技能,以利于学生学习材料学专业的后续课程。[1-6]本论文通过分析材料学专业材料科学基础课程教学中存在的问题,阐明了材料学专业进行材料科学基础教学改革的必要性,并结合本人讲授材料科学基础过程中的体会,初步探讨了如何提高材料科学基础的教学效果,并对教学内容,教学方法等方面的改革进行了探讨。

1.材料学专业材料科学基础教学改革的必要性

随着现代社会对材料学人才的大量需求,材料学专业已逐步成为全国各大高校重要的组成部分,但由于专业的性质,材料学专业也是高校中最难学习的专业之一。要成为一个材料学专业合格的本科毕业生,既要具备化学方面的基础,又要物理方面的基础,还要掌握材料化学,材料物理等材料专业的知识。但由于学生大学学习的时间是有限的,这就造成材料学专业课程设置时,存在“课时紧,任务重” 的问题。以材料科学基础为例,材料学专业材料科学基础授课时间一般不少于120学时,而纵观全国各大高校材料学专业,材料科学基础通常为54学时,个别为72学时,且大多没有实验。这并不意味着材料学专业对材料科学基础的要求低,而是由于材料学专业课程多、学时紧等原因导致的无奈之举。材料科学基础学时少造成学生对材料科学基础的知识掌握肤浅,很难真正体会材料科学基础的本质,同时也影响了后续材料学专业课的学习。另外,不设材料科学基础实验,学生的动手能力得不到锻炼,在进行后续课程时没有任何基础,从而影响了其它材料学专业实验的顺利进行。总之,材料学专业材料科学基础教学存在的诸多弊端已严重地影响了材料学专业学生的正常学习,因此,材料学专业材料科学基础教学改革势在必行。

2.材料科学基础的课程内容和特点

材料科学基础是一门古老又新兴的课程,它是一门理论性强,内容丰富,掌握起来有相当难度的课程。同时,它也是一门重视实验,能够培养学生动手能力的课程。具体来讲,材料科学基础主要内容分为三大模块:第一模块为晶体结构和缺陷,包括各种晶体的空间结构、可能出现的各种缺陷及缺陷的表示法。本模块内容约占总学时的25%~35%;第二模块为原子及分子运动、材料的变形和再结晶,本模块内容约占总学时的45%~55%;第三模块为单元及多元相图,包括晶体的凝固和相图的关系、相图的分析等,本模块内容约占总学时的15%~25%。分析各模块的主要内容,可以提炼出材料科学基础主要包括晶体的结构及表示方法。[7-9]

3.材料学专业材料科学基础课程改革研究

3.1 教学内容改革

根据材料科学基础的主要内容和课程特点,结合材料学专业对材料科学基础的要求,我们对材料科学基础教学内容主要进行了如下改革:“精简内容,把握重点,强调相关。”材料科学基础经过上百年的发展,内容已经相当丰富,而且还在不断更新。如此庞大的内容仅仅通过短短的54学时或者72学时来顺利完成全部教学内容几乎是不可能的,因此,精简教学内容是材料科学基础教学必须进行的环节。针对材\料学专业的特点和材料学专业对材料科学基础的要求,并考虑到材料学专业材料科学基础没有实验的实际情况,我们对这三大模块进行了以下改革:首先,精简第三模块的内容,使其仅占总学时的5%,同时在第三模块中加入15%的实验内容,从而使学生掌握基本的实验操作;其次,把握第一模块的内容,第一模块为材料科学基础基础知识和基本理论,是材料科学基础学习的重点,这部分的学习可以使学生初步了解材料科学基础的本质,同时在第一模块增加材料科学基础的X衍射、透射电镜等基本的表征手段的学习,这部分内容达到总学时的40%;最后,强调第二模块中与材料学专业相关的材料科学基础内容, 占总学时的40%。第二模块的内容非常繁多,我们通过学习原子和分子的运动规律、材料的形变及再结晶规律,使学生能熟练掌握与材料学专业有关的材料科学基础知识,为后续材料学专业学习打下基础。

3.2 教学方法改革

材料科学基础是一门看似简单,但掌握起来却有相当难度的课程。在教学过程中必须尽快让学生掌握材料科学基础的学习方式,跟上上课节奏,学生才能有效地掌握这门课程。这就要求在教学过程中必须改革传统的灌输式教学方法。在教学实践中通过借鉴前人的经验和总结自己的教学过程中的教训,在教学方法上主要做了以下改革:(1)通过现实的例子,引发学生学习材料科学基础的兴趣。针对材料是科技的基础这特点,通过材料的突破实现国家的科技发展的例子,增加学生学习材料科学基础的兴趣。同时,介绍材料科学基础与材料学专业其他课程的关系,使学生了解材料科学基础对其专业学习的重要性,引起学生对材料科学基础学习的高度重视。比如讲到晶体结构和由于掺杂引起的缺陷内容时,可以介绍当前高科技领域的发展基本都是通过掺杂引起材料能带发生变化的特点,激励同学们努力学习好这门大部分高科技所需要的基础知识,为将来祖国的发展作出自己的贡献;同时介绍材料学专业方面的所有专业课或多或少的与这们课有关联的特点,使学生了解材料科学基础对其专业学习的重要性。(2)以晶体结构为主线,引导学生深刻理解物质的结构决定性质的原理。为了让学生更好地掌握晶体的结构缺陷和性质的关系,如必须使学生真正理解什么是位错运动,实际晶体结构中的位错是什么样子。(3)通过课本目录,帮助学生学会总结,比较,归纳。材料科学基础内容琐碎繁多,在学习过程中,必须及时总结,比较和归纳,才能将材料科学基础的内容形成整体,不致前面学的很快就忘记,影响后面内容的学习。在教学过程中,针对学生在长期学习过程中不看目录的缺点,我们强调了目录的作用。比如学习完一章后引导学生根据目录回忆本章主要内容,象本章包括几节,每节主要讲了什么主要内容,其中重点是什么等。然后引导学生比较这一章与前面几章的联系和区别。最后,分析学过的内容,总结和归纳出要掌握的主要内容。(4)逐步引导,培养学生自学。大学教学的一个很重要的任务就是教会学生自学,学生在学习材料科学基础的过程中对于晶体的结构和三元相图,掌握起来具有较大难度,需要老师讲解,但对于原子结构和键合相对简单,可以通过在老师引导下,学生自学的方式掌握。这既节约了学习时间,又有效地锻炼了学生的自学能力。(5)通过做凝固和晶体结构分析实验使学生对书本上学的凝固原理和晶体结构缺陷有更深入的了解,如让同学门把铁碳合金熔化后浇注在砂型腔里铸造成钢锭,研究是凝固原理对其结构的影响,然后把凝固后的钢锭用XRD(X射线衍射),研究其晶体结构和晶体缺陷,同时把钢锭磨平后在显微镜下研究其晶相,找出成分中的马氏体等晶相组织,与书上的相图对比,加深对书本上知识的理解。

3.3 考试方式改革

课程成绩的考核是课程的重要内容,考核方式对教学效果有很大的指导作用。针对材料科学基础的特点和主要内容,我们将材料科学基础的考试方式分为三块,一是传统的闭卷考试,占总成绩的60%,二是平时成绩,主要是作业完成情况和每章主要内容总结等,占20%,三是实验情况,在学生的实际操作中,考察学生的动手能力,以及通过实验考察学生对课本内容的理解能力占20%。其中在闭卷考试中,我们强调了课本的基本知识,同时,有相当数量的综合题主要考察学生对所学的内容的综合应用情况,而概念题则考察学生对材料科学基础结构和本质的理解情况。

4.结论

通过以上教学改革探索,激发了学生学习材料科学基础的兴趣,加深了学生对材料科学基础这门课的理解,为后续的材料学专业的课程学习打下了坚实的基础。

参考文献

1 张莉芹.“材料科学基础”多媒体教学浅析[J].中国冶金教育,2008,5:58-59.

2 张建新. 《材料科学基础》本科教学的改革与实践[J].科技信息,2009,21:114-115.

3 王小槐,张照军.《材料科学基础 综合设计型实验教学的探索[J].实验室研究与探索,2004,23(1):62-64.

4 杜双明.材料科学基础课程教学质量保障系统[J]. 技术与创新管理,2008,29(6):649-651.

5 付猛,沈榕.论材料科学基础课程建设的基本原则[J].时代教育,2008,10:44-45.

6 王章忠, 张祖凤, 巴志新. 应用型本科《材料科学基础>>课程建设与改革[J]. 南京工程学院学报(社会科学版),2005,5(2):65-66

7 胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2002.

第12篇

摘 要:新能源技术、轻量化和智能化是未来汽车的发展方向,汽车材料的创新和应用是推动我国由世界汽车工业大国走向强国的必由之路。为了培养具有源头创新能力、车辆工程和材料科学与工程学科交叉的高端人才,该文介绍了同济大学“材料-汽车-新能源复合型人才培养模式创新实验区”的培养目标和课程体系设立,为我国学科交叉和创新型汽车工业人才培养探索新路。

关键词:车辆工程 材料科学与工程 学科交叉 源头创新 未来汽车

中图分类号:G643 文献标识码:A 文章编号:1674-098X(2016)08(a)-0150-03

Subject Crossing Talent Cultivation for Source Innovation of Future Automotive Industry

Lin Jian

(School of Materials Science and Engineering,Tongji University,Shanghai,201804,China)

Abstract:New energy, lightweight and intelligent technologies are the future direction of the automobile revolution.The innovation and application of automotive materials is the one route to change Chinese automobile industry from industrial giant to the power.In order to cultivate talents with source innovation ability and subject crossing in vehicle engineering and materials science & engineering,the Materials-Automobile-New energy innovation experimentation area for inter-disciplinary talent cultivation in Tongji University was introduced in this paper.A new kind subject crossing and innovative talent cultivation system for automotive industry was also discussed.

Key Words:Vehicle engineering;Materilas science and engineering;Subject crossing;Source innovation;Future automotive

自1886年第一辆汽车诞生以来,人类社会生产与生活发生了深切的变化。汽车工业的迅猛发展,已经成为许多工业大国的支柱产业。20世纪50年代起中国开始自主建设汽车工业,并于20世纪80年代起通过大规模引进和消化吸收、自主开发,我国的汽车工业已发展成为世界汽车大国,产量占全球第一,不过在汽车技术领域与国际先进国家仍有较大差距[1]。

随着人类社会对资源消耗的大幅增加,化石能源短缺、温室效应、环境污染已成为人类所面临的一个重大问题,而建立在大规模资源消耗的汽车工业则走到了一个十字路口。为适应社会发展的需求,新能源技术、轻量化、智能化已成为未来汽车产业发展的必由之路,诸如:锂电池、轻量化材料、传感器材料等一大批汽车新材料不断涌现,成为新一轮汽车工业革命的源头动力[2]。

1 我国汽车相关本科专业人才培养现状及需求

为了培养我国汽车工业研发、技术与管理人才,国内一些高校相继建设了车辆工程、汽车服务工程等一批汽车类专业,成效显著。但目前该类专业的人才培养模式与我国汽车工业发展模式相近,即偏重于汽车生产制造和汽车服务保障,各高校车辆工程专业培养方案同质化现象较为严重[3,4],在汽车技术源头开发创新人才培养上则有所欠缺。近年来,我国许多高校在车辆工程等本科专业教学实践中已逐渐认识到,单纯偏重于车辆机械工程领域的教学模式已不完全适应汽车产业的高端人才培养所需,因此,相继开展了跨学科培养试点。如同济大学汽车学院近年来除了在车辆工程专业中新增了“新能源汽车”专业方向外,还与工业设计相结合建立了汽车造型专业人才模式创新实验区。江苏理工学院将车辆工程与电子信息工程两个专业相结合开展了跨学科人才培养试点。许多高校相继开设了一些汽车材料类课程,为车辆工程或材料类专业课程体系中增加了一些跨学科元素。[5-7]

自古以来,材料科学始终是人类文明发展的基石、推动现代工程技术创新的源头动力。未来汽车技术的变革离不开在汽车材料领域的源头创新[8-11]。在目前国内高校车辆工程专业的课程设置中,一般偏重于机械、汽车技术方面的知识点教学,而对于汽车生产所用材料科学领域的知识点则多局限在应用范围,汽车工业人才的培养缺乏汽车材料科学与技术研发领域的积淀。

因此,为了适应国家对汽车产业发展的新需求,培养兼具汽车材料源头创新和汽车设计制造创新的高端研发和工程技术人才,同济大学材料科学与工程学院、汽车学院结合各自优势,强势联合,在国内首创“材料-汽车-新能源复合型人才培养模式创新实验区”,将新材料与新能源技术、汽车技术有机结合,重点培养服务于新一代汽车工程技术与汽车材料创新、具有源头创新思维的汽车产业领域高端人才,以满足国家发展之急需。

2 创新实验区建设理念及思路

从现有的本科培养体系来看,车辆工程专业是研究汽车等各类车辆的理论、设计及制造技术、培养从事上述领域高级研发和工程技术人才的本科专业,目前我国数十个高校开设了此类专业。该专业除了要求掌握必需的车辆工程专业知识外,还要求具备扎实的力学、电工、电子、机械、设计等方面的工科基础知识。其主干课程包括车辆工程、机械原理、理论力学、材料力学、机械设计、电工与电子技术、汽车构造、汽车理论、内燃机理论、汽车设计等。

材料类专业则是全国综合性高校大都拥有的本科专业,是一类涉及材料学、工程学和化学等方面知识的宽口径专业,其以材料学、化学、物理学为基础,重点研究材料成分、结构、加工工艺与其性能和应用。材料类专业又可细分为材料科学与工程、金属材料、无机非金属材料、高分子材料、复合材料等本科专业或专业方向,随着新材料研究和应用开发的不断深入,功能材料、纳米材料、光电子材料等一些新的本科专业也都有招生。

2014年在上海汽车集团考察时就强调,发展新能源汽车是我国从汽车大国迈向汽车强国的必由之路。未来汽车的发展必定围绕着新能源技术、轻量化节能减排和智能化方向发展,而要实现这一目标,就必须在汽车材料上的进行不断创新,才能进而实现汽车技术上的变革。

为了培养服务于未来汽车工业领域源头创新、能够从事新能源、轻量化、智能化汽车相关材料、装备及整车开发的综合性高级科学研究和工程技术人才,同济大学近年来通过不断深入研讨汽车、材料、新能源技术领域学科交叉及复合型人才培养机制,于2016年设立了“材料-汽车-新能源复合型人才培养模式创新实验区”,并正式对外招生,以培养兼具物理、化学、力学、机械、设计等工科基础知识以及材料科学与工程、车辆工程等必备专业知识的学科交叉复合型拔尖人才为目标,定位于依托材料科学与工程专业、同时与车辆工程专业开展学科交叉密切合作,在未来汽车产业紧缺人才培养上协同创新,为未来汽车工业的发展和新一轮变革提供源头推动力。

3 创新实验区的课程体系建设

在同济大学材料科学与工程本科专业课程体系中,分别开设了物理、化学类基础课程、电工、设计等工科基础课程以及大量材料类专业课程,专业总学分为175。而车辆工程为5年制本科专业,除了大量的车辆工程专业课程外,还开设了力学、机械、电子、电工等工程基础课程,5年总学分达211.5,即使在扣除其第二外语课程设置后,总学分也高达179.5学分。由于国家及学校对本科教育的总学分有严格的限制,因此,创新实验区的课程体系设置不能简单合并两个专业的课程体系,需保证学生有适宜的课堂学习强度和足够的课外学习时间。

因此,在设定实验区课程体系建设目标时,根据人才培养定位,遵循以材料科学与工程本科专业课程体系为基础、融合汽车工程核心课程教学、强化新能源技术、轻量化技术、智能化技术等特色交叉课程教学的培养模式,开展复合型人才的教学与培养工作。创新实验区课程体系在保证完整的材料类专业基础课程体系和必要的物理、化学类、电工、设计基础知识的基础上,增加车辆工程类专业基础课程和必要的力学、机械等基础课程教学内容。同时大规模开展材料-汽车-新能源技术学科交叉课程建设,在保证材料科学与工程专业必须的专业课程总学分和毕业要求基础上,同时满足车辆工程专业课程体系结构要求。

因此,在创新实验区的课程设置中,除了开设高等数学、普通物理、三大化学、电工学等理工科基础课程外,还增设了理论力学、机械原理、机械制图、制造技术基础等力学、机械类基础课程。在材料类课程中则保持了材料概论、材料科学基础、材料工程基础、材料研究方法等全部材料专业基础课程以及材料力学性能、材料物理性能、功能材料学、功能材料制备工艺基础等重要专业课程。对于车辆工程专业课程来说,则根据创新实验区培养目标开设了车辆工程导论、汽车理论、汽车构造、车用新能源及动力系统、自动控制原理等核心专业课程。与此同时实验区通过深入研讨开设了诸如汽车工程材料、新能源材料、轻量化汽车技术与材料、车用传感器技术与材料、新能源汽车产业概论等学科交叉课程,同时两院合作设立了材料专业与车辆工程专业综合实验、车用新能源技术及材料综合实验、汽车构造实习等一批学科交叉型实验实践类课程。这些学科交叉课程的设立不仅使创新实验区学分分布可满足材料科学与工程专业毕业要求,也能够满足学生在车辆工程专业继续深造和就业的要求。同时创新实验区的总学分控制在17分,保证了学生能顺利完成在4年本科阶段学习。(如图1)

为了进一步加强材料-汽车-新能源技术学科交叉领域的高端人才培养,创新实验区采用本-硕-博贯通式复合型人才培养模式,即学生通过本科阶段学习训练,完全具备同时在材料科学与工程、车辆工程专业继续学习深造、工作的能力。学生可以通过选拔进入材料科学与工程或车辆工程专业的研究生阶段学习,同时也提供赴美、英、法国等知名高校进行国际联合学位培养的机会,以培养在汽车工业领域国家急需之才。学生也可以经过本科学习直接进入汽车、新材料、新能源等相关行业工作。

4 结语

创新实验区的学生经过创新实验区的跨学科模式人才培养,将兼具材料学科和车辆工程的专业知识,材料研究和汽车工程开发相结合,在车用材料开发时直接掌握汽车应用之需,而在汽车研发和生产、维护时则明晰各类车用材料的特点和可能面临的挑战。材为车用,车以材先,对于现代汽车工业的发展和未来汽车技术源头创新具有重要意义。同济大学将在创新实验区的建设中不断探索,优化并健全实验区课程体系,并由学科交叉型本科教学逐渐向教学、科研并重的研究生跨学科培养延伸,并希望在不久将来建设成一个汽车材料相关学科交叉新专业,为我国汽车工业的创新发展提供强力支持,同时为高等教育跨学科融合式人才培养树立典范。

参考文献

[1] 吴斯.追逐数十载 中国汽车工业落后之痛缘何还在[N].现代物流报,2016-5-13(C3).

[2] 唐科祥.浅谈汽车未来发展趋势[J].企业科技与发展, 2016(4):148-151.

[3] 王旭飞,康芹,施绍宁,等.地方院校车辆工程专业培养方案的研究[J].中国现代教育装备,2016(4):50-52.

[4] 陈茹雯,张雨.车辆工程专业同质化现象探析[J].科学大众-科学教育,2014(11):156.

[5] 张兰春,赵景波,刘晓杰.车辆工程专业跨学科人才培养模式的探讨[J].江苏理工学院学报,2014,20(6):112-114.

[6] 王天国,罗成,李建.面向汽车工业的材料科学与工程专业应用型人才培养模式的研究[J].时代教育,2015(18):5.

[7] 常颖,李晓东,魏志勇.汽车材料类课程整合及教学模式改革研究[J].实验室科学,2014,17(6):190-192.

[8] 牟宁博.关于汽车新材料的应用现状及发展探讨[J].化工管理,2016(4):89.

[9] 周贺祥.汽车用新材料的应用进展[J].化工新型材料,2016,44(2):41-42,45.