时间:2022-10-13 13:35:15
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇光谱技术论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
英文名称:Spectroscopy and Spectral Analysis
主管单位:中国科学技术协会
主办单位:中国光学学会
出版周期:月刊
出版地址:北京市
语
种:中文
开
本:大16开
国际刊号:1000-0593
国内刊号:11-2200/O4
邮发代号:82-68
发行范围:国内外统一发行
创刊时间:1981
期刊收录:
CA 化学文摘(美)(2009)
SA 科学文摘(英)(2009)
SCI 科学引文索引(美)(2009)
CBST 科学技术文献速报(日)(2009)
Pж(AJ) 文摘杂志(俄)(2009)
EI 工程索引(美)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
期刊荣誉:
联系方式
期刊简介
Laser Spectroscopy
Vol.2,4th Edition
2009
Hardcover
ISBN 9783540749523
W 德姆特勒德著
自1960年第一台激光器问世以来的近50年中,激光光谱学一直是研究领域的重点,并且在科学、医药以及技术的许多方面取得显著进展,得到越来越多的应用。激光光谱学的发展部份地得力于新的实验技术。这些新技术的出现,激发了激光在化学、生物、医药、大气研究、材料科学、计量学、光通讯网络以及许多其它工业领域的应用。
为了让读者了解这些新发展,新版书中增加了很多新内容,譬如:外腔倍频,稳定的连续参量振荡器,可调的窄带紫外光源,更灵敏的检测技术,可调的飞秒或次飞秒激光器,原子或分子激发的控制,能与飞秒激光器同步的频率梳,相干的物质波,以及在化学分析、医药诊断、工程中更多的应用实例。此外,对一些章节的内容如非线性光谱学、离子阱、超短激光脉冲、以及激光光谱的新发展等作了较大改进和扩充。新增的50张插图展示了最新的开发和研究结果。这些新内容需要在第三版《激光光谱学》中增加很多页面,因此著者决定将第四版的《激光光谱学》分为两卷。第一卷主要论述激光光谱学的基础。第二卷介绍了激光光谱学的各种实验技术及应用。新技术及新实验装置包括:用光梳直接测量光波的绝对频率和脉冲;可见飞秒激光高次谐波的阿秒时间分辨率;飞秒非共线光参放大器,以及用它来高速测量激发分子的快速动态过程,它也是详细研究一些重要过程如眼视网膜的视觉过程,或叶绿素分子中的光合成过程的基本工具。
本书共10章:1.激光的多普勒极限吸收光谱和荧光光谱;2.非线性光谱;3.激光喇曼光谱;4.分子束的激光光谱;5.光泵和双共振技术;6.时间分辨激光光谱;7.相干光谱;8.碰撞过程的激光光谱;9.激光光谱的新发展;10.激光光谱学的应用。每一章的末尾有练习题。书的末尾有习题答案、参考文献及主题索引。
著者任职于德国凯泽斯劳滕大学(Universitt Kaiserslautern)物理系。目前他的教学及研究的兴趣包括:实验物理学,激光光谱,原子、分子和光子,分子物理学。他曾撰写数十部著作。
本书填补了前沿研究论文与基本原理和基本实验技术之间的空白。适合于想深入了解激光光谱学的物理学家及化学家阅读;也可作为研究生的教科书。凡是学过原子物理、分子物理、电动力学和光学的学生都能阅读本书。
刘克玲,退休研究员
(中国科学院过程工程研究所)
关键词:油液分析;傅里叶红外光谱;光谱重构;红外定性分析;红外定量分析
中图分类号:TE626.3文献标识码:A
0引言
油在相对运动表面过程中会由于高温高压或氧化应激发生复杂的化学反应;剂能否充分发挥其应用的功效取决于本身的性质和状态;尽管“状态”确实是个很模糊的概念,但却是在用油质量相对于新油变化的一个尺度。从实际状况来看,油性能降低的影响从小到大――例如自行车链条的不良只会导致蹬踏板比较费劲,然而一个喷气式飞机引擎内部轴承的不良则会导致严重的问题。油液监测关注的是影响设备性能和可靠性的因素,提前获取可靠的信息,从而为判断是否换油或者加入新的添加剂提供参考。目前普遍采用的换油方式是依照时间周期或运行周期换油,然而通过油液监测实现“按质换油”可以避免不必要的换油,也可以预防因油性能过早衰减而引起的设备故障。油液监测技术是一项成本低廉、效果明显的故障预测与诊断技术,在军事、航空、航海运输、煤炭开采、港口机械等需要用到昂贵重型机械的领域有着广泛的应用[1-2]。
油液监测包含多项技术手段,包括铁谱分析、颗粒计数、运动黏度、酸值、碱值、积炭的测量等,以及特定添加剂(如抗氧化剂、抗磨剂)的测量,特定污染物(如水分、乙二醇)、油总体氧化程度等项目。傅里叶变换红外光谱作为油液监测的一项重要技术组成,能够在几分钟内检测出油质量相关的众多重要参数信息。由于油的绝大部分成分或污染物都有明确的红外光谱特征,因此红外光谱技术丰富的状态信息能够让油液监测工作者来确定设备或油样是否存在潜在的隐患,也可以通过与参考性油样(如新油)对比或对在用油进行跟踪检测来达到监测的目的。除了定性的功能,红外光谱仪还有定量的功能,例如对酸、碱、水分含量的定量检测。本论文着重讨论了红外光谱技术的优点、局限、可以提升的方面,以及最新的定量方法进展[3-5]。
所有有机分子都能够吸收与其分子振动频率相同的振动频率,每一种化合物都有易于识别的类似“指纹”功能的独特红外光谱特征。与此相似,每一种固定成分的油也有其特征性的红外光谱特征,表现为每一种单独化合物特征峰的相互交叉叠加的多峰图形。
红外光谱技术一个重要的优点是对特征团的识别,例如CH3、CH2、OH、COOH、NH2都有特定的吸收峰,从而确认它们的存在和相互之间的比例。对化学功能团的识别与定量,是红外光谱技术进行状态监测的基本原理之一,因为在用油在使用过程中发生的诸多化学变化会导致某些化合物的形成或减少。与此相似,本论文中提到的油定量分析都是围绕功能团的红外吸收以及其遵循的比尔定律(即样品中某个化合物的浓度含量与该样品中相应官能团的红外吸收量成正比)。
1.1定性红外光谱监测
由于油红外光谱检测结果的可变性和复杂性,在用油的红外光谱状态监测一般采用的是趋势比对法。前提是对在用油进行红外光谱跟踪分析并将分析结果的变化与油品质量的变化相关联。在红外光谱技术发展的早期,此技术已经被认为在在用监测领域有重要应用,但直到美国军方进行了系统的研发之后才得以广泛应用。上世纪中期,红外光谱状态监测技术被进一步研究完善成为美军联合油液分析项目(JOAP)的一个组成部分。JOAP引入红外光谱分析技术的初衷便是用此技术来进行在用油的状态监测,从而最大程度地降低机械故障率并提高剂的使用效果。由Toms领导的这项研究工作,对军用在用油的红外光谱随时间变化的典型特征进行了广泛且深入的研究,各种单独的组分被加入到油样中来观察其红外指标的变化。这个创造性的工作在红外光谱的特征性变化与油品劣化过程之间建立了联系,例如抗磨添加剂的损失、油品水分超标、氧化、积炭等,这些指标现在都已作为状态监测参数应用到了实际中。同时,光谱特征性变化与油品各个性能之间的必要关系,也是ASTM标准E2412-10“利用傅立叶红外光谱监测在用油状态的方法(趋势分析法)”中的监测指标[6-9]。目前,商用的自动傅里叶红外光谱分析仪使在用油快速的集中分析更加便利,监测实验室通常会将油液信息录入专门的设备监测管理系统,通过这个系统对每一个设备取样点位给出相应的准确的分析报告。如果油样分析结果或趋势图显示该设备存在某种故障隐患,系统会给设备使用方做出提醒:例如“换油”、“监控运行”或“防水”等。通过对设备进行油液分析的状态监测,可以减少不必要的换油和机械故障节约成本,尤其是对设备拥有量大的企业来说尤其明显。对于某些没有这样经验性分析数据库的设备使用方来说,完全可以利用商业化的油液分析实验室来进行设备状态监测[10-11]。
1.2定量红外光谱监测
红外光谱并不仅限于提供状态监测的趋势数据,而且能够为关键的油品质量参数(特别是酸值、碱值和水分)提供定量的分析数据。对于在用油品来说,这三种参数都是非常重要的油品质量指标,通常会在状态监测过程发现油品的潜在问题之后对这三个参数进行分析和量化。根据不同用途,在大多数非燃烧相关的应用中,作为氧化过程所导致的结果,油在很大程度上更易于酸化,产生出相对较弱的有机酸,同时在多数燃烧应用中,酸性则是氧化和漏气共同导致的结果,其中后者所产生的是强酸(硝酸、硫酸)。酸值分析法多限用于低灰分油品,此类油品中不含有酸中和碱性添加剂包(例如压缩机油),但是它们的酸性会在氧化过程中慢慢积累起来。碱值分析法与包含碱性添加剂(通常称之为洗涤剂)的高灰分油品相关,从而中和以更快速度积累起来的较强酸性。因此,此类型油品中酸的形成并不会导致酸堆积,相反还可能会导致油品中预储的碱的亏损,而这种亏损可通过碱值分析法进行测量。与这两种测量密切相关的是水分,它不仅是反应物,而且是一种反应介质,与酸性相关的腐蚀以及油品中出现它时会产生的其他各种有害变化有极大的关联。
在ASTM标准中,用于酸值、碱值和水分测定的方法,以及卡尔・费歇尔酸碱滴定法,均存在有各自的局限性,精确度和再现性也都比较有限,而且从设备和试剂方面考虑,检测成本也相对比较昂贵。因此,出现了更加简单、成本较低、更为可靠的自动红外光谱法[12-14]。此外,FTIR 过程中实现的酸度和储备碱度的测量与传统的酸值和碱值测量多有不同,它们各自被重构为酸含量(ACpKa)和碱含量(BCpKa),其中下标pKa表示在红外光谱测定中采用的光谱活性碱和酸。酸含量和碱含量数据各自以mEq acid/g oil和mEq base/g oil表示,可以方便地转换为酸值和碱值的单位mgKOH/g oil;然而,由于红外光谱方法和ASTM 方法中采用的“滴定标准液”的pKa值存在差异,因此两种方法获得的结果不能等同。
红外光谱测出的酸含量与滴定法测出的酸值之间的换算关系可以用下面的线性回归方程表示:
红外光谱测出的碱含量与滴定法测出的碱值之间的换算关系可以用下面的线性回归方程表示:
红外光谱法对于油中水含量的测定采用的是乙腈提取法,实验证明这种简单的提取方法可以进行卡尔・费舍尔水分测定,并且具备可重复性和足够的灵活性[15]。
1.3现行傅里叶红外光谱状态监测的一般程序
目前油样的红外光谱检测都是取样人员从目标设备上取样后送往实验室进行检测,像其他各类状态检测技术一样,取样的周期是按照设备的类型、运行状况、油的种类和历史数据来制定的。检测时,油样被蠕动泵或注射器从油样瓶注入100 μm的硒化锌的投射池中,接着油样的光谱数据将在一分钟内被采集出来。然后光谱仪的软件会将吸收率或吸收峰曲线做出来,这些数据会传输到管理系统中形成报告,投射池随即被用溶剂油清洗后重新进样来进行下一个油样的检测。
2傅里叶红外光谱分析的局限性
傅里叶红外光谱分析过程中一个主要问题是监测结果的数据判读严重依赖于不同的油品配方,因为油品的红外吸收光谱带可能会干涉到在用油的红外光谱检测过程中的光谱变化。在这方面,ASTM标准D7414-09提供了例证――通过使用趋势分析法对在用油品和烃基油中氧化反应进行状态监测的标准试验方法。该方法可对光谱的羰基吸收区(吸收有机酯和有机酸)进行测量。在氧化检测方面,这种测量方法在纯烃基油品光谱中很有效,但在酯基油品的光谱测量中却显得毫无意义,因为酯键的羰基吸收光谱带将覆盖氧化反应产生的所有有机酸和有机酯的羰基吸收光谱带。也正因为如此,上述D7414-09方法的适用范围,如标题所示,仅限于“石油和烃基油”。基于类似的原因,ASTM标准 E2412-10 单独将剂限定为三类(石油基(曲轴箱)油、极压(EP)液和多元醇酯液)。但是,在其中的任一类别中,都包含有许多由各种油供应商推广的不同专用配方以及设计用于特殊用途的独特配方,而这些配方差异将在油品的红外光谱中有所反映,这将使基于红外光谱的油品状态监测数据的判读变得更为复杂。这种背景下,便逐渐形成了两种红外光谱状态监测分析方法:直接趋势分析法和差异趋势分析法,它们各有自己的优缺点。直接趋势分析法基于这样一种假设――能够对油品的光谱特征重叠的不同时间的光谱变化进行追踪,并据此形成油品的衰变曲线和干预标准。差异趋势分析法的步骤则更为精密,包括收集在用油样的光谱,以及从中减去相应“新”油或其他适当基础油的光谱,从而使产生的净光谱变化从差异光谱中分离出来。如果油品组分非常明确,并且能够保证其中并未添加任何其他油品,这种方法就非常适用。直接趋势分析法相比起来较为实用,但是没有那么精密,比如说,对从卡车中获取的油品进行常规检测时,这种方法非常有效。而差异趋势分析法则更精确,也更适用于检验齿轮油或者压缩机油,这些设备中的油品配方极为特殊,同一种油品需要长期使用,而湿度、氧化状态和添加剂成分的变化则是非常关键的衰变指标。然而,这种方法需要适当基础油的光谱信息包含在光谱数据库之内,或者是被记录为样本分析方案的一个组成部分。总而言之,无论是直接趋势分析法还是差异趋势分析法,它们都不能完全适用于每一种油品,前一种是由于配方依赖性,后一种则是出于对油品实际性能和实际工况的考虑。应该注意的是,这些方法都是包含在ASTM的 E2412-10 和 D7418这两个标准里边,以及相关试验方法之内的。
3傅里叶变换红外光谱分析扩大了油品分析范围
鉴于上文所探讨的问题,为油品设计出一种常规光谱分类体系,从而为不同配方的油品选取不同类型的光谱特征的基础上进行状态监测的分析将非常有用。尽管概括来讲,ASTM E2310-04 已提到过光谱的搜索和匹配路径,但在该概念的发展过程中,一些疑难点将不得不做出再一次的强调。其中一个主要挑战是,假定相应的光谱变化反映不同的混合因素,需要最终完成对已产生化学变化的在用油品的正确分类。本文作者应对该挑战的潜在方式是使用区域选择算法,从而在“决策树”的各个分支优化分类;但是,这样就需要进行进一步的研究对该方法进行验证。如果成功的话,不仅油品能够根据它们的光谱相似性进行分组,并相应地进行类别划分,而且能够针对各个油品“类别”形成适当的红外光谱分析状态监测方案,并且依据光谱区(可在其中为适当兴趣参数进行测量)进行验证。如上文所述,ASTM E2412-10 仅为三类油(石油油、EP石油油和多元醇酯)指定了红外光谱分析状态监测测量参数,而且尽管ASTM E2412-10 提到存在将其他油类型涵盖在内的可能性,然而尚难实现这一目标。如果为现有的生产配方设计出一种普遍的油品归类系统,并在新的配方投入使用时及时更新,不断在拓宽红外光谱分析状态监测范围将会大大方便油品红外光谱分析工作。虽然要证明该方法对于红外光谱分析状态监测的广泛可靠性并不是很容易,但是鉴于目前市场上油产品的巨大数量,使用基于光谱的分类系统将有效防止出现样本的错误分类,而在现如今的红外光谱分析状态监测中此类应用则比较缺乏。此外,该系统能够克服与商品名称和“最终使用”油命名相关的常见混淆问题。商品名称和最终使用命名在业界可交换使用,但是产品在基础油或添加剂方面却不一定完全相同,而这一点往往会导致混淆及分析异常。由此,光谱分类系统(包括从矿物到酯基物质及其结合物,以及其他油品类型,例如磷酸酯、聚二醇油品等等)最终将为数以千计的著名品牌的油提供简易的相互参照型化学或功能划分方案,并根据给定用途,为油购买者提供一种在多种产品中做出选择的有效方式。
4红外光谱状态监测技术的改进
以上内容表明,尽管红外光谱分析状态监测的使用非常广泛,成本效益也比较显著,但它仍是一种有着很大提升和改进空间的技术,通过不断的改进,才能成为更加实用的分析工具。对于这个问题,红外光谱分析状态监测最新的光谱重构技术提出了解决方案,这是一种对样品处理量和溶剂使用有重大影响的技术。借助于这种技术,通过使用低成本的含有独特光谱标记的煤油或溶剂油将油样稀释,油样的黏度降低,从而更快地被输送到红外光谱传输池,省去了油样之间的溶剂冲洗流程。然后,稀释液中存在的光谱指标能够通过光谱重构技术,用去除稀释液光谱的方式获取原来净油样的光谱,图1为如何进行光谱重构的示意图。
光谱重构技术在热油连续的油品分析和处理(COAT)系统中已有应用。这是一种综合的自动采样和FTIR分析技术(图2),使用单个的低通量固定容积液体泵将稀释油样装入IR传输池,同时让下一油样流过传输池,这样可将所有的油样冲洗掉。但是,虽然光谱指标的存在还会使稀释变得不那么精确,指标测量却可确定精确的稀释度。至于光谱重构,除了能够在分析速度方面带来大量效益之外(上升到180样/小时,而传统蠕动泵和基于注射泵的FTIR 自动采样系统则仅为20~30样/小时),它还将最大限度地减少磨损,确保KCl试池窗口使用的低成本(相比于ZnSe),并且所需样本和溶剂相对较少,这也使它在与油品和溶剂所带来的废弃物方面将环境影响降至最低。除净油品光谱并非直接测量而是从稀释油样的光谱中重建的之外,红外光谱分析状态监测的工序过程与ASTM D7418-07一致,同时也需要按照要求严格执行。状态监测数据大量的对比结果是在标准条件下使用光谱重构技术和对相应的净油样进行传统的红外光谱分析获取而来的,此结果有力地证明两种程序所提供的数据一致。
5结论
傅里叶红外光谱是用于在用油分析的一种重要的自动化状态监测筛查工具。目前,红外光谱方法已根据样本处理量借助光谱重构技术进行了有效升级,分析速度已高达每小时180个预处理样本。尽管基于红外光谱的状态监测方法目前在很大程度上仅限于矿物源油品,但是可以预见的是,随着技术的发展,红外光谱的应用范围将会得到广泛的拓展,深入到基础油与配方油方面。更重要的是,最常见的定量后续分析:酸值、碱值和水分含量分析已发展成为了完全可行的自动化红外光谱定量分析方法,这就显著增强了红外光谱在油分析方面的实用性能和分析功能。一般来说酸值和水分分析的应用范围远远不限于油自身,而且可被应用到包括燃料油(柴油、汽油和生物柴油)、生物柴油原料、原油在内的各种疏水性物质上。总的来说,红外光谱技术能否被广泛接受很大程度上取决于它的商业化开发。当然,如同其他检测方法一样,红外光谱技术也存在一些缺点和局限性。例如,红外光谱技术只反映分子结构的信息,对原子、溶解态离子和金属颗粒不敏感,也就是说,在对机械设备进行油液监测的过程中,红外光谱仪无法代替原子发射(吸收)光谱仪和铁谱仪的作用;在商用检测中要求红外光谱检测系统具有较高的样品通过量,否则,每次的分析成本较高;此外,红外光谱检测系统对操作结果的再现性要求非常高,否则,谱图采集系统或仪器响应的微小变化会影响结果的准确性和精密度。
参考文献:
[1] 翁诗甫. 傅里叶变换红外光谱分析[M].北京:化学工业出版社,2006.
[2]Pinchuk D, Akochi-Koblé E, Pinchuk J, et al. Additive Reconstruction of Oils[C]∥Lean Manufacturing, Reliability World and Lubrication Excellence 2007 Conference Proceedings,USA, 2007.
[3]Toms A. FT-IR for Effective, Low-Cost Oil Condition Monitoring. http:///knowledge_center_documents/3/L_FP_Nov_2000_AToms_FT-IR.pdf _Last accessed(2011-4-20).
[4]Coates J P, Setti L C. Infrared Spectroscopy as a Tool for Monitoring Oil Degradation. Aspects of Lubricant Oxidation[M]. ASTM STP 916, 1986: 57-78.
[5]陈闽杰,丁丹,贺石中. FTIR红外光谱分析技术在油液监测实验室中的应用[C] ∥第八届全国摩擦学大会论文集,中国,2008.
[6] Toms A. FT-IR for the Joint Oil Analysis Program: Part I [C]∥Proc. 1994 Joint Oil Analysis ProgramInternational Condition Monitoring Conferenc, USA, 1994.
[7]Toms A. FT-IR for the Joint Oil Analysis Program: Part II [C]∥Proc. 1994 Joint Oil Analysis Program International Condition Monitoring Conferenc, USA, 1994.
[8]Toms A. A Preliminary Report on the Evaluation of FTIR for Lubricant Condition and Contamination Determination in Support of Machinery Condition Monitoring. I. Synthetic Lubricants, Condition Monitoring [M]. Pineridge Press, 1994: 520-531.
[9] Toms A. Bio-Rad FTS7 Fourier Transform Infrared (FTIR) Final Report[R].Joint Oil Analysis Program. USA, 1994.
[10] Garry M, Bowman J. FTIR Analysis of Used Lubricating Oils, Nicolet Application Note[R]. USA, 1998.
[11] Perkin E. Rapid and Cost-Effective Oil Condition Monitoring-Spectrum Oil Express System[DB/OL].http:///content/relatedmaterials/productnotes/prd_spectrumoilexpress.pdf. Last accessed (2011-4-20)[2014-1-19].
[12]van de Voort, F R Sedman, Saint-Laurent C. The Determination of Acid and Base Number in Lubricants by FTIR Spectroscopy [J]. Appl. Spectrosc, 2003, 57: 1425-1431.
[13]van de Voort, F R Sedman, J Yaylayan, et al. The Quantitative Determination of Moisture in Lubricants by FTIR Spectroscopy [J]. Appl Spectrosc, 2004, 58: 193-198.
关键词:低品位;铜矿选矿;试验
中图分类号:P578文献标识码: A
矿产资源作为一种基础产业,由于其广泛应用、不可替代性等原因,不仅在国民经济中占据着不可替代的重要地位,同时对我国的外交事务也有所影响。探月计划的工作之一就是探索月球上的矿物资源。从小我们就知道,我国幅员辽阔,地大物博,矿藏丰富;但是同时人口众多,因此人均资源占有量远远落后于世界平均水平。因此针对石油、钢铁、铜矿产而言,储量甚至称得上单薄稀少,尤其是铜矿产资源,有权威部门研究称我国在这方面的储量仅能保证几年到十几年的需求,因此勘查寻找新的铜矿产资源迫在眉睫,除了传统的找矿方法之外,也有一些新的技术被应用于勘查过程中。本文对铜矿产资源的主要特点、传统勘查方法和近年来提出的新方法进行了总结和分析。
1我国铜矿产资源现状
我国有色金属储量和质量最高的省份都当属云南省。如今有色金属及其合金更是广泛应用于各种机械器材的制造中,在科技进步中占据重要作用,是不可或缺的原材料,在国家内政外交中均占有一席之地。
我国铜矿产目前的基本情况是:(1)矿藏丰富,矿产总量多,锌、锡、钛等已知储量均为世界第一,但是从地域上和种类上都比较分散,集中情况较差,缺少大型单一矿藏地带,开采难度较大;(2)矿藏品味低,开发使用成本高,经济效益不高,因此除了提高采矿技术,新矿的寻找也成为大家最关注的话题;(3)在工业生产中需求量比较高的矿产较少(如铜矿和铝土矿等),且矿产本身规模大多比较小(铜矿中小型矿占到80%以上);(4)铜矿产本身利用率仍有一定的提升空间。
广东省有色金属储量不多,主要是铅锌、稀土、铝、铜等,省内主要矿山包括信宜银岩锡矿、茂名钛矿、凡口铅锌矿等,但有色金属行业资产比重(资产规模、销售收入等)排在全国前五的行列;广东省地质部门参与众多国内外矿山的勘查工作,勘查水平和效果在我国名列前茅。
2传统的铜矿产资源勘查方法
目前矿产勘查是指对矿产预查、普查、详查和勘探的总称。具体来说,是在区域地质调查和成矿预测的基础上,同时根据国内外矿产品市场的需求,运用成矿理论作指导,通过采用有关的勘查技术手段和方法,对有关的矿产资源所进行的专门性的地质调查研究工作[1]。
矿产勘查工作本身是一项充满挑战的工作,需要从业人员始终保持饱满的工作热情、扎实的基础、过人的耐心和抗打击能力以及细致入微、多思考多观察。一般来讲,由于矿床本身的层次特点和勘查工作的高消耗性,勘查过程应该分阶段进行,在逐步深入的同时能够防止投资的浪费。矿产多是分布相对集中的,因此通常新矿的寻找是在已知矿山、成矿区探测并逐渐向扩展。
目前,我国由于多年的积累和对于矿床的勘查工作的逐渐深入,已经基本形成了“矿产地图”,对于各类铜矿产资源的大致分布及储藏地矿床本身的地质特点都已经有了比较深入的了解,在矿产勘查理论和方法上也都有不少的积累。例如数学方法在其中的应用:数学广泛应用于铜矿产资源勘查中的多个方面,如特征分布规律的分析,数量、品味等分布曲线,概率分布法则,数学经济理论等。
传统的矿产勘查方法和勘查影响因素主要包括:地槽、地台、地洼等地质条件对成矿特征的控制,断裂控矿与褶皱控矿,地层、岩相控矿,区域地球化学因素控矿,矿产露头、近矿围岩蚀变、矿物学标志,铅同位素定位找矿法,地球化学标志、地球物理标志、生物标志、人工标志等。一般来说,矿产与地质关系最为紧密,不同的矿产对于周围的环境也有所影响甚至一定程度反应在人们的生活中。
3新兴铜矿产资源勘查方法探索
跨学科综合的方法近年来越来越受到重视,科技的发展也为学科的综合提供了可能性。除了上述传统的方法之外,近年来,很多其他的方法例如电吸附、吸附相态汞、有机气体集成等也被运用于铜矿产资源的勘查中,并取得了一定成绩。
强化异常找矿法的理论依据是根据将矿床对于其周围地质环境的影响而造成的非常微弱异常线性(如电、热、磁等的异常)进行放大的方法展开的,目前已经广泛采用的如电吸附、偏提取等方法,经实际勘查证明对于隐伏矿的勘查效果较好,对人为干扰的抗干扰效果较好,自从采用以来已经有不少成功的案例,值得推广。
高光谱遥感方法作为新技术方法的一种,在有色金属资源勘查中是一种比较新的方法。不同的物体光谱特征不同,而光谱仪产生的多光谱、高光谱图像不仅可以获取可见光图像,而且对各个波段的非可见光均可成像,通过将遥感图像提取的信息与矿田构造的要素结合在一起用来寻找矿床。遥感技术不仅对大范围搜索上较为适用,同时也进一步开拓了电脑分析的途径,不仅解放了人力物力,而且避免了主管判断上的失误,使结果更加客观准确。光谱分析技术的进一步发展必将促进高光谱遥感在有色金属资源勘查方面的进一步应用。
此外,结合当地传说、地名等开展的地质普查工作仍要继续。我国古代劳动人民有着朴素的智慧,通常一个地方的传说、地名等流传时间久远的故事都与当地的特点有关,铁山、铁岭一般与金属有关,银山出产银色的金属等等,虽然有时会有所差池,但一般这种指示作用都是正确的,只有结合现代科技与传统文化,才能最快找到铜矿藏。
4结语
铜矿产资源的勘查涉及到矿床学、选矿学、采矿学、地质学、古生物学等多种学科,甚至与经济学、数学等都有所关联,在学科综合化的今天,随着科技的发展,遥感探测、数据处理、地理信息系统等也越来越多的运用其中,充分显示出铜矿产的重要性。我们需要在传统方法的基础上,结合先进技术,不断创新,在节约能源的同时寻找能源,做到“开源节流”,保证我国工业生产中对铜矿产的需要。
参考文献:
[1] 徐柏辉.椰油胺阳离子捕收剂用于铁坑褐铁矿反浮选的研究[A]. 2008年全国金属矿山难选矿及低品位矿选矿新技术学术研讨与技术成果交流暨设备展示会论文集[C]. 2008
关键词:光谱分析,柴油机,磨损
1 前言
磨损是摩擦的直接结果。物体相对运动时相对运动表面的物质不断损失或产生残余变形称为磨损,所有机器和机构的运转都是依赖其零件副的相对运动,有相对运动必定有磨损,磨损是普遍存在的一种自然现象。磨损通常是有害的,因为它造成物质损失,降低精度,缩短使用寿命和降低可靠性等,故尽可能减少之,以延长使用寿命和提高可靠性。在规定的时间内,只要磨损量不超过允许值就称之为正常磨损,异常的磨损则表明设备存在潜在隐患[1]。
通过设备的状态监测,研究设备的工作状态以及存在的故障和隐患,对机器的维修工作以及延长机器的寿命具有非常重要的意义。油料光谱分析技术是通过监测机器中油的磨损金属元素含量来分析判断机器的磨损状态及磨损程度。,磨损。在众多的状态监测手段中,油料分析是一种很有效的方法。油料光谱分析仪不需安装传感器,分析速度快,结果直观,因而可方便快捷的获得机器的磨损信息[2]。,磨损。,磨损。
2 油液光谱分析应用实例
以下为某船用燃油光谱分析实例。,磨损。用10号油标定机器后,对该油进行了油料光谱分析。,磨损。
2.1 原子发射光谱监测仪器与方法
2010年3月3日,对某船用柴油机油油样进行试验。油样编号:10-0303#。所用仪器为美国超普公司的Spectroil,Model M/C-W,参考试验方法ASTM D6595。美国超普公司的Spectroil M型光谱仪中,一个盘电极在一个旋转轴的一端,油置于一个油盖帽中,其放置的位置使垂直放置的盘电极的地步通过永阳而旋转,碳棒和盘电极之间产生一个小火花隙。油液被汽化、解离、激发,形成一个放电区,油样中的元素发射特征波长的光,射入光谱仪的光室,通过光电倍增管将光信号转换为电信号,通过CPU得到各金属元素的含量。
2.2 检测结果
10号标油 Fe Cr Pb Cu Sn Al Ni Ag Si 检测结果1 10.3 9.5 10.7 9.2 11.0 9.4 9.4 8.7 10.1
检测结果2 10.3 9.6 10.6 9.7 11.8 9.5 9.7 9.1 10.4
平均值 10.3 9.6 10.6 9.4 11.4 9.4 9.5 8.9 10.3
许多业余爱好者都会认同这种做法。但是业余天文学为什么一定要是一项代价不菲又很紧张的活动?它难道不应该是轻松有趣的吗?很明显,对于一些人来说,其实这还有更多的意义。
研究星风
近年来,专业巡天望远镜的诞生大大减少了在自家后院天文台里的观测者们在某些领域做出科学贡献的机会,例如搜索小行星和彗星。但是现在,廉价、高分辨率、现成的商品摄谱仪可以填补这个空缺了。甚至在中小口径望远镜上安装摄谱仪,就可以通过揭示一颗恒星的温度、化学组成,或者通过揭示天体上原子激发和电离的物理条件,从而获得有科学意义的结果。
使用加纳利天体物理研究所的31英寸反射望远镜,Eversberg和他的团队观测了天鹅座中的三颗沃尔夫—拉叶星:WR 134、135和137。它们的光球层被高密度气体云包裹,这些气体云以非常快的速度运动和旋转。目视观测者不会发现这类恒星有什么异常,但气体云可以在恒星光谱中产生明亮的发射线。通过研究这些谱线,天文学家们可以探索被遮掩的恒星表面与其强劲星风之间的关系,同时检测这些星风的周期性和随机的凝聚性。
Eversberg表示:“我们可以说就是光谱天文学中专业人员与业余人员合作的经典范例。”他在位于波恩的德国空间局工作,却组织了这项以志愿者为主体的光谱研究。他和Anthony Moffat(蒙特利尔大学,加拿大魁北克省)一同发起了这项活动。2009年,他们有目的地组织了一批业余爱好者来到Tenerife岛,对一颗温度极高的双星WR 140进行近星点观测,这颗双星是星风碰撞双星中被研究得最充分的。他们得到了比2001年仅有专业近星点观测时多5倍的光谱数据。有了这些业余爱好者的数据,专业天文学家深化了对于该系统的质量、轨道周期和轨道倾角方面的认识。
有了这些来自世界各地的参与者,Eversberg和Moffat组建了ConVento团队(ConVento在意大利语中意为“随风”),团队成员包括致力于星风研究的业余爱好者和专业天文学家。ConVento成员主要使用他们自家的后院天文台,但是在Tenerife岛操作专业级别的望远镜却是这个活动的亮点。Eversberg说:“2009年取得的成功,帮助我们为2013年的观测活动申请到了望远镜时间。专业天文学家已经知道了我们的存在,而且也知道我们能够干什么。”
捕捉一次性事件
专业天文学家们可以使用绝大多数最先进的望远镜和设备,它们都位于世界上最好的观测台址。但他们却没有业余爱好者所拥有大量观测时间。长期的测量、巡天和监视需要几周甚至几个月的望远镜时间,而专业天文台的观测时间常常有许多人申请,很难为一支团队提供这么多时间。而一台装有制式摄谱仪的8英寸~20英寸(约合20.32厘米~50.8厘米)望远镜也能够很好地完成这些工作。即便在有光污染的城市,获得亮星光谱也是有可能的。而且,即使某个晚上在你那里乌云密布,别处的伙伴也能充当替补。
光谱观测也因此成为了一项新兴的、蓬勃发展的“公众科学”,特别是在欧洲的业余爱好者群体中。目前尽管这种观测正在发展,但参与人数仍然相对较少。Thierry Garrel说:“法国现在大约有30位认真的观测者,可能另有约100人对这个领域感兴趣。”他是法国“光谱观测者组织”(ARAS)的成员,该组织是欧洲最活跃的业余天文学组织。
但是这些专注的观测者中也很少有人完全倾心于这项工作。Eversberg说:“光谱观测显得有些枯燥乏味。你必须花费无数个夜晚来获取数据以供他人分析,而且更槽榚的是,这些数据并不是美丽的照片,而只是图表和数字。”但你的回报并不仅仅是可以在科学论文中署名。正如Eversberg指出的那样:“我们的工作不是拍摄无数张猎户星云的照片,而是见证那些一次性发生的事件。”
让我们看一看长周期食双星。在这种系统中,两颗恒星周期性地互相掩食,目前已经发现了几十个这样的双星系统,但只有几个得到了较好的研究。它们的长轨道周期使其成为业余爱好者的最佳观测对象。已知最好的一个食双星就是御夫座ε,它于2009年~2011年之间通过距离极小点,并且此时有一个暗气体尘埃云在主星前方越过。上次掩食发生在27年前,当时业余爱好者还没有摄谱仪。据英国的业余光谱学家Robin Leadbeater报告,有超过800条业余爱好者拍摄的光谱并已被纳入专业数据库,正在帮助天文学家们研究奇怪的蚀云。通过观测770纳米的钾吸收线,Leadbeater在这团蚀云使恒星变暗前几个月,以及真正的交食结束之后很久,都看到了这团蚀云。
其它长周期食双星还包括仙后座AZ和仙王座VV,其轨道周期分别是9.3年和20.3年。仙王座VV将会演化为一个变双星,它由一颗老年超巨星和一颗炽热的矮星组成,其光谱显示出了很强的氢和铁的发射线。这些谱线来自于这对恒星周围延展的气体包层,它们随时间演化的方式,与星风的模式和速度以及恒星特征参数和轨道参数有关。
由于刚刚推算出仙后座AZ将有一次交食,Cezary Galan(哥白尼大学,波兰)建议业余爱好者们在2014年全年对其展开持续监测。Galan在他的网页上写道:“连续密集的测光观测和光谱观测是很必要的。对仙后座AZ的长时间尺度变化进行监测需要大量观测者的参与,以降低天气的影响,同时保证对交食过程中最重要阶段的观测成功。”截至2013年6月初,业余爱好者提交了总共250个光谱中的2/3。Galan说:“业余观测者对这个活动的兴趣之大,远远超过了我的预期。”
与此同时,Darryl Sergison(埃克塞特大学,英国)请求业余爱好者对低质量金牛座T型星进行光谱监测,以帮助天文学家更清晰地了解年轻类日恒星的周围环境,并查明它们的各式各样的盘、生长过程和外向流结构的特征。这项研究在今年秋天将会达到,但是对其中三个目标的监测从去年年底就已经开始了。
长期项目的最佳范例是国际Be型恒星观测活动,它已经运行了超过10年。大约20%的B型星(此类恒星占肉眼可见恒星的20%)会显示出氢发射线,有时还有氦和铁的发射线,它们还会以数小时到数十年不等的时间尺度变化。天文学家们认为,这些发射线是由恒星快速旋转时抛出的气体外壳或盘造成的,它们在赤道处的离心力足以克服自身引力。但是光谱的变化却让人难以理解。因此,业余爱好者拍摄的光谱资料就至关重要了。天文学家们总共已经收集了约600颗Be型星的超过72000条光谱,其中有29000条(40%)仅仅出自于49位业余爱好者之手。这些数据被储存在Be型恒星光谱数据库中,由业余爱好者和专业天文学家共同维护,天文学家们在20多篇论文中使用了这些数据。
成为业余光谱学家
还有其它许多有趣的目标可供业余爱好者选择,从新星、超新星到小行星和彗星。这些都可以得益于现在出现的廉价、现成的商品摄谱仪。而仅仅10年前,业余爱好者还没有高分辨率光谱观测所必需的仪器,除非他们自己制作。
业余爱好者希望获得简单而强大的仪器,以进行有科学意义的研究。受此激励,法国业余爱好者Fran?ois Cochard、Olivier Thizy、Christian Buil和Yvon Rieugné专门为业余爱好者设计了一种商业级高分辨率摄谱仪,后来发展为Lhires品牌。现在,他们的Shelyak仪器公司可以提供各种价位、覆盖所有分辨率的摄谱仪。欧洲南方天文台的工程师Jesús Rodríguez、Carlos Guirao和Gerardo ávila,以及德国马普地外物理研究所的专业天文学家Vadim Burwitz是欧洲的另一个摄谱仪来源。他们的“光谱发烧友俱乐部”与德国的Baader Planetarium公司合作,向业余爱好者提供摄谱仪。
但是硬件只是故事的一部分。怎样才能知道,你是否有业余光谱学家所必备的技能呢?Eversberg说:“这种技能需要学习。”因此各种互联网交流平台是极其重要的,例如ARAS主持的网上论坛和新闻组,以及德国的Spektroskopie论坛等。在这些平台上,光谱爱好者们可以交流观测技术和设备的相关知识,策划新的观测活动,以及讨论观测结果。大多数讨论都是用英语进行的,以便更多的人可以参与。
欧洲各地的业余爱好者有着不同语言和文化,但他们把这个表面上的劣势转化成了优势。因为每个国家的团体都很小,因此国际合作是必不可少的。每项活动都包括了来自欧洲各地的参与者,甚至扩展到了全球范围。如果你想参与,请注意首先必须了解怎样运行你的望远镜和CCD相机,这是获取光谱数据所不可或缺的,因为要把摄谱仪附加在你的装备上。同时,要理解大多数分析工作将交由专业天文学家进行,因为这些工作需要特殊的训练。
论文摘要:为了使学生通过分析化学的学习能掌握分析化学的基础知识、基本理论和基本实验技能;掌握各类分析仪器的测量原理,并建立起严格的“量”的概念;了解仪器的结构及各类分析方法的特点、应用范围及局限性;培养学生严谨的科学态度和实事求是的科学作风。从以下几个方面进行研究:重视理论教学;理论联系实际,重视实验教学;多种教学方法的综合运用。
引言
分析化学(Analytical Chemistry)是发展和应用各种理论、方法、仪器和策略以获取有关物质在相对时空内的组成和性质信息的一门科学,又被称为分析科学(Analytical Science)。该课程内容包括化学分析和仪器分析两大部分。化学分析包括分析化学的基本知识;定量分析方法的基本步骤;分析化学中的误差与数据处理;分析化学中的质量保证与质量控制;容量分析方法和重量分析法。化学分析部分的理论和方法是分析化学的基础。仪器分析包括原子光谱法(原子发射光谱法、原子吸收光谱法);分子光谱法(紫外一可见吸收光谱法、红外吸收光谱,分子发光法);电化学分析法(电位分析法、电解与库仑分析法、伏安法与极谱法);色谱法(气相色谱、高效液相色谱法);核磁共振波谱法;质谱法等。分析化学既有严密、系统的理论,同时又有很强的实用性,是理论与实际密切结合的学科。通过本课程的理论与实验教学,要求学生掌握分析化学的基础知识、基本理论和基本实验技能;掌握各类分析仪器的测量原理,并建立起严格的“量”的概念;了解仪器的结构及各类分析方法的特点、应用范围及局限性;培养学生严谨的科学态度和实事求是的科学作风;使学生初步具有根据实际问题选择合适分析方法的能力,并与实验课程相配合,初步具有解决实际问题的能力。为了使学生更好地掌握这门课程,要求教师必须更新教育观念,改进教学方法和教学思路,提高教学质量。现从以下几个方面谈谈教学体会。
重视理论教学
1.教学中抓住重点、难点。分析化学内容比较繁杂,涉及到无机化学、物理化学、有机化学、电化学等方面的内容,学生普遍反映这门课程内容复杂、抽象,难以理解和掌握。因此,在教学中一方面要抓住主要脉络,抓住教学的重难点,举一反三,将抽象化知识尽量简单化。如波谱分析部分学生反映抽象、难理解,但这部分是重点之中的重点,讲授时要慢讲,并结合有机化学的结构式多举实例,多用一些图谱解析实例给大家讲解,就容易多了。另一方面则要善于归纳总结。例如:整个分析化学包括两大主要内容:化学分析和仪器分析。现列举如下:
分析化学
容量分析配位滴定法
酸碱滴定法
氧化还原滴定法
沉淀滴淀法
重量分析
仪器分析电化学分析
光谱分析IR
UV
NMR
质谱
色谱分析TLC
GC
HPLC
这样分析化学的主要脉络就理清了,掌握这个脉络,有利于学生记忆。
2.注意交叉学科之间的联系。分析化学是研究物质的组成、含量、结构和形态等化学信息的分析方法及理论的一门科学,与其他学科有着很大的联系。如:化学分析部分及电位法和永停滴定法主要包括定量分析,学生在学习这一部分内容时要充分掌握化学平衡理论在分析化学中的具体体现和实际应用,与无机化学、物理化学中的溶液理论紧密联系起来,理解各类分析方法的基本原理,发现反应过程中各种平衡状态,各成分的浓度变化。
3.培养自学能力。以往教学采用“填鸭式”教学方法,既乏味又不生动,学生只是机械地听,时间长了学生不善于动脑思考。因此在教学中,采用讲清基本原理的同时,让学生完成一些相关内容的论文。比如,在讲高效液相色谱法时,因学生不能进行实际操作,很难了解它们用处的真正意义。但在教学同时,让学生写出相关论文,如“HPLC在……方面的应用”等,这样学生既能练习查阅文献,又能了解此种方法的应用的重要性。
理论联系实际,重视实验教学
分析化学是一门实践性的学科,以解决问题为目的。通过教学及结合现实生活中的实际例子,学生可理解消化课堂所学基本原理和方法,理论知识得到进一步的巩固和验证,同时实验教学也是培养学生实际动手能力和创新能力的重要途径。为了提高学生实验水平为此我们采取了一些方法。
1.课前写预习实验报告。写的内容包括实验目的、原理、操作步骤、注意事项。这样学生在上实验课之前就已初步了解所要上课的内容了,待老师讲完后再动手做就事半功倍了,而且,很快掌握理论与实践结合,理论课上不易理解的知识点就豁然开朗了。
2.课堂上老师提间,学生也可以发表自己的见解。课堂提问是很古老的方法,但效果还是得到肯定。有时有的学生还是处在被动的学习状态,虽写了预习报告未必认真思考,若课堂提问的话,学生在预习时就会认真去考虑实验所涉及的内容,这样促使学生去复习课本知识和主动查阅资料,这样既提高学生积极思考能力又加深了对理论教科书内容的理解和掌握。
3.培养学生自己设计实验,亲自动手操作的能力。分析化学中波谱解析是学生比较难掌握的,只空讲原理学生很难接受,若让学生自己结合有机合成实验的内容让学生自己设计合成化合物,然后利用分析化学中波谱学知识,让学生亲自对自己所合成的化合物进行测谱,如红外光谱、紫外光谱、核磁共振谱、质谱、碳谱等,这样学生既掌握了波谱学的理论和实际应用知识,又培养了学生自己设计实验,亲自动手的能力,同时也真正懂得分析化学对于药学专业人员的重要性。
多种教学方法的综合运用
1.改革传统的教学方法。在现代教育理念——研究性学习、探索性学习、协作学习等的指导下,我们需要根据课程内容和学生特征,设计多种多样的教学方法,同时要结合高职教育的人才培养模式进行教学设计。
课堂讲授:
在认真提炼基础性内容的同时,重视新技术在教学中的应用和教学方法的改革,加人扩充性知识,使学生了解新方法,为实验教学及今后的走向工作岗位打下扎实的理论基础。
问题教学:
老师先提出问题,由学生在实验中去分析,找出问题存在的原因以及如何去解决。有效调动学生积极参与学习,促进学生积极思考。
启发式教学:
联想式启发、对比式启发、由浅人深启发、总结式启发等方法进行教学。调动了学生的主动性、积极性和创造性,使课堂教学充满活力。
演示教学:
针对难度较大或精细程度较高的实验,由老师演示,然后由同学操作,老师在旁边亲自指导,便于学生准确掌握。
参观式教学:
在定量化学分析授课期间,组织学生下厂实习,了解企业的情况,增加学习的兴趣。
2.多媒体教学方法与传统方法相结合,提高教学质量。由于现代教育技术的发展,我们可以运用多媒体课件进行教学。多媒体由于具有文字、图表、动画、声音,可以刺激学生感观系统,调动学生学习积极性和主动性;可以拓宽教学内容,增大教学容量,提高教学进度。
实际运用中,要注意多媒体教学与板书的结合。实践表明,运用多媒体辅助教学,由于不需要板书,速度快,使部分学生的思维速度跟不上,整体很难获得良好的教学效果。教学过程中发现对易理解的内容,学生表现非常活跃,对难理解和掌握的内容,学生往往表现欠佳,如采用经典方法进行板书、讲解则可获得良好的教学效果;对公式推导,计算举例应用板书、讲解也能获得良好的收效。因此,在教学活动中,要注重多媒体教学方法与传统方法相结合,提高教学质量。
3.网络教学和课堂教学相结合,提高教学质量。教师可以充分运用网络巨大的承载力,制作丰富、详实、动感的教学内容课件,弥补课堂教学时数的不足。学生可以根据需要打开教学内容来阅读、理解、记忆、掌握课堂上没有理解和掌握的内容。可以打开感兴趣的内容进行详细的阅读、理解和探讨。网络教学和课堂教学相结合,教学方式灵活,可以有效提高教学质量。
绿色分析化学学科的出现是社会发展的需要――开发能有效使有害化学试剂的使用量,并最小化操作者和环境安全最大化的分析程序。近年来,为了防止或降低分析工作对环境带来的有害影响,一些方法论和技术工具得到很大的发展,关键策略包括:回收、取代、试剂或溶剂的还原或去毒等。本书综述了绿色分析化学近年的状态和发展。国际著名专家在本书中讨论了绿色分析化学的基本原理,并提出了发展环境友好型分析技术的一系列工具。
本书由4部分组成,共23章:第一部分概念,含1-4章:1. 绿色分析化学的概念;2. 有关绿色分析化学的教育:3. 绿色分析实验室的实验;4. 有关绿色分析化学的出版物。第二部分分析过程,含5-14章:5. 绿色取样技术:6. 样品的直接分析;7. 绿色分析的样品处理途径;8. 用非色谱分离技术制备绿色样品;9. 毛细管电泳;10. 绿谱学;11. 绿色分析原子光谱分析;12. 固相分子光谱学;13. 绿色分析化学的衍生技术:分子吸收、荧光和液相色谱;14. 绿色电分析方法。第三部分战略,含第15-19章:15. 分析化学中的能量降耗;16. 绿色分析化学和流动注射法;17. 微型化;18. 微材料或纳米材料的实验室芯片检测系统;19. 含有害有机化合物的实验室废料的光催化处理。第四部分应用的领域,含第20-23章:20. 绿色生物分析化学;21. 生物诊断中的红外光谱学:一种绿色分析途径;22. 环境分析;23. 绿色工业分析。本书目录的后面有各章作者的简介。每章的结尾有参考书目,书的最后是主题索引。
本书第一编著M. 瓜迪亚博士是西班牙巴伦西亚大学化学系教授兼主任,在分析化学领域曾发表过大量论文和专著,荣获很多奖项。他曾应邀在法国、德国、中国等很多国家讲学,并且是一些国际学术刊物的编委会成员。
本书系统地阐述了绿色分析化学的基本原理,并对样品分析的各个基本环节提出了“绿化”处理的途径。本书可作为化学系大学生、研究生的参考书;也是分析化学领域工作者有益的工具书。
刘克玲,退休研究员
(中国科学院过程工程研究所)
Abstract: The development of modern fruit industry need detect the internal and external quality of apple nondestructively and simultaneously. Spectral imaging technology is used in this paper, acquired the images of measured apple at different wavelength, by image processing and analysis of apple surface scattering spectrum, detected the size sugar content information of apple simultaneously. Some technical support is provided for apple fast and effective detection and grading.
关键词: 光谱成像;外形;糖度;同时检测
Key words: spectral imaging;size;sugar content;simultaneous detection
中图分类号:TP274 文献标识码:A 文章编号:1006-4311(2016)31-0125-02
0 引言
我国是世界第一苹果生产大国,2015年全国苹果产量达到4300万吨。但我国的苹果在国际市场上大多数档次较低,国内的苹果出口比例只占到生产总量的1.5%左右[1,2],而国内高档苹果市场也被国外苹果垄断,2015年进口苹果量激增50%,其中一个很重要的原因是我国对苹果分级检测投入不够,难以满足消费者对苹果品质越来越高的要求,导致苹果品种混杂、质量优劣不齐。提高苹果内外部品质的检测水平是提升苹果竞争力的关键环节。传统外部品质采用人工目视检测,而内部品质多利用机械化学手段,检测时间长、非无损。
利用机器视觉开展的苹果外部品质检测,可以实现苹果外形尺寸、颜色等信息的自动化检测,但对反映苹果品质的内部参数很难提取。
近红外光谱技术作为一种无损检测手段被广泛用于测定农产品的内部品质,能够同时检测苹果内部的多个参数,而且具有非接触无损检测的优点,但利用近红外光谱分析技术主要集中于目标局部信息分析,不适合成分不均匀目标检测,要实现整体目标检测要耗费较多时间。
本文综合利用图像处理技术与光谱分析技术的光谱成像技术,基于模式识别与化学计量学等学科知识,开展苹果外部品质和内部品质的无损检测研究,实现对苹果外部尺寸和糖分含量的同时无损检测,降低了光谱成像技术进行苹果品质检测的难度。
1 光谱成像实验系统
基于光谱成像技术进行苹果品质检测,需要同时记录苹果的光谱信息与图像信息,设计了CCD成像探测基础上同时获取目标光谱信息的实验系统,实验系统如图1所示。
成像探测器采用大恒图像的DH-HV1351UM型黑白面阵CMOS图像传感器,像元数1280×1024,像元尺寸5.2μm×5.2μm。通过CMOS前面的成像镜头调焦完成后可以在CMOS上得到苹果的图像信息,为了确定图像中苹果像所对应的真实尺寸,需要对标准尺寸的目标物进行测量实现对成像系统垂轴放大倍率的校准。苹果表面光谱信息获取通过在成像镜头前加入特定透过波长的滤光片实现,通过参考相关文献[3],选择峰值透过波长分别为633.3nm、649.3nm、669.4nm、778.9nm、850.8nm,峰值半宽高约为9nm的滤光片放置于成像镜头前,控制成像探测器的曝光得到不同波长对应的苹果图像。考虑到成像探测器对不同入射光波的响应不均匀,利用各波长反射率一致的标准白板对探测器的波长响应进行均匀化处理,在此基础上分析苹果在不同波长的反射光谱特性,对不同波长强度值利用洛仑兹拟合确定糖度模型中参数,以此为基础进行多元线性回归确定模型系数,完成对苹果糖度的预测,对比不同波长预测结果,可找出预测结果最接近测量值的最佳波长。
2 实验结果及数据处理
2.1 外部品质检测
苹果外部品质中首要的指标是果形大小,本文利用图像处理算法通过对苹果图像的数字化处理得出苹果果径信息。检测的思路为:选取某一波长下清晰灰度图片并进行二值化处理,计算二值图像的最小外接矩形大小,外接矩形框长度和宽度中的最大值即为以像元数为单位的苹果最大横切面直径。通过与标准尺寸的目标图像所占据CCD中像元个数进行比较,即可求出果径的实际长度。波长为649.3nm的待测苹果图像如图2(a)所示,选取合适阈值将图像二值化如图2(b)所示。
确定二值图像的最小外接矩形[4],分别读取外接矩形的长度和宽度方向最大值如图3所示,得到以像元数为单位的苹果外形数据。通过对成像系统垂轴放大率的校准,确定对应的实际尺寸。
通过记录直径为50mm标准白板的单色图像实现对光学系统垂轴放大率的校准,即单个像元对应物面尺寸的计算。选取一组实验中10个待测苹果,分别用游标卡尺测量结果和用该方案测量结果如表1所示。
可见,采用该方案进行苹果外形尺寸测量的最大偏差不超过1%,能够满足苹果外形检测的需要。
2.2 内部品质
本论文进行了苹果内部品质的糖度。将待测苹果分为两组,利用苹果表面散射光包含的不同波段光谱信息进行一定模型的参数拟合,通过糖度计实施的常规糖度检测得到糖度值,并进行数据拟合处理获得糖度模型中的系数,以此为基础,进行苹果糖度的预测。糖度检测的流程如图5所示。
通过对待测苹果散射光谱的洛仑兹拟合以及五个不同透过波段对比分析,利用669.4nm进行的苹果糖度值预测残差不超过0.1,达到了较好的糖度检测效果。
3 结论
本文利用光谱成像技术,通过光谱分析技术与图像处理技术实现苹果内外部品质中外形尺寸以及糖度的同时检测,代表了现代水果检测的发展方向,具有较好的市场前景。
参考文献:
[1]孙梅,陈兴海,张恒,等.高光谱成像技术的苹果品质无损检测[J].红外与激光工程,2014,43(4).
[2]农业部.国际苹果贸易概况与我国苹果出口情况[J].中国果业信息,2006(4).
关键词:超细MgO粉体,水热法,前驱体
氧化镁俗称苦土,是一种白色的NaCl型面心立方晶体,晶格常数为0.42 nm,主要以(111)、(200)、(220)三种晶面取向存在,其结构如图1所示。近年来,随着对纳米材料的深入研究,纳米氧化镁因具有一些优异的性能,如热、光、电、力学和化学性能等,被广泛地应用在电子、陶瓷、绝缘材料及催化剂、医药、航空等领域。纳米氧化镁的制备方法有气相、固相、液相法[1-3]。气相法对设备及技术要求较高,能耗大,易污染环境;固相法难以制备粒径较小的产品,对设备的要求也较高;相对来说,液相法操作简单,原料易得,是一种易于工业化的合成方法。在液相法当中,水热法是其中一种制备纳米材料的优秀的合成技术[4]。该法指的是,使反应物的水溶处于一个高温(通常高于100℃)、高压的条件下(通常大于1MPa),引发化学反应的发生,从而制备纳米材料的新方法。通常,该法制备的晶粒发育完整,粒径小且分布均匀。本研究以氯化镁和草酸钠作原料,通过水热反应,制得了草酸镁前驱体,将前驱体经过一定的热处理,得到了质量较好的超细氧化镁纳米粉体。
图1 氧化镁的晶体结构
Fig. 1 Crystal structure of magnesium oxide
1. 实验部分
1.1 试剂和仪器
试剂:Na2C2O4,MgCl2·6H2O。以上试剂均为分析纯,国药集团上海化学试剂公司。
仪器:H-800透射电子显微镜,日本;D/Max-RBX-射线衍射仪,日本;马弗炉,上海贺德试验设备有限公司;高压反应釜,福州市鑫盛机械加工厂;Spectrum 400红外光谱仪,美国;DT-50热分析仪,日本。
1.2 实验方法
称取等摩尔的MgCl2·6H2O、Na2C2O4配成溶液后,放入内衬为聚四氟乙烯的高压釜中(填充度约为60%),在100℃下反应3h后,自然冷却至室温。取出其中的白色沉淀,用蒸馏水和无水乙醇反复洗涤数次(每次将沉淀离心分离),至没有残余的Cl-(可用AgNO3检验),50℃干燥3h,得白色粉末状的固体,即为前驱体草酸镁。把上述制备的前驱体放入坩锅中,在马弗炉中灼烧(500℃以上)3h,即得白色氧化镁纳米粉体。
1.3样品表征
应用D/Max-RB X-射线衍射仪对样品物相进行表征,其条件为:Cu靶,Kα射线,λ=1.541Å,管电压40kV,管电流100mA,扫描速度4°/min,扫描范围(2θ)10-80°;应用H-800透射电子显微镜对样品的形貌和粒径大小进行了表征;应用DT-50热分析仪对前驱体的热分解进行表征,升温速率为10℃/min;应用Spectrum 400红外光谱仪对样品进行表征。
1.4 工艺反应原理
水热反应
C2O42-+ Mg2+ + 2H2O → MgC2O4?2H2O
煅烧分解反应
MgC2O4?2H2O→MgC2O4 + 2H2O
2MgC2O4+ O2 → 2MgO + 4CO2
1.5 MgO的鉴定
下图为MgO的标准XRD图(标准卡4-829),合成的样品与该标准对比,可用来定性鉴定。
图2 MgO的标准XRD图
Fig. 2 XRD of magnesium oxide
2. 结果与讨论
2.1 热重(TG)分析
前驱体的煅烧是制备纳米粉体的关键过程,煅烧温度过低,前驱体不能完全分解,温度过高,会使得粉体颗粒长大。为了确定较好的煅烧温度,对前驱体草酸镁有必要作热分解过程分析。图3是草酸镁的TG曲线图,从图上可以看出,有明显的两次失重过程。第一阶段失重大约发生在160-200℃范围,相应于失去两分子的结晶水,质量损失率约为25%,与理论计算值24.3%相当。第二阶段失重约发生在400-520℃范围,相应当于MgC2O4的完全热分解。两次总质量损失率约为74%,与理论计算值72.9%相当。当温度升高到520℃以上,质量基本上没有变化,说明此时体系中仅有MgO晶相的存在。论文参考网。
图3 MgC2O4?2H2O的热重曲线
Fig. 3 TG curve of MgC2O4?2H2O
2.2 XRD分析
在水热反应的体系中,生成的白色沉淀为纳米氧化镁的前驱体MgC2O4?2H2O[5]。图4中(a)、(b)为前驱体加热到250、350℃时所对应的XRD图。从图上可以明显地看出,在这两个温度下,体系中依然有MgC2O4的存在,且两者的组分相同,这时并没有MgO晶相析出,这与TG分析的结果一致。
图4 前驱体加热时所对应的XRD图. (a) 250℃; (b)350℃
Fig. 4 XRD of the decomposition of precursor. (a)250℃; (b)350℃
图5为前驱体在550、600、650℃灼烧时的XRD图。论文参考网。从图中可以看出,550时前驱体已经分解完全,但其峰形不够尖锐,可见其晶型不够完整。论文参考网。在600和650℃下灼烧时,峰形尖锐,表明结晶良好。根据Scherrer公式D=Kλ/βcosθ(K=0.89,λ=0.1541 nm,β为半峰宽,D为晶粒的平均粒径),可计算出550、600、650℃时灼烧的样品的平均粒径分别为7.3、11.4和12.2 nm。由此可见,随着温度的升高,所得的晶粒粒径逐步变大,这一结果也说明了较高的温度有利于晶体的生长。
利用样品的衍射谱中晶面指数(hkl)为(111)、(200)和(220)的衍射峰和相应的面间距d(2.431、2.111和1.493nm)以及公式d = a/(h2 + k2+l2)1/2,可求得样品的晶格常数a = 0.42nm,这一结果与文献报道一致[6]。
图5 样品在不同温度下的XRD图. (a) 550; (b) 600; (c) 650℃.
Fig. 5 XRD of the sample in different temperatures.(a) 550; (b) 600; (c) 650℃.
2.3 IR分析
图6是前驱体及所得到的纳米氧化镁样品的IR图。从图上可以看出,当前驱体加热到550℃时,草酸镁的特征吸收峰已完全消失。样品在460cm-1有强烈的吸收峰,应为Mg-O的弯曲振动峰,比之常规氧化镁的Mg-O弯曲振动蓝移了10cm-1,而在540cm-1附近的峰为Mg-O的伸缩振动峰,比之常规氧化镁的550cm-1也发生了明显的红移[7]。在3500cm-1的强吸收峰是水的吸收,可能是样品在保存或测试过程中吸收了空气中的水分。在1000-2500cm-1之间的峰,可能是样品吸收了空气中的CO2所致。
图6 红外光谱图. (a)550℃时的MgO; (b)前驱体.
Fig. 6 IR spectrum. (a) MgO at 550℃; (b)precursor.
2.4 TEM分析
图7为在600℃时灼烧的样品的TEM图。从图(a)上可以看出,颗粒细小,产生了明显的团聚现象。产生这种现象的原因,可能是由于颗粒太小,粒子间的距离短,其范德华力大于粒子的重力,从而引起团聚。从图(b)上可以看出,所得颗粒大小较均匀,直径相差不大,约为10-20nm。
据了解,这项技术已经在小老鼠和猴子的身上得到了验证,但是这将是它第一次被应用到人类的身上。该技术审查报告称,西南视网膜基金会将参与这项实验,其中涉及到15名视网膜色素变性患者。患有这种疾病的人眼睛视网膜的感光细胞会出现退化,使得患者失去周围视觉和夜视的能力,最终失明。(来源:网易科技2016年2月29日)
天文学家首次绘制出银河系“年龄图”
最近,在佛罗里达州基西米召开的美国天文协会会议上,由德国马克斯・普朗克天文研究所梅丽莎・奈斯带领的团队介绍了他们借助SDSS项目数据描绘的迄今第一份银河系“年龄图”。
此图以前所未有的详细程度绘出银河系中众多恒星的成长历程,就清楚地理解星系在包含大量冷暗物质的宇宙中的成长故事,这是一份前所未有的“年龄图”。图中红点是恒星,形成于银河系年轻时期,蓝点是非常近期形成的恒星,此时银河系已处于成熟阶段,色彩等级变化显示这些恒星形成之后经历了多少亿年。
为了绘制这份“年龄图”,研究人员观察了红巨星。红巨星是恒星燃烧到后期所经历的一个较短的不稳定阶段,在银河系中广泛分布。研究人员指出,如果知道一颗红巨星的质量,利用每颗恒星内的“聚变钟”就能知道它的年龄。以往要测算红巨星的质量非常困难,但SDSS星系调查项目使这一工作成为可能。
研究团队用SDSS项目中阿帕奇点天文台星系演化实验(APOGEE)计划获得的光谱数据,并结合开普勒卫星的光变曲线数据,用独特的方法检测了从银河系各部分抽样的7万多颗红巨星的年龄。APOGEE的数据非常理想,因为它能一次“看到”大片天区约300颗恒星的高质量光谱。这意味着只用一个望远镜,几年时间就能得到7万颗红巨星的光谱。(来源:中科院物理所2016年2月25日)
救援机器人,跟着蟑螂学钻缝
最近,加州大学伯克利分校的科学家们研制出了一种新的机器人,它很适合钻过狭窄的缝隙,这在地震等灾难的搜救工作中可以发挥作用。
机器人的研发源于蟑螂超强的钻缝能力,研究者们在蟑螂中选择了美洲大蠊进行了定量分析,发现蟑螂们能轻松地从只有3毫米的缝隙钻过,并且只耗费几百毫秒的时间。研究者用高速摄影机拍摄下那些让他们肉眼难以分辨的快速钻过狭窄缝隙的“分解动作”。
在分析了蟑螂的钻缝技能之后,研究者们建立起了“窄缝爬行”的物理模型,并在此基础上设计出了蟑螂机器人的雏形。这个机器人无论是外壳还是内部的“腿”结构都能在受压时自动变形,在压力解除时也会很快自动恢复。
目前,蟑螂机器人已经可以顺利通过不到自己身高一半的狭窄空间,虽然这还不甚完美,不过这也使得它们拥有了钻进废墟瓦砾搜救生还者的潜能,希望不久的将来,研究者们能研制出完美的钻缝机器!(来源:果壳网2016年2月14日)
五维黑洞“黑环”可能存在:或颠覆广义相对论
北京时间2月25日消息,黑洞的存在已经随着引力波信号的直接观测再次得到了确凿无疑的证明。而在科学家们的脑海中,他们认为宇宙中可能还存在着一种非常特殊类型的黑洞,即所谓的“黑环”。
[关键词]VOC检测 色谱法 PID检测法
中图分类号:X830 文献标识码:A 文章编号:1009-914X(2015)34-0318-01
VOC是挥发性有机化合物(Volatile Organic Comounds)的英文缩写,但是这里主要指的是对人类身体和环境造成不利影响的挥发性有机物。在常温下容易挥发的有机物主要包括苯、甲苯、乙苯、苯乙烯、甲醇、乙醇、十四碳烷、酮类等。这些化合物由于其易挥发和亲油的特性被人们广泛用于烟草、纺织、玩具、装修、汽车配件、电子电气、化妆品等行业。该物质的易挥发性质使其融入空气,造成空气污染,从而危害人体健康,下面简要分析VOC的检测方法以及未来的研发方向。
一、 VOC的检测方法
目前VOC的检测方法主要分为两类:一类是气相色谱法;另一类是高效的PID检测法。
1 气相色谱法
1.1原理
气相色谱法即利用气体作为移动相的色谱法。该技术是气相色谱仪的核心技术。气象色谱仪中有一根流通型的狭长管道,被人们称为色谱柱。选中7种样品作为参照物,利用气相色谱技术将混合挥发性有机化合物进行分离,即有机化合物随着气流的运动而运动,逐渐被吸附剂吸附或被固体液溶解,由于不同物质的吸附和溶解速度的不同而被分离。有机化合无分离后从管道流出,被检测仪检测,反射出不同的信号,再将其信号传变成电信号输出。
1.2空气中甲醛的检测
甲醛是室内常见的有害有机化合物,对人体健康造成不利影响。在酸性环境下,空气中的甲醛吸附于二硝基苯的但体形成稳定的甲醇腙,再经过二硫化碳洗脱和色谱柱分离,并利用氢焰离子化检测仪对其进行检测,根据甲醛在色谱柱中保留时间的长短和峰值的高低来判断甲醛的性质和含量。
气相检测法师目前检测空气中甲醛含量较为先进的检测方法。利用该技术选取顶空气相色谱法来对其进行测定,该方案的高效性、灵敏度和回收率都适于检测汽车空气中的甲醛含量。该方案在0.2L/min流量和20L样品的条件下,其测定范围为0.02-1.00mg/m3。
1.3空气中苯系物的检测
苯系物被世界卫生组织认定为强烈致癌物质,其挥发性和有毒性极易被人们吸收,会产生头晕、恶心等不适现象,长期接触会引起慢性中毒,导致人体神经衰弱等症状。苯系物中甲苯、二甲苯做为装修的化工原材料,使其成为室内空气检测的重点。
空气中的苯系物经过活性炭的吸附,将水分、氧气等杂质去除,然后经过二硫化碳提取,再通过气相色谱法将其分离,其中色谱柱为6%腈丙苯基和94%聚二甲基硅氧烷的毛细管柱,进样口温度控制在250℃,然后经过检测仪检测定性,最后根据色谱峰的面积确定苯系物的含量。
2 PID检测法
PID指的是光离子检测仪,简单来说可以将其看做没有分离柱的气相色谱仪,相对于气相色谱仪而言能够得到更为精确的数据,特别是对PPM级有毒化合物具有较好的灵敏度和准确度,但是其选择性不大的缘故,被人们认为很难普及推广。实际上VOC常用的检测方法的选择性也并不宽广,PID检测法的优势在于它的针对性,小巧轻便,可连续测量,其可以为检测者提供实时数据,该检测仪还具有记录功能,可以对相关数据进行回放,便于检测者对其动态数据进行分析。PID检测是目前较为先进的挥发性有机化合物检测法,其检测达到0.1ppm分辨率,测量0-1000ppm的有机物质,PID测量技术为预防长期中毒提供可能,也是应急事故处理的最佳测量仪。
二、 空气中VOC检测方法的发展方向
空气中VOC传统的检测方法都有着自身的优缺点,未来检测法必然走向多元化的发展方向,提高数据的精确度和灵敏度。将电子技术、计算机技术与检测技术相结合,共同促进VOC检测法的进步。
1. 远红外便携光谱技术
结合现代分子运动与量子力学理论的研发成果,各个分子和原子被分成不同的能级,其释放的能量各不相同,对光谱的吸收特征也各不相同,从而判断空气中是否具有VOC成分,但是其检测原理由于受到光源的限制,传统的激光器输出的波长在紫外线的波长范围内,而这一波段中的有机化合物吸收的光谱有部分重叠的部分,因此需要针对多个色谱峰的面值进行计算。根据根据各个有机化合物的色谱峰特征的观察,可以发现大多数的色谱特征都体现在远红外波段内,利用这一特征,科学家致力于研发远红外波的激光器,从而增加气相色谱法的灵敏度和精确度。将远红外波激光器与二次谐波锁的探测技术相结合实现提升有机化合物检测的灵敏度。
2. 高场不对称波形离子迁移谱技术
波形离子迁移谱技术具有检测速度快、灵敏度高、微型化的优势,在各个领域内被广泛应用前景。该技术的原理是利用离子在高电场中迁移率的非线性变化将离子进行分离,即因为离子的质量和截面积的不同使其在高电场中的迁移率的不同,在电场条件保持一致的前提下,不同的离子有不同的运行轨迹,从而实现离子的分离。该技术与微电子机械系统相结合,实现对VOC检测的速率、分辨率和灵敏度等的提升。
3. 薄膜光波导技术
薄膜光波导技术具有高灵敏度、高精确度、简易操作、携带方便的优势,适用于需要快速检测的应急事故现场使用。光波导气敏传感元件是以光波导技术为核心的先进技术,该元件能够高效率的检测出挥发性有机化合物的气体。例如SnO2薄膜与玻璃光波导相组合有效检测空气中二甲苯的含量。
4. 激光光谱技术
激光光谱技术使用激光激发某类物质,物质被激发后会释放出其它的波段,再用光谱仪检测器光谱,从而判定其物质的性质与含量,该技术具有密度高、高亮度、方向性强和单色性强等优势。该技术推动气相色谱技术的灵敏度和分辨率得到很大的提升,例如荧光光谱、拉曼光谱等。
结束语
综上所述,目前空气中VOC检测法都具有自身的优缺点,根据自身技术的特点运用在不同的领域,但是该检测技术的应用存在一定的不足之处。针对未来VOC检测技术没有具体的发展方向,而是根据目前检测技术的现状与当下先进的科学与其它现代技术相结合,促进其检测技术的多元化,实现VOC检测技术的检测速率、灵敏度和精确度的提升,从而推动我国VOC检测技术的进一步发展。
参考文献
[1] 王黎明,周瑶,赵捷等.空气中VOC检测方法的现状及研究方向[J].上海工程技术大学学报.2011(2).
[2] 季军宏,陈嘉文.涂料中VOC检测方法的建议与展望[J].涂料工业.2015(4).