时间:2022-12-06 17:19:39
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇生物技术应用,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
1 我国的环境状况
随着我国经济的不断发展,环境污染问题越来越严重,近年来虽采取了大量控制措施,但环境污染的趋势仍在继续。如何在经济高速发展的同时控制环境污染,改善环境质量是我国当前亟待解决的重要问题[1]。在环境保护中,从源头上防止污染是实现经济增长和改善环境所必须执行的技术策略[2]。绿色技术崭露头角,理想的绿色技术是采用无毒、无害的原料、催化剂和溶剂,采用高选择性、极少副产品的反应,实现零排放[3]。随着生物技术研究的进展和人们对环境问题认识的深入,现代生物技术为环境污染问题的解决提供了重要依据。
2 生物修复技术
环境污染物的清除有多种方法,其中常用的方法是是物理和化学方法,这些方法虽然行之有效,但通常成本很高,而且还容易造成二次污染。采用生物清除环境中污染物的生物修复技术则极具应用前景,具有极大的潜力。生物修复是指在一定的条件下,利用微生物、植物和动物降解、稳定和去除环境中的污染物,使受污染生态系统的正常功能得以恢复。利用生物修复技术可以削弱乃至消除环境污染物的毒性,降低污染物的健康风险[4]。生物修复技术包括微生物修复、植物修复。微生物修复在生物修复技术中处于主导地位,近年来国内外对微生物修复技术的研究非常重视。Fulthorpe等从巴基斯坦土壤中分离出一株微生物,能矿化2,4-D,还发现添加硝酸盐、钾离子和磷酸盐能增加降解率[5]。植物修复是利用绿色植物来转移、容纳或转化污染物使其对环境无害。植物修复的对象是重金属、有机物或放射性元素污染的土壤及水体。研究表明,通过植物的吸收、挥发、根滤、降解、稳定等作用,可以净化土壤或水体中的污染物,达到净化环境的目的。中国科学院水生生物研究所在湖北黄石完成的污水净化和污水资源化双重功能的新型稳定塘设计实验证明,水生植物能够去除N、P,能达到一定的净化效果[6]。
3 现代生物技术的特点
现代生物技术是指以DNA技术为先导,包括微生物工程、基因工程、细胞工程、酶工程、蛋白质工程和生物修复技术在内的一系列生物高新技术的统称[7]。自20世纪80年代以来,生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。现代生物技术具有以下几个特点:
(1)利用微生物,少部分利用植物作为环境污染控制的生物。(2)应用环境生物技术处理污染物时,最终产物大都是无毒无害的稳定的物质。(3)利用生物方法处理污染物通常能一步到位,避免了污染物的多次转移。(4)生物处理具有更高的效率,更低的成本和更好的专一性。(5)生物技术的产品或副产品基本上都是可以较快生物降解的,并且都可以作为一种营养源加以利用。
4 现代生物技术在生物修复中的应用
生物修复技术的最大特点是可以对大面积的环境污染进行治理。生物修复技术的发展最早可追溯到20世纪50年代,Martin Alexander与他的学生开展了农药在土壤中可降解性的研究,为生物技术在环境保护中的应用打下了基础[8]。至70年代,随着环境技术和微生物学的快速发展,生物修复技术也有了长足的发展。运用现代生物技术构建高效菌,加强微生物对农药等污染物的降解能力,提高降解速率。生物强化技术可有效提高有毒有害污染物的去除效果,将生物强化技术融入到传统的生物修复中,并结合现代分子生物技术提供的新方法、新手段进行监测和评价,已成为生物修复发展的一种趋势。通过对微生物的研究得知,微生物修复的最佳温度在30℃,李荣等从受阿维菌素农药污染的土壤中分离出一株能高效降解阿维菌素的菌株AW70,这菌株在30℃-37℃的范围内降解率最好,能达到80%以上,而低温和高温对降解有一定的抑制作用[9]。生物修复在农药污染的应用外,还在石油污染、水体污染修复中应用广泛。20世纪80年代以来生物修复技术开始应用于石油污染治理。污水的生物净化是利用微生物自身的生命活动对污水中的有毒物质进行迁移和转化,从而达到净化目的的处理方法。
5 现代生物技术的问题与展望
近30年来现代生物技术的多数内容已经渗透到环境工程领域中。有应用前景的领域包括废物的高效生物处理技术、污染事故的现场补救、污染场地的现场修复技术等许多方面。现代生物技术深入到我们生活领域中,给我们带了重大作用。但生物技术也带了许多问题。通过生物技术产生的新菌种从实验室走到田间,可能会破坏生态平衡,带来生态灾难。还有军事政治家利用生物基因制造生物武器,利用基因重组技术,复制大量致病微生物的遗传基因,并放入到武器中。给人类带来新的忧患。现代生物技术带来的问题不容忽视,要提高研究人员的意识,加强国际合作和强化社会责任机制。通过对现代生物技术的伦理构建,使其能够更好的推动人类社会的发展。
纵观现代生物技术及其产业的发展,其前景是美好的,大力发展现代生物技术及其产业已成为世界各国经济发展的战略重点。专家预测现代生物技术创新的将伴随人类基因组计划的完成而到来,以基因组为基础的生物技术产业将成为21世纪的朝阳产业,它的巨大经济效益吸引着投资商和企业汇集于这一领域,现代生物技术将进入广泛的大规模产业化阶段,像当年工业革命一样,使人类的生活发生根本性的变化。
【参考文献】
[1]刘艳丽.现代生物技术在生态环境及污染治理中的应用[J].煤矿现代化,2009,4.
[2]周光召.将绿色科技纳入我国科技发展总体规划[J].环境导报,1995(2):21-22.
[3]朱国萍.现代生物技术在环境科学中的应用[J].安徽师大学报,1998(21):98-101.
[4]沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002,356.
[5]Fulthorpe RR, Rhodes AN, Tiedje JM. Pristine soils mineralize 3-chlorbenzoate and 2,4-dichloro-phenoxyacetate via different microbial populations[J]. Appl. Environ. Microbiol., 1996,62(4):1159-1166.
[6]陈金霞,徐王华,张小莉.生物修复技术在污染治理中的应用[J].上海化工,2000(9):4-7.
[7]林海.现代生物技术在环境保护中的应用[J].中国高新技术企业,2010(19):74-75.
1PCBs污染土壤修复技术
生物修复主要依靠微生物、植物和土壤动物吸收、代谢、降解污染物,最终使其无害化,具有对环境扰动小、不产生二次污染、运行成本低等特点.该技术主要分为两类,即植物修复和微生物修复.由于PCBs疏水性强、生物可利用性低,因此会阻碍植物对它的吸收与转化,从而影响植物修复效果.而优良的PCBs耐受或降解植物的缺乏也在一定程度上限制了该技术的推广应用.微生物修复常采用2种方式[21]:一是生物激励,通过向土壤中添加有机物如葡萄糖或者其他营养元素如N、P等,以促进土著微生物生长,达到降解污染物的目的;二是生物强化,即向土壤中添加外源的高效降解菌(或含有高效降解菌的载体),以促进土壤中污染物的降解.在实际应用过程中,通常都是将这两种技术相结合,以期达到最佳的修复效果.PCBs是人工合成的难降解化合物,其所污染的环境必须经历一个相当漫长的时期才能自然驯化出一些具有降解PCBs能力的微生物,进而转化分解PCBs,其效率较为低下.因此,通过人工筛选获得高效的PCBs降解菌,将其扩大培养后投入污染土壤中加速PCBs的降解,是一种十分可行的技术手段.目前研究工作者已经从环境中分离出了许多能够降解PCBs的微生物,主要分布在假单胞菌属(Pseudomonas)、红球菌属(Rhodococcus)、产碱杆菌属(Alcaligenes)、伯克霍尔德氏菌属(Burkholderia)及鞘氨醇单胞菌属(Sphingomonas)等多个属,代表种有真养产碱杆菌(AlcaligeneseutrophusH850)、伯克霍尔德氏菌(Burkholderiasp.LB400)和假单胞菌(Pseudomonassp.KF707)[22-24].在实验室条件下,微生物降解PCBs的效果往往比较理想,但在实际应用中,由于抗毒害能力差、被原生动物吞噬、与土著微生物竞争处于劣势等原因[25],导致外源投加微生物的生物量及代谢活性迅速降低,污染物降解能力也随之下降.因此,如何使外源微生物定殖于原位环境中并稳定发挥其功能,一直是国内外学者关注的焦点,而固定化微生物技术的兴起则为解决这一问题提供了新思路.
2固定化微生物技术及其在土壤修复方面的研究现状
2.1固定化微生物技术固定化微生物技术是指通过物理或化学的方法将游离的微生物与特定的载体相结合,使其固定在某一空间区域内,以提高微生物细胞的浓度、保持较高的生物活性并能反复利用的方法[26].微生物被固定后,载体为微生物提供了一个相对稳定的生存环境[14];载体作为一种屏障,能在一定程度上减轻土著微生物带来的竞争压力、削弱原生动物的吞噬作用[15];成型的固定化颗粒中微生物细胞密度大、代谢活性较强.这些特点使得固定化微生物具备了更好的环境适应能力和应用价值.载体的种类和固定化方式是决定固定化微生物性能的关键因素.良好的载体需具备机械强度高、理化性质稳定、物理性状优良、寿命长、无毒、不溶于水、价格低廉及易制备等特点[27].目前研究与应用中常见的微生物固定化载体材料主要分为4类:无机载体、天然高分子载体、人工合成高分子载体及复合载体[28-29].这4类载体各有优缺点,其中无机载体如蛭石、硅藻土以及天然高分子载体海藻酸钠、琼脂糖等均来源于自然环境,价格低廉且不易造成二次污染,是制备固定化微生物的首选载体,将其应用于环境修复方面的研究报道也较为丰富[17,30-31].此外,固定化方法也会对微生物的生长和活性造成不同程度的影响.因此,必须根据固定化微生物的用途及其应用的环境选择合适的固定方法.吸附法、包埋法、共价结合法和交联法为4种最主要的微生物固定化方法,其各自的特点见表1[26,28].交联法和共价结合法制备的固定化微生物细胞活性相对较低,而且传质阻力大、制备成本高,目前仍然处于实验室研究阶段.吸附法与包埋法对细胞活性影响小,而且制备过程比较简单,所以是目前应用较为广泛的微生物固定化方法[32].2.2固定化微生物技术在有机污染土壤修复方面的研究现状固定化微生物技术兴起于20世纪80年代,运用该技术处理含酚废水、含油废水和味精厂废水[33-37]等高浓度有机废水时均取得了良好的效果.但是到目前为止,固定化微生物技术在土壤修复方面的研究仍然处于起步阶段.其中,利用固定化微生物技术降解土壤中的残留农药及多环芳烃方面的研究报道相对较多.Su等[15]以蛭石为载体,吸附固定毛霉(Mucorsp.SF06)及芽孢杆菌(Bacillussp.SB02),用于降解土壤中的苯并[a]芘.42d内,苯并[a]芘的降解率高达95.3%,而游离菌组的降解率仅为79.6%.Balfanz等[38]将用粘土吸附固定的产碱杆菌(Alcaligenessp.A7-2)投入反应器中,提高了土壤中对氯苯酚的降解速率.吸附固定的过程比较简单,但其缺点在于微生物与载体结合不够紧密,在使用过程中微生物易从载体上流失.而包埋法则能有效克服这一缺点,所以包埋法以及包埋法与吸附法相结合的微生物固定化技术也受到了广泛关注.Lin等[14]把粉末活性炭加入到海藻酸钠凝胶包埋体系中固定黄孢原毛平革菌(PhanerochaetechrysosporiumBKM-F-1767),制得的固定化颗粒对五氯酚的降解能力优于游离菌,而且还具备了污染物吸附性能.范玉超等[17]采用竹炭吸附苍白杆菌(Ochrobactrumsp.AHAT-3),并辅以海藻酸钠包埋,所得到的固定化颗粒在28d内对砂姜黑土和红壤中阿特拉津的降解率分别为51.9%和52.8%,均比添加游离菌的试验组高出约10%.Wang等[19]的研究结果表明,在采用海藻酸钠和聚乙烯醇包埋微生物时,添加活性炭粉末有助于固定化颗粒形成良好的孔隙结构、利于物质传输和微生物生长.固定化微生物技术在降解有机污染物方面的优越性已经引起了越来越多的关注,而开发多样化的固定化技术则会成为研究的重点.2.3固定化微生物技术在PCBs污染物修复方面的研究现状国内外有关应用固定化微生物技术修复PCBs污染土壤的研究报道十分少见.现有研究主要集中于分离PCBs降解微生物、研究微生物对PCBs代谢谱和代谢产物以及分析相关功能基因和酶的结构[39-43].直接投加微生物修复PCBs污染土壤的研究也处于探索阶段[44-46].20世纪末美国通用电子公司尝试通过投加微生物并结合翻耕等技术实地修复PCBs污染土壤,最终发现土壤的温度、湿度及有机质含量是影响微生物降解PCBs的重要因素[47-49].2011年,Tu等[50]报道了一株具备PCBs降解能力的苜蓿中华根瘤菌(Sinorhizobiummeliloti).室内模拟试验结果表明,该菌不仅能提高土壤中PCBs的降解率,而且能促进土著细菌与真菌生长,预示着该菌株具备较高的应用价值.近十年来开始有研究者关注固定化微生物对PCBs的降解(表2).Mukerjee-Dhar等[12]首次采用海藻酸钙包埋的混浊红球菌(RhodococcusopacusTSP203)降解水体中的PCBs,发现固定化的菌株具备更持久的PCBs降解能力:半连续降解试验表明,在第一个降解周期结束后,游离菌的PCBs降解活性基本丧失,而固定化菌株的PCBs降解活性可维持至第三个降解周期.聚氨酯泡沫也是一种常用的载体,Na等[51]用其包埋假单胞菌(Pseudomonassp.SY5)并获得了高活性的固定化颗粒,其对Aroclor1242中不同PCBs同系物的降解率要比游离菌高5%~40%.随后有学者尝试运用吸附型载体固定PCBs降解微生物、构建生物膜反应器,用于降解水体中的PCBs.Borja等[53]以水泥颗粒为载体设计的简易生物膜反应器运行5d后,Aroclor1260的降解率高达95%左右.Diana等[54]以聚氨酯泡沫和磨砂玻璃珠为填料,通过添加多种微生物所构建的生物膜反应器能有效的降解多种PCBs和氯代苯甲酸(chlorobenziocacids,CBAs).该研究结果表明,生物膜结构能有效抵御环境冲击对微生物造成的不利影响,从而保证微生物稳定的发挥其功能。目前,仅有少量研究涉及固定化真菌修复PCBs污染土壤.Fernández-Sánchez等[55]以甘蔗渣为主要基质培养黄孢原毛平革菌(PhanerochaetechrysosporiumH-298),并用其修复PCBs污染土壤.结果表明附着在甘蔗渣上的真菌能定殖在土壤中并加速土壤中PCBs的降解.而且外源真菌和土著微生物间能建立协同关系,使得土壤中的异养生物活性提高,并促进土壤中PCBs的降解.Federici等[56]用玉米秸秆颗粒培养虎皮香菇(LentinustigrinusCBS577.79),使该菌在生长过程中逐渐与秸秆颗粒紧密结合.土壤修复试验结果显示,这种真菌能显著提高Aroclor1260的降解率,并能促进土壤微生物多样性的恢复.生物质材料不仅能作为真菌附着生长的载体,而且还能为真菌的生长提供营养,这两种效用确保了真菌稳定地定殖在土壤中,持久发挥其功能.故在探索真菌固定化方法的过程中,扩大生物质载体材料的筛选范围是非常有必要的.而以PCBs降解菌为对象、选择适当的载体材料、结合不同的物化技术制备出高性能的固定化微生物,并应用其修复PCBs污染土壤是值得深入探究的.虽然迄今为止已经发现了大量具备PCBs降解功能的细菌,但尚未出现与固定化细菌降解土壤中PCBs相关的研究报道.本课题组从长期受PCBs污染的土壤中获得了1种微生物混培物和1株飞鱼鞘氨醇菌(SphingobiumfuliginisHC3,GenBank登录号为KC747727).它们均能降解氯取代数小于4的PCBs同系物.研究还发现当微生物吸附在以水稻秸秆为材料制备的生物炭上后,其细胞能维持较高的代谢活性.因此我们尝试以生物炭为主要载体固定PCBs降解菌,以期获得能适用于PCBs污染土壤修复的固定化微生物.
3应用固定化微生物技术修复PCBs污染土壤的可行性
虽然目前有关采用固定化微生物技术修复PCBs污染土壤的研究报道仍然较少,但应用该技术修复多环芳烃、石油及农药等有机物污染土壤方面的研究已经取得了一定的进展.这些有机物和PCBs具有类似的性质,如具有生物毒性、疏水性强、生物可利用性较低.Su等[15,57]以蛭石和玉米芯颗粒为载体、Chen等[58]以生物炭为载体,制备固定化微生物降解土壤中的多环芳烃;Xu等[59]以花生壳粉为载体、Liang等[60]以活性炭和沸石为载体,制备固定化微生物修复石油污染土壤;Lin[14]等采用凝胶包埋法(辅助活性炭)制备固定化微生物降解土壤中的五氯酚;范玉超等[17]用包埋法制备固定化微生物降解土壤中的阿特拉津.这些研究都表明在土壤中添加固定化微生物降解有机污染物的效果优于直接添加游离微生物.其主要原因为微生物被固定后,载体形成的屏障能在一定程度上屏蔽土著微生物带来的竞争压力、抵御环境因素变化对微生物的冲击,而且适当的固定化方法还能改善微生物的代谢活性[12-16].因此,运用固定化微生物技术修复PCBs污染土壤具有一定的可行性.而且在土壤原位修复过程中,固定化微生物技术的实施工艺简单、对土壤生态环境的扰动小,使这项技术具备了较高的推广价值.此外,目前研究工作者已经筛选出了许多能降解PCBs的微生物,其中能有效降解PCBs并且降解途径已经被阐明的代表种有红球菌(Rhodococcussp.RHA1和Rhodococcussp.R04)、伯克霍尔德氏菌LB400、和弯曲无色细菌(AchromobactergeorgiopolitanumKKS102)[61-64].这些宝贵的微生物资源将为制备固定化微生物提供物质基础.能用于固定微生物的载体材料十分丰富,如天然载体硅藻土、蛭石、琼脂糖、海藻酸钠、农作物秸秆以及人工合成载体聚乙烯醇、硅胶和聚酯酰胺泡沫等都比较容易获取或制备,为研究与开发不同性能的固定化微生物提供了充足的资源.其中,蛭石和农作物秸秆常被用作吸附载体固定微生物[15,55-56],而海藻酸钠和聚乙烯醇则可作为交联剂包埋微生物[12,14,19].
4今后研究的重点
虽然固定化微生物技术在环境修复领域中表现出了巨大应用潜力,但其在PCBs污染土壤修复中的研究尚处于起步阶段,还有许多问题尚待解决:1)固定化微生物促进土壤中PCBs降解机理的探究.现有研究主要依据目标污染物的降解效率间接评价固定化微生物技术的优劣.但无法深层揭示在实际环境中,究竟是固定化微生物的哪些特点确保了它对目标污染物的降解效率高于游离菌.借助显微技术、原位杂交技术以及实时荧光定量PCR等技术,并尝试开发新的研究手段,用于直接表征土壤中固定化颗粒的形态与结构、分析固定化颗粒表面的微生物种群、检测固定化颗粒中降解菌的数量与活性、评价目标污染物是否能与固定化颗粒中的降解菌有效接触,将有助于进一步揭示固定化微生物促进土壤中PCBs降解的机理,还有助于更为准确地评价固定化微生物技术的应用价值.2)环境友好型载体的选择.投放到土壤中的固定化微生物难以回收再利用,因此筛选稳定性好、成本低廉且易获取的环境友好型材料至关重要.聚氨酯泡沫是一种常用的微生物固定化载体,具有理化性质稳定、易制备和成本低的特点[51].但由于这种材料很难自然降解,因此具有造成二次污染的风险,不适用于土壤原位修复.而一些生物质材料如小麦秸秆、蔗渣和玉米秸秆等不但能作为微生物的附着载体,提供微生物的生长所需的营养物质,而且还能充当疏松剂、提高土壤的透气性,特别适用于真菌的固定化[15,55-56].许多研究表明黑炭也是一种优良的载体.黑炭具有多孔结构,能够吸附大量的微生物并为其提供生长空间,还能充当物理屏障、减轻土著微生物带来的竞争压力[58,65].而黑炭丰富的表面官能团和较高的比表面积又能使其吸附和浓缩环境中的有机污染物[14,58],保证降解菌与污染物能相互接触,进而提高生物降解效率.而传统理论则认为黑炭加入土壤后,能强烈吸附有机污染物,从而降低其生物可利用性,不利于微生物对有机污染物的降解[66].因此,此类对有机污染物具有强烈吸附能力的材料是否适合作为固定化微生物的载体,仍有待深入研究.3)强化土壤体系的传质能力.土壤的传质能力远远低于水体,而固定化微生物颗粒自身亦存在一定的传质阻力.这两种阻力将在一定程度上阻碍微生物与目标污染物及营养物质的接触,进而干扰其功能作用的发挥.为了提高土壤体系的传质能力,一方面需要改善固定化颗粒自身的传质性能.如Wang等[19]以海藻酸钠和聚乙烯醇为交联剂、以活性炭粉末为改良剂,采用反复冻融技术,最终获得了具有良好孔隙结构、利于物质传输和微生物生长的固定化颗粒.或是筛选适合微生物附着生长的材料,采用以吸附法为主的技术制备出自身传质阻力较低的固定化微生物.另一方面,选择适当的原位调控方法如翻耕、通风等方式,提高土壤微环境中的传质水平,促进微生物、营养物质和污染物有效接触,确保以固定化微生物为核心的“微反应器”有效运转.4)多种微生物联合固定.PCBs的完全降解一般需要厌氧还原脱氯形成低氯代PCBs、低氯代PCBs氧化形成氯代苯甲酸及氯代苯甲酸矿化3个过程[67-69],分别由3类不同的微生物完成.其中氯代苯甲酸是多氯联苯好氧降解过程中最易积累的一类中间代谢产物,该类化合物能通过抑制微生物生长而间接阻碍PCBs的降解[70-71].因此,将这几类不同的微生物联合固定(尤其是好氧氧化过程中的两类微生物)、实现PCBs的完全降解、避免有毒中间代谢产物的积累也是相关研究应当关注的问题.
作者:胡金星 苏晓梅 韩慧波 沈超峰 施积炎 单位:浙江大学环境与资源学院环境保护研究所 杭州市环境保护科学研究设计有限公司
1儿童ADHD的诊断
1.1儿童ADHD脑电生物技术诊断经临床实践研究发现,患有ADHD的人群大脑背外侧额叶与眶周存在明显的病变,并且这一病变在脑电图中得到相应显示〔10〕。研究结果表明患有ADHD儿童存在神经生物学的发育缺陷,主要表现为脑电波慢波(θ)活动多于正常儿童,并伴有β波活动减少,尤其是右前额叶脑电频率低于正常儿童〔11〕。儿童注意力缺陷与多动障碍测试仪是将这一脑电生物特点与现代数字化技术相结合的一个诊疗仪器,目前应用于辅助临床诊断的有美国研发的ADHD脑电波评估测试仪、A-620脑电神经生物反馈仪以及国内非针对ADHD诊断的脑电波测试仪。1.2传统诊断方法与脑电生物诊断方法的比较传统诊断方法主要以单纯问诊与父母主诉为主,带有一定的主观片面性,缺乏可操作化和标准化,儿童ADHD与其他儿童精神疾病由于症状相似而难以鉴别〔12-13〕,这些因素均导致了儿童ADHD的确诊率扩大化,甚至出现过度医疗等后果。由于需要临床医生将ADHD与其他儿童精神疾病相鉴别,因此需要临床医生具备丰富的临床经验。脑电生物技术应用于儿童ADHD的诊断后,将使得诊断信息量化,并能够帮助临床医生更好的诊断儿童ADHD,以避免因儿童顽皮、家长陈述片面性带来的误诊。脑电生物技术能够在儿童诊断中记录相关波形变化,并且为评价治疗效果提供了比较参数信息,这大大降低了因非症状因素造成的误诊和漏诊的可能性。
2儿童ADHD的治疗
2.1儿童ADHD传统治疗儿童ADHD的传统治疗常选用中枢兴奋剂、非中枢兴奋剂、抗抑郁剂、抗焦虑药物、安定药和情绪稳定剂。中枢兴奋剂哌醋甲酯(利他林)为常用治疗药物,它能够改善ADHD主要症状,对完成课堂学习任务和社会功能都有正性作用,并能够减少攻击、对抗和破坏行为等症状〔14-15〕。近些年,我国中医学者也有运用辨证论治、中药汤剂、针灸等方法治疗儿童ADHD达到较好疗效的临床治疗报告。临床实验研究显示,中药在治疗儿童ADHD短期效果优于或等于西药,长期疗效也较稳定,不良反应少,无成瘾性〔16-18〕。行为干预方法是需要结合患儿的个体情况制定具体的、个性化的干预方法,并且需要在老师、家长的全力配合下才能进行。心理干预过程中,不能单一依靠惩罚来达到矫正行为,需要具体问题具体分析,找问题发生的根本原因。这样就需要家长和老师具备一定的心理学知识,积极地给予孩子创造良好的学习生活环境,并且保证与ADHD患儿之间进行良好的沟通。2.2儿童ADHD脑电生物反馈治疗脑电生物技术治疗作为一种新兴治疗儿童ADHD的技术近年来发展很快,它的基本原理是通过训练来强化15~18Hz的感觉运动节律波,抑制4~8Hz的θ波,并通过自身调节来改变脑电图波形,以强化对大脑有利的波形、抑制对大脑不利的波形,从而改变脑功能〔19〕。有研究发现〔20〕,此治疗措施相比传统的心理学行为干预和药物治疗效果要好,并且经该方法治疗后患儿各项情况明显好转,且具有持久性特点。脑电生物技术治疗除了对儿童ADHD三大主要症状有明显改善之外,还具有改善视觉、听觉商数,达到视觉、听觉相互协调统一的效果,使得注意力四维同步提升〔21-22〕。2.3传统治疗方法与脑电生物技术治疗方法的比较西药虽然具有起效快、症状缓解明显等特点,但绝大多数药物的半衰期短、不良反应大,若长期用药或用药剂量过大还会出现呆板和意志力减退等不良反应,从而导致患者服药依从性差、治疗效果降低〔23〕。采用中医中药方法治疗儿童ADHD虽然在临床已经取得初步成效,但是缺乏多中心、大样本支持,所以用药微量化、客观化、标准化还未能具体实现。由于家长对于药物产生的不良反应是否会影响儿童生长发育存在一定担忧,因此较少家长会选择药物治疗这一方法〔24〕。在临床上,为了避免给儿童造成伤害,对于低龄、症状较轻的儿童一般不采用药物治疗而选择行为干预的方法。因为一方面低龄儿童处于大脑发育时期,此时用药可能会影响大脑正常发育过程,另一方面该类药物对于患有其他基础疾病如癫痫、高血压、心脏病等患儿具有一定局限性〔25〕。行为干预能够较好地矫正注意力缺陷多动障碍患儿的行为,但是由于干预周期长,环境与心理因素对心理学行为干预效果影响较大,如在患儿与家长、家长与老师、患儿与老师之间的矛盾关系存在的情况下,患儿常常在治疗过程中出现症状反复的现象。与药物治疗相比,脑电生物技术治疗具有适用人群广、效果持久、无不良反应等特点,通过脑电生物技术对儿童ADHD进行非药物干预有望改善我国治疗儿童ADHD药物滥用的现状;其与心理学行为干预相比,它也具有治疗周期短、效果明显、影响因素小等特点。
3脑电生物技术在儿童ADHD诊疗领域的应用前景
儿童ADHD在全球普遍存在,据有关资料统计表明,随着现代化进程的加快,儿童注意力缺陷现象呈现逐年上升趋势。每年因为儿童ADHD给社会带来的经济损失也是十分巨大的,据美国1995年的统计,光公立学校1年中用于ADHD儿童特殊教育的经费就达30亿美元。至于因为ADHD造成的社会问题,如暴力行为行为,更是难以用数字来表达。由于脑电生物技术安全无损伤,且对ADHD儿童提供的诊断依据较为客观、科学,因此在国外已把脑电生物技术作为儿童ADHD的辅助诊断,并且已经取得显著成效。不仅如此,近年随着科技的进步,应用脑电生物技术治疗儿童ADHD已开始替代当前传统的心理学行为干预和药物治疗。脑电生物技术在儿童ADHD治疗中的应用不仅解决了传统心理干预周期长、疗效不显著、药物治疗不良反应大等难题,还具有易被患儿及家长接受、不受空间限制等优点,因此脑电生物技术在儿童ADHD的诊断、治疗过程中的作用正被越来越多的学者所青睐。关于脑电生物技术的研究还处于起步阶段,因此需要更多的专家与学者来参与儿童ADHD诊治的实践研究,这对实现早期防治儿童ADHD并提高我国现代医学诊治水平具有重大意义。
作者:尤淑霞 钟秀宏 田敏 徐纯林 单位:吉林医药学院
关键词:甘薯(Ipomoea batatas);现代生物技术;育种;诱变育种;细胞工程;分子标记;基因工程
中图分类号:S531;Q789 文献标识码:A 文章编号:0439-8114(2016)11-2721-06
DOI:10.14088/ki.issn0439-8114.2016.11.001
Application of Modern Biotechnology in Ipomoea batatas Breeding
YANG Han1,CHAI Sha-sha2,SU Wen-jin2,LEI Jian2,WANG Lian-jun2,SONG Zheng2,LIU Yi3,YANG Xin-sun2
(1.College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;2. Institute of Food Corps, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;3. Agronomy College, Yangtze University, Jingzhou 434023, Hubei, China)
Abstract:The modern biotechnology has overcome the difficulties which could not be solved in the past in Ipomoea batatas breeding.Mutation breeding, cell engineering, molecular markers,genetic engineering etc., are playing very important roles in Ipomoea batatas breeding for high yield, good quality,resistance to diseases and pests and other characteristics.The research and utilization of mutation breeding, cell engineering,molecular markers and genetic engineering in Ipomoea batatas breeding are reviewed in this paper.
Key words:Ipomoea batatas; modern biotechnology; breeding; mutation breeding; cell engineering; molecular marker; genetic engineering
甘薯(Ipomoea batatas)属旋花科甘薯属,为一年生或多年生蔓生草本,是中国的重要粮食作物、饲料作物和新型生物能源作物,具有极高的经济价值。甘薯含有60%~80%的水分,10%~30%的淀粉(支链淀粉含量高,易被人体消化吸收),5%左右的糖分,还富含人体必需的多种维生素(VA、VE、VB1、VB2、VC等)、氨基酸(赖氨酸含量较高)、蛋白质、脂肪、膳食纤维以及钙和铁等多种矿物质。甘薯中的活性化学物质(脱氢表雄酮)可以抑制癌症和预防癌细胞增殖[1]。因此,培育出高产、稳产、优质的品种及各类不同用途和种类的品种如食用、加工用、饲料用、茎尖菜用等[2]具有非常重要的现实意义。但是由于甘薯的高度杂合性、杂交不亲和性、遗传资源匮乏、遗传基础狭窄、优异近缘野生种利用困难和病虫害、病毒病危害严重[3],极大地制约了甘薯的生产和发展。但传统育种模式周期长,品种改良进度缓慢,难以满足发展需求。生物育种是目前应用推广最为迅速的技术,它突破了传统育种的局限性,有利于加速培育高产、优质、抗逆、广适的新品种。本文重点介绍近年来几种主要生物技术,包括诱变育种、细胞工程、分子标记辅助选择育种和基因工程在甘薯育种中的发展与应用。
1 诱变育种
甘薯是一种无性繁殖作物,其自然变异和人工诱变产生的变异,是甘薯育种重要的变异来源,因此诱变育种一直是甘薯育种的一条重要途径,也是发展比较早的一种技术。
在自然条件下,由于外界环境的变化和遗传结构的不稳定性,植物本身会发生自发突变,但是这类突变发生的频率较低。自然变异突变体的选择、鉴定是甘薯种质创新的主要途径。张连顺等[4]从抗薯瘟病的闽抗329中选育出了兼抗蔓割病、藤蔓旺盛的闽抗330,张永涛等[5]、李培习等[6]分别从高抗根腐病的徐薯18芽变体中选育出了兼抗茎线虫病的临选1号和富贵1号。
辐射诱变的方式包括χ射线、60Co处理、80 Gy γ射线处理、搭载返回式卫星进行空间诱变处理等。但诱发突变的方向难以控制,有利突变频率不够高。通过辐射诱变育种加以多年筛选获得了比较好的品种如较徐薯18高抗黑斑病的品系农大601[7]和抗线虫扩展、薯皮色同质、干物率高、食味优、高胡萝卜素突变体及淀粉类型和紫色素类型育种材料[8]。
化学诱变具有专一性强、突变频率高,突变范围大的特点,为多基因点突变,诱变后代的稳定过程较短,可以缩短育种年限。Luan等[9]用EMS处理鲁薯8号愈伤组织,并通过离体筛选,获得3个耐盐突变体株系(ML1,ML2,ML3)。王凤保等[10]用0.05%秋水仙素和2%二甲基亚砜混合水溶液处理秦薯1号甘薯种子,选育出高产、高淀粉、低β-淀粉酶活性、高蛋白质、高铁、早熟的短蔓型甘薯新品种短蔓3号。王芳等[11]用0.5% NaN3处理澳大利亚Au1990sp紫甘薯的胚性细胞团,选育出品种适应性广、产量高、品质佳、抗性强的甬紫薯1号。
2 细胞工程
甘薯细胞工程主要有体细胞胚发生、原生质培养、细胞悬浮培养、茎尖分生组织培养等,在种质资源创新、新品种选育和脱毒苗工厂化生产等方面具有广阔的应用前景。目前主要通过茎尖诱导体细胞胚胎的植株再生。利用甘薯茎尖培养诱导得到胚性愈伤后,通过液体振荡悬浮培养可以迅速增殖,利用农杆菌介导、基因枪、电激等方法研究甘薯的遗传转化。在此过程中,常常会出现自发变异,通过对这些突变体进行筛选,也可以用于甘薯新品种选育[12]。
甘薯容易侵染的病毒和类病毒种类较多,加上甘薯属于无性繁殖作物,病毒能够在植株体内不断增殖积累,使甘薯病毒病的危害逐年加重,造成了大幅度的减产。利用甘薯茎尖病毒含量低或不带病毒的特点,通过茎尖分生组织培养可以生产甘薯无毒苗。脱毒甘薯增产效果显著,根茎叶生长旺盛,光合效率高,抗逆能力强[13]。经检测确定为不带病毒的组培苗可以进行快繁和原种生产。
3 分子标记辅助选择育种
分子标记在甘薯遗传育种中的应用是利用标记将不同甘薯品种DNA序列上的多态性体现出来,可利用其进行种质鉴定、基因定位、遗传图谱构建和辅助育种等并最终应用到生产实践中。在作物遗传改良过程中,形态标记、细胞学标记和同工酶标记等已很难满足对它们的基因组进行更详细研究的需要。随着分子生物学的发展,产生了多种基于DNA多态性的分子标记技术,在甘薯育种中应用较多的是RAPD、AFLP、ISSR、SCAR和SNP等。
3.1 构建甘薯分子遗传图谱
由于甘薯的遗传背景较复杂,对甘薯基因组的研究较滞后,分子标记的数量和种类相对匮乏,分子遗传图谱的构建要落后于水稻、玉米等作物。Kriegner等[14]在2003年用AFLP技术构建了首张甘薯遗传连锁图,632个母本标记和435个父本标记分别排列在Tanzania的90个连锁群和Bikilamaliya的80个连锁群上,共定位了1 100个AFLP标记,平均遗传距离为5.9 cM。随着甘薯栽培种转录组测序的完成和分子标记技术的发展,李爱贤等[15]在2010年利用SRAP标记构建了漯徐薯8号和郑薯20连锁图谱,漯徐薯8号的81个连锁群由473个SRAP标记组成,总图距为5 802.46 cM,标记间距为10.16 cM,郑薯20的66个连锁群由328个SRAP标记组成,总图距为3 967.90 cM, 标记间距为12.02 cM。Zhao等[16]在2013年利用AFLP和SSR标记构建了徐781(高抗茎线虫病)和徐薯18(高抗茎线虫病)的连锁图,徐薯18的90个连锁群含有1 936个AFLP和141个SSR标记,总图距为8 184.5 cM,标记间距为3.9 cM;徐781的90个连锁群含有1 824个AFLP和130个SSR标记,总图距8 151.7 cM,标记间距为4.2 cM。这也是到目前为止标记密度最高、基因组覆盖率最广的甘薯栽培品种分子标记遗传图谱。
3.2 绘制指纹图谱,鉴定甘薯品种
甘薯是一种无性繁殖作物,其品种数量多、同种异名、同名异种的情况比较普遍,在甘薯的生产过程中容易出现品种间混淆的情况,使得品种鉴定困难,影响品种的改良和育种。随着分子生物学的快速发展,DNA分子标记技术已成为指纹图谱构建和品种鉴定的主要方法。指纹图谱能够在分子水平上鉴别生物个体之间的差异,可以有效克服形态和生化上的局限性,是甘薯品种鉴别的重要工具,在生产实践上具有重要意义。
目前用来作DNA指纹图谱的标记主要有RAPD、SSR、ISSR、AFLP、SRAP等。Arthur等[17]应用RAPD标记分析在美国8个州种植的甘薯品种“Jewel”的无性系,发现其中5个的多态性谱带在7.1%~35.7%之间,表明RAPD标记可以检测无性系中的变异。王红意等[18]研究表明通过RAPD标记产生的指纹图谱可以将30个中国甘薯主栽品种分为3类。罗忠霞等[19]采用EST-SSR标记,利用2对引物将52份甘薯品种区分开,建立了52份甘薯品种的指纹图谱。季志仙等[20]利用ISSR技术对不同引物获得的指纹图谱进行了分析,发现利用2对引物即可将供试的17份甘薯品种区分为4类。蒲志刚等[21]利用AFLP技术通过五对引物构建出47个品种南瑞苕的指纹图谱,将其分为5类。张安世等[22]利用SRAP技术通过2对引物构建出22种甘薯品种的DNA指纹图谱,将其分为7类,随后又利用ISSR技术通过3对引物将22种甘薯品种分为4类[23]。
3.3 甘薯基因定位和DNA分子标记辅助选择育种
甘薯许多重要的农艺性状如块根产量、品质(淀粉含量、胡萝卜素含量)、抗病性(茎线虫病、根腐病和黑斑病)等都属于多基因控制的数量性状,在甘薯分子连锁图谱的基础上,对重要农艺性状进行QTL定位,进而克隆相关性状的主效基因,是甘薯育种研究的重要方向。DNA分子标记辅助选择育种具有方便、快捷、准确等特点,且较少受季节、发病条件、发育条件、鉴定方法等因素的限制,可以在低世代进行早期选择,更适合目前育种的需要。目前该技术已广泛应用于甘薯的育种研究中。
Ukoskit等[24]利用甘薯易感根线虫病品种与抗根线虫病品种杂交,用760个RAPD引物对2亲本和F1分离群体进行分析,筛选出1个抗根线虫病的基因。柳哲胜[25]用RAPG法和改进的SSAP技术对农大603和徐薯18的基因组进行抗茎线虫病相关基因的分析,结果显示由片段54设计的引物在抗病和感病品种之间扩增出多态性带,推测片段54是与甘薯抗茎线虫病有关的RGA(Resistance gene analog),并得出甘薯MIPS基因可能与甘薯抗茎线虫病有关。周忠等[26]对高抗茎线虫病的徐781和高感茎线虫病的徐薯18的后代进行抗病性鉴定和RAPD分析,得到与抗茎线虫病基因相连锁的RAPD标记OPD0l-700,经证明,该标记可作为甘薯抗茎线虫病辅助育种的分子标记,并在甘薯育种尤其是抗病品种选育中发挥较大的作用。王欣等[27]利用对高抗亲本徐781和高感亲本徐薯18的F1分离群体的161个品系进行OPD01-700的克隆和测序,成功地将OPD689标记转化为SCAR标记,初步验证结果与田间鉴定结果基本一致,初步建立了甘薯抗茎线虫病育种分子标记辅助选择技术。袁照年等[28]以金山57×金山630的杂交F1分离群体为材料,按F1单株抗性分群,建立薯瘟病抗病池和易感池,分别以其为模板进行RAPD分析,结果显示其中S213-500在抗感池和易感池间显示多态性,可以作为抗Ⅰ型薯瘟基因的连锁标记,在鉴定甘薯抗I型薯瘟病方面具有应用价值。苏文瑾等[29]在已有的高抗根腐病品种徐薯18与高感品种胜利百号F1分离群体抗性鉴定的基础上,采用分离群体混合分析法(BSA)与AFLP技术相结合,发现显性标记Eco(45)-Mse(45)与感病基因连锁,对甘薯抗根腐病的遗传改良具有指导意义。蒲志刚等[30]以南薯88等12个抗感黑斑病品种为材料,建立了甘薯黑斑病的AFLP分子标记体系,并用该体系找到了与甘薯抗黑斑病紧密相关的特异性DN段,为甘薯抗黑斑病分子标记辅助育种奠定了基础。
吴洁等[31]利用甘薯高淀粉品种绵粉1号和甘薯低淀粉品种红旗4号杂交F1代分离群体采用SRAP分子标记,将1个与淀粉含量相关的QTL定位到绵粉1号遗传图的第三连锁群上。蒲志刚等[32]利用甘薯高淀粉品种绵粉1号与甘薯低淀粉品种红旗4号杂交F1代分离群体,在绵粉1号遗传图的第二连锁群上检测到E1M7-2可作为淀粉的临近QTL。李爱贤等[33,34]以高淀粉、低胡萝卜素含量的甘薯品种漯徐薯8号和低淀粉、高胡萝卜素含量的甘薯品种郑薯20杂交得到的F1分离群体,采用SRAP分子标记的方法在父本郑薯20的Z31连锁群上检测到1个与淀粉含量相关的QTL,并检测到17个与甘薯β-胡萝卜素含量相关的QTLs,其中10个定位在郑薯20图谱上,7个定位在漯徐薯8号图谱上。
3.4 甘薯转录组测序和分子标记的开发
转录组测序(RNA-seq)操作简单,不局限于已知的基因组序列信息,可获得低丰度表达基因,具有通量高、灵敏度高、成本低及应用领域广等优点。转录组研究是基因功能与结构研究的基础和出发点,利用新一代高通量测序,能够快速全面地获得某一物种目标细胞在某一特定状态下的全部RNA序列的信息,例如发现新转录本、了解基因的表达量、挖掘单核苷酸多态性(SNP)、结构性变异等[35]。目前,测序技术已成为分子生物学研究中最常用的技术。相比于其他作物,甘薯的基因数据资源极少,这给甘薯的分子生物学研究带来极大的不便。Gu等[36]应用Illumina的RNA-Seq技术对不同的甘薯组织与发育阶段进行高通量的转录组测序,通过对甘薯的转录组从头组装、基因注释和代谢通路分析,得到了大量重要的转录本信息,如淀粉合成、抗盐、抗旱、转座子和病毒等相关基因。Tao等[37]利用Illumina数字基因表达(DGE)标签分析甘薯的7个组织的转录组的差异,鉴定出大量的差异和特异表达的转录本,主要涉及病毒基因组的基因表达方式、淀粉代谢、潜在耐逆性和抗虫性等方面。
转录组测序的高通量特点使分子标记的大规模发掘得以实现。基于转录组测序开发的分子标记主要为SSR和SNP。Wang等[38]采用同样的方法获得56 516个unigenes,基于与已知的蛋白序列的相似性搜索,总共鉴定发掘出114个cDNA的潜在的SSRs。Xie等[39]通过对紫薯转录组的高通量测序,获得58 800个unigenes,发掘出851个潜在的SSRs。SNP是基因组中最普遍的遗传变异,有着分布广、数量多、遗传稳定性高、密度高、易于实现分析自动化等诸多优点,是构建遗传图谱、完成分子标记辅助育种的一种非常重要的遗传标记,新一代的高通量测序平台为SNP位点的检测提供了强有力的技术支持。许家磊[35]在淀粉含量、薯干产量和茎线虫病抗性差异明显的徐781和徐薯18的Illumina RNA-seq测序结果中已获得1 386个SNP候选位点的基础上,发现Tetra-primer ARMS-PCR可以检测出SNP分子标记,可以用于甘薯SNP分子标记的开发。苏文瑾等[40]利用简化基因组测序技术(SLAF-seq)对300份甘薯种质资源的大群体测序,通过生物信息学分析进行系统设计,筛选特异长度的DN断,构建SLAF-seq文库后高通量测序,通过软件分析比对,获得260 000个多态性SLAF标签,在多态性SLAF标签上共开发得到795 794个群体SNP位点。
4 甘薯基因工程
1983年世界首例转基因植物培育成功,标志着人类用转基因技术改良植物的开始,至今已有120多种植物转基因获得成功。近年来基因工程技术在农业作物育种领域已经取得成功并逐步推广,基因工程技术已成为普及应用最快的先进农作物改良技术之一。基因工程技术是提高作物产量和改良作物品质的有效途径,给人类带来巨大的社会和经济效益。相对于其他作物,甘薯基因工程的研究起步较晚。自1987年以来,许多学者陆续报道把抗性基因nptII和标记基因Gus转入甘薯,成功地获得了转基因的愈伤组织、芽或再生植株,为进一步转化目的基因改良甘薯积累了经验[41]。近年来,在应用基因工程提高甘薯蛋白质或淀粉含量、改善蛋白质氨基酸组成或淀粉组成、提高甘薯抗虫及抗逆性等方面取得了较大进展。
4.1 甘薯品质改良的基因工程
甘薯品质改良主要集中在淀粉、蛋白质和胡萝卜素方面。Shimada等[42]构建了编码甘薯淀粉分支酶的IbSBEII基因的dsRNA干扰载体并通过农杆菌转化进入甘薯基因组,转基因植株的淀粉具有较高的直链淀粉含量。Otani等[43]通过RNA干扰技术抑制甘薯淀粉粒附着性淀粉合成酶I(GBSSI)基因的表达,培育出不含直链淀粉的转基因甘薯植株。Takahata等[44]通过抑制淀粉合成酶Ⅱ(SS Ⅱ)的表达改变支链淀粉的结构降低甘薯淀粉的糊化温度。Santa-Maria等[45]从海栖热袍菌中克隆了一个编码极端嗜热α-淀粉酶的基因,通过根癌农杆菌介导的转化获得的转基因植株在80 ℃具有自发处理淀粉为可发酵糖的能力。
罗红蓉等[46]用根癌农杆菌介导获得了含人乳铁蛋白基因(hLFc)的甘薯抗性愈伤组织,为获得具有转人乳铁蛋白基因的甘薯材料奠定了基础。高峰等[47]获得了转玉米醇溶蛋白的转基因甘薯植株。脂联素(Adiponectin)具有抗炎、增加机体对胰岛素敏感性和降糖、抗动脉粥样硬化的作用。Berberich等[48]利用根癌农杆菌介导的转化获得表达Adiponectin cDNA的转基因甘薯植株。Kim等[49]利用RNAi沉默CHY-β基因,可以增加甘薯中的β-胡萝卜素的含量和类胡萝卜素含量。
4.2 甘薯抗病虫的基因工程
甘薯病毒、病虫害严重影响产量。Kreuze等[50]研究利用靶向编码SPCSV(甘薯褪绿矮化病毒)和SPFM(甘薯羽状斑驳病毒)序列复制酶的内含子剪接的发夹结构的RNAi策略通过根癌农杆菌转化甘薯,转基因植株对SPCSV和SPFMV的抗性显著增强。Muramoto等[51]的研究表明,转大麦αHT基因的甘薯植株的叶片和块根表现出对黑斑病菌的抗性。蒋盛军等[52]用根癌农杆菌介导法将OCI(水稻巯基蛋白酶抑制剂基因)导入甘薯品种栗子香中获得了转基因植株,对转基因甘薯植株对甘薯线虫病的抗性进行了初步研究。
[43] OTANI M,HAMADA T,KATAYAMA K.Inhibition of the gene expression for granule- bound starch synthase I by RNA interference in sweet potato plants[J]. Plant Cell Reports,2007, 26(10):1801-1807.
[44] TAKAHATA Y,TANAKA M,OTANI M. Inhibition of the expression of the starch synthase II gene leads to lower pasting temperature in sweetpotato starch[J].Plant Cell Reports,2010, 29(6):535-543.
[45] SANTA-MARIA M C,YENCHO C G,HAIGLER C H. Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase[J]. Biotechnology Progress,2011, 27(2):351-359.
[46] 罗红蓉,张勇为,张义正.根癌农杆菌转化甘薯高频获得抗性愈伤组织的研究[J].四川大学学报(自然科学版),2002,39(增刊):21-24.
[47] 高 峰,龚一富,林忠平.根癌农杆菌介导的甘薯遗传转化及转基因植株的再生[J].作物学报,2001,27(6):751-756.
[48] BERBERICH T,TAKAGI T,MIYAZAKI A. Production of mouse adiponectin,an anti-diabetic protein,in transgenic sweet potato plants[J]. Journal of Plant Physiology,2005,162(10):1169-1176.
[49] KIM S H, AHN Y O,AHN M J. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato[J]. Phytochemistry,2012,74:69-78.
[50] KREUZE J F, KLEIN I S, LAZARO M U. RNA silencing-mediated resistance to a crinivirus(Closteroviridae) in cultivated sweetpotato(Ipomoea batatas L.) and development of sweet potato virus disease following co-infection with a potyvirus[J]. Molecular Plant Pathology,2008,9(5):589-598.
[51] MURAMOTO N, TANAKA T, SHIMAMUR A. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storageroots[J].Plant Cell Reports,2012,31(6):987-997.
[52] 蒋盛军,刘庆昌,翟 红.水稻巯基蛋白酶抑制剂基因(OCI)转化甘薯获得转基因植株[J].农业生物技术学报,2004,12(1):34-37.
[53] BIAN X F, XIE Y Z, GUO X D. Research advance on molecular mechanism of abiotic and biotic stress resistance in sweet potato[J]. Agricultural Science and Technology,2014, 15(6):901-906.
[54] 阮 龙,高正良,陈义红.干旱耐逆基因(HS1)转化甘薯获得转基因植株[J].激光生物学报,2010,19(4):552-556.
[55] 闫 会.表达Cu/ZnSOD和APX的转基因甘薯植株的再生与耐盐性评价[D].北京:中国农业科学院,2013.
[56] 李建梅,邓西平.干旱和复水条件下转基因甘薯的光合特性[J].水土保持学报,2007,21(4):193-196.
[57] 王 欣,过晓明,李 强.转逆境诱导型启动子SWPA2驱动Cu/Zn SOD和APX基因甘薯(Ipomoea batatas(L.)Lam.)耐盐性[J].分子植物育种,2011,9(6):754-759.
[58] 成雨洁,伍小兵,邓西平,等.干旱胁迫下转基因甘薯块根膨大期水分利用效率和生理代谢特征[J].西北植物学报,2012,32(11): 2255-2263.
[59] KIM S H, AHN Y O, AHN M J. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato[J].Phytochemistry,2012,74:69-78.
[60] KIM Y H,KIM M D,PARK S C. SCOF-1 expressing transgenic sweetpotato plants show enhanced tolerance to low-temperature stress[J]. Plant Physiology and Biochemistry,2011,49(12):1436-1441.
[61] 陈晓丽,李红兵,孙振玫.过表达IbMYB1基因甘薯增强了对土壤干旱胁迫的抗性[J].植物生理学报,2015,51(9):1440-1446.
关键词: 生物技术;农业;生产;应用
随着生物技术在农业中的不断应用与革新,其已经成为21世纪具有潜力的产业之一。其发展之迅速,趋势之良好,并且在极大程度上影响了传统农业技术,使得现代农业技术走向了一个新的高度。在现代农业中,优质、高产、绿色环保是其发展的重要课题。目前,世界各国已经开始将生物技术视为高新技术,这是由于其可以帮助人们解决食品短缺、环境污染和经济建设等问题,有助于国家提升自身的综合国力,增强经济实力。
然而,由于人类社会、经济的不断发展,以及为了发展而进行的过度环境开发利用等行为,其给生存环境带来了极大的污染和破坏。众所周知,地球每小时都可能有一个物种灭绝,并且我们的地球已经面临着生态失衡、资源枯竭等严重现象。这些现象给我们走可持续发展道路带来了极大的阻碍,但生物技术的出现却给人类的未来送来了一丝曙光。
一、生物技术
生物技术(biotechnology)亦可称“生物工程”或“生物工程技术”,其是指利用现代生命科学作为基础,结合其它学科的科学原理,采用最先进的技术手段,并按照预先的设计,达到改造生物体或加工生物原料的目的,从而生产出所需的特定生物产品或达到某些预定的目的。生物技术主要包括传统生物技术、发酵技术和现代生物技术。其中,现代生物技术则又是在传统生物技术上发展起来的,但其又和传统生物技术有着本质上的区别。所以,生物技术是一门新兴的、具有综合性的学科。
二、农业生产中的现代生物技术应用
生物技术对于农业生产来说,其可以提高作物的产量和质量,这点正好符合了当前全世界所面临的食物短缺的境况,其高产性和高质性对于人类的生产生活提供了基本的保证。
随着生物技术的提出到发展至今,人类在技术上以及可以将某个作物品种的“理想遗传性”导入另外一个品种中,从而达到提高作物的产量、价值和质量,并且赋予给作物一种新的特性来达到预防干旱、虫害和光合作用效率的提高等。而光合作用效率的提高对于作物产量的提高起着决定性的作用,目前人类已经克隆除了很多参与光合作用的基因,并且对于光对基因表达的调控作用作出了完善的分析。现代农业生产中的生物技术主要是“植物基因工程”,而Rubisco酶是植物基因工程的主要研究内容,具体体现在通过增强Rubisco对CO2的亲和,以及降低光呼吸的竞争反应方面。实际上,将不同植物的Rubisco导入到植物细胞中,可以形成杂合诱导点突变,或亚基酶分子,并使其起到增加对CO2的亲和力和修饰酶活性等作用,使基因在叶片中高效表达来提高光合生产力,努力培育出具有C4植物1.50倍以上光合性能的作物。目前,对于利用生物技术进行植物产量、品质的改良主要有三个方面:油脂类、淀粉和蛋白质。而对于人类肉类的提供者――动物,其也属于农业中不可缺少的一环。生物技术在动物中的运用则体现在提高肉质、繁殖能力。那么在农业生产当中,现代生物技术到底被运用到了那些层面呢?下面,我们将逐一的进行归纳。
1.生物技术对于植物(作物)的应用
在现代生物技术的良好发展下,人类已经可以通过基因技术将一个品种的“理想遗传性”导入另外一个品种中,从而达到提高作物的产量、价值和质量,或赋予新作物一种新的特性,从而达到预防干旱、虫害和提高光合作用效率等的目的。如,在番茄中导入编码EFE酶的反义基因,从而使得EFE酶的活性降低至正常的5%以下,限制住乙烯的生成。这样做的好处是,其能够使番茄的生理成熟后长期保持果实坚硬,一个月左右不产生腐烂机制,延长了番茄的储存、运输的时间,带来更大的经济效益。当然,生物技术在农业生产中的应用层面很广泛,在此我们便不逐一的复述了。生物技术对植物(作物)中的应用,可以使得植物(作物)起到良好的品质和产量,或者能够给作物提供更好的抗虫害、抗逆性、抗机械损害性和抗病性等,其比传统的种植技术更加的省力,更加的省时。
2.生物技术对于动物的育种与繁殖应用
随着生物技术的不断发展和提高,我们不但可以对植物(作物)改进,同样也可以将其运用到动物上。目前的现代生物技术在养殖业中的应用主要是畜禽基因工程疫苗、动物分子育种和动物繁殖等。动物分子育种指的是动物的胚胎工程技术、基因技术、克隆技术等,其主要是通过DNA重组技术来实现改变动物的体质、习性等。例如,人类已经可以运用基因技术,将单个有功能的基因簇导入到高等生物基因的基因组中去,并通过有关的分子生物技术、DNA试剂盒等检测和诊断,从而加以选择,使其改变生物的某些特征或习性,提高产量。另外,对于动物来说,人工受精技术也可以帮助其进行良好的有效的繁殖。如良种公牛的可以稀释成很多倍,可以一次使多个母牛受精,这样一来大大提高了动物受精的效率,提高产量。此外,还有胚胎移植、克隆繁殖等技术,这些技术的发展都将改变今后畜牧业的产业现状。
3.生物农药和生物固氮的应用
长期以来,化学农药在传统农业中占据主流的地位。然而化学农药却是一柄双刃剑,其有提高产量减少虫害的益处,但化学农药中所存在的毒害问题则不容忽视。生物农药技术的出现,正好解决了人们所面临的这一难题。由于我国人民生活水平的提高,人们不再仅仅最求“吃饱”问题,而开始关注“吃好”的问题,健康饮食观念已经深入人心。生物农药目前的主要研究领域是微生物农药、转基因农药等、生物化学农药和“天敌生物农药”。如,国外目前最常用的“苏云金芽杆菌”,其是杀虫细菌的一种,可以有效的防止虫害对于作物的影响。
而对于化学肥料来说,同样也会给自然带来危害。由于化学氮肥生产是会消耗大量的能量,给环境带来严重的污染。所以对于生物固氮的使用,也渐渐的成为了农业界的一项课题。生物固氮的使用,大大节约了人们对于能源的使用。同时,其还不会对自然环境造成侵害。不过,生物固氮迄今为止还未被农业界广泛的使用,这是由于目前所发现的生物固氮微生物还不能在粮食作物上使用,即使有少数能投入使用,但是相比化学肥料来说,其所起到的效果还是很小的。
参考文献:
[1] 许锦英.现代化农业与可持续农业[J].发展论坛,1992,(10)
[2] 沈桂芳.生物技术与农业[J].生物技术通报,1997,(4)
[3] 梅方权.2010年中国农业生物技术战略研究的框架[J].生物技术通报,1997,(4):6
关键词:现代生物技术;环境工程;应用
经济发展与城市建设作为当前时展的主流与基本趋势,尽管在多年来已经取得了显著的成就,然而由于城镇在自身发展的过程中过于追求经济效益,而忽视了必然的社会效益,生态环境问题油然而生。针对当前愈演愈烈的环境问题,只有不断完善发展环境工程项目体系,不断创新发展已有的现代生物技术,才能真正在探索解决环境问题新方法的基础上,实现经济效益和社会效益的有效统一,真正为人类的可持续发展做出重要贡献。
1现代生物技术在环境工程中的应用
现代生物技术在构成上主要以DNA技术为基本引导,包括一系列生态高新技术,例如细胞工程技术、基因工程技术、微生物工程技术、生物修改技术等。从环境工程的角度来看,由于该技术具有无污染、再生方便、循环性强等基本特征,因此在环境工程中具有较高的应用价值,能够在确保生态环境友好的基础上追求最大化的经济效益。下面将以生物技术和基因工程技术为例来具体论述。
1.1生物技术的应用
生物技术在生态环境工程中的作用体现在多个方面,以医学为例,DNA重组技术的出现使得血浆蛋白相关临床病理特征不再那么神秘。研究人员开始利用生物及时对血浆蛋白进行结构上的优化处理,并通过母体繁殖的方法,制造出了大量的人体蛋白,而这些蛋白在临床上都具有极高的应用价值和显著疗效。与常规的临床治疗技术进行对比,生物技术的优势特征主要体现在两个方面,首先,生物技术的副作用低,由于人体蛋白是经由生态技术所获取的,因此应用于人体具有很高的适用性,不良反应发生率极低;其次,由于生物技术能够通过作用与人体网络功能体系的方式来达到综合医疗的临床诊治效果,因此比常规的化学疗法或放射性疗法具有更高的临床适用性。
1.2基因工程技术的应用
以植物基因工程技术为例,随着当前基因工程技术的不断创新发展,我们已经构建起了完善系统的生物技术体现,经由将植物基因工程的相关研究内容放置到标准操作流程当中,不仅能够植物基因工程在实际操作过程中科学性和准确性,同时还能够帮助研究人员研制出更多的转基因植物,进而产生大量的医学蛋白,为医学发展创造有利条件。
2现代生物技术继续发展的建议
当前现代生物技术的创新发展对生态环境工程建设活动起了重要的推动作用,而为了适应当前日益增长的环境保护与绿色发展的要求,就需要我们进一步地发展现代生物技术的重要作用。由于上文针对生物技术和基因工程技术展开了论述,下面将继续就这两点分析继续发展壮大现代生物技术的建议措施。
2.1提供生物技术在能源问题的应用效率
能源问题作为时展与经济建设的重要问题,与生态环境之间有着密切的关系。这就给我们以有益提示,在发展生态技术的过程中,应当强调将生物技术与能源开发与利用有机地结合起来,一方面不断提高旧能源的利用效率,另一方面不断研究探索新型能源与绿色能源,着力转变能源应用的传统地位,尝试新思路与新途径。可以说,基于生物技术的能源开发与利用是未来经济发展的重要途径与趋势之一。
2.2强化转基因工程及时在环境自治问题上的应用效果
生态环境问题在迫使人类开始重新审视人与自然关系的同时,也开始让人从环境保护的基本思路转变为强调提高环境的自治能力,因此如何在发展的过程确保生态环境的自我恢复能力,已经成为当前环境工程的重要研究课题。以转基因工程技术为例,通过将转基因技术与新植物培育与养殖有机地结合起来,从而达到植物品种改良、土壤优化的目的。此外,研究人员还可以考虑改良一些具有显著吸附能力的植物,通过将土壤中一些已经超标的金属元素予以有效吸收,在提高土壤自身恢复能力的基础上,提高当地生态环境的自治能力。另一方面,经由转基因工程技术所培育出的植物在应用过程中能够兼具经济效益和社会效益,这就达到了二者的有机协调。
3结语
事实上,现代生物技术所涵盖的范围与内容及其广泛,由于篇幅原因,本文在此只是简单地选取了生物技术和基因工程技术两方面的内容。当前现代生物技术在生态环境工程中的应用价值与实际效果已经为人为熟知,为了确保现代生物技术能够在未来更好地为环境问题作出重要贡献,就需要不断实现该技术的创新与发展,不断将现代生物技术与生态环境工程有机地结合起来,达到经济效益和社会效益的和谐统一。
参考文献
[1]孙毅.现代生物技术应用与环境保护研究的新进展[J].科技情报开发与经济,2012,7(14)26-17.
生物技术可以帮助培育养殖优良的品种,培育的品种具有较强的适应性和生产价值。饲养中对饲料要求不高,且抗病能力强,拥有较好的发展空间和饲养前景。基因资源在生物技术的帮助下可以实现改良和延续。利用生物技术对传统的优势品种进行分析与基因采样,可以帮助对优良品种的优势加以量化分析,促进优势资源得以广泛的应用。如利用杂交改善当地的禽畜品种,利用外地资源和本地资源的优势结合来改善地方品种,一方面,改善了地方品种的生产劣势,另一方面,促进了地方品种优势的保留。
2开发饲料资源
畜牧业中饲料对于生产十分重要,生物技术的接入可以通过微观量化分析来对饲料的成分和作用进行分析,为饲料的改良和应用提供重要的技术支持。生物技术在饲料领域的应用还可以帮助改善饲料中的营养成分,如,发酵饲料的应用。生物技术改变了传统的饲料来源,使其降低成本,更可以帮助禽畜提高自身的抵抗力和适应性,以此降低发病率。如,在一些国家已经开始对饲料植物进行技术改良,使之蛋白成分得到改善,对饲料植物的基因进行调整,从而使得饲料植物中的营养价值得到改善,使之更加适应某种禽畜。同时,也可在饲料生产中添加微生物,使得禽畜增加自身的免疫力,促进其自身抗体的形成,保护禽畜不受某种或者多种病毒的侵扰,从而降低禽畜的发病率。同时,应当关注的是全世界范围的蛋白饲料缺乏问题,而生物技术可以利用微生物发酵技术获得单细胞蛋白,从而解决青饲料蛋白不足的问题,提高饲料的应用效率。
3动物育种
动物育种中广泛的应用生物技术,包括转基因、克隆技术、DNA技术、胚胎技术等。运用现代的生物技术可以达到分子级别的培育效果,改善传统的人工育种方式,针对性强,缩短了培育周期。加快了对品种优选、培育的时间,也提高了育种的质量。如生物技术可以将特殊的基因进行提取,利用一个基因或者基因簇的插入进行生物遗传性再造,从而改变品种的某个特性,并完成表达、完成对种群的改造和品种优化。然后利用相关生物技术进行诊断和检测,分辨遗传改造的效果,对达到预期的小组进行保留,提高整个育种过程的准确性和速度,为畜牧业生产能力提高做出贡献。
4禽畜生产
运用相关的生物技术对禽畜原有的生长要素进行干预,对其内部环境进行改善,使得禽畜机体代谢达到一个相对平衡的状态,并向着人们需要的方向发展。如,生物技术合成的生长素可以改善禽畜自然的生长轨迹,促进禽畜在某个时期的生长速度和水平,降低禽畜采食量,并保证禽畜具备较强的抗病能力,而不会出现不良后果。
5兽医临床诊断
禽畜的疫病本身也是一种生物感染,因此利用生物技术对其进行诊断和控制是较为有效的。运用生物技术培育各种疫苗就是重要的应用方式。多种生物技术制剂和疫苗可以帮助针对性的控制疫病的出现和扩散,在生物技术的帮助下,疫苗也更加有效与方便。同时,利用生物技术也可帮助更快的诊断疫病的感染源,如限制酶分析、免疫印迹分析等都可更好、更快的诊断病源,且帮助指导采用针对性的措施控制病情。
6结束语
关键词:生物技术;环保工程;处理
随着经济和科学水平的发展,我国的环境问题越来越严重,各地不断出现的雾霾天气以及水资源都发生的不同程度的恶化,是我们必须要重视和加强对环保工程的治理。目前生物技术由于其自身的特点逐渐受到学者的青睐,如何充分利用生物技术手段有效的解决一些环境污染问题,使环保工作得以顺利进行已成为当前研究的热点。
1 废气处理工程中的应用
在目前的废气处理生物技术中,生物膜法和生物过滤法是最为有效的方法。
1.1 生物膜法
生物膜法主要是指在多孔性介质填料的表面附着一些微生物,并促使污染废气能够在填料床层中得到生物性的处理,将一些污染物吸附于孔隙表面,再对其进行科学利用。通过合理运用微生物的新陈代谢功能将废气中存在着的一些有害物质转化降解为一些有机物、CO2、中性盐。除臭主要分为三个过程:第一步,气液扩散过程。气体流经填料时,在生物膜的作用下气态中的有害成分可在较短的时间内由气态转化为液态。第二步,液固扩散过程。液态的有害物质被吸附固定,逐渐在生物膜中扩散。第三步,生物氧化过程。填料中的微生物通过新陈代谢不断氧化已经被固化下来的有害物质,将一些成分作为微生物的营养物质吸收,其他成分在风机的作用下被排放出填料塔。
1.2 生物过滤法
生物过滤法是指将收集到的废气通过满是微生物的填料(也就是我们常说的固体载体),并且要求在适当的条件下,气体物质首先被固体载体所吸收,之后被微生物分解,这样废气的除臭就完成了。完成物质转换这一功能的就是微生物,其成长和培育需要充足的有机养分,因此,填料内就需要拥有充足的有机成分,要想微生物具有较高的活性,那么必要条件就是需要一个很好的生存环境,因为微生物生长的环境直接影响了微生物的生长与繁殖,所以,在会改变微生物生长环境的情况下就应该注意其生长环境的温度、含氧量、湿度等问题。
2 水体处理工程中的应用
目前,生物膜法,活性污泥法和生物-生态修复技术是常用的处理污水的有效方法。
2.1 生物膜法
所谓生物膜法启是一种借助某些固体物表面的生物膜(或附着的微生物)来实现有机污水处理的生物技术。污水处理生物膜法的工作原理为首先生物膜把附着在水层的有机物吸附牢固,然后有机物经好气层的好气菌被分解,有机物流入厌气层,有机物经厌气被分解,流动水层冲掉老化的生物膜,最后新的生物膜生长出来,污水净化完成。
2.2 活性污泥法
活性污泥法是指用微生物将废水中的生物进行处理的方式。活性污泥包括好气性的微生物和无机有机物所生成的微生物,微生物是用来对污染物质进行降解的主要物质,这种微生物是一种易与水分离的黄褐色物质。
2.3 生物-生态修复技术
生物-生态修复技术主要是利用微生物、植物等生物的生命活动,对水中污染物进行转移、转化及降解作用,从而使水体得到净化,创造适宜多种生物生息繁衍的环境,重建并恢复水生生态系统。这种技术的目的是为了让水体得到净化,其中的媒介是微生物和其他的一些生物,其方式是通过移动、改变和降解。重新构建了并且恢复了水体中的生态系统。芦苇床系统是利用性价比较高的各种水生以及半水生植物的处理污水的研究中效果最好的一个。这种修复技术因其独特的优势,如今已经成为了水污染处理和富营养化治理这两方面的重要的发展方向,其优势包括:性价比高、处理的效果明显、耗能较低、向水体中投放药物不会出现二次污染。
3 有机固体废物处理工程中的应用
有机固体废物通常是指可生化降解的有机废物,他们通常含水率低于85%~90%,如有机垃圾、污泥、禽畜粪便、秸秆等。利用生物技术河以将有机固体废物进行无害化、资源化处理。有机固体废物处理中目前较为有效的方法有好氧堆肥法和厌氧消化法。
3.1 好氧堆肥法
好氧堆肥法是通过人工干预的方式将自然界中的微生物的种类和数量进行控制,使其与固体废物中的易于生物降解的有机物在微生物的作用下不断被分解,转化为腐殖质的过程。
3.2 厌氧消化法
所谓厌氧消化法是在缺氧环境条件下,以接种生物或自然微生物为载体,把有机物转化成甲烷气体及二氧化碳的生物技术。厌氧消化技术目前已倍受国内外所关注,原因在于一方面能够消耗掉大量的有机废弃物;另一方面能够获取高质量的沼气与堆肥产品进而实现生物质能的循环再利用,但是厌氧消化的最佳生物转化条件、生态微环境以及设计完善的过程控制系统等方面,还需要进一步深入研究,以达到最佳的处理效果。
4 污泥和土壤中重金属的处理工程中的应用
生物技术用于处理污泥和土壤中的重金属,主要有微生物法、生物消解技术和植物修复技术。
4.1 微生物法
微生物法能有效地去除污泥中的重金属离子。运用微生物法对污泥及金属进行处理时,重金属元素的去除与pH值有关,其PH值极为重要。微生物的代谢、吸附等特性可以大大促进污泥中的重金属形态的转变和促使重金属元素的溶出。在对污泥、土壤中金属的形式转变进行加速处理时,对于微生物的特性运用较多,如代谢及吸附性。
4.2 生物消解技术
生物消解技术是应用生态学的理论,其中的不可缺少的物质是微生物以及蚯蚓,通过水蚯蚓与微生物协同作用,人工延长污泥处理过程的生物链,使污泥在传递过程中被生物消耗达最大化。同时应用生物吸附与富集重金属机理,有利于污泥后续处置,控制重金属污染,实现污泥减量化、资源化、无害化处理,达到环保和节省费用的目的。
4.3 植物修复技术
植物的修复技术是一种以植物分解或超量积累某些化学元素的生理功能为基础,利用植物及其共存微生物体系来吸收、降解、挥发和富集环境中污染物的治理技术,该技术主要是指运用植物对环境进行降解处理,所运用到的媒介多为植物及微生物。此种处理技术极为简便环保,仅对土壤具有一定要求。
结束语
环保问题现在已经成为我国经济社会可持续发展的头等大事,由于生物技术自身具有的优势,它对环保工程的推进起到非常好的效果,环境污染的治理和控制将随着新理论、新方法的运用而日益完善,同时为社会带来一定的经济效益,为国家的可持续发展做出重要的贡献。
参考文献
[1]牛炳晔.生物技术在环保工程中的应用[J].环境工程,2010,28:407-409.
[2]满江滨等.生物技术在环保工程中的应用分析[J].科技论坛,2007,33(6):20.
[3]杨荣,颜淼.探讨生物技术在环保工程中的应用[J].科技创新导刊,2013,9:150.
[4]陆天才.生物技术在环保工程中的应用研究[J].江西建材,2015,4:290.
[5]周.浅谈生物技术在环保工程中的应用[J].视界,2015,7:111.
[6]于雪梅.浅析环保工程中生物技术的应用[J].黑龙江科技信息,2014,(26):129.
现阶段,人们的生活质量水平得到了进一步提高,对食品安全愈加重视。为了保障食品安全,就要采取相应措施检验食品安全。将现代生物技术应用在食品检验当中,能起到积极作用,食品安全检验的效率比较高,技术应用也较方便。本文主要阐述了食品检验中现代生物技术应用重要性和主要生物技术,对现代生物技术的应用和发展趋势详细探究。希望能借此理论研究,对现代生物技术科学应用起到一定促进作用。
关键词:
现代生物技术;食品检验;技术应用
食品安全检验的方法较多,在随着新技术的发展应用下,为食品检验工作提供了技术支持,大大方便了食品检验。从理论上深化对现代生物技术的应用研究,能为实际的食品检验工作提供参考依据,促进食品检验工作顺利开展。
1食品检验中现代生物技术应用重要性和主要技术
1.1食品检验中现代生物技术应用重要性
食品安全问题已经成为社会话题,尤其在近些年出现的食品安全事件比较突出,严重威胁着人们的身体健康。加强食品检验就成为重点工作,传统食品检验主要技术就是通过物理化学仪器,对食品检验的整体效率较低,很难满足实际的需求。而在当前的科学技术进一步发展下,将生物技术应用在食品安全检验中,就能发挥积极作用[1]。现代生物食品检验技术的应用,主要是通过动植物自身对某化学物质特异性识别检验食品性质,能准确检测出食品中各种成分,对保障食品安全起到了积极作用。另外,现代生物检测技术的应用,弥补了传统食品安全检测的不足,提高了食品检验的效率和准确性。现代生物技术的应用,对食品的生产加工等各个环节都能应用,对食品的品质以及安全性和精密性的检验比较有利[2]。对食品的品质评价以及质量控制有着良好作用,未来的发展前景也比较广阔。
1.2食品检验中现代生物关键技术
1.2.1生物传感器食品检验技术
食品检验中运用的现代生物技术类型较多,其中生物传感器技术是应用比较广泛。在用生物传感器技术检验食品时,是把生物相关特性作为依据,把信息输入到传感器识别系统当中,对输入的信息识别分析,转化成有效数据,这样就能方便食品检验工作人员了解食品安全[3]。在对生物传感器检验技术应用的优势比较突出,对食品安全的检验比较迅速,检验的结果准确度较高,提高了食品检验的效率。
1.2.2生物酶食品检验技术
在食品的质量安全检验技术中,生物酶技术应用比较广泛,这是对食品当中的农药残留以及微生物污染安全问题检验的技术,特异性比较强。生物酶技术是结合了免疫学以及酶学,检验技术应用比较广泛,对食品的检验范围在ng及pg,有着高精度的检验优势,在实际的技术应用方面比较简单[4]。对食品样品当中所存在的有害成本,能够准确识别,有助于保障食品检验工作过的质量,应用价值较高。
1.2.3PCR生物食品检验技术
现代生物技术中的PCR是重要技术类型,这一技术是从遗传学角度对食品中微生物种类数量分析。通过对指定基因的分析,能有效判断食品当中的微生物种类数量,能对转基因以及基因克隆成分有效控制。这一技术在食品样品微生物形状和遗传背景分析有着积极作用,对保障食品安全有积极作用[5]。在对食品样品病原菌检查后,能分辨食品当中致病菌种类和数量,为食品检验的工作质量提高打下了基础。
1.2.4生物芯片食品检验技术
食品质量安全检验中对生物芯片检验技术的应用起到积极作用,这一技术的主要原理就是光导原位合成以及微量点样,对食品样品当中生物分子实施标记,对大量生物分子排序,固化在指定载体,从而形成二维分子排列,然后和已经标记的生物分子杂交,根据相应仪器的应用就能对生物分子信号强度分析,对食源性疾病临界值加以判断。这一新型检验技术,对食品安全的检验有积极作用。在这方面由夏俊芳等撰写的《生物芯片应用概述》一文可知,目前世界上第一个能够检测肉类中兽药残留的生物芯片系统在北京国家工程研究中心研制的,该芯片能够分析大量的生物分子,快速准确地完成肉类中兽药残留的检测工作[6]。而唐晓明等利用基因芯片对从水中分离的20株细菌杂交检测,用传统方法对这些菌株鉴定,基因芯片检测结果与传统方法鉴定结果的一致性达95%。还有,陈广全等研制了一种高通量检测食品中常见致病微生物的寡核苷酸微阵列芯片,结果表明该芯片的特异性良好,在所检测的菌株之间无交叉反应,与同属其他菌株之间也不存在交叉反应。生物芯片技术在农产品安全检验中和保障食品安全方面发挥重要作用,在产生巨大经济效益的同时,也在很大程度上保障了人们日常生活的安顺。
2食品检验中现代生物技术的应用和发展趋势
2.1食品检验中现代生物技术的应用
现代生物技术在食品检验的各个环节都能应用,对食品当中存在的有害微生物检验方面,发挥积极作用。食品质量安全其中比较严重的就是微生物威胁,对食品当中存在的微生物如果不能有效处理和控制,必然会对人的身体健康造成威胁。通过对生物技术的应用,对微生物生存特征和生理生化特征的了解,有助于判断分析微生物的种类和含量,按照我国的食品质量安全保障的法律和行业的标准,对微生物的含量是不是存在超标的情况的判断,能最大化把对人的身体健康的微生物威胁降低[7]。在生物技术中的PCR技术的应用能有效达到检验目标。食品检验中对生物传感器技术的应用,能检测食品的成分,以及检测食品当中存在的添加剂。在技术应用的时候用生物传感器检测食品添加剂,对甜味剂以及发色剂的有效检测[8]。在对食品的成分检验上也能发挥积极作用,食品成分也决定着食品的营养价值。通过生物传感器技术对食品的成分检验有着显著实用性。通过现代生物技术的应用,对食品当中存在的农药残留检验,也能发挥其积极作用。食品当中的农药残留超标,必然会威胁人的身体健康。在生物技术的应用下,能对食品中农药残留精确分析,有效保障食品的安全,所应用的技术中通过生物酶技术以及生物传感器技术,能对食品农药残留准确检验。食品质量检验中生物技术应用在转基因食品的检验方面比较重要,当前食品当中出现的转基因食品种类比较多,转基因食品对人的身体健康和生态环境会造成一定影响,加强对转基因食品的检验,就能保障食品安全[9]。通过相应生物技术的应用,对转基因食品检验,主要是对食品中酸检测以及蛋白质和酶活性检验。在这些方法的应用下,能有助于保障食品安全。
2.2食品检验中现代生物技术的应用发展趋势
2.2.1高效性发展趋势
现代生物技术在食品检验当中的应用发展,随着科学技术的进步,生物技术的应用将会向着高效性方向迈进。对食品的质量安全检测工作实施,要在时间上节约,这就对食品质量安全检测的效率要求有所提高,要在短时间内完成食品检验的任务,所以保障生物技术的应用高效性就显得比较重要。结合我国的法规和行业标准,对食品的检验科通过PCR生物技术对食品微生物检测,能大大提高检测效率。
2.2.2多样化发展趋势
食品检验工作实施过程中,对现代生物技术的应用就要充分重视技术的多样化,这样才能保障食品质量安全检验的准确性。在我国的工业化发展进程进一步加快下,工业生产带来的污染问题愈来愈严重,而食品受到污染的现象比较突出。在各种污染源的影响下,食品的质量安全问题也比较多,采用单一的检验技术已经不能满足食品检验工作的需求,所以采用多样化的生物检验技术应用就比较重要[10]。保障生物检验技术对多种有害物质检测,要加强抗干扰能力,从而保障食品质量安全。
2.2.3灵敏性发展趋势
在食品检验工作实施中,现代生物技术的应用在灵敏性的要求上愈来愈严格。科学技术的进步在各个领域中都得到了提高,发挥着重要作用。在食品检验领域中,对生物技术的应用提高食品检验的质量,提高技术应用的灵敏性就显得比较重要。有的食品污染是受到农药残留的因素影响,对人体健康有着严重威胁,而保障生物技术的应用灵敏性,提高检验的准确率,才能保障食品的质量安全。
3结语
综上所述,近些年的食品安全问题频发,对食品安全检验已经成为保障人们食品安全食用的重要举措。在现代化的发展过程中,加强食品的检验效率提高,通过生物技术的科学性应用就显得比较重要。从理论上对生物技术的应用研究,就能进一步深化生物技术的应用认识,从而为实际食品质量安全检验工作的实施打下理论基础,为实践提供参考依据。
参考文献:
[1]苏静.试论生物检测技术在食品检验中的研究[J].食品安全导刊,2015(18):128.
[2]陈兆波,农产品质量安全分子生物检测的研究现状和发展趋势[J].食品与生物技术学报,2009,28(4):444-450.
[3]顾成鹏,余花,徐霞,等.生物检测技术在食品检验中的应用探析[J].食品安全导刊,2016(12):121.
[4]程敏,徐丽萍.生物检测技术在食品检验中的应用[J].食品安全导刊,2015(7X):285.
[5]罗鹏程.生物检测技术在食品检验中的应用[J].食品界,2016(12):78.
[6]胡宗才.如何提高食品检验结果的准确度[J].食品界,2017(4):90.
[7]李曦,骆佳岚,王翌晨.探讨食品检验中乳酸菌的鉴定方法[J].食品界,2017(4):101.
[8]刘鑫.食品检验实验室管理与检验质量控制的强化探析[J].食品界,2017(4):108.
[9]路鑫.浅议食品检验结果及质量管理[J].食品界,2017(4):113.
关键词:生物技术 纸浆造纸 应用研究 发展前景
随着人们对生物技术的深入研究,其在纸浆造纸中的应用前景也更加诱人,而且生物技术中各种酶的应用,对生物漂白、减少污染发挥了至关重要的作用,同时,还改善了纸浆纤维的性能,提高了造纸技术。下面笔者就简单分析生物技术在纸浆造纸中的各种应用,旨在探讨生物技术在纸浆造纸中的作用。
一、生物技术在造纸原料中的应用
1.原木去皮
造纸的原料就是木材,而在以木材为原料的造纸中,第一道工序就是原木去皮,当前的原木去皮都是在去皮机中完成的,为了保证纸浆的白度,去皮机必须广泛的对其进行去皮,这在一定程度上也会导致原材料的损失,对纸浆造纸是非常不利的;而近年来,科学家发现生物中的酶能够有效的降解木材形成层,从而达到对原木去皮的功效,而且生物酶去皮,还能降低去皮机的能源损耗。
2.木材的防腐
化学防腐剂对人体是十分有害的,因此,近年来,我国的造纸工厂也正在减少化学防腐剂的应用,而是寻求新的木材防腐原料,经过研究发现,木材腐烂的主要原因就是其被细菌尤其褐腐菌分解,进而导致的木材腐烂,因此,想要防止木材的腐烂,我们必须寻求能阻止褐腐菌分解的生物酶,从而有效的控制褐腐菌的分解,达到木材防腐的效果。
二、生物技术在制浆中的应用
1.生物技术在化学制浆中的应用
传统的化学制浆就是利用硫酸盐法进行制浆,这种制浆方法只去除了原木中90%的木素,仍有10%木素留在原木中,这也导致化学制浆制出来的纸张比较暗黄、呈棕色等的主要原因。
根据传统化学制浆的这一弱点,我们在化学制浆中,利用微生物(真菌)或者生物酶对原材料进行处理,不仅能够提高原木的脱木素率,还能够有效减少化学用品的用量以及对原材料的损耗,从而更好的提高纸浆的质量。例如,利用生物中的白腐菌对造纸原材料进行处理,并应用硫酸盐法进行制浆,这样制出来的纸浆的白度、伸长率、耐破率都明显高于普通化学制浆的效果,且造纸时间能够缩短一半。
2.生物技术在机械制浆中的应用
由于机械制浆中各种机械的使用,大大提高了机械制浆的制浆效率,且机械制浆的污染较低、投资较少,与化学制浆相比,有着明显的优势,在近几十年来的制浆造纸中,应用的比较广泛。但是机械制浆也有很多缺点,例如,造出来的纸张强度差、制浆设备的能耗高等,且适用于机械制浆的木材较少,而通过研究发现,将生物技术应用到机械制浆中,能够有效改善机械制浆存在的缺点。
2.1生物制浆能够节约能源
减少机械制浆中的能源损耗,是最为关键的问题,而利用生物技术进行制浆,就能有效减少机械制浆的能源损耗,生物制浆,主要是利用真菌对原木进行处理,真菌中的白腐菌能够有效地对原木中的木素进行分解,能够最大化的分解木素,从而减少原木中的木素,有效提高纸浆的白度。但是,单纯的利用白腐菌处理还不能达到生物制浆的标准,因此,利用生物制浆法进行制浆,首先要先利用真菌对原木进行软处理,然后利用不同类型的白腐菌对木片进行脱木素处理,这样就能有效降低机械制浆对能源的损耗,而且大大提高了纸张的耐破率。
2.2生物制浆能够减少得率损失
利用机械制浆,尤其是热磨机械制浆时,在原木材料中总会释放出一些溶解性的胶体物质,利用生物乙酞脂酶对这些胶体物质进行处理,能够提高纸浆悬浮液中的干纤维量,也就减少了机械制浆中的得率损失,这种生物制浆法主要应用的是乙酞脂酶对TMP纤维的吸附作用。
2.3生物制浆能够有效控制原木中的可溶性物质
应用机械进行制浆,原木中的可溶性物质,如脂肪酸、甘油三酸酯、树脂等,难免会溶解在制纸工艺中,从而在纸张上留下污点,影响了纸张的质量。使用树脂较低的原木、在纸浆中添加明矾等,都能有效降低树脂对纸浆的污染,但是那样会减少原材料的种类,而且化学物质的添加也会在一定程度上影响纸张的质量。因此,利用生物技术控制原木中的树脂溶解是比较可行的方法,如,在磨浆之前,利用微生物处理原木木片或者在磨浆之后,利用生物酶(树脂酶)处理原木木片,都能有效降低原木中的树脂含量。
对于原木中的脂肪酸和甘油三酸酯,我们可以利用脂肪酶进行分解,从而减少原木中的脂肪酸、甘油三酸酯的含量,达到提高纸质、纸张白度的效果。
通过以上结果,可以看出,树脂酶和脂肪酶的应用,能够有效控制原木中的可溶性物质,减少其对纸张的污染,提高纸张的白度。
三、生物技术在纸浆漂白中的应用
对纸浆进行漂白,是造纸工艺中不可缺少的重要步骤,它主要是通过对制浆中残留的原木木素进行分解,使其能够彻底溶解,从而提高纸张的白度,传统的化学物质漂白剂对人体有非常大的危害,因此,近几年,我国造纸工艺已经在寻求利用生物酶进行纸浆的漂白,且取得了一系列的成果。
利用生物酶对纸浆进行漂白,采用的主要是半纤维素酶,它能够有效去除原木中的半纤维素以及木聚糖,使原木中的木聚糖和木素分离,能够提高后期漂白药剂的使用效果,能够有效减少化学漂白剂的应用,从而降低造纸工艺对环境的污染。生物酶在漂白中的作用表
四、生物技术在脱墨中的应用
利用生物技术进行纸浆的脱墨处理,主要是应用的纤维素酶和半纤维素酶,通过这两种生物酶的处理,纸浆的游离度得到了提高、短纤维减少、强度增加,有效地提高了纸浆的质量;除此之外,利用生物酶进行纸浆脱墨,减少了由于化学药品脱墨造成的环境污染。
五、生物技术在废水处理中的应用
生物技术在废水处理中的应用主要分为两种方法,生物处理方法以及微生物处理方法。生物技术处理纸浆废水,主要利用的是生物的分解作用,将废水中的有机污染物都降解为了无害稳定的物质,研究结果表明,利用生物技术进行废水处理后,废水中的COD去除率达到了94%,SS去除率达到了97%,BOD去除率达到了85%,与传统的废水处理方法相比,大大降低了废水中的有害物质,减少了对环境的污染。
【关键词】生物技术,环境保护,应用
前言:随着我国工农业的迅速发展,环境污染问题也随之而来。 目前我国的生态环境基本状况属于局部在改善,整体在恶化,环境的破坏速度远远超过了我国环境的治理速度,生态赤字程度在不断扩大。 生态环境作为一种全社会共享的公共财产,它的好坏程度,直接影响着所有人的利益。
1 生物技术在环境保护中的应用分析
1. 1 生物技术在环境监测中的应用
1. 1. 1 生物芯片和生物传感器应用于环境监测生物芯片、生物传感器是利用固定在载体上的生物大分子与检测对象间的特异性地相互作用的原理做成的检测模块。载体上的生物大分子与检测对象相互作用的过程中发生的物理或化学变化现象转化成生物电信号,检测系统将电子信号放大,可得到与生物转感器或生物芯片相互作用的环境物质的相关信息。这类检测方法灵敏度高、针对性强、检测速率快,目前已有产品成功应用于环境监测领域,诸如生物需氧量生物传感器、微生物毒性生物传感器等。
1. 1. 2 生物免疫检验生物免疫检验是利用检验系统的免疫自我识别功能,对环境毒性物质进行抗原或抗体的特异反应而检测环境毒性物质。该方法灵敏度高、针对性强、操作方便、成本低,目前已广泛应用到环境污染物的实时监控领域。
1. 1. 3 Ames 实验1975 年美国加利福尼亚大学 Ames 教授建立 Ames 实验。该实验广泛应用于食品、化妆品的致突变性。方法适用于测试样品中的混合污染物,反映的是多种污染物的综合致突变效应,是一种较好的环境潜在突变物的预警手段。
1. 2 生物技术在废气治理中的应用随着现代工业的发展,不可避免的会产生大量有机废气,如不经过处理直接排入大气层中,会产生严重的空气污染,最终危害人们的健康。有机废气的处理方法有物理法、化学法、生物法等,生物法是基于 “双膜理论”发展而来的新技术,与传统有机废气处理方法相比,具有成本低、效率高、安全性好和无二次污染等优点,因此,应用生物处理技术净化有机废气逐步成为应用越来越广泛的有机废气治理新技术。生物法治理废气工艺有很多种,比如生物滤池法、生物滴滤法、生物洗涤法、生物吸附法等。生物法理有机废气包括气液转化阶段、生物吸附吸收阶段和生物降解阶段三个阶段。诸如,美国有公司利用微生物分解有机物的能力处理工业性恶臭气体,取得了满意的除臭效果,且无二次污染产生,德国的科学家利用生物滤池法处理含硫化氢气体,90%以上硫化氢得以去除。有机废气生物处理技术是一项新兴的新方法,不但成本低、能耗少,而且处理效率高。但是,应用生物方法处理有机废气也存在着不足之处。比如,生物法在处理低浓度有机废气时效果良好,处理高浓度有机废气的治理效果欠佳,生物过滤法所用填料的比表面积、孔隙率等直接影响有机废气的处理效果,高比表面积、高孔隙率的填料方面的研究和产品还很少,有待更深入的研究。
1. 3 生物技术在污水净化中的应用
1. 3. 1 生物强化处理法为了提高常规活性污泥法的效能,通过提高系统微生物浓度或者投加生物强化材料成为生物治理技术发展的一个主要方向。主要强化方法有: (1) 高浓度活性污泥法。通过培养颗粒污泥等方法,提高生物系统中污泥浓度,延长龄泥,从而促进对难分解物质的处理,提升污染物降解效能。高浓度活性污泥系统中有效微生物的数量是常规活性污泥法的 3 ~ 5 倍,从而大大降低了污泥负荷,提高系统污染物处理效果。日本有科学家采用该方法处理难分解的聚乙烯醇废水,取得显著效果。(2) 化学生物絮凝法。它是 20 世纪 80 年代兴起的一种强化生物处理技术。是在常规活性污泥中加入氯化铁、聚合氯化铝、硫酸铁等混凝剂,形成生物铁或铝絮凝体活性污泥。这种污泥呈颗粒状,沉降性能好,可避免污泥膨胀现象,同时通过周期性排泥,除磷效果好。(3) 生物活性炭法,该方法是美国杜邦公司在 1972 年提出的一种生物强化处理方法,用于处理化工废水,取得了很好的效果。该方法借助活性炭优良的吸附能力以及微生物氧化能力的协同增效作用,提升污染物去除效能。中国的张旭等利用生物活性炭工艺处理石油类污染地下水,发现该技术对石油类污染物的平均去除率为 45. 4%,同时提升了系统的脱氮效果。
1. 3. 2 固定化微生物法
固定化微生物技术是 20 世纪 70 年展起来的。这种技术通过将微生物固载到一定的填料或载体上,提升系统中有效微生物的数量,同时可富集污泥龄较长的微生物,并且固、液分离效果好,减少占地面积,缩短水力停留时间。实践证明,固定化微生物技术的容积负荷可达常规活性污泥法的 3 ~7倍,同时可取得 50%以上的的脱氮效果。敬一兵等利用海藻酸钠与戊二醛进行交联作为微生物固定化载体处理味精废水,系统的 COD 去除率在 70% 以上,总氮去除率在 60% 以上。王增长等人利用聚集交联固定化细胞技术,将筛选的脱色菌固定在活性污泥絮体上,投加到 “厌氧 - 好氧 - 生物滤池”系统中处理印染废水,发现处理后出水色度极低,可实现废水回用。固定化微生物技术可增加生物系统中的微生物浓度,提高污染物去除效率,是现有污水处理厂扩容、提升处理能力的一个切实可行的方法。
1. 3. 3 投加特种菌法
投菌法就是筛选出对特定污染物有较强降解功能的微生物,直接或者放大培养后投加到生物系统中,可以使生物反应器中的特定细菌处于最佳状态,以提高特种污染物的处理效率。该方法对于毒性或者难降解废水处理效果好,经济成本低,但对于常规废水经济成本偏高。例如,中科院微生物研究所从上海石化厂分离出能够去除硫氰酸钠的混合菌种处理硫氰酸钠废水,可使得两段生化工艺的硫氰酸钠的去除负荷提高2 ~4 倍,出水水质也得到了显著提升。
2 生物技术在其他领域中的应用
生物技术除了可应用在废水处理、废气净化、固体废弃物的处置以及环境污染的快速监测等领域,还可以应用在污泥处理与处置、农业环境保护以及场地修复等领域。由于农药、化肥等的大量使用已引起土壤、地下水、水系和海洋的严重污染,世界各个国家都积极制定了各类环境修复计划,其中生物修复技术得到了很高的重视。例如,欧洲的德国、丹麦、荷兰等国家非常重视生物修复技术,他们利用微生物分解有毒有害物质,把生物修复技术作为治理大面积区域污染的一种有价值的方法。美国也在积极推进生物修复技术的研究和应用,美国能源部组建了 “生物修复行动委员会”来推进生物修复技术的研究和工程实施。
3 结语
生物技术以其成本低、产出高、无二次污染等诸多优点,在环境保护中已获得了广泛的应用,并取得了明显的经济效益、环境效益和社会效益。虽然生物技术还存在不如化学技术快速、效率高、条件要求高等不足,但是随着现代生物技术的快速发展,以及经济快速发展导致的资源短缺、环境状况恶化情况的加剧,生物技术的环境保护功能显得越来越重要。可以推测,现代生物技术的迅猛发展及其在环保领域的广泛应用必将成为解决资源短缺、能源危机以及环境问题的有力手段,在环境保护领域得到更高的重视和推广。
参考文献
[ 1] 金向春. 生物强化技术及其在废水治理中的应用[J]. 环境科学研究, 1999, 12(3): 22 -26.
1我国生态环境现状
随着我国工农业的迅速发展,环境污染问题也随之而来,主要体现在空气污染、水污染、土壤污染、固体废物污染等几个方面。目前我国的生态环境基本状况属于局部在改善,整体在恶化,环境的破坏速度远远超过了我国环境的治理速度,生态赤字程度在不断扩大。生态环境作为一种全社会共享的公共财产,它的好坏程度,直接影响着所有人的利益。
2生物技术在环境保护中的实际应用
随着分子生物、细胞融合以及基因工程等生物技术在不断发展和完善,生物技术的研究领域也在不断的扩大,现已经发展成为解决生态环境污染问题的重要手段之一。
2.1生物技术在土壤污染治理中的应用
生物技术在土壤污染治理中的应用主要体现在重金属污染的修复中,修复重金属污染的过程,主要是通过植物或者微生物的生物作用来达到净化和消减土壤中的重金属,从而降低重金属的毒性。土壤中的重金属通过生物作用转变成化学形态,其化学形态可以使其固定或者解除其毒性。经过净化和削减的重金属通过生物吸附功能又进一步的减少了其在土壤中的含量甚至消除。土壤中的重金属含量减少或者被完全去除后,其有机质的含量才能够提高,生态结构才可以得到很好的改善,从而得以更好地固定土壤,避免水土的流失。
2.2生物技术在水处理中的应用
污水中含有很多成分复杂的有毒物质,生物技术有利于改善水体的质量以及治理水体污染。水体中的一部分有毒有害物质可以通过微生物自身的新陈代谢等生命活动来去除;在污水处理方面,固定化酶技术是应用最为广泛的生物技术。固定化酶技术通过化学键合法或者武力吸附法来使得水溶性酶与水体中不溶性载体结合,使得固定化酶变成保留催化活性但不溶于水的衍生物,这种方式可以有效地处理污水中的有机物污染。另外,活性污泥法、人工湿地处理系统工程、生物膜处理法等等方式都是常见的改善和处理水污染的生物技术。
2.3生物技术在废气净化方面的应用
将生物技术应用于水体的改善和水污染的处理方面已有很长的历史,但是该技术应用于废气治理方面的时间还很短,研究范围和深度也是有限的。上个世纪80年代末期,很多学者已经开始研究将生物技术应用于工业废气的净化处理方面。吸附法和过滤法是目前生物技术应用于废气污染处理的主要技术,在含有乙醛、酚以及胺等空气污染区主要采取吸附法来净化空气,通过吸附法处理后,上述污染物气体的去除率可以高于百分之九十。生物过滤法主要用于臭味废气的降解方面。当代采用生物技术处理废气方式与传统废气处理工艺相比具有高安全性、成本低、效率高等优势。
2.4生物技术在固体废物处理中的应用
随着社会工业化程度的加深,固体废物也越来越多,如生活垃圾、建筑垃圾、工业和农业生产废物等。生物技术可以将固体废物进行资源化、无害化、减量化处理。通过这种方式的处理,固体废物可以成为用于农业生产的肥料或者其他有用产品,实现变废为宝。生活垃圾一般采取堆肥工艺进行处理,具体可以分为厌氧堆肥和好氧堆肥,高温好氧堆肥是当下研究的最为热门的工艺。采用高温好氧堆肥产生的肥料可以有效地改良土壤、增强土壤中的肥效。通过生物技术处理,城市生活垃圾可以变废为宝,实现垃圾资源化,最终达到保护环境的目的。
3生物技术在环境保护中的发展前景
3.1微生物脱硫技术的开发
煤的燃烧会产生大量有毒气体SO2,造成空气污染。如果利用微生物脱去煤中含有的无机硫和有机硫,就可以有效地控制煤在燃烧过程中有害气体的排放。这些微生物包括氧化亚铁硫杆菌、硫杆菌、酸热硫化叶菌等。日本已通过利用氧化亚铁硫杆菌来脱除H2S,且脱出率已达到99.99%。在燃煤的处理过程中,可以将微生物脱硫技术和浮选工艺相结合来实现煤与黄铁矿分离,达到清除或者降低燃煤排放SO2的目的。另外,微生物还可以应用于石油的脱硫。今后,微生物脱硫技术以及高活性脱硫菌种的研制和培养,配以清洁技术的研究领域将会备受关注,同时也会成为解决原煤燃烧产生SO2污染的最佳途径。
3.2其他方面的技术开发