时间:2022-05-07 14:56:40
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇电力电子技术论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。
当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。
1.电力电子技术的发展
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
1.1整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
1.2逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3变频器时代
进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
2.现代电力电子的应用领域
2.1计算机高效率绿色电源
高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。
计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日"能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。
2.2通信用高频开关电源
通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。
2.3直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。
通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
2.4不间断电源(UPS)
不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。
现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。
2.5变频器电源
变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。
国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。
2.6高频逆变式整流焊机电源
高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。
逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。
由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。
国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。
2.7大功率开关型高压直流电源
大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。
自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。
国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。
2.8电力有源滤波器
传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓"电力公害",例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。
电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。
2.9分布式开关电源供电系统
分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。
八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。
分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。
3.高频开关电源的发展趋势
在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。
3.1高频化
理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统"整流行业"的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为"开关变换类电源",其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。
3.2模块化
模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于"标准"功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了"智能化"功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了"用户专用"功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。3.3数字化
在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。
3.4绿色化
电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。
总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。
参考文献:
[1]林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992。
一、电力电子技术仿真教学改革
电力电子技术课程内容量大、知识点多、既有理论分析又有实际电路应用。以我校自动化专业为例,采用王兆安老师主编的《电力电子技术》第五版教材,课程内容将涉及电力电子器件、电力电子电路(AC-DC整流电路、DC-AC逆变电路、DC-DC直流-直流变流电路、AC-AC交流-交流变流电路)及电路控制技术(PWM、软开关),课时安排为56学时,其中8学时为实验教学。在48学时的理论教学内容中,除绪论、习题课和总复习占4学时外,电力电子器件占4学时,电力电子电路占34学时,PWM控制与软开关技术占6学时。由上可见,电力电子电路占理论教学学时的70%,但是该部分的实际教学内容非常多,以整流电路部分为例,将主要涉及到两大类(单相整流、三相整流)、四小类(单相半波整流、单相桥式整流、三相半波整流、三相桥式整流)、三种负载(电阻性、阻感性、反电动势)及多种电路变换形式(如带续流二极管),其中每种电路还要分析不同触发角(如30度、60度、90度、120度等)控制下的电路工作原理、电压和电流波形图(如负载直流电压、负载直流电流、晶闸管承受电压、晶闸管流过电流、交流电流等)、电量参数计算(如直流平均值、交流有效值)。如此复杂的电路教学过程,若仅靠传统黑板板书及幻灯片教学模式进行讲解,将不能在有限的课时时间内,既完成教学内容,又让学生深入理解各种电路的工作过程,其结果是学生没能抓住电力电子电路学习的根本,不具有分析和设计电力电子电路的能力。电力电子技术的仿真教学改革就是要改变上述由于教学内容多、课程内容复杂、课时分配少而带来的教学和学习问题,其改革的内容就是在有效的教学时间内,通过仿真软件搭建电力电子电路并进行仿真波形分析与工作原理讲解的教学模式,该模式不仅能把教学基本内容讲授清楚,同时能大大提高学生对课程教学重点与教学难点的理解和把握,达到事半功倍的效果。仿真教学改革中采用MATLAB仿真软件,其中的电力系统模型库包含电源模块库、电器元件模块库、电机模块库、电力电子元件模块库、连接件模块库、测量仪器模块库和其他电气模块库。通过使用Simulink模块库组成电力电子控制电路,使用电力系统模块库组成电力电子主电路和驱动电路,可以较为容易的分析和设计更为复杂的电力电子电路,可以深入的研究和观察电力电子电路的动态响应和稳态响应。
二、仿真教学过程实例分析
由于电力电子技术课程中的各种电路形式复杂多样,因此以三相桥式全控整流电路为例,来说明电力电子技术的仿真教学过程。三相桥式全控整流电路在工业生产中具有重要位置,大量用于电解、电镀、直流电机传动、励磁等场合,因此该电路是电力电子技术课程的重点内容。三相桥式全控整流电路为如上所述教材的3.2.2节内容,主要包括电路原理图、电阻性负载、阻感性负载工作情况三部分内容。该节课程的知识目标定位于掌握三相桥式全控整流电路的组成、特点及应用,理解三相桥式全控整流电路的工作原理;能力目标定位于能够根据电路图搭建相应电路并进行测量,同时能够根据任务要求开展相关实验。该节课程的仿真教学过程中首先让学生掌握电路结构,然后针对不同负载情况下,让学生理解工作原理并学会波形分析及参数定量计算,最后结合“自动控制原理”及“电机学”课程相关内容,给出仿真实验任务,目的让学生逐步进入状态,逐步掌握学习这门课的方法,下面给出仿真教学中需要注意的教学重点,其它教学部分可参考相应教材,这里不再赘述。
1.三相桥式全控整流电路结构该部分首先介绍三相桥式全控整流电路是目前应用最广泛的整流电路,它区别于单相整流与三相半波整流,具有功率大、直流脉动小等优点,同时采用幻灯片播放实际应用案例的形式,来增强学生对该部分内容的感性认识,并提高学生的学习兴趣。其次,介绍该电路中包含六个晶闸管元件,是目前学习中器件最多的电路,需要学生们认真理解六个晶闸管器件的触发工作过程。再次,采用MATLAB仿真软件搭建三相桥式全控整流电路原理图,如图1所示。搭建的过程中,一定要强调以下几点:①晶闸管器件编号务必为共阴极组内VT1、VT3、VT5,共阳极组内VT4、VT6、VT2;②晶闸管门极触发脉冲顺序务必为VT1-VT6;③晶闸管触发脉冲相位间隔60度。
2.带电阻性负载情况分析前面讲解完三相桥式全控整流电路搭建后,真正进入到电路工作原理、波形分析及定量计算部分。进一步完善上面仿真电路原理图,将负载选择为电阻性负载,并增加若干示波器观察点,其中三相电源设置为幅值100V、频率50Hz,电阻负载2Ω,仿真参数设置为仿真起始时间0.0s,结束时间0.1s,算法选择ode23tb。带电阻性负载情况下的教学重点为:①不同触发角下的波形分析;②负载电流的连续与断续分析;③晶闸管的单触发脉冲与双触发脉冲形式。其中难点内容为连续与断续状态下的脉冲形式。首先通过仿真详细讲解30度触发角时的波形情况,要求学生在给定电源条件下能够正确理解触发脉冲、直流负载电压、直流负载电流、晶闸管承受电压和交流电源电流的波形。讲授过程中需要注意:①触发角的触发时刻,由于三相整流电路的自然换相点对应A相电压波形的30度位置,因此30度触发角情况下的晶闸管VT1触发时刻为60度位置,换算成时间为0.0033s;②将整个电源周期分成6段,每段先确定6个晶闸管的导通与关断状态,再分析其他电量;③特别注意强调线电压波形及波形画法。然后,利用仿真教学的优势进一步讲解如上教学重点要求,如图3所示为60度和90度触发角下的晶闸管触发脉冲情况和直流输出电压波形情况。图中可以清楚的看到60度触发角为负载电压和电流连续与断续的临界点,90度触发角时清楚的看到负载电流为断续状态,同时各个触发脉冲为保证电流断续下正常工作而变成双触发脉冲形式。为了让学生能够更深入的理解电阻性负载时的工作情况,在仿真教学过程中,可以采取更小的脉冲角度间隔对多个触发角进行多次仿真,这样更能深入理解随着触发角的增加,直流负载电压不断降低的过程。
3.带阻感性负载情况分析当三相桥式全控整流电路带阻感性负载工作时,其特点就是能保证负载电流续流而不出现断续的状态,因此该部分的教学重点为:①让学生能够清楚的理解整个移相范围内负载电流总是连续的工作状态;②由于电感的作用,负载电压会出现负的部分;③大电感状态下,负载电流近似为一条直线。图4为触发角为90度时三相桥式全控整流电路的波形情况,与图3中触发角为90度情况进行对比,可以清楚的看出阻感性负载时的直流负载电压波形既有正向波形,又有负向波形,负载电流波形始终处于连续状态,同时还可以通过仿真教学清楚的展示电感为5mH和200mH时的直流电流波形,其中5mH时电流波形脉动较大,而200mH时电流波形脉动较小,近似为一条直线,这也充分说明当电感值为200mH时,感抗相对于阻抗来说充分大。
4.仿真实验任务:直流电机闭环调速系统完成如上规定的仿真教学任务后,可以给学生布置相应的仿真实验任务,结合直流电机原理和闭环控制原理,安排直流电机闭环调速系统的仿真实验,可以安排在实验课中完成或课后自行完成。仿真实验任务如下:(1)仿真参数设置:仿真起始时间0.0s,结束时间5s,算法选择ode23tb。(2)系统要求跟踪恒值速度给定500r/min。(3)转速调节器设定为比例控制,要求分析不同负载转矩、不同转速比例调节下的电机电压、电流和转速波形。这里给出用于教学参考的系统仿真结构图及电机电压和电流波形,如图5和图6所示。由于直流电机为阻感性负载,因此通过仿真实验可以更深入的认识阻感性负载下的三相桥式全控整流电路的工作过程,直流负载电压即电机供电电压有正负波形,直流负载电流即电机电枢电流为连续状态且近似为一条直线,转速波形由学生在仿真实验中自行观察。
三、结论
本文提出的电力电子技术仿真教学模式,通过搭建电力电子系统主电路和控制电路并进行波形仿真的方法,能够使学生更加深入的理解电路结构图、电路工作原理、电量波形及参数计算。仿真教学模式不仅能够大大提高学生对教学重点与教学难点的正确理解,同时对学生进行后续课程设计、开放性实验、创新性实验及相关毕业设计工作奠定了知识能力基础。
作者:曹勇吴峰单位:辽宁工业大学电气工程学院
1“电力电子技术”教学内容改革
“电力电子技术”课程教学的基本框架还是以所选教材为基础,但在具体内容上应当以让学生认识该课程的用途与重要性为出发点进行设计,紧扣行业应用,提高学生的学习积极性与主动性。首先,注意开好头,要重视绪论课的教学,如在介绍“1.3电力电子技术的应用”时应将重点侧重到交通运输和电子这一领域中,重点介绍电力电子技术在汽车与轨道车辆上的应用。针对新能源汽车专业学生可举例介绍车辆能源系统的“骨架结构”,如油电混合动力汽车等新能源汽车的能量系统的基本结构图与基本工作原理;针对城市轨道车辆专业学生介绍地铁车辆的电源系统结构图等等,紧紧抓住行业应用为起始点引发学生的兴趣。另外针对电子装置用电源可从大家时刻不离身的手机充电器说起,让学生认识到电力电子技术无处不在,实用性很强,提高学生积极性。其次,随着课程内容教学的深入,应继续围绕专业行业应用,将原来的“骨架结构”补充上“血肉”,即实际具体电路,进行内容的丰富。如介绍DC/DC变换时,可以将原先介绍的地铁车辆电源系统中DC/DC的变流电路具体化,在知识认知的体系结构中进一步具体化,加深知识点的理解和印象。最后为提高学生对电力电子技术的关注度,提高学生资料收集与自学能力,一方面对部分内容调整为课后自学内容,要求学生利用网络、图书馆等资源条件完成学习,如器件中IGCT、功率集成电路、脉宽调节电路等的相关内容将由学生进行资料收集并选择部分主题由学生在课堂上给大家进行介绍,提高学习的相关性。另外一方面提供一些已经完成的电源板,让有兴趣的同学进行实际调试,在实践中体会电能的变换与控制,实现“自主行走”。这些同学能在今后相关的实践设计中有较好的基础,且能帮助并带动其他同学提高实践能力。
2“电力电子技术”课程设计改革
“电力电子技术”课程应用性强,因此要求学生有较强的动手实践能力。课程开设了6个学时的实验,对学生来说实践时间较少。因此率先在车辆工程专业新能源汽车专业方向开设了“汽车电力电子技术课程设计”课题,时间为一周,精选了“太阳能电动车SPWM控制逆变电路设计”、“车载逆变电源—推挽式直流变换电路设计”、“车载逆变电源—工频逆变电路设计”等设计课题,要求学生通过课程设计能充分了解电力电子技术在汽车上的应用以及应用设计,要求学生“脚踏实地”进行电路方案论证比较,完成电力电子电路的参数计算、器件的选型、绘制电路原理图等过程,掌握电力电子电路的设计,并能够掌握电力电子器件常用的驱动电路设计,合理设计保护电路。同时对于电路原理图要求采用EDA(电子设计自动化,ElectronicDesignAu-tomation)软件进行绘图,将学生所学的电力电子技术、自动控制技术、EDA技术等几门课程在汽车电力电子技术课程设计中进行融合,提高学生的实际设计能力。对multisim实践能力较强、学有余力的同学进一步指导其采用仿真手段(Matlab或者Multisim)进行仿真实习,论证设计结果。通过紧张而充实的课程设计,大部分的同学对电力电子技术在汽车上的应用有了进一步的认识,并对所学的相关课程进行贯通融合,充分了解所学专业课程之间的相互联系,增强了对自身所学专业知识架构的认识,能够熟练利用相关课程、相关技术手段进行电路设计,实现在专业知识架构中的“自由天地”。
3总结
课程教学内容和实践环节改革在近三届学生中的教学实践证明,教学效果较好,学生学习积极性高,对专业的理解较以往有所加深。这也说明,教师教好一门课,需结合行业实际,应结合科学技术的实际情况适时适当地进行教学改革,要注重教学内容理论与实践的结合,努力将学生培养成厚基础、实践强的应用型人才。
作者:顾新艳 单位:南京工程学院汽车与轨道交通学院
关键词:电力电子技术;发展趋势;应用
0 前言
现代电力电子技术的发展经历了几个不同的阶段,整流器时代、逆变器时代和变频器时代,现代电力电子技术属于变频器时代,同时又与微电子技术有效地进行了结合,这不仅使其应用范围十分广泛,而且在国民经济中的地位也变得越来越重要。
1 现代电力电子技术的发展趋势
在当前科学技术快速发展的新形势下,随着电力电子技术的不断革新,其发展达到了一个较高的水平。现代电力电子技术主要是对电源技术进行开发和应用,可以说电源技术的发展是当前电力电子技术发展的主要方向。
1.1 现代电力电子技术向模块化和集成化转变
电源单元和功率器件作为现代电力电子技术的重要组成部分,是电子器件智能化的核心所在,其组成器件具有微小性,因此电力电子器件结构也更为紧凑,体积较小,但其能够与其他不同器件的优点进行有效综合,所以其具有显著的优势。也加快了现代电力电子技术向模块化和集成化转变的进程,为电力系统使用性能的提升奠定了良好的基础。
1.2 现代电力电子技术从低频向高频化转变
变压器供电频率与变压器的电容体积、电感呈现反比的关系,在电力电子器件体积不断缩小的情况下,现代电力电子技术必然会加快向高频化方向转化。可控制关断型电力电子器件的出现即是现代电力电子技术向高频转化的重要标志。而且随着科学技术发展速度的加快,电力电子技术也必然会向着更高频的方向发展。
1.3 现代电力电子技术向全控化和数字化转变
传统的电力电子器件在使用过程中存在着一些限制,而且关断电器时还会产生一些危险,自关断的全控型器件在市场上出现后,有效地弥补了这些限制和避免了危险的发生,这也是现代电力电子技术变革的重要体现,表明现代电力电子技术加快了数字化发展的进程。
1.4 现代电力电子技术向绿色化转变
现代电力电子技术向绿色化转变主要表现在节能和电子产品两个方面。相比于传统的电力电子技术来讲,现代电力电子技术的节能性更好,这也实现了发电容量的有效节约,对环境保护带来了较好的效果。一直以来一些电子设备会将严重的高次谐波电流入到电网中,给电网带来较大的污染,导致电网总功率质量下降,电网电压出现不同程序的畸变。到了上世纪末期,各种有源滤波器和补偿器的面世,实现了对功率参数的修正,从而为现代电力电子技术的绿色化发展奠定了良好的基础。
2 现代电力电子技术的应用
现代电力电子技术的功能具有多样性的特点,其在多个领域都有着广泛的应用,这也决定了现代电力电子技术在国民经济发展中占据非常重要的地位,有着不可替代的作用。
2.1 电源方面
(1)一般电源。现代电力电子技术在开关电源和供电电源方面都取得了较大的进展,交流电直接由整流器转变为直流电,这部分直流电一部分由逆变器转换为交流,然后经由转换开关到达负载,而另一部分则直接对蓄电池组进行充电。一旦逆变器发生故障,蓄电池组则作为备用电源开始直接向负载提供能量。在现在的电力电子器件中普遍采用MOSFET和IGBT作为电源,不仅具有较好的降噪性,而且电源的效率和可靠性也能够得到有效的保障。
(2)专用电源。高频逆变式焊机电源和大功率开关型高压直流电源是比较典型的两种应用现代电力电子技术的专用电源。高频逆变式焊机电源是一种高性能的电源,由于大容量模块IGBT的普遍使用,使得这种电源有着更加广阔的应用前景,逆变式焊机电源基本采用的都是交流-直流-交流-直流的转换方法,由于焊机工作的环境条件恶劣,所以燃弧、短路等就成为了司空见惯的问题,而采用IGBT组成的PWM相关控制器,能够提取和分析参数和信息,进而预先对系统做出处理和调整。大功率开关型高压直流电源主要应用CT机、静电除尘等比较大型的设备上,因为这类设备电压比较高,甚至达到了50 ~ 159kV,将市电经过整流器整流变为直流,然后与谐振逆变电路串联,逆变为高频电压,再升压,最后整流成为直流高压。
2.2 传动控制及牵引
这主要应用在无轨电车、地铁列车、电动车的无级变速和控制等等方面,通过将一个固定的直流电压转换为一个可以变化的直流电压,这样就能够使控制更加的平稳和快速,而且还可以节能。
2.3 在电力系统中的应用
在发电系统中现代电力电子技术的应用更是广泛,比如说水力风力发电、用电系统、配电、输电等等都和现代电力电子技术有着密切的联系。目前的风力电力机组已经结合了机械制造、空气动力学、计算机控制技术、电力电子技术等等,而现代电力电子技术就是发电系统中不可或缺的重要技术,它对于电能的转换、机组的控制和改善电能质量等都很重要。
2.4 在节能和改造传统行业中的应用
现代工作的开展离不开电能的支持,电能是现代工业的重要动力和能量源头。随着我国工业用电量不断增加,用电的不合理及浪费现象也日益显现出来。这就需要有效地降低能源的消耗,提高电能的利用效率,以便于能够对当前能源紧缺的局面起到一定的缓解作用。因此需要充分的发挥现代电力电子技术的性能优势,有效地提高现代电力电子技术的效率,应用现代电力电子技术,通过工业控制有效地将电能转换为劳动力,建成现代化的智能车库,从而降低工人的劳动强度,实现人力资源的节约,确保劳动生产力的提高,以便于推动传统行业的改造进程。
2.5 在家用电器方面的应用
现代电力电子技术在我们日常生活中应用也较为广泛,当前家用电器普遍应用现代电力电子技术,给我们的日常生活带来了较大的便利。许多电器都只需要按下按钮就能进行工作,而不需要人们亲自动手。
3 应用展望
在今后现代电力电子技术应用过程中,需要重视以下几个方面的问题:首先,需要对节能和环保给予充分的重视,通过完善控制设备和设计专用的电机来有效地提高电机系统的使用性能和效率;其次,为了实现节能和环保,则需要使用中高压直流转电系统,使其实现低能耗及低污染;最后,需要加快解决电力系统中储电装置的设置问题,需要电力系统设计者从控制技术等方面来制定切实可行的解决方案,从而对电能储备中存在问题进行有效解决,更好地推动电力系统的持续、稳定发展。
4 结语
现代电力电子技术在多个领域都得到了广泛的应用,特别是对电网的控制和转换上发挥着非常重要的作用。通过现代电力电子技术的应用,使大功率电能成为其他高新技术的重要基础,这也决定了现代电力电子技术在国民经济发展中的重要地位具有不可替代性,对推动经济和社会的发展发挥着非常重要的作用。
参考文献:
[1] 刘增金.电力电子技术的发展及应用探究[J].电子世界,2011(9):19+25.
[2] 冷海滨.现代电力电子技术的发展趋势探析[J].电子技术与软件工程,2014(1):156-157.
[3] 韦和平.现代电力电子及电源技术的发展[J].现代电子技术,2005(18):102-105.
作者简介:益聪(1994―),男,陕西西安人,沈阳理工大学学生。
论文首先介绍了电力电子技术及器件的发展和应用,具体阐明了国内外开关电源的发展和现状,研究了开关电源的基本原理,拓扑结构以及开关电源在电力直流操作电源系统中的应用,介绍了连续可调开关电源的设计思路、硬件选型以及TL494在输出电压调节、过流保护等方面的工作原理和具体电路,设计出一种实用于电力系统的开关电源,以替代传统的相控电源。该系统以MOSFET作为功率开关器件,构成半桥式Buck开关变换器,采用脉宽调制(PWM)技术,PWM控制信号由集成控制TL494产生,从输出实时采样电压反馈信号,以控制输出电压的变化,控制电路和主电路之间通过变压器进行隔离,并设计了软启动和过流保护电路。该电源在输出大电流条件下,能做到输出直流电压大范围连续可调,同时保持良好的PWM稳压调节运行。 开关电源结构
以开关方式工作的直流稳压电源以其体积小、重量轻、效率高、稳压效果好的特点,正逐步取代传统电源的位置,成为电源行业的主流形式。可调直流电源领域也同样深受开关电源技术影响,并已广泛地应用于系统之中。
开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。
SCR在开关电源输入整流电路及软启动电路中有少量应用, GTR驱动困难,开关频率低,逐渐被IGBT和MOSFET取代。在本论文中选用的开关器件为功率MOSFET管。
开关电源的三个条件:
1. 开关:电力电子器件工作在开关状态而不是线性状态;
2. 高频:电力电子器件工作在高频而不是接近工频的低频;
3. 直流:开关电源输出的是直流而不是交流。
根据上面所述,本文的大体结构如下:
第一章,为整个论文的概述,大致介绍电力电子技术及器件的发展,简单说明直流电源的基本情况,介绍国内外开关电源的发展现状和研究方向,阐述本论文工作的重点;
第二章,主要从理论上讨论开关电源的工作原理及电路拓扑结构;
第三章,主要将介绍系统主电路的设计;
第四章,介绍系统控制电路各个部分的设计;
关键词:电力电子;教学方法;教学改革;考核方式
作者简介:姚志垒(1981-),男,江苏溧阳人,盐城工学院电气工程学院,副教授。(江苏 盐城 224051)
基金项目:本文系盐城工学院2013年度校级教改研究项目(项目编号:32)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)23-0052-02
“电力电子装置及技术”是电类专业的一门专业选修课。[1]该课程是在“电力电子技术”课程的基础上,进一步介绍变流电路的结构、工作原理、功能指标,电力电子实用装置的构成、基本电量的计算方法和所有装置需解决的共同技术问题。[2-3]该课程涵盖知识的内容多、面广、难度大、实用性强,能培养学生将知识融会贯通,提高学生综合应用知识解决实际问题的能力。因此,如何从教学内容、教学方法和手段以及考核方式等方面进行改革值得探讨。
一、教学内容的改革
1.理论教学内容的改革
该课程的课时数为40学时。由于它是一门应用性课程,因此需要在书本内容的基础上,紧跟时代前沿,增加一些当今热门课题的内容,如:电力电子装置在新能源发电系统和节能环保中的应用等,以便为学生找工作或读研找课题提供参考。
选用杨荫福等编写的《电力电子装置及系统》作为本课程的教材。[3]由于该教材第1章中半导体电力电子开关器件和第2章高频开关电源的内容已分别在“电力电子技术”和“开关电源及技术”课程中详细讲述,因此该课程不再赘述。
所选教学内容具体如下:
(1)电力电子装置及系统概述(2学时):电力电子装置及系统的概念;电力电子装置的主要类型;电力电子装置的应用概况;电力电子装置的发展前景。
(2)逆变器(4学时):逆变器概论;单相和三相恒频恒压正弦波逆变器;感应加热电源。
(3)不间断电源UPS(6学时):UPS的功能及原理;UPS的组成和设计(包括蓄电池组、整流器和PFC电路、逆变器、切换电路、滤波电路、旁路控制电源和系统辅助电源、接地装置、保护和报警系统);UPS输出电压控制。
(4)晶闸管变流装置(6学时):晶闸管交流变换器;交流净化型稳压电源;晶闸管谐振型逆变器。
(5)电力系统用电力电子装置(6学时):电力系统无功补偿;电力系统有源滤波装置;电力系统谐波与无功功率综合补偿;远距离直流输电。
(6)电力电子装置的研制与试验(14学时):电力电子装置研制流程;研究对象的方案论证;主电路设计(包括输出滤波器、输出变压器、缓冲电路、直流滤波电路和主开关器件设计);控制系统及辅助电源设计(包括抗冲击负荷电路、调压环节、过温保护、辅助电源和驱动电路的设计);电磁兼容技术和措施;电路仿真;整机调试与电性能试验;结构设计和例行试验。
(7)电力电子装置在当今热门课题中的应用(2学时):选择应用于当今热门课题的某个电力电子装置作为教学内容,如:直直变换器在光伏发电系统中的应用、并网逆变器在新能源发电系统中的应用等内容。
2.开设实验教学内容
为了进一步验证理论分析,提高学生的实践能力,应开设一定的实验教学内容。该课程的实验教学可以充分利用江苏省电气与新能源实验教学示范中心的新能源实验室和电力系统无功补偿实验室,完成一些高频电力电子装置实验项目,如:电力系统无功补偿、电力系统有源滤波、升压变换器在光伏发电系统中的应用和并网逆变器在风力发电系统中的应用等实验项目。
二、教学方法和手段的改革
1.兴趣教学,激发学生学习积极性
紧贴社会的要求进行学前教育,把社会的需求和学生学习的需求有机统一,从而激发学生的学习积极性。
学生从高中进入大学后,学习的目标改变了,如果说学生在中小学时是以升学作为他们的目标,那么,进入大学后他们的目标已经转向了就业。因此,要使学生了解社会对人才知识结构的需求及其变化,使学生意识到该课程作为大四的专业选修课对今后工作以及再深造的重要性,从而使他们一开始就认识到该课程必须学,而且要学得非常好。
第一次上课,在讲完电力电子装置的应用概况后,了解每个学生对电力电子装置感兴趣的应用领域,布置学生通过网络搜索或图书馆查找其感兴趣应用领域的相关资料,并做成PPT,以备上该应用领域课时做报告。此后,每次上课时,先让对该节课教学内容感兴趣的学生用PPT做报告(每个学生报告5分钟,学生提问2分钟),讲述相应应用领域的研究背景和国内外研究现状,然后由教师讲解具体教学内容。通过该兴趣教学的方法,可以激发学生的学习积极性,培养学生做科技报告的能力,为学生毕业设计选题和答辩奠定良好的基础。
2.提高多媒体教学质量
随着现代化水平的不断提高,上课基本都已采用多媒体进行教学。但多媒体课件也不能是黑板板书的简单复制,最好配以一定的动画和声音,以便吸引学生的注意力,调动学生学习的积极性。如:在讲解电路工作模态时,采用“动作路径”的动画格式,让学生清楚地看到电流在电路中的流通路径,更深刻地理解所学知识;学生在下半节课时往往会开小差,注意力不集中,可通过在切换幻灯片时配以一定的声音,吸引学生的注意力;在讲解习题或举例时,先以某个习题为例进行讲解,解题步骤逐步显示,而不是一下子显示所有答案,保留了板书的优点,然后总结归纳解题方法,最后再以习题对所述方法进行巩固。
3.采用仿真辅助教学
用仿真的方法不仅可以初步验证电路原理和参数设计的正确性,还能仿真试验极限条件下的特殊情况,从而有效地减少电力电子装置的设计费用,缩短电力电子装置的设计周期,优化参数设计,提高装置的可靠性。常用的电力电子仿真软件有:Saber、Pspice和Matlab中的Simulink等。以其中的Saber仿真软件为例对所设计4kW、400Hz的中频电源进行仿真验证。学生可以通过仿真进一步加深对理论知识的理解,此外,对较复杂或不易懂的电路可以通过仿真查看电路各点的波形反推电路工作过程,从而掌握电路的工作原理。
三、考核方式的改革
该课程采用小论文的考核方式。考核的总成绩包括平时成绩(20%)、平时PPT报告成绩(30%)和小论文考核成绩(50%)。其中,平时成绩包括学生的出勤和平时作业;平时PPT报告成绩主要是检查学生对电力电子装置感兴趣应用领域相关知识的预习情况,考核学生运用Powerpoint软件制作PPT的能力、口头表达能力和回答同学提问时的应变能力;小论文考核成绩主要包括测试学生书写小论文的能力(包括中英文摘要、引言、正文、结论和参考文献)、利用word软件书写小论文和排版的能力。小论文要求学生从电源设计领域、电机调速用电力电子装置、电力系统领域、汽车电子领域、绿色照明领域、新能源开发领域和其他与电力电子装置相关的领域中选择1种领域撰写。此外,要求写相同领域小论文的学生相互商量各自研究方向,确保每个学生的小论文题目和内容不雷同。通过上述小论文考核,杜绝了学生相互抄袭小论文的现象,学生在选题上发挥了主观能动性,选题范围比较宽。学生在查阅资料完成小论文的过程中,了解了国内外电力电子装置相关领域的国内外研究现状,初步掌握了电力电子装置主电路设计、控制系统设计、仿真及结果分析这一流程。
四、结束语
近年来,我们紧跟时代前沿,及时更新“电力电子装置及技术”课程的教学内容,在实际教学中采用兴趣教学、高质量的多媒体教学和仿真辅助教学的教学方法,采用“一人一题”的小论文考核方式,对“电力电子装置及技术”课程进行了一系列改革,取得了良好的教学效果,得到了学院领导和学生的一致好评。
参考文献:
[1]陈仲.“电力电子装置及控制”课程教学设计的研究与探索[J].电气电子教学学报,2008,(S1).
关键词:多元化;互动教学;应用能力
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)38-0185-02
一、引言
近年来,随着电力电子器件的不断更新以及各种变换电路的应用范围不断增大,电力电子技术再一次迎来了快速发展时期。作为电气工程专业研究生的主干课程,电力电子技术的教学至关重要,它关系到学生能否熟练掌握本专业的知识和技能。在传统的教学中,大多数高校采用的教学方法依旧是采用本科的教学方式,老师按指定的教材讲,学生按部就班地学习,这样极易造成学生难以理解复杂的理论,导致学习兴趣的丢失[1]。针对这种情况,本文提出了多元化的电力电子教学方法,让学生参与互动,并增加实验课程的开设,真正引起学生对于电力电子学科的学习兴趣。
二、理论教学应从多角度进行
通常情况下,电力电子得理论教学都是按照教科书的章节顺序进行,难免枯燥乏味,高深难懂。电力电子学科涉及面比较广,如果将电力电子学科理论划分为多个部分会起到更好的效果。比如划分为四大变换电路部分、器件与控制部分以及电力电子前沿技术等三部分进行教学,三部分既可以先后进行也可以同时穿行。
1.分析电路尽量使用多媒体。电力电子技术的核心就是整流、逆变、斩波和交交变换四大基本电路,在电路工作过程的分析中,通常一个电路都有多个工作状态,不同的工作状态又分别对应着不同的电压电流波形,也就是说电路的工作过程往往都是动态的过程,而传统的书本上的文字和原理图是无法很好地展现动态过程的[2]。这时,如果采用幻灯片等多媒体形式,可以将电路工作的动态过程很好地展现给学生们观看,把书本上静态的电路以及波形图动起来,这样就能够让学生们更好地理解电力电子电路的工作过程。与此同时,结合书本上的理论,再将不同电路的特点进行总结,使同学们复习时结合着书中的理论,头脑中联想着多媒体演示动画,便会在学习中事半功倍,容易记忆,提高学生的分析计算和实际解题的能力。
2.器件与控制部分应注重练习。电力电子器件及控制部分具有覆盖面大、定性与定量相结合的特点,学好这一部分,就必须将概念的理解与相关的计算进行练习,在习题式的教学中,不断提高分析问题和解决问题的能力。研究生阶段,各高校几乎很少带领学生做与课程相关的习题,多数学生也只有在考试的时候才有机会在试卷中解答一些问题,虽说现在不提倡传统针对考试的题海战术,但是平时适当做一些典型的练习还是有必要的,电力电子器件种类多、特点各不相同,而控制方法也有很多,甚至与自动控制原理等其他学科相关联,在教学中适当找一些典型例题进行讲解,可以让同学们在繁杂的知识中抓住重点内容进行突破,最终掌握这部分知识要点。
3.学生自主参与新技术教学。电力电子技术具有发展速度快的特点,新的技术和应用领域不断出现,加强电力电子新技术的教学可以扩展学生知识面,掌握电力电子技术发展新方向[3]。这一部分的特点是没有定量计算、难度不大、但对于资料的收集工作量比较大,根据这些特点,在教学中,可以将这部分安排给每个学生进行讲解,在讲解前每个同学查找相关资料,然后对资料进行分类总结,加入自己的理解,在讲解过程中既可以使用多媒体也可使用板书的形式,讲解后学生之间可以相互提出问题,相互讨论,形成良好的研究氛围。在这种学生自主教学的过程中,既提高了学生查找资料的能力,也能提高学生的概括的创新能力,还为研究生毕业学术论文的撰写提供了相关的经验。
三、实验教学应进行分类
电力电子技术是一个应用性很强的一门学科,在理论教学的同时一定要有相应的实验来配合和补充,开设实验课是对理论课的延伸和补充,更能够突出应用型学科的特色。在实验教学上,应分为验证实验、探究实验、拓展实习三个部分进行教学。
1.验证实验应紧密结合课本。验证性实验的特点是对已经有的理论进行实验验证,与学生的理论教学紧密衔接,通过书上的理论来指导实验的操作,同时实验的结果又可以加深学生对于书本理论的深度理解。在理论课程之后,应当有相应的实验课程相跟进,在实验开始前,老师带领学生对课本知识点进行回顾,确定实验目的和实验步骤,同学们按照实验要求完成相应的实验操作,并能够运用书本上的知识来解释实验中的现象,最后通过实验报告的形式进行总结,得出验证性的结论。
2.鼓励开展探究性试验。电力电子技术是一门正在快速发展的学科,在实验教学中,应当鼓励学生进行自主探究,通过对已有知识的学习让学生们充分发挥想象力,制作一些相关的小制作、小发明,在探究性试验的过程中培养学生的创新能力[4]。学生根据自己掌握的知识,结合当今电力电子发展的前沿技术,加上自己的想象力和创造力,独立设计出属于自己的电子作品,而在探究的过程中难免会遇到一些问题,这时老师应进行适当指导,给出一些方案,让学生自主解决实际问题。平时尽可能地开放实验室,使学生增加动手操作机会。此外还应当鼓励学生参加“挑战杯”等科技比赛,增加在创新方面的交流合作,从而学会更多解决问题的新方法。
3.拓展实习应突出实际应用。在传统的教学环节之外,对于电力电子技术这种应用型很强的学科,应适当组织学生到某个单位进行参观学习。学习的目的是为了应用,当今电力电子技术已经应用在了许多领域之中,在实验教学中可以联系某个具体单位进行参观,在实际的生产过程中,让学生们更加具体地了解电力电子技术的应用[5]。除了参观之外,也可由老师或者学生找一些与电力电子技术应用相关的视频资料,分享给大家进行观看,也可以起到非常好的效果。实习结束之后,学生以报告的形式写出自己学到了什么或者是心得体会。这样,理论联系实际,对于理工科的教学是有很大帮助的。
四、总结
针对电气专业研究生电力电子技术这门主干课程涉及面广、发展速度快、应用性强的特点,本文提出了多元化的教学方案。在实际的教学中分成理论与实验两部分进行教学,在这两个部分中再分成几个部分,并根据所分的各部分特点进行教学,理论教学中应结合现代多媒体技术、适当的习题化教学、学生参与互动的教学等方式,实验教学中应注意结合课本、鼓励创新、突出应用的教学方式。这样,将一门课进行多元化教学,既可以激发学生们的学习兴趣,也可以培养学会生多方面的能力。
参考文献:
[1]陶俊珍.“电力电子技术”教学内容更新例析[J].中国电力教育:下,2011,(3).
[2]高铁刚,王馨,寇海莲.信息技术环境下教学评价的理论与方法[M].北京:清华大学出版社,2011.
[3]梁永春,闫彩红.“电力电子技术”课程立体化教学方式探索[J].中国电力教育:上,2010,(11).
[4]刘晋,牛印锁,文俊.国内外“电力电子技术”课程教学研究[J].中国电力教育:下,2012,(2).
[5]王春凤,李旭春,薛文轩,等.电力电子技术实验教学改革的探索与实践[J].实验室研究与探索,2011,30(9).
关键词:IEET工程认证;电力电子;项目教学改革
中图分类号:G642 文献标识码:A 文章编号:1672-3791(2016)04(c)-0000-00
1前言
中华IEET工程认证学会简称IEET,评估受认证的课程或机构是否符合认证机构的学术或专业标准,通过认证的大学院系毕业生,代表其已具备执行工程专业所需之基础教育,且国内学历将为各会员国所承认,扩大国内毕业生的学历适用地区。
电力电子技术这门课程在“机械电子工程专业人才需求”企业调研活动中,84.66%的毕业生主要从事与电力电子技术课程相关的产品开发与设计工作,一般从事机械工业及维修、电子传动、汽车、车床、电路设计、售后服务,产品检修与分析、产品测试以及产品研发等行业,说明了这门课程的工程认证的必要性。
2教学现状
电力电子技术是一门横跨电力、电子、自动控制三门课程的交叉边缘学科,是利用大功率半导体器件对电能进行变换与控制的专业基础课程。
基于种种原因,以往电力电子技术理论学习难较大,课堂教学将学生置于一种被动地位,不利于学生主动进行知识建构,所以急需一种新的教学模式,以此来吸引学生的关注,加强基础理论与工程实例的结合应用,结合电力电子领域的新技术和工程应用技术,为专业模块化课程“机电传动控制”、“机电产品创新设计”、“工业机器人”、“机电一体化系统设计”,以及复合型课程“电动汽车”、“汽车电器与电子技术”、“电动汽车驱动技术”、“智能装置设计”、“智能家居”做知识储备。
随着各高校教学改革的深入,电力电子技术课程的课时量越来越少,实验学时也不断压缩,同时实体的实验设备极易损坏,软件仿真又不能让学生完全的理解概念。只是仿真,见不到实物,对驱动模块和控制模块没有研究,对课程的学习效果大打折扣。例如:简单的整流桥电路,仿真只要选择模块即可,学生根本不知道做实物整流桥用电力电子器件应该如何搭建,若是选集成的芯片也不知道应该选择哪一个,是半控芯片还是全控芯片,控制引脚该如何连接,芯片需要不需要驱动?这些问题都是软件仿真无法解决的,不是单纯改革实验教学就可以解决的,因此需要一种工程认证的思路来进行教学改革,让学生学有所得。
3 教学改革
3.1IEET理念下教师角色的转变
IEET强调七大核心能力:具备资讯工程相关知识的能力,具备设计与执行实验及分析解释数据的能力,具备工程实务流程规划及资讯软硬体系统整合的能力,具备协调、领导及沟通、整合的能力,具备适应职场变化的能力及持续终身学习的习惯,具备第二外语沟通与表达的能力,具备工程伦理与善尽社会责任的能力。这些不是对教师主导作用的弱化,而是对教师在整个教学活动中的掌控能力、自身的知识水平提出了更高的要求,老师的角色要求既不能一味的灌输知识也不能完全的不干涉,而是要作为一名引路人,为学生设计短期或是长期的学习目标,激励学生寻找到达目标的路径和方法,这就要求理论知识的掌握不仅要有广度还要有深度,并且具备解决问题的能力。例如讲解“电力电子器件”时,应当重视各种器件的外部特性的讲解,从使用角度让学生了解其应用的场合,参数的含义,设置这几个参数的意义。而内部结构和工作原理的详细分析可以让学生自行查阅资料深入了解。介绍国内一些大型企业(“株洲南车时代电气股份有限公司”)的最新电力电子器件―脉冲功率组件、集成门极换流晶闸管,然后让学生自己查资料了解这些器件的具体应用范围,扩展学生的知识面。在讲每一种电量变换电路之前,应当把学生引导到某一个应用场景下,这时学生会主动思考在这种情境下电量要如何变换才能满足应用需求。例如,在讲解整流电路之前,可以先引出大家日常会用到的“手机充电器”的场景。手机充电器是从城市电网当中获得交流电,在充电器内部通过整流电流转化成直流电给手机充电的设备,目前手机充电器的充电时间如何缩短?各种不同型号的手机充电器是否可以通用?又有怎样的缺陷?野外如何充电?没有充电线的情况下又是怎样的充电结构?针对这结问题学生会积极的思考,并且和复合型的课程紧密结合在一起,知识点的讲解也就更显通俗易懂。
3.2运用项目
项目教学法是将传统的学科体系中的章节内容转化为若干个教学项目,围绕项目组织和展开教学,使学生直接参与项目全过程的一种教学方法。学生在项目实践的过程中,理解知识点的要求,掌握知识点的技能,体验项目建立和实现的艰难与乐趣,培养分析问题与解决问题的能力,建立团队意识和组织协调能力,这正是IEET工程认证理念的完整体现。
恰当设置项目的题目:巧妙的设计题目是项目教学法运用成功的保证,这要求教师平时的知识更新以及积累,才能既涵盖知识点,又符合社会实际需求,所以项目的题目类型要从―跨学科理论验证、校企结合、创新设计等方面入手,题目层次要分明--包括易、适中、难几个难度。例如:A.每一章节可以首先给学生提出一个设计要求,比如在学习逆变电路时,要求设计一个基于SPWM的三相电压型逆变电路,给出具体性能指标,把问题抛给学生,等课堂知识点讲完之后,学生已经有了大体的调剂思路,完成主电路的设计。B.全部课程上完之后的课程设计的项目会与企业需求相结合,完成时间周期长,如“直流脉宽调速系统驱动电源的设计”。C.此外,项目的题目可以跨学科综合,如“模糊控制下家电产品的电子设计”。
项目完成的考核方法:IEET工程认证模式,更关心的是项目完成的过程而不是结果,所以可以以小组讨论的形式来完成考核。教师从项目组织情况、设计思路、设计文档、技术指标、创新性、项目完成情况等各方面来给学生打分,并且可以在小组讨论时,评出组织者、设计能力者、文档编撰者等有不同优势的同学,检测学生技术层面和团队协作层面的差异。
Matlab、Simplorer等仿真软件的应用:随着新技术的发展,目前高校实验室条件跟不上新技术发展的步伐,学生动手做实验的机会少,许多理论需要通过实验来验证,除了项目教学法的运用,采用软件对电力电子进行仿真可以解决这些矛盾。这两个软件强大的协同仿真功能,建模更容易,和实际电路模型极为相似,易为学生所接受
3.3拟解决的关键问题
按照上述设想,本课程拟解决的主要问题如下:
(1)锻炼学生团队协同合作的能力,为各级比赛提供一批有电子设计基础的学生;
(2)设置电力电子技术的课程设计环节;
(3)调整教学大纲;
(4) 通过项目,培养较强的项目开发、设计和建造的能力;
(5)组织兴趣小组进行实际工程项目作业,理论联系实际,加强对理论内容的理解。以社会需求为教学依据,让学生学有所需,学能所用。
3.4实施计划及可行性分析
电力电子技术课程为专业限选课,一般机电专业学生必选,学生数约100人,拟打算在每年的电力电子技术课程中,分别按照教学改革思路进行对照教学,观察其教学效果,具体实施计划如下:
1)去同类独立院校调研,学习他们电力电子技术类课程的建设经验;
2)调研本专业毕业生就业情况;以毕业生就业行业分布,就业难易程度等情况为依据讨论电力电子技术课程建设,并对教学大纲做相应修正;
3)以企业用人需求情况统计表的统计情况,来设置课程项目的题目,决定以下三个方向的题目“电子电工产品生产与加工”、“机电产品开发与设计”以及“企业工程项目管理工作”的侧重点和比例。
4)通过教学日历的完成情况和就业趋势对项目的题目进行微调,令学生自行组织项目合作小组,通过做电力电子技术项目的形式,把课堂理论直接与实践相结合,通过结合实践课程增加学生动手能力、协同合作能力、提高专业素养。
5)对整个教改过程进行总结分析,整合课程项目的题目,根据学生的反馈改进教学方式,为本课程深入教改做准备。
6)作品展示:进行电力电子技术课程的项目实物展示活动,从电力电子的课程项目成品当中,选择具有创新性和实用性的作品进行公开答辩和实物展示,为大学生创新创业项目提供作品,丰富毕业设计作品的内容,也提升了本专业在学校的影响力。
4创新点
特色与创新:
1)电力电子技术是一门理论与实践紧密结合的课程,为了解决理论知识学习难度大的问题,设立项目教学环节。针对理论学科性质拓展了课堂教学的问答环节、实验教学的软件仿真环节、课程设计的项目研发等环节,使该课程教学过程更加生动,使学生主动地学习,加强基础理论与工程实例的结合应用,拓宽学生知识面宽,培养学生创新意识和实践能力,从实践过程中通过项目学习来获取工程能力;
2)形成了校内首个将电力电子技术课程IEET工程模式下的理论与实践相结合的教学模式;
3)本课程所设的项目为“毕业设计选题”、“大学生创新创业的项目”以及“校、企合作的项目”提供了丰富的题目资源,丰富毕业设计作品的内容,也提升了本专业在学校的影响力。
5总结
本论文旨在通过IEET工程认证模式的培养和锻炼,以产品研发到产品运行的生命周期为载体,让学生以主动的、实践的、课程之间有机联系的方式学习工程。从资讯工程相关知识的能力,设计与执行实验及分析解释数据的能力,工程实务流程规划及资讯软硬体系统整合的能力,协调、领导及沟通、整合的能力,适应职场变化的能力及持续终身学习的习惯,第二外语沟通与表达的能力,工程伦理与善尽社会责任的能力等七个层面达到预定目标。学生可以直接参与本专业的最新应用与工程项目,培养出的学生得到企业的认同,该成果可在独立学院相近专业推广,对本校其它专业也有一定的参考意义。
参考文献:
[1]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2002
[2]刘海波.《电力电子技术》实验教学改革探索与实践[J].实验科学与技术.2012
【三峡电力职业学院】4月1日,三峡电力职业学院与中国葛洲坝集团股份有限公司签订人才培养协议,双方决定由该公司预定水利水电建筑工程、工程测量技术、工程起重机械运用与维护、发电厂及电力系统、电力系统继电保护与自动化、电力设备运行与维护、工程造价、机电一体化技术、建筑工程技术等专业学生300人。
【河海大学】4月12日,河海大学举行“新能源发电与智能电网学科创新引智基地”建设启动仪式暨学术报告会。引智基地以中国能源学会副理事长、国家杰出青年科学基金获得者、江苏省“333高层次人才培养工程”人选、河海大学副校长鞠平教授为负责人,汇聚英国皇家工程院院士麦克•斯德林爵士等10名国际大师、国外著名学者和河海大学10名专家教授组成学术团队,围绕新能源发电与智能电网设计、建设、运行与调度中的关键技术问题开展深入的国际合作研究。
【武汉大学】4月12日至13日,第八届中国高校电力电子与电力传动学术年会(SPEED 2014)暨第八届电力樱花论坛在武汉大学召开,论坛围绕电力电子技术发展的前沿问题进行了充分的交流。本届年会组委会主任、武汉大学电气工程学院副院长查晓明等国内外学者分别作了专题报告,内容涉及电力电子建模与控制、电机及其控制、电力电子新技术等多个方面。此次年会有国内外40余所高校200多名学者参加,投稿约200篇学术论文。
【华北电力大学】4月29日,华北电力大学与中国电科院联合成立电力系统继电保护联合研究中心。中心选取“分布式电源保护控制策略及故障特性研究”“特高压高补偿度串补系统继电保护关键技术研究”等5个项目作为首批启动的联合研发项目。
【华北电力大学】日前,根据北京市科委的《关于认定2014年北京市国际科技合作基地的通知》,华北电力大学新增4个北京市国际科技合作基地:智能电网安全北京市国际科技合作基地、高效聚光化合物太阳能电池北京市国际科技合作基地、火力发电过程节能与清洁运行北京市国际科技合作基地、能源与环境系统优化及工程应用北京市国际科技合作基地。
【山东大学】4月29日,山东大学电气工程学院与国家电网许继集团有限公司共同组建联合创新中心战略合作框架协议签约仪式举行。“中心”将在新能源发电、智能变电站、配电与微网、用电与能效、电动汽车充换电和电力电子技术领域开展深入研究,形成相关科技成果转化机制和模式,开展联合人才培养和技术服务工作。
关键词:电力电子技术;开关电源
现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具 体应用。
当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经 济、实用,实现高效率和高品质用电相结合。
1. 电力电子技术的发展
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
1.1 整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
1.2 逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3 变频器时代
进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
2. 现代电力电子的应用领域
2.1 计算机高效率绿色电源
高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。
计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日"能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。
2.2 通信用高频开关电源
通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。
2.3 直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。
通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
2.4 不间断电源(UPS)
不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。
现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。
目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。
2.5 变频器电源
变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。
国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。
2.6 高频逆变式整流焊机电源
高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。
逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。
由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。
国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。
2.7 大功率开关型高压直流电源
大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。
自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。
国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。
2.8 电力有源滤波器
传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓"电力公害",例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。
电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流; (2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。
2.9 分布式开关电源供电系统
分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。
八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。
分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。
3. 高频开关电源的发展趋势
在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。
3.1 高频化
理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的 5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统"整流行业"的电镀、电解、电加工、充电、浮充电、电力合 闸用等各种直流电源也可以根据这一原理进行改造, 成为"开关变换类电源",其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。
3.2 模块化
模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于"标准"功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了"智能化"功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了"用户专用"功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、 机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。这样,不但提高了功率容量, 在有限的器件容量的情况下满足了大电流输出的要求, 而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。
转贴于 3.3 数字化
在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术 拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC) 问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。
3.4 绿色化
电源系统的绿色化有两层含义:首先是显著节电, 这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。
总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。
参考文献:
[1]林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992。
[2]季幼章:迎接知识经济时代,发展电源技术应用, 电源技术应用,N0.2,l998。
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
1.1整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
1.2逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3变频器时代
进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
2.现代电力电子的应用领域
2.1计算机高效率绿色电源
高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。
计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。
2.2通信用高频开关电源
通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。
2.3直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。
通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
2.4不间断电源(UPS)
不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。
现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。
目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。
2.5变频器电源
变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。
国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。
2.6高频逆变式整流焊机电源
高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。
逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。
由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。
国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。
2.7大功率开关型高压直流电源
大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。
自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。
国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。
2.8电力有源滤波器
传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。
电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。
2.9分布式开关电源供电系统
分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。
八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。
分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。
3.高频开关电源的发展趋势
在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。
3.1高频化
理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。
3.2模块化
模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。
3.3数字化
在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。
3.4绿色化
电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。
现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。
总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。
参考文献
(l)林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992
(2)季幼章:迎接知识经济时代,发展电源技术应用,电源技术应用,N0.2,l998
(北京中唐科华电力设备有限公司河北分公司 河北 邯郸 056003)
【摘要】电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。
关键词 电力电子技术;发展
现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。
当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。
1.电力电子技术的发展?
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
2.现代电力电子的应用领域?
2.1计算机高效率绿色电源。?
(1)高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。?
(2)计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星”计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。?
2.2通信用高频开关电源。?
(1)通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50~100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。?
(2)因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。?
2.3直流-直流(DC/DC)变换器。?
(1)DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。?
(2)通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。?
2.4不间断电源(UPS)。?
(1)不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。?
(2)现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。?
(3)目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。?
2.5变频器电源。?
(1)变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。?
(2)国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。?
2.6高频逆变式整流焊机电源。?
(1)高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。?
(2)逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。?
(3)由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。?
(4)国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29Kg。?
2.7大功率开关型高压直流电源。?
(1)大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100KW。?
(2)自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。?
(3)国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。?
2.8电力有源滤波器。?
(1)传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。?
(2)电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。?
2.9分布式开关电源供电系统。?
(1)分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。?
(2)八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。?
(3)分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。
3.高频开关电源的发展趋势?
在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。?
3.1高频化。
理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。?
3.2模块化。?
(1)模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。?
(2)由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。?
3.3数字化。
在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。?
3.4绿色化。?
(1)电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。?
(2)现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。
4.总而言之?