HI,欢迎来到学术之家,期刊咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 抗浮设计论文

抗浮设计论文

时间:2022-05-21 05:13:47

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇抗浮设计论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

抗浮设计论文

第1篇

【关键词】地下建筑,抗浮技术,措施探讨

中图分类号:TU198文献标识码: A 文章编号:

一.前言

随着城市和建设进程逐步加快,各种地下建筑逐渐出现,这些建筑在进行设计施工和正常的运行中,由于一直基本处于下下,很容易受到来自各种地下水的侵蚀,地下水对整个地下建筑有着十分重要的影响,因而,在建筑施工和竣工后的使用中,要做好各种抗浮措施,如此,可以更好的防止地下墙体发生裂缝或者是软化坍塌,对确保整个地下建筑的安全和工程质量有着十分重要的作用。

二.地下水对地下建筑的危害探究

1.地下水水位变化对建筑工程的危害。地下水的水位一般会受到降水,季节变化等因素的影响而产生水位的升降,地下水位的上升下降,会对整个建筑结构的设计产生极其消极的影响,。首先,当水位上升的时候,不仅仅会造成地震沙土液化速度加快,规模扩大,更会使得建筑结构下的岩土发生断裂,变形扭曲,滑坡,崩塌等多种地质灾害,严重降低了整个建筑结构中基础地基的承载能力,不利于整个建筑结构的稳定,不利于整个建筑结构抗震性能的增强。其次,地下水的过大下降,常常诱发地裂、地面沉降、地面塌陷等地质灾害以及地下水源枯竭、水质恶化等环境问题,对岩土体、建筑物的稳定性和人类自身的居住环境造成很大威胁。最后,地下水的冻胀也会对建筑结构的设计产生消极影响,主要表现在,当冻胀的地下水升温使得水浸湿和软化岩土时候,会使得地基土质的强度会大幅度降低,使得建筑物的沉降幅度变大,地基容易发生很大幅度的变形,造成建筑结构的稳定性差。

2.地下水会对建筑物的建筑构件造成很大的侵蚀性。地下水会对建筑构件中的混泥土,可溶性石材,和建筑主体中的管道,金属构件等造成很大的腐蚀和侵蚀,不仅仅会加快各种构件的老化,寿命缩短,更大幅度降低了整个建筑结构的稳定性和刚度。

3.地下水的水力状态容易发生改变,会使得在饱和的砂型土质的建筑结构设计变得更为艰难。当水力发生变化时候,土质的效应力大幅度降低,容易形成流砂,使得建筑结构下的土体发展流动,造成地表地基的坍塌,威胁建筑结构的稳定。

三.地下水对地下建筑结构设计的受力影响

1,地下水对地基基础设计中应力计算的影响

在地下建筑结构设计中,最关键是要确保地基的稳定,进行地基设计时候,首先要做到的就是要精确计算出自重应力和附加应力。在计算地基任意深度的自应重力时候,要以地下水位为分界线,地下水上面的土质,一般采用的是土质的自重应力。如果地基位于地下水的下面,那么,地基在水下的砂性土需要综合考虑到地下水的浮力作用。如果还是粘性土质则变得更为复杂,需要根据不同的情况而定,一般认为,如果在地下水下面的粘性土质的液性指数不小于零,那么,此时土质会是一种流动的状态,每个土质颗粒之间有很多自水,这种情况下,土体便受到了地下水的浮力作用。因此,在进行地下水位之下的自重应力的时候,要根据实际情况,综合考虑,分析确定是否需要将地下水的浮力纳入其中。如果液性指数在零之下,那么土质会保持在固体的状态,土质就不会受到地下水的浮力,在实践操作中,一般都会按照不利的状态来进行综合考虑分析。

2.地下水对天然地基承载力的影响

在建筑结构地基的设计中,要做好天然地基承载力的计算,地下水对地基有着十分重要的影响作用,一般而言,都会表现在两个方面,其一,位于地下水位之下的土质,会很容易失去表观凝聚力,而这种凝聚力多半是由毛细管和弱结合水所形成的,当失去凝聚力的时候,会使得土质的凝聚力大幅度降低。其二,当受到地下水的浮力时候,土质将会很大程度的降低了自身的凝聚力,也因此会使得建筑结构设计中地基的的综合承载力变弱。在实际建筑结构设计中,都会假设地下水水位上下的土质强度都是一样的,只是单一的考虑到地下水的浮力对土质的承载力产生的影响,当建筑结构设计的地基持力层在地下水位下面,而且不具有透水性,那么,不管基底上层的土质是否具有透水性,都统一使用保护重度,当地基的持力层具有透水性的时候,可以将有效重度纳入范围。

五.抗浮设计方案与具体措施

除箱形基础和内部无柱的地下构筑物外,采用片筏基础的地下室的结构一般难以满足整体抗浮的刚度和强度要求,故将地下室划分为若干结构单元进行抗浮验算是合理的,抗浮设计需结合结构单元抗浮验算的结果选择或调整结构抗浮方案及措施。抗浮方案及措施有:

1.主体工程采用桩(挖孔桩除外)基础时,单层地下室或裙房地下室可用桩协助抗浮,因为受地下水变化的影响,该桩可能抗拔也有可能承压。

2.主体工程采用天然地基时,单层地下室或裙房地下室可采用加大恒载(如覆土)抗浮,或将单层地下室和裙房及裙房地下室的结构处理成垂直荷载作用下的子框架结构支承于主体结构上,由主体结构协助抗浮。后者需修正原设计对应于子框架的梁柱内力与配筋和主体结构中支承子框架的节点的梁柱端的内力和配筋,修正的原则是取二次设计中承载力大的配筋和截面。主体结构离支承子框架节点较远的梁柱端内力受影响较小,一般可以不必修正。

3.抗浮锚桩协助抗浮。如图1,抗浮锚桩的结构设计方法基本上同锚杆,适用范围比较大。常用于大空间、大面积的单层地下室或裙房地下室及地下构筑物抗浮,当水压力较大时,用分布抗浮锚桩无梁地下室底板的方案易于设计且比较经济。

4.地下罐体的抗浮设计应注意其基础或基墩在地下水的影响下可能受压也可能受拉,要做两个方向受力的强度验算。

5.在必要时要做抗浮桩或抗浮锚桩的拨和压的双向受力验算,承压验算宜考虑桩土协同工作,桩主要起抗倾斜作用,注意抗浮验算单元应与协助抗浮的方案吻合,位于地下水位以下的室外抗浮覆土要扣除地下水的浮力,悬挑出室外的地下室底板可以适当考虑上面覆土的内摩擦角按倒梯形截面计算抗浮力,抗拔桩和抗浮锚尽量布置在柱、墙下或对称布置在柱下,共同形成基础梁的支座,可以使抗拔桩和抗浮锚桩的受力均匀。

如图2,当基础梁的刚度较小时,要避免跨中抗梁的内力计算,因基础梁的竖向位移刚度从柱下至跨中各点不相同,所以布置在基础梁跨中的抗拔桩和抗浮锚桩对基础梁跨中是新约束,应注意计算简图的处理,调整基础梁的配筋,工程地质勘查应考虑协助抗浮的抗拔桩和抗浮锚桩的布置方案对桩长的影响。

五.结束语

地下建筑的抗浮设计施工关系到整个建筑工程的后续施工,关系到整个建筑工程的工程进度,工程成本控制和工程质量的保证。加强地下水对建筑结构设计影响的研究,找出地下水浮力对地下室和建筑物结构施工设计的重要影响方式,和发生原因,有助于地下建筑结构设计的科学化和合理化。地下水是建筑结构设计中无可避免的载体,水压力和地下水的浮力都会优先于地基对建筑物的结构产生反力作用,因此,在建筑结构设计中,要对地下水这一最重要的影响因素做出深入研究,这是保护地基稳定的关键环节。同时,通过探究发现,地下水主要还是通过影响到建筑结构设计中的基础设计的受力,主要是建筑结构的自应重力和建筑结构的承载力,要从建筑结构设计中的抗浮力上面加以改善和修正,尽力保证建筑结构设计的合理性和科学性,保证工程的质量。

参考文献:

[1]杨建浩 王永裕 地下建筑的抗浮技术措施 [期刊论文] 《西部探矿工程》 -2004年1期

[2]杨方勤 段创峰 吴华柒 袁勇 上海长江隧道抗浮模型试验与理论研究 [期刊论文] 《地下空间与工程学报》 ISTIC PKU -2010年3期

[3]赖泽金 李涛 彭星新 地下建筑物的抗浮设计 [期刊论文] 《中国房地产业》 -2011年8期

[4]贾金青 陈进杰 大型地下建筑抗浮工程的设计与施工技术 [期刊论文] 《建筑技术》 ISTIC PKU -2002年5期

[5]黄学兵 地下建筑工程抗浮的探讨 [期刊论文] 《中华民居》 -2012年6期

第2篇

【关键词】 地下室,结构设计,常见问题

1 引言

由于土地资源的紧缺,在现代城市建设中,建筑和交通向地下转移的趋势越来越明显,所以,对于地下室在功能和结构上的研究和设计也显得越来越重要。同时,随着城市建筑的高度不断增长,地下室的结构也相应地向多层和深度发展,这对于地下室的设计、施工和防震、防水等各方面提出了更高的要求,成为建筑行业普遍关注的重要内容和热点。

一般说来,地下室是相对于大底盘的高层建筑的地下部分而言的,由于地下室的建设和施工是在地下作业,环境较为特殊,涉及到的施工类型多、工序复杂,是一项具有高度系统性的工程,涉及到结构设计、工程施工、选择材料等等各个方面的因素,在质量上出现问题的可能性很大。现把在地下室结构设计中容易出现的问题分别介绍如下。

2 地下室的埋置深度

高层建筑设置地下室对建筑物结构的益处很多。首先可以利用土的侧压力减小结构的滑移和倾覆,有利于上部结构的整体稳定性;其次可以减小土的重量,减少地基的附加压力和沉降;再由于基础具有一定的埋置深度,还可以减小地震作用对上部建筑的影响。地下室在具有足够的刚度、承载力和整体性的条件下,可作为基础结构的一部分。高层建筑基础的埋置深度应满足地基承载力、变形和稳定性的要求。位于岩石地基上的高层建筑,其埋深应满足抗滑的要求。建议同一结构单元应全部设置地下室,并应当有相同的埋深。基础的埋置深度为建筑物室外地面至基础底面的距离,可按以下要求进行估算:

(1) 一般天然地基,不宜小于建筑物的高度的1/ 15 ,并大于3 m;

(2) 岩石地基可不考虑埋深的要求,但应验算倾覆和滑移;

(3) 桩基础不宜小于建筑物高度的1/ 18。

3 地下室合理层高的取值

当一座建筑的方案和结构设计确定下来后,一般就不应再做大幅度的改动和调整,只有楼层高度还是可以适当进行调整。对于地下室来说,其层高对整体的影响非常重要,这些影响主要体现在土方的开挖、降水方面的要求、基坑的支护、施工完成的工期、地下室的抗浮水位要求等等不同的方面。在设计中,设计人员往往会把层高设计得较低。因为层高是从结构层的最低点的基础上,考虑设备的净空要求和建筑本身的净空要求加以确定的,所以,在设计过程中,采用提高其顶板的结构最低点,常常被看成是减小其净高的有效方法之一。

具体地说,这种处理是:顶板和楼板一般采用宽扁型的梁、无梁的楼盖或者使用预应力式的空心楼板。例如,在某工程中,当地下室的跨度最大值是9.6米时,人防等级就为核6级,如果使用普通的梁板,梁高的要求是1.2米;如果使用宽扁形式的梁结构,梁的高要只有0.8米;而在改为预应力的空心楼板后,只要有暗梁就行,这时梁高和板厚只有0.5米。由此可见,地下室的净高受顶板结构形式的影响是非常大的。

另外,如果能在设计中合理设置柱网,对地下建筑进行恰当、合理的调整,也可以明显减小地下室的净高。现在的地下结构,一般是用来作为停车场,所以,建议在设计时要根据结构柱网的形式,对车位以及行车道进行调整。这同时也对减小地下室在造价和成本方面也有很大的效果。这一点却往往被设计人员所忽略。

4 地下室抗浮设计

4.1 抗浮水位的确定

地下室抗浮水位是一个十分复杂的问题,地质场地土层差异性,场地土内地下水复杂多变性,给地下室抗浮水位的确定带来了较大困难,然而抗浮水位又是地下室抗浮设计中一个决定性的参数。

如何做到既安全又合理的确定其抗浮水位?勘察、设计人员应遵照《岩

土工程勘察规范》及《高层建筑岩土工程勘察规程》的相关规定进行勘察和分析。其中,根据《高层建筑岩土工程勘察规程》第8.6.2 条,场地地下水抗浮设防水位的综合确定宜符合下列规定:

1) 当有长期水位观测资料时,场地抗浮设防水位可用实测最高水位,无长期水位观察资料时,应按勘察期间实测最高水位并结合场地地形地貌、地下水补给、排泄条件等因素综合确定。

2) 场地有承压水且与潜水有水力联系时,应实测承压水位并考虑其对抗浮设防水位的影响;

3) 只考虑施工期间的抗浮设防时,抗浮设防水位可按一个水文年的最高水位确定。此外,设计人员对于下列一些特殊情况还应进行必要的分析和论证:一是地下水赋存条件复杂、变化幅度大、区域性补给和排泄条件可能有较大改变或工程需要时,应进行专门论证;二是对于斜坡地段的地下室或可能产生明显水头差的场地上的地下室进行抗浮设计时,应考虑地下水渗流在地下室底板产生的非均布荷载对地下室结构的影响,不要笼统的采用勘察报告所提供的远高于室外地坪的地下室抗浮水位来进行设计。水是往低处流的,若建筑物一侧或多侧是敞开的,水浮力不可能高出室外地坪;三是在有水头压差的江、河岸边,且存在滤水层,应按设计基准期的最高洪水位来确定其抗浮水位;四是对于雨水丰富的南方地区,尤其应注意因地面标高发生变化后对原勘察报告抗浮水位的修正,防止产生地表水聚集效应对地下室的破坏。

4.2 解决地下室抗浮问题的方法

4.2.1 地下室整体抗浮

为防止地下室整体上浮我们通常采用两类做法,一是利用建筑的自重(包括结构及建筑装修、上部覆土等,不含楼面活荷载)平衡地下室水的总浮力,当不能平衡时,再就是采用锚桩或锚杆等来抵抗地下水的浮力。无论是增加自重还是增设锚杆的做法,都必须进行整体抗浮验算,保证抗浮力(自重+抗拉力)大于水的总浮力。

4.2.2 地下室局部抗浮

地下室局部抗浮主要是对梁板墙柱结构构件的在水浮力作用下的强度验算、变形验算和裂缝验算。对不满足区域应该采取增加板厚,增大配筋或增设抗浮锚杆等措施。

5 地下室外墙问题

对于地下室外墙,一般计算时将底部作为固定支座(就是说,把底板看成是外墙的固定端),各个方向的侧壁底部的弯矩和相邻底板的弯矩基本相同,同时要求底板的抗弯应力不能小于侧壁上的抗弯应力,尽量使厚度与配筋的量相匹配一致,这在地下车道的设计中最为突出,因为车道的侧壁都是悬臂构件,一般要求其底板抗弯能力要大于侧壁的底部。

对于在地面层上开洞的部位,比如楼梯间等,其外墙的顶部没有楼板的支撑,无论是在计算模型中,还是在配筋构造时都应该和实际的条件相符合。当车道非常接近地下室的外墙时,车道的底板实际处于外墙的中部,在车道底板上会存在水平集中力的作用,就要特别注意外墙的承受能力。这也是在外墙设计经常被忽略的内容。

6 地下室顶板的设计

顶板的厚度不仅对于承受垂直荷载很重要,对于承受侧向荷载也非常重要。其平面内的变形将影响楼层地震作用在各抗侧力构件之间的分配。另外应避免或减少在顶板开洞,当避免不了时,应减小洞口面积,并对洞口周边从构造上加强,以防止刚度突变或强度降低的不利影响。《高层建筑混凝土结构技术规程》规定,当地下室的顶板作为上部结构嵌固端时,应采用梁板体系,楼板厚度不宜小于180 mm ,不宜有较大洞口,混凝土强度等级不宜地于C30 ,应采用双层双向配筋,每层每个方向的配筋率不宜小于0. 25 %。当地下室的顶板不作为上部结构嵌固端时,楼板厚度不宜小于160 mm。

参考文献

[1] 文华.论述地下室结构设计存在的问题[J].建材与装饰,2008,(06):10-12

[2] 龚昌基.地下室结构设计若干问题的探讨[J].福建建筑,2012(3):90-91

第3篇

关键词:钢筋混凝土矩形水池,计算模型构造

 

引言:钢筋混凝土矩形水池作为工程中常见的构筑物,已经被广泛的应用于污水处理厂,化工厂等工业建筑内,因此研究其受力性能以应用于工程设计显得尤为重要。论文写作,计算模型构造。钢筋混凝土水池结构主要由顶板、池壁、支柱、壁板等组成。论文写作,计算模型构造。本文对矩形水池设计中常见的几个问题进行探讨,希望能对工程设计人员设计出可靠而经济的钢筋混凝土水池结构有一定的帮助。

1 设计水位的确定

水池这类占地面积大且内部空旷的构筑物,抗浮稳定的设计计算,显的尤为重要。由于水池上浮所造成的经济损失和弥补费用是相当可观的,《给水排水工程钢筋混凝土水池设计规程》CECS138:2002和《石油化工钢筋混凝土水池结构设计规范》SH/T3132-2002中对水池的整体抗浮稳定安全系数取为1.05,根据相关规范的规定一般设计均取用水文资料的最高地下水位。在50年设计基准期内,一般水工构筑物地下水可变荷载作用的取用按照《建筑结构可靠度设计统一标准》GB50068-2001的原则确定,而不考虑旱遇洪水的偶然作用。但我们在实际的工程中,很多工程地质勘查报告所提到的地下水位并不是从地方水文资料分析得到的,在勘查报告中反映出来的数据往往是勘测期间的数据。如果勘测期间正好处于旱季或者枯水期,那得到的水文仅反映勘测期间的地下水位情况,所提供的地下水位标高将难以被设计取用, 或导致结构计算偏不安全。对于此类不合格的勘查报告,结构设计人员需要与详勘单位沟通,以得到比较权威的水文数据用于工程设计。

2 缝的设置

《给水排水工程钢筋混凝土水池结构设计规程(CECS138:2002)7.1.3条规定:伸缩缝的间距,根据水池的结构类别、地基类别和水池的工作条件等划分,一般为20~30米,同时还要根据上游工艺专业的条件的布置做适当调整。缝宽一般为30mm,在实际的工程中,同一剖面上连同基础或底板断开,通常沉降缝、伸缩缝、抗震缝三缝合一。但是在近来所做的工程中,上游专业所要求的水池长度已大大的超过了规范间距, 另一方面随着建筑材料和施工方法的改进, 又为超长水池不设缝或少设缝提供了技术上的支持。设计人员在具体设计时应根据地基、气温等工程情况,考虑是否设缝及相应的施工方法,认真进行计算并采取适当设计措施。论文写作,计算模型构造。对于不能一次完成浇筑的水池底板、壁板,在施工中需留有施工缝,施工缝应设在池壁上,在选择施工缝位置时,应符合温度应力计算所选择的位置,钢筋在施工缝处贯通不断,且施工缝应设置在构件受力较小的部位,在施工过程中要尽量缩短施工缝上、下两段混凝土的浇筑间隙时间。因在施工缝处先后两期分期浇筑的混凝土间的结合要比一次浇筑的混凝土要差,故在施工缝处需加设企口、在断面处采取埋设止水带或者外贴式止水带和表面设槽口嵌入封缝料等措施。

3 裂缝的控制

根据规范的要求,对于水池结构,根据水池盛水性质(清水、污水)及其使用功能,最大的裂缝宽度一般控制在0.2mm或者0.25mm。在水池设计中对结构强度、裂缝开展宽度、抗裂度等计算和相关的构造措施,一般均能对裂缝宽度得以控制,但是由于温度、变形以及不均匀沉降所引起的开裂, 在工程中却常常遇到。在设计过程中,对温度、混凝土收缩变形等影响因素的欠考虑,导致了裂缝的开展。对于由混凝土收缩和温度差所造成的裂缝, 设计人员应充分考虑到施工中的不利影响。一般来说, 混凝土收缩越大, 裂缝的数量及宽度也越大;温度越高越易开裂, 裂缝的数量及宽度也越大。因此设计人员需要掌握混凝土配比及其用料的品种规格和级配,在设计文件中最好能予以体现,同时需要对混凝土的灌注和养护提出相应的设计要求。增大配筋率或减小钢筋直径能增加混凝土的极限拉伸,在结构设计时,在节点应力集中处或大体积混凝土中沿截面均匀配置细、密的构造钢筋或钢筋网片,可提高构件的抗裂能力。采用合理的结构布置和围护措施,在水池内外表面抹防水砂浆面层,以减小温湿度对结构的影响,并加强整体刚度及保温防寒。

4 水池底板计算模型的选择

第一种计算模型为在地基反力的作用下,池底视作简支在池壁上,池壁间距对池底反力分布有影响。论文写作,计算模型构造。当池壁间距较小时,两相邻的池壁刚性角重叠,变形和反力不均匀分布可以忽略,而当池壁间距增大,这样的不均匀分布愈加明显。前者的计算可以采用静力平衡的方法或者考虑池底与地基相互作用的内力分析来计算水池底板的内力,考虑地基反力是按照线性分布的,只要求满足静力平衡的条件,忽略变形协调条件,对于池壁间距较小,容积较小的情况,这样的假定是合适的;第二种计算模型为假设把地基模拟为刚性底座上的一系列弹簧, 当地基表面某一点受压时,仅在此点处产生局部沉陷,这种假设称为文克尔假设,文克尔地基模式是目前较为实用的水池-地基共同作用的主要模拟方法之一,其假定地基单位面积上所受的压力p与地基竖向位移y成正比,这种模型主要是以模拟天然地基土在荷载作用下实际应力-应变关系从而得到比较准确地解决变形协调关系,得到接近于实际的反力分布和变形规律。按文克尔假设计算地基梁时, 可以考虑底板梁本身的实际弹性变形,消除了反力直线分布假设时的缺陷,但其本身的缺点是没有反映地基的变形连续性,当地基表面在某一点承受压力时,不仅该点局部产生沉陷, 在其临近区域也会产生沉陷,由于没有考虑地基的连续性,文克尔假设仍没有全面反映地基梁的实际受力情况;第三种计算模型是假设把地基看做是一个均质、连续、弹性的半无限体,既反映了地基的连续整体性,又从几何、物理上对地基进行了简化,将弹性力学中有关半无限体的概念引入水池底板的计算中。这种方法适合电算。能更好的模拟地基与水池底板的协同变形。以上所述的三种计算方法仅针对浅基础水池。设计人员在设计水池底板时应酌情选择计算模式,而不是简单选择第一种线性假定,导致计算结果与实际情况悬殊较大。

5 关于水池的构造

5.1池壁和底板的钢筋宜选用小直径的钢筋和较密的间距,其目的是更好的满足裂缝宽度的要求。论文写作,计算模型构造。但为了方便施工,钢筋的间距不宜小于100mm。论文写作,计算模型构造。

5.2因池壁和池壁,池壁和底板之间是采用的刚性连接,为了避免在此处形成应力集中,抵抗角隅弯矩,增强连接处的抗裂性,在连接处宜设加腋角,加腋角内需配10@200的加腋钢筋,并锚入两侧混凝土内。

5.3注意与水池相连的管道应做成柔性连接,在水池的池壁上留有套管,套管与接入管道间的空隙内填入柔性材料。必要的时候还可以做成U型管道连接,以保证水池的正常沉降不会导致管道的破损。

5.4注意宜在水池的四周设置散水,以防雨水等的渗入地下导致地基的不均匀沉降。

结语:

在水池的设计中,只有拥有完备而准确的设计条件,选择正确的结构型式,建立合理的符合实际情况的结构模型,采取合理的构造措施,才能做出经济可靠的设计。

参考文献

[1]《给水排水工程结构设计手册》编委会.给水排水结构设计手册(第二版)北京:(第二版)[M].中国建筑工业出版社.

[2]国家标准混凝土结构设计规范.GB50010-2002.

[3]国家标准给水排水工程构筑物结构设计规范.

GB50069-2002.

第4篇

论文摘要:文章分析了现浇混凝土裂缝产生的原因、控制混凝土裂缝的一些方法以及裂缝处理的基本方法。

现浇混凝土工程在现代工程建设中已占有很重要的地位,原预制空心板结构因其自身存在的通病过多,已很少被人们采用。在经过多年的现场观察,通过查阅有关混凝土方面的专著,对混凝土裂缝产生的原因、控制方法有了初步的认识,下面分别进行阐述。

一、裂缝产生的原因

混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格,模板变形,基础不均匀沉降等。

(一)混凝土水灰比,塌落度过大

混凝土强度值对水灰比的变化十分敏感,基本上是水和水泥计量变动对强度影响的叠加。如果水、水泥及骨料计量有偏差,将直接影响混凝土的强度。广泛采用的泵送混凝土为了满足泵送条件:塌落度大、流动性好,易产生局部粗骨料少,砂浆多的现象。此时混凝土脱水干缩时,就会产生表面裂缝。

(二)拉应力影响

混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面产生拉应力,后期在降温过程中又会在内部出现拉应力,当这些拉应力超出混凝土抗裂能力时,即会出现裂缝。

(三)模板、垫层过干

混凝土施工中模板、垫层过干干燥也是产生裂缝的原因。干燥的模板、垫层吸水量很大,也可引起混凝土的塑性收缩,产生裂缝。

(四)过分抹干压光表面

混凝土浇筑后过分抹干压光会使混凝土的细骨料过多的浮到表面,形成含水量很大的水泥砂浆。水泥砂浆中的氢氧化钙与空气中的二氧化碳会生成碳酸钙,引起表面体积收缩,导致表面龟裂。

(五)混凝土的养护不当

过早、过迟养护都会影响混凝土的胶结能力,尤其是过尽养护,水泥缺乏必要的水化水而产生急剧的体积收缩,此时混凝土早期强度低,不能抵抗这种应力而产生裂缝。

(六)拆模或上荷载的时间

过早拆模或在混凝土未达到终凝时就上荷载或在施工中不注意钢筋保护,负筋位置不正确等都会出现裂缝。

(七)施工中未按规范施工

如一次打不完的混凝土留斜坡茬,疏松的混凝土未彻底凿除等,在浇筑新混凝土时就容易出现裂缝。

二、控制混凝土裂缝的一些方法

(一)控制水灰比和水泥用量

严格控制水灰比和水泥用量,选择级配良好的石子,减小孔隙率和砂率以减少收缩量,提高混凝土抗裂强度,尤其是商品混凝土,对塌落度的检查是很重要的因素。

(二)正确使用外加剂

1、正确使用减水防裂剂可以改善水泥稠度,减少混凝土泌水,减少沉缩变形。

2、可以提高水泥浆与骨料的粘结力,提高混凝土的抗裂性能。

3、减水防裂剂可有效提高混凝土抗拉强度,大幅度提高混凝土的抗裂性能。

4、掺减水防裂剂后混凝土缓凝时间适当,在有效防止水泥迅速水化放热基础上,避免因水泥长期不凝固而带来的塑性收缩增加。

5、外加剂可使混凝土和易性好,表面易拉平,形成微膜,减少水分蒸发,减少干燥收缩。

(三)浇筑前准备

在混凝土浇筑前应先垫层和模板浇水湿透,避免过分多吸收水分。

(四)混凝土的早期养护

混凝土的保湿对防止表面早期裂缝尤其重要。浇筑后及时用材料覆盖保温,认真养护,防止强风及烈日的曝晒,其主要目的在于保持适宜的温室条件,达到免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。另外使水作用顺利进行,以达到设计的强度和抗裂能力。

(五)施工程序 转贴于

施工严格按规程进行,杜绝过早上荷载、过早拆模,避免因不均匀沉降而产生裂缝。

有时为了提高模板转率,即使尽早拆模也应在拆除模板的混凝土表面覆盖保温材料以防止混凝土表面产生过大拉应力。

三、裂缝处理的基本方法

1、对于一般裂缝,可先将裂缝肖理干净,用1:2水泥砂浆抹缝,压平养护。

第5篇

关键词:高层建筑结构设计;设计分析;概念设计

中图分类号:TU97 文献标识码:A 文章编号:

1. 引言

结构设计师在进行设计时,应设计出安全、经济的建筑,同时还应符合人们对精神生活的追求,这些都要求设计师拥有扎实的理论基础,充分掌握高层建筑结构设计中的要点问题,能够合理有效的处理设计中可能出现的问题。下面笔者将结合多年的工作经验,通过对具体工程的设计分析,提出在高层建筑结构设计中应该注意的问题,希望对读者有一定的借鉴作用。

2. 工程概况

本工程为一座综合楼工程,处于城市中央商务区,四周环绕着城市道路。房屋总高度为89m,上部楼房层数为19层,有一层屋面结构局部突出,并附有2层地下室。一层地下室为汽车库,同时用于各类设备的放置,二层地下室主要为汽车库,同时部分空间兼有人防的功能。裙房用于银行的办公,包括营业大厅,办公区、业务区、计算机房、档案室、职工之家和花园等。主楼主要用于公司办公,包括办公大堂、两层共享空间、物业办公用房、员工餐厅和会议室等。

3. 设计分析

3.1 地质条件和基础设计水位

经过现场地质情况的勘查,本工程环境类别为Ⅱ类,地下水位的稳定埋深为3.33~8.50m,稳定标高为14.17~14.44m,按A类水进行设计。场地孔隙潜水水质良好,只具有轻微的腐蚀性,对混凝土结构和钢结构有较弱的影响,但对钢筋混凝土结构基本无影响。粉质粘土对钢结构也有轻微的腐蚀性,但对混凝土结构和钢筋混凝土结构的钢筋基本无腐蚀作用。设防水位的选择要考虑抗浮和抗渗的因素,综合考虑之后选用的设防水位为场地标高21.00m。

3.2 基础方案的选择

本工程中地基基础的底部标高大约为-11.10m~-12.20m之间,基础的持力层为细砂层和粗砂层,经测定,这两者的承载力特征值分别为150kpa和200kpa。对于部分纯地下室和裙房地基,这两层持力层已基本能够满足承载力要求,因此采用天然地基即可抵抗上部荷载的作用,基础的形式采用平板式筏型基础,但对于部分高层地基,持力层的承载力还无法抵抗上部荷载的作用,因此考虑使用桩筏基础作为高层部分的基础,桩采用钻孔灌注桩。本工程中另一个需要考虑的重要影响因素是抗浮设防水位,由于其水位很高,需要采取相应的抗浮措施,针对本工程的特点,采用的抗浮措施为抗拔桩。

3.3 抗震等级

本工程的结构形式为现浇钢筋混凝土框架-剪力墙结构,地下2层框架抗震等级为四级,剪力墙等级为四级,地下1层框架抗震等级为二级,剪力墙等级为三级,地上1层~地上2层框架抗震等级为二级,剪力墙等级为三级,地上2层~顶层框架抗震等级为三级,剪力墙等级为三级。标高为±0.00的楼板处通常兼做上部结构的嵌固层,剪力墙的底部应进行局部加强,本工程对地下1~3层进行了加强。

3.4 屋盖及楼盖结构的确定

在本工程中经过综合考虑之后,上部结构的部分楼面采用的楼盖结构为以现浇主框架梁为主配以次梁的楼盖,而地下部分结构采用的楼面体系为以现浇主框架梁为主配以厚板的楼盖。在楼面中有时出于需要,楼面中会设置面积较大的孔洞,这往往会降低建筑物的整体刚度,因此为了避免整体刚度的减弱,设计中采取的措施为:对孔洞周围楼板的厚度进行加强,同时增加周围楼板的配筋和加大孔洞边梁的截面尺寸等。在三层的大堂顶板由于其特殊的结构形式,在设计时为重点考虑的问题,由于大堂空间的需要,对大堂进行了抽柱,造成了托柱转换,转换梁的跨度过大,已达到17.4m,在这种情况下,一般的钢筋混凝土结构已经无法解决这个问题了,进过分析考虑,本工程在大堂位置采用了钢骨混凝土梁,最终解决了这个问题。

3.5 结构缝的设置

鉴于本工程裙房部分的荷载较小,而高层部分的荷载较大,这其中存在的较大的荷载差异会造成地基不均匀的沉降,但由于本工程中为了承受高层部分较大荷载的作用,所采用的基础形式为桩基,桩基的使用大大减少了两部分结构之间差异沉降,满足设计对沉降的要求,因此本工程只需设置施工后浇带即可满足要求,无需设置永久后浇带,施工后浇带的设置能够避免混凝土的收缩变形所引起的开裂问题。

在本工程中,由于混凝土的收缩和温度应力在较长的地下室混凝土结构中所引起不利影响往往较大,为了减弱这种影响,设置了后浇带,同时还采取了以下措施:(1)在设计中,部分结构在配筋时合理的提高了最小配筋率,包括基础外墙和地下室顶板等,顶板的钢筋采用了双层双向贯通整个顶板。(2)在选用水泥时,考虑的原则为较小的水化热和收缩变形。在选择混凝土的强度等级时,对于基础外墙和地板,应合理的控制混凝土的强度等级,以60天的混凝土强度指标为标准。对于抗裂要求较严格的结构部位,加入一定量的抗裂纤维,基础外墙、顶板和主楼顶层的混凝土在采取这种措施之后均可满足抗裂要求。在混凝土中往往有外加剂的使用,对于这些外加剂,在使用过程中应正确搭配,并严格控制其用量和质量。

4. 高层建筑结构设计要点

显然,相对于普通建筑而已,高度上较大的高层建筑结构受风荷载和地震的影响较大,而且这两种荷载都是随机振动的,这加大了结构设计的难度和复杂性。因此,在进行高层建筑结构设计时,应考虑采取概念设计辅助力学分析。

概念设计是从结构的整体角度出发,立足于整体和局部结构体系之间的力学关系和相互反应,运用结构设计基本原理和思想解决设计中遇到的问题。概念设计即注重总体布置,又关注局部的细节设计,统筹兼备从而达到合理有效的设计。

本工程的概念设计包括以下几点:(1)设计时应选用简单规则的平面形式。简单规则的平面形式,其风荷载的影响较小,有利于抵抗高层建筑的风压,同时简单规则的形式,有利于实现抗震的结构平面布置,相对而言抗震性能较好。(2)高层建筑中所设计的竖向体型应采取合理的形状,其原则为经济合理、对侧向力反应较弱、较强的外荷载抵抗能力等。(3)建筑宽高比对结构传力体系的影响较大,在设计中应按规范要求选择宽高比,同时应保证抗侧刚度的均匀变化。(4)在设计时,结构应始终保持连续性和整体性,构件节点的承载力应大于连接构件的承载力。(5)高层建筑基础承受着较大的荷载,结构在整体稳定性上受着较大的挑战,因此应合理的进行基础形式和埋深的选择。(6)在材料的选择上应满足均匀、各向同性、延性好等原则。(7)在抗震上尽量采取多道抗震设防措施。

5. 结语

笔者结合多年在建筑结构设计中的工程实践经验,并结合建筑结构概念设计的理念,通过具体高层建筑的结构分析,阐述了高层建筑中几个重要方面的设计分析过程,并论述了概念设计中的几个要点,提出了高层建筑结构设计中的注意事项和可能遇到的问题以及相应的解决措施,希望能够对读者在今后的工程设计中有所帮助。

参考文献:

[1]夏卓文.高层建筑结构设计特点与剪力墙设计[J].住宅科技.,2007,2:29~32

第6篇

关键词:大面积混凝土地面 裂缝 无缝施工 控制

我们在工程施工实践中,利用UEA混凝土补偿收缩的原理,采用膨胀加强带替代后浇带,实现了超长钢筋混凝土的无逢施工,为同类的工程施工提供了可借鉴的经验职称论文。

1 混凝土无缝施工设计

1.1 设计思路

大面积混凝土路面结构无缝施工设计,关键是对裂缝控制的设计。根据温度应力与结构长度呈非线性关系,且混凝土早期(7~10d)温差及收缩变形较大的特点,把大面积混凝土地面结构按垂直方向设置施工缝,分为若干小块,每一块为一仓,施工期间实行分块跳仓浇筑。这种跳仓浇筑采用了短距离释放应力的办法应对混凝土早期较大的收缩,待混凝土经过早期较大的温差和收缩后,各仓浇筑连接成整体,应对以后较小的收缩,即“先放后抗,抗防兼施,以抗为主”的辩证设计原则。

1.2 跳仓间距的确定

根据地基上混凝土板的平均伸缩缝间距计算公式以及施工现场的情况,跳仓间距决定取17米。整个展览馆的平面尺寸为100米×98米,按垂直施工缝分仓,整个区域分成30个网格。

2 混凝土施工工艺

施工时按网格的编号顺序进行跳仓浇筑。在每一网格内,混凝土必须一次性浇筑完毕,不允许出现冷接缝,相邻两块混凝土浇筑间隔时间不得少于7d。

2.1 混凝土工程

控制混凝土的用水量及水泥用量,水泥用量越大,含水量越高,则收缩变形越大,且延续的时间越长。在地面施工中,经过试配、选择了配合比为1:1.82:4.07,水灰比0.43,水泥用量328kg/m。由于抗折混凝土的石子级配要求用石量较大,所以掺入了0.75%水泥用量的FDN减水剂,掺入减水剂不仅使混凝土的和易性有明显的改善,同时又减少了10%左右的拌合水,减水后使混凝土回缩量减小。混凝土骨料中的砂子采用中、粗砂,根据有关试验资料表明,当采用细度模数为2.79,平均粒径为0.381的中、粗砂,比采用细度模数为2.12、平均粒径为0.336的细砂,每1m3混凝土可减少用水量20~25kg水泥用量可相应减少28~35kg。如用细度较低的砂子,可以加大高效减水剂的剂量,以减小混凝土的收缩。

如工期允许,也可以考虑掺加适量的粉煤灰(因掺入粉煤灰后早期强度较低),因为普通硅酸盐水泥混凝土的自生收缩是正的(缩小变形),而粉煤灰的自生收缩是膨胀变形,这对混凝土的抗裂性是有益的,另外也可以改善混凝土的和易性,以达到减少水和水泥用量的目的。

2.2 主要技术措施

2.2.1 混凝土的搅拌

搅拌在现场进行,为降低混凝土的入模温度,现场砂石采取遮阳降温(因为是夏季),必要时洒水降温,袋装水泥仓库保持空气流通,搅拌时搅拌机每2h浇水一次,混凝土输送管上覆盖麻袋,并洒水保湿。

2.2.2 坍落度严格控制

坍落度控制在(12.2)cm,混凝土浇筑前应对水灰比、坍落度和入模温度进行测定,初始施工时坍落度应每1h检查一次,质量稳定后,2~4h检查一次。混凝土入模温度测试每工作班不应少于两次。

2.3 混凝土振捣必须充分

混凝土入模后先用插人式振动棒振密振实,然后用振捣粱振至表面平整,后用Φ180的钢管(内装砂子),制成的提浆滚在混凝土表面来回滚压提浆,用人工抹平。

混凝土浇筑振捣完毕,立即采用塑料薄膜覆盖,进行保水养护7d以上。注意混凝土所处的大气环境,在干燥季节或风口处应加强保水措施,防止混凝土水分蒸发速度过快,以控制其出现早期表面裂缝。

加强混凝土的养护,目的是要使混凝土保持或可能接近于饱和状态,使水化作用达到最大的速度,以得到更高强度的混凝土。在养护温度相同的情况下,连续湿养护(即盖草袋子、洒水养护)时混凝土强度在各龄期均为最高。特别是混凝土在浇筑后内部处于升温阶段时要适时进行湿养护,以加强混凝土的水化反应。这样一方面可以降低混凝土内部的温度峰值,又可以防止后期的强度损失。尤其掺加减水剂后更需要保证养护时间。

3 施工控制措施

3.1 要求搅拌站严格执行配合比,施工配合比可根据现场材料情况在允许范围内进行调整,以保证混凝土的工作性能。

3.2 混凝土出站前,要求测试坍落度,同时观察和易性,不得出现离析、分层等现象,不符合要求的混凝土不得出厂。

3.3 浇筑混凝土时,对到施工现场的每车混凝土都要求测坍落度,控制在160~180mm,并观察其和易性,不得存在离析、泌水现象。表观检查不符合要求的混凝土坚决退场。

3.4 混凝土振捣严格按操作规程进行,不能漏振、欠振和过振,更不得用振捣器拖赶混凝土,振捣时间掌握在以混凝土表面出现浮浆和不再下沉为准。

3.5 混凝土表面经耐磨处理并压光后立即覆盖塑料布进行保水养护,使混凝土表面一直处于潮湿状态。

3.6 表面防裂施工技术要点

3.6.1 泵送混凝土经振捣后表面水泥浆较厚,容易引起表面裂缝,首先,要求在振捣最上一层混凝土时,控制振捣时间,注意避免表层产生太厚浮浆层。

3.6.2 除了水泥水化作用影响,外界气温也会导致混凝土表面与内部产生温差,气温的骤降也会增加混凝土表层与内部温度差的梯度。在浇捣后,必须及时用2m长括尺,将多余浮浆层刮除,按施工员测设的标高控制点,将混凝土表面括拍平整。有凹坑的部位必须用混凝土填平,在混凝土收浆接近初凝时,混凝土面进行二次抹光,在混凝土收浆凝固施工期间,除了具体施工人员外,不得在未干硬的混凝土面上随意行走,收浆工作完成的面必须同步及时覆盖表面养护保护层。

4 现场监测与分析

第7篇

主题词:建筑工程 ; 聚丙烯纤维 ; 混凝土

Abstract: the application of polypropylene fiber concrete in the construction engineering is briefly introduced, providing a reference for similar engineering construction.

Key words: Construction Engineering; polypropylene fiber; concrete

中图分类号:TU755 文献标识码:A 文章编号:2095-2104(2013)

1引言

现今的建筑物向高、大、宽发展,平面形状复杂,产生的约束力大而复杂,这样混凝土裂缝就比普通混凝土结构的裂缝多得多,而高强、大流动度的混凝土密实性能满足混凝土的抗渗等级要求。所以从防水角度来看,应从过去注重混凝土的密实性转向注重混凝土的抗裂性问题。

2混凝土的本体结构防水措施

2.1膨胀补偿型

在混凝土中掺入适量膨胀剂,经水化反应生成32水硫铝酸钙结晶体产生膨胀,使混凝土凝结后体积微膨胀来补偿混凝土的凝结收缩应力,从而达到抗裂目的,如UEA膨胀剂等。但存在以下特点:①可靠度低,受施工条件、环境等因素影响大,如在42h内不及时连续浇水养护,不但不膨胀反而会收缩开裂;②掺量的范围较小,搅拌均匀度要求高,稍过量就会膨胀,产生裂缝或安全性不稳而龟裂,量稍小则达不到效果。

2.2填充密实型

在混凝土中掺入适量浮化的液态高聚物化学材料,使混凝土在拌合和凝结时高分子聚合物破乳,形成网状结构,填充和堵塞混凝土中的毛细孔隙而达到防水作用。但由于此种材料价格昂贵,如氯丁胶乳、环氧乳液等,所以也不是很适合在实际工程中应用。

2.3减水密实型

通过掺加各类型的减水剂,减小单位体积中水泥和水的用量,使混凝土中的水化热减小,减小混凝土的收缩裂缝,提高混凝土的密实性,达到密实防水的目的。但减水剂的用量必须严格控制。

2.4憎水型

一般是通过高分子材料与水泥中化学组分结合,生成具有憎水性的网状化合物,分布在混凝土的颗粒之中,使水分子在混凝土之间的界面表面张力提高而产生憎水效果。但在实践中很少单独使用。

2.5抗裂防水型

在混凝土中掺入适量的微纤维,搅拌过程中微纤维均匀地扩散到混凝土中,由于微纤维与混凝土有极强的结合力和抗拉强度,每立方米混凝土中含有数千万条的高抗拉强度的微纤维,从而产生了全方位的增强效果,削弱了混凝土的收缩应力,减少了混凝土收缩裂缝。堵塞混凝土中的道路,从而达到防水效果。

综上所述,抗裂防水措施在混凝土本体刚性防水措施中,具有设计、施工方便及经济性等明显的优势。聚丙烯纤维混凝土作为防水措施即属于抗裂防水型。

3聚丙烯纤维的特性

聚丙烯抗裂合成纤维是采用改性母料添加到聚丙烯切片中进行共混、纺丝、拉伸后,经过特殊的防静电及抗紫外线处理,并经过化学接枝和物理改性处理后,表面粗糙多孔,大大提高了纤维与水泥基料的结合力。加入混凝土/砂浆基料中,能迅速轻易地与混凝土/砂浆材料均匀混合。能有效防止和减少混凝土/砂浆的初期塑性裂缝,是混凝土/砂浆的“次要加强筋”。

聚丙烯纤维的优越性能在于: (1)提高混凝土的抗渗性;(2)减少混凝土裂缝的产生和发展;(3)增进混凝土的韧性、抗疲劳性,提高混凝土的抗冲磨性能;(4)提高混凝土的耐久性能;(5)提高混凝土抗御冻融破坏能力。

与其它纤维相比,聚丙烯纤维具有以下优点:(1)分散性好,握裹力强;(2)高耐碱性,高抗辐射;(3)抗冻防腐,增强韧性;(4)物理加筋,抗裂补强;(5)性能稳定,安全无毒;(6)施工简易,经济可靠。

聚丙烯纤维的使用一般不需改变原设计的配合比,也不取代原设计的受力钢筋。每立方米混凝土掺量为0.6kg ~1.2kg,一般掺量为每立方米混凝土0.9kg。广泛应用于:水利水电、道路、桥梁、隧道、海港、码头、机场、泳池、人防工程和民用建筑工程等。

4聚丙烯纤维混凝土的防水性能及机理

混凝土专用聚丙烯纤维的物理性能如下:密实0.91g/cm3;抗拉强度276Mpa;极限拉伸15%;无毒;耐酸碱性极高;熔点165℃;燃点593℃;导电、导热性极低。

聚丙烯纤维混凝土的防水属于刚性本体防水,通过改善混凝土的抗裂和抗渗两个途径来提高防水性能。其防水机理建立在对混凝土的固结、收缩的微观研究基础上。

4.1提高混凝土抗裂性能的机理

聚丙烯纤维阻滞混凝土的塑性收缩裂缝的产生和限制裂缝的发展。混凝土的塑性开裂主要发生在混凝土硬化前,特别是在混凝土浇筑后4-5h内,此阶段由于水分的蒸发和转移,混凝土内部的抗拉应变能力低于塑性收缩产生的应变,因而引起混凝土内部塑性裂缝。掺入聚丙烯纤维后,由于其分布均匀,起到类似筛网的作用,减缓了由于粗粒料的快速失水所产生的裂缝,延缓了第1条塑性收缩裂缝出现的时间。同时,在混凝土开裂后,纤维的抗拉作用阻止了裂缝的进一步发展。试验表明,混凝土塑性裂缝面积、裂缝最大宽度及失水速率均随着纤维体积含量的增大而降低,说明聚丙烯纤维有效地提高了混凝土的抗裂性能。

4.2提高混凝土抗渗性能的机理

在混凝土中掺入适量聚丙烯纤维后,均匀分布在混凝土中彼此相粘连的大量纤维起了“承托”骨料的作用,降低了混凝土表面的析水与集料的沉降,从而使混凝土中直径为50~100nm和大于100nm的孔隙含量大大降低,有效提高了混凝土抗渗能力。此外,由于纤维的存在,减少了混凝土的收缩裂缝尤其是连通裂缝的产生,因而减少了渗水通道,提高了混凝土的抗渗性能。聚丙烯纤维混凝土和素混凝土抗渗性能试验结果表明;纤维含量为0.5、0.7、1.0㎏/m3的聚丙烯纤维混凝土抗渗能力分别比普通混凝土提高64%、73%和75%。

由于以上分析可知,聚丙烯纤维可以大提高混凝土抗裂、抗渗能力,作为混凝土本体刚性自防水的效果显著。聚丙烯纤维加高效减水剂的防水方案,目前已为国内外众多防水专家所肯定,可广泛应用于地下室、屋面、蓄水池、污水池等工程。

5聚丙烯纤维混凝土的施工要点及注意事项

聚丙烯纤维掺入混凝土中,除不适宜采用人工搅拌外,对搅拌及施工工艺无特殊要求,只要适当保证搅拌时间即可,一般为3~5min.搅拌可先将砂、石、水泥与水在搅拌机内均匀拌合后再加入纤维,亦可先将纤维与砂、石、水泥干拌后再加水湿拌,整个搅拌时间较拌制普通混凝土适当延长1~2min.为改善拌合物的和易性,可掺加适量的引气剂、减水剂或高效减水剂,也可掺入不超过10%的粉煤灰。拌合好的纤维混凝土由搅拌站运至工地,时间不应超过30min;否则应在混凝土运到工地后再加入聚丙烯纤维。

6聚丙烯纤维混凝土在防水工程中的应用实例

6.1地下室外墙工程

某地下室面积为1100㎡,基础埋深-0.8m。因受地铁影响,地下室分两期施工,第1期外墙总长约250延m,采用普通防水混凝土C50,数月后发现有数10条垂直细裂缝,渗入严重。第2期外墙总长约70延m,混凝土设计强度等级C50。采用42.5R普通硅酸盐水泥、中砂、5~25㎜连续级配碎石,掺加一定量的Ⅱ级粉煤灰和聚丙烯纤维及混凝土外加剂。实践证明,纤维混凝土对防止墙体细裂缝的出现是有效的。后来又在污水池、水箱等结构中应用,至今,这批纤维混凝土构筑物均未发现因干缩而引起的微细裂缝,无渗漏现象。

6.2地下室基坑工程

某地下室基坑支护采用喷锚网工艺,考虑基坑临江面抗裂抗渗要求高,仅在该面的喷射混凝土中加入0.07%体积掺量的聚丙烯纤维(不临江的另外三面未掺入纤维)。工程完工后,尽管该面水压较高,但未发现裂纹,仅在两边锚头有轻微渗水;而其他三面均发现了不同程度的裂缝,多处锚点渗漏严重,说明聚丙烯纤维对控制和防止混凝土的塑性收缩裂缝、提高抗渗性有显著功效。

7结语

在混凝土(砂浆)中添加适量聚丙烯纤维是克服其开裂的有效途径,纤维在混凝土(砂浆)中形成的乱向支撑体系,会产生一种有效的二级加强效果,能较大幅度提高混凝土的抗渗性和抗裂性。其经济性也相当可观:

(1)用于民用建筑内外墙抹灰等工程。每平方砂浆掺加0.9kg纤维,砂浆厚度1cm,每平方增加的成本为0.45元,取代外墙贴瓷砖减少的每平方米成本至少在10元以上,10000平方的内外墙减少的成本至少为10万元。同时,减少了内外墙裂缝的产生和发展,防止下雨渗水,减少了防水涂层成本,提高了使用寿命,降低了高额维修、维护成本。

(2)用于道等路等工程,在满足工程要求的情况下,掺加纤维可以适当减少混凝土设计厚度,综合提高了道路质量和使用寿命,节约了工程成本。

(3)用于水利水电等工程,掺加聚丙烯纤维能大大提高抗渗性能,提高工程质量和使用寿命,造就百年大计工程,从长期来看为国家节约了大量投资。

参考文献:

[1]期刊论文 聚丙烯纤维对水泥基材料性能的影响 - 混凝土与水泥制品2000(z1)

[2]徐至钧 纤维混凝土技术与应用 2003

第8篇

[论文摘要]随着社会生产和科学技术的进一步发展,一大批先进的仪器和施工工艺越来越广泛地应用到高层建筑的施工中,这对设计、施工、监理也提出了越来越高的要求。我们要严把质量关,从而有效控制高层建筑中楼板裂缝的产生。

随着我国社会经济的蓬勃发展,建筑科学和建筑技术也有了高速发展。高层建筑犹如雨后春笋般在各地发展起来。针对高层建筑住宅楼现浇楼板裂缝越来越严重这一现象,本文从材料、施工和设计三方面分析其成因,并提出一些相应控制措施,以供相关人员参考。

一、楼板裂缝的形式及现象

出现最多的是开间墙角处的450斜裂缝,还有部分是楼板跨中的通长裂缝,负弯距钢筋端头处的裂缝以及一些其他位置的裂缝。裂缝大多贯穿楼板,少部分为表层裂缝,宽度一般在0.3mm以内,肉眼可见,灌水可渗至下层。出现时间一般在楼板混凝土浇捣后1~6个月,后期也会产生一些裂缝,但最少。裂缝板块采用荷载试验,承载力满足设计要求,少数会产生较大挠度。

二、原因分析

(一)收缩引起的裂缝

收缩裂缝最为常见,主要为塑性收缩、干燥收缩和自生收缩。

塑性收缩发生在混凝土凝固阶段,尤其是初凝阶段,此时水泥水化反应较强烈,混凝土中水分蒸发很快,可塑性也同时失去。塑性收缩量很大,尤其是水灰比大的混凝土。

干燥收缩发生在混凝土凝固后,随着混凝土表面的干燥,表层混凝土体积缩小,而内部混凝土失水较慢,体积变化小,因内外变形的差异,使表面混凝土产生拉应力,而此时混凝土强度较低,便产生干缩裂缝。

自生收缩发生在混凝土的后期硬化过程中,由于水泥的水化反应,体积会缩小,尤其是硅酸盐水泥或普通硅酸盐水泥拌制的混凝土。

(二)设计因素引起的裂缝

高层住宅柱网较密,柱尺寸大,多数设置剪力墙,因此结构竖向刚度大。而楼板因跨度大,板较薄,其刚度较小,当混凝土发生变形时,在刚度突变部位容易产生应力集中现象,造成板角开裂;基础设计往往是一致的,而每根柱的荷载不一定相同,必然产生不均匀沉降,尤其是角柱和核心筒剪力墙,与其他柱有较大的沉降差,楼板容易开裂;设计时按承载力计算,忽略了变形验算和构造要求,配置钢筋直径大,间距也偏大,当采用冷轧带肋钢筋代替热轧圆钢时最容易发生此类问题;楼板角部未设计放射筋,当角部弯距较大时出现角部裂缝;当楼板中埋置直径较大的水、电管,甚至管子重叠、交叉,造成楼板局部混凝土厚度太小,很容易出现裂缝。

(三)施工因素引起的裂缝

模板支撑系统刚度不足或稳定性不良,造成局部变形过大,易产生平行于板边的跨中裂缝。拆模时间过早,结构无法承受自重而出现跨中裂缝;钢筋绑扎不规范,最常见的是负弯距筋未设置足够的马凳筋,承载力降低。负筋绑扎不牢,施工中无法保证钢筋间距均匀,不满足构造要求。角部施工时省略了构造筋,造成配筋不足;混凝土配比不正确;混凝土浇捣时振捣不密实,压光时间不当,或振捣时间过长,使粗骨料下沉,面层浮浆多;混凝土浇捣后养护不及时、不充分、表层失水太快,里层混凝土水化不足;混凝土搅拌时间不足导致混凝土中各成分不能均匀混合,影响强度。施工荷载的过早施加、超载也是造成混凝土早期裂缝的主要原因。

(四)材料因素引起的裂缝

水泥安定性不合格;粗、细骨料(砂、石)级配不良,造成骨料间孔隙率大,混凝土中游离水隐藏量多,密实度下降,从而导致强度下降。砂、石中含泥量高,不但会降低混凝土强度,而且抗裂性、防渗性受到明显的影响。砂、石颗粒偏细也将增加水泥用量和耗水量而影响强度;外加剂选择不当,其减水或膨胀效果不明显,未能达到预期效果。

(五)温度变化引起的裂缝

当环境温度发生变化时,混凝土将发生变形,变形遭受刚度、强度较大的构件约束时,构件将产生拉应力,应力超过混凝土的抗拉强度时就会产生温度裂缝。

三、裂缝防止措施

(一)优化工程设计

工程开工前,认真组织审图,及时做好图纸会审工作,根据工程实际情况,提出合理化建议,达到防止楼板裂缝的目的。

提高楼板的强度和刚度是防止楼板开裂的有效措施,因此应适当增加楼板厚度和配筋率;合理调整建筑物“重心”和“形心”的位置,尽量让其重合,减少偏心倾斜。基础设计应与上部结构荷载相协调,确保建筑物均匀沉降;楼板筋设计应采用细径密排,最好采用双层双向钢筋,角部设置放射筋,预留洞口等薄弱部位应设置加强筋。水、电管线避免重叠、交叉。

(二)优化配合比设计

选用高性能混凝土。比如采用补偿性混凝土、在混凝土中掺入适量的膨胀剂,使混凝土产生微量膨胀来补偿其产生收缩。

严格控制水灰比。混凝土水灰比尽量控制在0.50以下,同时应控制水的总量,若采用泵送混凝土,水的用应控制在190Kg/m3以内,如果坍落度不能满足要求,应采用高效减水剂解决。水灰比的降低,将会提高混凝土的弹性模量,提高其抗裂性能;在保证混凝土强度的前提下,尽量降低水泥、砂含量,提高石子用量;一般民用建筑的梁板不做抗裂设计,施工单位在做混凝土配合比的试配过程中,也多对强度、和易性、是否泵送、早强等方面提出要求(除非大体积混凝土),对施工过程中的温度收缩考虑较少,当外界数种不利因素同时发生时,配比方面的潜在影响就暴露出来了,所以,对重要建筑物,无论是否做抗裂设计,混凝土试配时应考虑这种因素。

(三)合理选用原材料

水泥。选用水化热较低的水泥;强度较高的水泥能减少水泥用量,有利于防裂;外加剂。选用减水率较高的高效减水剂以及性能优越的膨胀剂,泵送混凝土还掺入缓凝剂,最好选用复合型外加剂,既满足多种性能要求,又方便施工;掺合料。泵送混凝土宜选用优质的Ⅰ级粉煤灰。掺入量在水泥用量的12%~15%为宜;砂、石骨料。应选用中、粗砂,且砂中含泥量严格控制在3%以内。应根据泵送能力,尽量选用粒径较大的碎石,有条件时选用5~40mm粒径的级配石,采用非泵送方法浇捣混凝土有利于抗裂。

(四)加强施工过程控制

模板支撑系统应有足够的强度、刚度和稳定性。浇捣混凝土时应留置同条件的拆模试块,满足设计和施工要求时方可拆除模板。早拆体系应有独立的稳定系统,不得先拆后撑。后浇带部位的支撑不得提前拆除,防止改变梁、板的受力状态;应设置支撑筋来托起负弯距筋,使其具有足够的有效高度和保护层。角部放射筋的位置应严格绑扎到位,严禁踩踏。同时不得遗漏角部的构造筋;混凝土搅拌时严格计量,搅拌时间应保证在120s以上,确保拌制的混凝土均匀。混凝土采用二次复振和二次抹压;严格控制楼层标高,保证楼板的设计厚度;加强混凝土的养护。

第9篇

关键词:市政;给排水管道工程;结构设计

随着社会的发展与经济的进步,城市的工业及人口规模不断扩大,需水量呈现出日益增长的趋势。在供水需求不断增长的趋势下,供水水源不断向外拓展,因此市政给排水管道的输水距离逐渐加长。在这样的形势下,市政给排水管道工程结构设计面临着更严峻的考验。

1工程概况

山西省朔州市神头电厂泉水置换供水管线工程位于朔州市东北约2km处耿庄水库至神头电厂段。属于国家战略引黄北线工程的重要部分,对解决晋西北地区长期的缺水状况有重要的意义。本地区属海河流域桑干河水系桑干河上游,区内属干旱半干旱气候,四季分明,夏季干热,春秋刚多风沙。本工程由万家寨引黄工程北干线耿庄水库取水,经供水管道供水至水厂,再由水厂供水至神头电厂。拟采用PCCP供水管,管直径1.0~1.5m,管线长11.85km

2工程地质条件

为准确反应给排水管道沿线的水文地质情况、地形地貌,必须要具备完整的地形勘探资料与水文地质勘探资料。经地勘单位勘探,主要成果如下:供水管线地处山前倾斜平原区,地形起伏不平,出露地层为第四系上更新统洪冲积低液限粉土、低液限粘土,结构较松散,其中上部低液限粉土厚6~15m,下部低液限粘土厚度大于10m,局部分布人工堆积物,主要为杂填土、建筑和生活垃圾等。供水管线改线段供水管道持力层为为上更新统洪冲积上部低液限粉土,据该层土的物理力学性质指标及标准贯入试验指标等,地基土承载力地质建议值为80~90kPa,临时开挖边坡为1∶0.75~1∶1.0。地基存在的主要工程地质问题为湿陷性土,地基土湿陷厚度为6.0m,湿陷等级为Ⅰ级。建议管基底部增设3∶7灰土垫层,厚0.5~1.0m,以减弱地基土的湿陷性。区内地下水位埋深大于15.0m,对工程无影响。供水管线区地基土对混凝土及钢筋混凝土结构中的钢筋具微腐蚀性。

3市政给排水管道结构设计的主要内容

3.1管道结构形式

一般来说,由给排水专业来确定管道材料及结构形式,与此同时,也要综合、全面考虑管道的用途、口径、流量、工作环境、覆土深度、敷设方式以及经济指标、水文地质情况等因素。自来水厂的原水及输水管道通常属于承压管,往往会采用以下几种结构:钢、铸铁、玻璃钢、PCCP管、现浇钢筋混凝土箱涵以及PE管等;而污水厂等重力流管道通常属于非承压管道或者压力较小,出于经济性考虑,往往会采用以下几种结构:砌体盖板涵、混凝土、钢筋混凝土以及现浇钢筋混凝土箱涵;在遇到铁路、公路、过河渠等特殊地段或特殊情况的时候,局部地段的管道压力较大时也可以采用钢管形式。本文工程原水主管采用PCCP管,接口形式为承插口。

3.2管道结构设计及基础选型

以管道规格、地面荷载、覆土深度以及试验压力、工作压力、地下水位为主要根据,对管道的刚度、管道的强度进行复核、计算,最终确定管道结构配筋率、管道壁厚。而对于一些必须通过进行加固才能满强度要求、刚度要求的管道来说,可以根据计算结果,选择合理的加固措施,比较常用的加固措施主要包括管廊包管、混凝土包管以及钢筋混凝土包管。本文工程采用北京河山引水管业有限公司朔州分公司设计生产的PCCP标准管,采用美国压力管协会ACPPA为ASNI/AWWAC304编制的专用软件UDP1.6对管道进行结构计算,其中:钢筒厚度:1.5mm;钢丝强度:1570MPa;活荷载:汽-20级重载车;缠丝应力:75%×1570MPa。计算结果如表1所示。因此,为了减少管子覆土规格的种类,加快管子安装进度,保证管子由于覆土而造成的质量隐患,路面下清水管路的DN1200直径PCCP管采用120°基础包角。

3.3管道敷设方式

应综合考虑管道地面障碍物、地下障碍物以及覆土深度等因素合理选择敷设方式。一般情况下,管道敷设方式主要包括架空、顶管以及沟埋这三种,其中沟埋式是最常用的一种管道敷设方式。在利用沟埋式难度较大的情况下,可以选择架空、顶管等方式。管道敷设方式方式不同,管道结构设计也会有所不同。本文工程局部有穿越铁路线障碍处采用大直径混凝土顶管(内径2m,原水管从其中穿过),由铁路部门单独设计。

3.4抗震设计

在确定管线走向时,应尽量规避不利于抗震的地基、场地,若是必须要经过液化土地基、地震断裂带,则应根据管道的使用条件、重要性进行综合考虑。对于给水管道来说,应当选择延性良好、抗拉强度高以及抗折强度高的钢管,此外还要密切注意进行防腐;对于排水管道来说,应当选择钢筋混凝土形式的管道,并采取构造措施,以尽量避免出现严重的损害。本文工程实例中,区域地震动峰值加速度为0.15g;本区地震动反应谱特征周期为0.4s;工程区地震抗震设防烈度为7度。综上,在进行结构设计时,也要适当加强抗震设计。根据历年管道地震灾害调查,管道地震灾害破坏绝大部分位于管道接口位置,PCCP管承插口具有较好的抗剪和变形能力,抗震性能较好。

3.5构造措施

首先,地基处理。应当将地基处理的平面图、纵断面图、横断面图包含在设计图中,扫描矢量化要进行处理的地段的地勘资料纵断面,并选择合适的参考点,以给排水专业的平面图、纵断面图、横断面图为主要根据,在地质纵断面上放置管道基底轮廓线,然后再划分地质单元,注明桩号、基底高程,并将地下水位以及基底以下、沟槽范围内的土层构造标明。根据桩号划分,确定需要处理的部分,再针对地质情况、厚度,采取相应的处理方法。本文实例工程中,桩号0+000~1+382.05地段、桩号1+382.05~11+850地段以及供水管线改线段的水管道持力层为上更新统洪冲积上部低液限粉土,地基土承载力地质建议值为80~90kPa,临时开挖边坡为1∶0.75~1∶1.0。地基存在的主要工程地质问题为湿陷性。因此,建议管基底部增设3∶7灰土垫层,厚0.5~1.0m,以减弱地基土的湿陷性。其次,支墩与镇墩。对于承插接口的压力管道来说,应当设置水平支墩、垂直支墩。根据试验压力、工作压力、土的参数以及管道转角,计算所需支墩的大小。本工程根据10S505柔性接口给水管道支墩的相关要求进行设计。

3.6预防浮管

管道施工期间多雨或者管道敷设地段的地下水位比较高,在这样的情况下,比较容易出现浮管现象,结构设计人员需要充分考虑到这两点因素,加强对管道抗浮稳定的重视。在进行结构设计,根据管道结构计算结果,采取抗浮措施,以预防出现浮管问题。同时,在混凝土包封管道施工过程中,应该计算混凝土对管道的浮力影响,并采取措施固定管道。

4结语

综上所述,随着经济的发展,城市居民用水、商业用水不断增加,市政给排水管道工程逐渐增多。市政给排水管道工程在建成之后,能否长期有效的充分发挥其应有效益,结构设计是否合理是非常关键的因素,结构设计的质量直接关系到市政给排水管道工程的经济效益,因此,必须加强对管道结构设计的重视。

作者:刘崇武 张云飞 单位:中国市政工程西南设计研究总院有限公司

参考文献:

第10篇

【论文摘要】在砼施工中合理选用材料,对砼配合比,供应进行优化,选用科学的施工方法,加强砼养护及砼裂缝的预防与控制等方面介绍了大体积砼施工技术。

0.前言

近几年,随着建行业的迅速发展,高层建筑物,高耸结构及大型设备基础大量的出现大体积砼已经被广泛应用,大体积砼与普通钢筋砼相比,具有结构厚,体形大,钢筋密,砼数量多,工程条件复杂等特点。

1.材料的选用

1.1水泥的选用

砼主要考虑抗裂缝性能好,兼顾低热和高强两方面的要求,部分表层砼,除抗裂性能外,还要求抗冻融性,耐磨性,抗蚀性,强度高及干缩较小,故此施工一般可用低热矿渣水泥,中,高标号的中低热硅酸水泥,此外,采用的水泥应对其品种,级别,包装和散装仓号,出厂日期等进行检查,并应对其强度,安定性及其他必要的性能进行复检,其质量必须符合现行国家标准的规定方可使用。

1.2滑料的选择

一般选用结构致密,并有足够强度的优良骨料,符合有关的标准,规范的要求,此外,还应注意以下几点(1)粗骨料要求洁净,不含杂质。估伤脑筋大粒径的卵石或碎石,含泥量小于等于1%。(2)细骨料建议采用中砂,含泥量小于等于3%。

1.3矿物拌合料

在砼中掺加磨细矿物拌合料后,可以起到降低温升,改善和易性。增进后期强度,改善砼内部结构,提高耐磨性,并可代替部分水泥,节省资源,起到抑制碱,骨料反应的作用。常用粉煤灰,高炉矿渣,沸石粉等。

1.4水

拌制砼宜采用饮用水,当采用其他水源时,水质应符合国家现行标准《砼用水标准》JGJ63的规定。外加剂:不同品种外加剂的掺加通常可起到改善砼拌合物的流动性,调节砼凝结时间,硬化性能,改善砼的耐久性等作用。外加剂的选用应根据设计和施工的要求通过试验及技术经济比较确定,不同品种的外加剂复合使用时,应注意其相容性及对砼性能的影响,使用前应进行试验,满足要求方可使用。

2.砼配合比的确定与优化

(1)水泥初凝时间不少于6小时。(2)砂率控制在35-40%。(3)砼中的最大氧离子含量为0.06%。(4)砼中的最大碱含量为3.0KG/M3。(5)水泥中铝酸三钙含量小于8%。

3.优化砼的供应

大体积砼应由商品砼搅拌站供应。原材料计量要准确,保证配合比的准确性。

3.1计量

要求使用检定过的计量器具,保证计量正确。

3.2拌制

控制原材料投入搅拌机顺序,不采用“外掺”、“后掺”的作法,严格控制拌制时间,搅拌完成后装入运输车时,即测定坍落度,同时观察砼的和易性,不得存在离析,分层等现象,坍落度不符合要求的砼不能出站。

3.3运输

根据路线的比对,交通的状况,随时增减车辆,保证砼的正常供应,砼运输时间不得大于180MIN,砼运输车辆离开搅拌站后不得掺加任何材料,包括水、外加剂等。

4.大体积混凝土的施工工艺

4.1分块分层的浇筑混凝土,有利于错开拌合物内各层的水化时刻,分散混凝土的放热峰值。一般在第一层混凝土还未初凝时,浇注上一层。

4.2在振捣上一层时,振动棒应插入下一层50-100MM,以消除两层之间的接缝,振动时间不宜过长,防止石子下沉造成混凝土结构不均匀。

4.3在浇筑完毕到混凝土初凝前,粗抹面一次,混凝土接近终凝时,应用木模第二次抹光,消除混凝土表面的龟裂纹。 转贴于

4.4采取措施控制浇筑温度,如拌和用水以碎冰形式加进混凝土拌合物中,使新拌混凝土的温度被限制在4-6度,在施工现场搭建遮阳蓬,防止烈日暴晒混凝土表面等。

4.5必要时可以预埋冷却水管,用循环水进行人工导热,以降低混凝土的内部温度。

泌水及表面处理。砼在浇筑,振捣过程中,上涌的泌水和浮浆顺砼坡面下流到坑底,通过侧模底部开孔将泌水排出基坑,当砼大坡面的坡角接近顶端模板时,改变砼浇筑方向。及时用刮板将表层的泌水水分刮出,以提高砼质量,减少表面裂缝。

5.大体积混凝土易裂的原因

5.1水化温升高,体积变化大

混凝土体积越大,水泥总用量相对大,水泥水化产生的热量越不易散发,温升越高,引起的体积变化也越大,大体积混凝土浇注后,内部温度远较外部高,形成较高的温差,造成内涨外缩,使构件表面产生很大的拉应力以至开裂。

5.2受约束,产生拉应力

不受约束的混凝土是不会产生内就历程的,体积变化受约束才产生内应力。约束条件有两种,即外约束和内约束,外约束是指结构物的边界条件,一般指基础或其他外界因素对结构物的约束,水泥水化后期,散发热量大于放热量,构件温度降低,体积收缩,受边界条件约束,产生拉应力。

抗拉能力低。混凝土是脆性材料,抗压能力较高,抗拉能力较低,抗拉强度仅为抗压强度的1/10左右;极限拉伸也很小,大体积混凝土温度变形受约束时产生的拉应变很容易产生裂缝。以上三方面同时存在,并达到相当程度必然会发生裂缝,缺少其中一个,或其中一个没有达到相当程度,裂缝可能不会发生,大体积混凝土裂缝产生的最根本原因是水化温升的引起的体积变化。

6.大体积混凝土防裂的措施

分析大体积混凝土裂缝的成因和工程实践表明:控制水化热,改变约束条件,提高混凝土极限拉伸能力等措施都有效的防止裂缝的形成。

6.1原材料选择及配合比设计

水泥。不同品种水泥水化所释放的热量各异,大体积混凝土宜选用水化热低,凝结时间长的水泥,在满足水泥混凝土和易性,力学性能和耐久性的条件下,尽量使水泥用量降低至最小限度,从文献资料得知,减少水泥用量可以减少总的水化放热量,从而可以降低混凝土内外温差。

6.2活性掺合材料

在大体积混凝土中掺加活性掺合材料,既可以相应减少水泥用量,又可以降低混凝土水化温升,目前在南方地区粉煤灰是最理想的活性掺合材料。掺加粉煤灰能大幅度降低混凝土的水化热,粉煤灰火山灰反应进展比较尺缓,发热的速度较低。试验数据表明,用粉煤灰取代20%的水泥,用使7D内的水化热下降11%,取代30%的水泥时下降25%。

6.3外加剂

大体积混凝土宜选用高效缓凝型减水剂。外加剂的缓凝的作用可使水泥水化放热速率减慢,有利于热量消散,能使混凝土内部温升降低。高效缓凝型减水剂还具有一定的引气作用。混凝土中引入一定量的微小封闭气泡,能有效地减小骨料间的摩阻力,使混凝土拌合物的和易性和硬化混凝土内部的孔结构得到改善,也有利于提高混凝土的抗渗性和抗冻性等耐义指标。高效减水作用能大幅度地减少混凝土用水量,保持水灰比不变,可大幅度减少混凝土中的水泥用量,亦即降低总的水化热。另外,在大体积混凝土中也可采用膨胀剂来控制裂缝的产生,膨胀剂具有膨胀效应,它不但可补偿混凝土的收缩,而且能降低混凝土的整体温度,但是膨胀剂的成本较高且质量参左不齐,应通过试验慎重选用。

7.结束语

大体积混凝土施工,只要选好原材料,确定配合比,并在施工组织和施工技术上采取必要的措施,就能控制温度裂缝的产生。

参考文献

第11篇

[论文摘要]从合理选择施工材料,优化混凝土配合比,优化混凝土的供应,采用科学的施工方法,加强混凝土养护等方面介绍了大体积混凝土施工技术,以达到降低混凝土温度应力和提高混凝土本身抗拉性能的目的。

一、前言

近年来,随着建筑行业的迅猛发展,大体积混凝土得到了越来越广泛的应用,如混凝土大坝、高层建筑的地下室混凝土底板都是用大体积混凝土浇筑而成的。但在建造和使用过程中,有关因出现裂缝而影响工程的质量甚至导致结构垮塌的事故也时有发生合理选择施工材料,优化混凝上配合比的目的是使混凝土具有较大的抗裂能力。

(一)施工材料的选择

1.水泥的选择。内部混凝土主要考虑抗裂性能好、兼顾低热和高强两方面的要求,一般采用低热矿渣水泥,中热硅酸盐水泥掺入一定量的粉煤灰。外部混凝土,除抗裂性能外,还要求抗冻融性、耐磨性、抗蚀性、强度较高及干缩较小,因此一般采用较高标号的中热硅酸盐水泥。当环境水具有硫酸盐侵蚀时,应采用抗硫酸盐水泥。

2.骨料的选择。选用结构致密,并有足够强度的优良骨料,特别是粗骨料,具体应符合有关的标准、规范和规程。除此之外,还应注意以下问题:①骨料要求表面洁净,不含杂质。②砂子采用中砂,石子采用大粒径的卵石或碎石。③砂子含泥量不得超过3%,石子含泥量不得超过1%。④粉煤灰在混凝土的配合比中以部分粉煤灰代替水泥,不仅可以改善混凝土的和易性有利于施工操作,而且对降低混凝土的水化热有益。在混凝土工程中,掺人粉煤灰时应满足:选用细度合格、质地优良的粉煤灰;粉煤灰的掺量一般以15%~20%为宜。

(二)混凝土配合比的确定与优化

通过试验室进行多种配合比的试验和研究,选用最佳配合比作为混凝土的施工配合比,最佳配合比应满足以下要求:

1.混凝土的初凝时间不少于6小时。

2.混凝土的砂率控制在35——40%。

3.混凝土中的最大氯离子含量为0.06%。

4.混凝土中的最大碱含量为3.0kg/m3。5.水泥中铝酸三钙含量<8%。

二、优化混凝土的供应

大体积混凝土由商品混凝土搅拌站供应,混凝土原材料计量要准确,以保证配合比的准确性。

(一)计量。要求使用检定过的计量器具,保证计量正确。每工作班正式称量前,要求对计量设备进行零点校核。

(二)拌制。控制原材料投入搅拌机顺序,不得采用“外掺”、“后掺”等作法。混凝土必须严格控制拌制时间,驻站工程师每一班抽测2次。搅拌完成后装入运输车时,即要求每车测定坍落度,同时观察混凝土的和易性、不得存在离析、分层等现象,坍落度不符合要求的混凝土不能出站。

(三)运输。根据路线的比短、交通的状况,随时增减车辆,保证混凝土的正常供应,连续浇注,避免因混凝土供应不上而出现冷缝。混凝土运输时间在任何情况下不得大于180min,对到达浇筑点超过210min的混凝土不得使用。混凝土运输车离开搅拌站后不得掺加任何材料,包括水、外加剂等。混凝土坍落度在运输过程中损失超过40mm或混凝土到达浇筑点温度大于25℃,不得浇筑到作业面。要求从每个搅拌站每隔一段时间就派出一辆混凝土罐车,保证混凝土供应的均衡性。因大体积混凝土方量较大,要求搅拌站派管理人员进驻现场指挥、联络、协调,发现问题及时解决。

三、采用合适的施工方法

大体积混凝土产生裂缝是由多种原因造成的,其中,采用合理的施工方法,是防止大体积混凝土裂缝的有效措施。

多智网校诚招全国各地市独家线下商,共同开发网上教育市场。多智教育()!

(一)混凝土浇筑方法。混凝土的浇筑按混凝土自然流淌坡度、斜面分层、连续逐层推移、一次到顶的方法进行。混凝土浇筑过程中,每层混凝土初凝前都确保被上层混凝土覆盖,保证上下层浇筑间隔不超过混凝土初凝时间,避免施工裂缝出现。依据设计图纸中的后浇带将整个大底板划分成厚薄、大小不同的区段,每个区段将独立一次浇筑完成。

(二)混凝土振捣方式。混凝土振捣时布置三道振捣,第一道设在混凝土的坡角,第二道设在混凝土的坡中间,第三道设在混凝土的坡顶。每道设2台振捣器,三道振捣相互配合,确保振捣覆盖整个坡面。使用振捣棒振捣,振捣棒插入下层混凝土中的深度>50mm,振捣棒移动的间距以400mm左右为宜,振捣棒要快插慢拔,以混凝土面泛浆为宜。混凝土表面要用刮杠刮平,再撒5mm——25mm碎石,用木抹拍实抹平。

(三)泌水处理。混凝土在浇筑、振捣过程中,上涌的泌水和浮浆顺混凝土坡面下流到坑底,通过侧模底部开孔将泌水排出基坑。当混凝土大坡面的坡角接近顶端模板时,改变混凝土浇筑方向,形成集水坑,及时用水泵将泌水排除,以提高混凝土质量,减少表面裂缝。

(四)表面处理。由于泵送混凝土表面水泥浆较厚,在浇筑后2~8h,初步按标高用长刮尺刮平,然后用木板反复压数遍,使其表面密实,再用铁面板收面后立即用塑料薄膜覆盖。

(五)加强施工管理。在混凝土结构中,强度不是均匀的,裂缝总是从强度最低的薄弱处开始,当混凝土质量控制不严,混凝土离差系数大时裂缝就多。为防止裂缝,必须加强施工管理,提高混凝土的施工质量。

四、加强混凝土养护

降低大体积混凝土块体里外温度差和减慢降温速度来达到降低块体自约束应力和提高混凝土抗拉强度,以承受外约束应力时的抗裂能力,对混凝土的养护是非常重要的。

混凝土浇筑后,应及时进行养护(保温层材料和厚度待定)。混凝土表面压平后,先在混凝土表面洒水,再覆盖一层塑料薄膜,然后在塑料薄膜上覆盖保温材料进行养护,保温材料夜间要覆盖严密,防止混凝土暴露,中午气温较高时可以揭开保温材料适当散热。底层塑料布下预设补水软管,补水软管间距68m,沿管长度方向每100mm开5mm水孔,根据底板表面湿润情况向管内注水,养护过程设专人负责。混凝土泌水结束、初凝前为了防止面层起粉及塑性收缩,要求进行多次搓压。最后一次搓压时采用“边掀开、边搓压、边覆盖”的措施。对底板面不能连续覆盖的部位,如墙、柱插筋部位、钢柱等采用挂麻袋片、塞聚苯板等方式,尽可能进行覆盖,避免出现“冷桥”现象。混凝土浇筑完成12小时,严禁上人踩踏,浇筑完成24小时内,除检测测温设备及覆盖材料外,不得上人踩踏。保温层在混凝土达到要求强度并表面温度与环境温度差要小于20℃时方可拆除,并在中午气温比较高时才可安排保温拆除。

五、结束语

大体积混凝土产生裂缝是由多种原因造成的,在大体积混凝土施工中,合理选择施工材料,优化混凝土配合比,优化混凝土的供应,采用科学的施工方法,严格施工管理,加强大体积混凝土养护,就可以低混凝土温度应力和提高混凝土本身抗拉性能,保证工程质量。

参考文献:

[1]牛紫龙,混凝土施工中温度裂缝的分析与控制,工程建设,2006.

第12篇

关键词:聚丙烯纤维;混凝土;绿色;高性能

中途分类号:TU37 文献标识码:A文章编号:

一个主塔楼复杂的超高层结构工程,主楼结构采用混凝土核心筒+巨型框架+伸臂的多重受力体系,在平面4边各布置两根巨型框架柱,结合约15层一道的巨型桁架,承托7个区间的次结构重量;并且设置有四道两层楼高的伸臂桁架加强层连接巨型外框架与核心筒。

巨型框架柱的截面尺寸5400mm*3800mm为典型的大体积混凝土,抗裂的要求尤为突出。前期的试验已经得到,聚丙烯纤维混凝土的性能优异,尤其是变形性能为满足混凝土巨型框架柱尺寸创造了条件。

1C80高性能大体积混凝土的模拟施工

为了更深入掌握C80高性能大体积混凝土的工作性能、温升情况及温度发展,在现场以1:1的比例制作一根高4.5m的模拟柱,截面尺寸为5400mm×3800mm,内浇筑配合比编号为C8023的C80混凝土,并进行了模拟柱温度记录、强度检验以及超声波检测[1]。

根据现场记录,2011年10月24日20:00时,第一辆C80混凝土罐车到达现场,25日凌晨2:00,第十辆罐车浇筑完毕,至此,模拟柱内混凝土浇筑完毕。混凝土浇筑前,分别在搅拌站和现场对C80高性能混凝土的塌落度和温度等进行了检测,由表1-2检测数据显示,C80混凝土各项指标符合要求。

表1-1华润P•II42.5R水泥C80试配性能要求

混凝土浇筑采用汽车泵,泵管出料口深入筒腔内,出口应与浇筑面形成一个约50~80cm的高差,便于混凝土下落产生压力,推动混凝土流动。泵车泵送混凝土应控制在1小时30m³左右,尽量保证混凝土在出机后60min内泵送完毕。模拟柱体高度为4.5m,为保证钢管柱混凝土浇筑过程的均匀性,将通过依次换腔分层浇筑的方式施工,如图1-1所示,先按箭头顺序依次浇筑500mm,再返回腔1浇筑500mm,循环浇筑,边浇筑边振捣。使用高频振捣棒,工人无需进入筒腔内,只需在柱顶使用矿灯等工具辅助照明,振捣时间根据现场混凝土的实际情况控制在3至5分钟,以混凝土表面出现浮浆,不再冒出气泡和混凝土不再沉落为准。此外,还需在钢板侧壁上每隔0.5米处做好标记,以保证每次0.5米的浇筑高度。振捣时注意不要接触钢筋、加劲板、栓钉和钢板[2]。

表1-2华润P•II42.5R水泥C80试配性能

图1-1 混凝土依次换腔分层浇筑顺序

根据施工总体部署和施工工艺要求,钢管柱内混凝土浇筑完后均可利用高出柱内混凝土完成面的钢管柱进行蓄水及覆盖麻袋养护。模拟柱施工过程中,管内的混凝土蓄水200mm,养护2天后即改为湿麻袋和防雨布养护至28天,实际施工中5天便可浇筑上一节混凝土,新浇筑的混凝土对下层的混凝土有保温作用[3]。鉴于实际温升的情况,1天后采取在3腔和4腔的外钢板上包裹3层麻袋的保温措施。

2 聚丙烯纤维混凝土的施工中的关键技术

2.1 聚丙烯纤维混凝土拌合关键技术措施

由于聚丙烯纤维混凝土自身的特点,现在的混凝土工程绝大多数采用商品混凝土,所以聚丙烯纤维混凝土在泵送时不可避免的具有与普通混凝土不同的要求:

(1)在混凝土浇筑前要将规定掺量的聚丙烯纤维加入混凝土罐车,高速搅拌至少6分钟以后才可以使用;

(2)当拌制混凝土为大流态混凝土时,很难保证聚丙烯纤维在混凝土拌合物中分散均匀,此时要分两次加水,先加一部分水将纤维在拌合物流动度还不是很大时拌合均匀,待聚丙烯纤维分散较完全时把剩下的水加入。这样做的好处是纤维束被分散成了单丝以后,纤维整体也达到了较好的分散性,而且纤维分散成单丝后刚度比较小,不会影响水泥浆,细骨料、粗骨料等的分散,如果聚丙烯纤维不能很好的分散,就有可能阻碍混凝土中其他材料的分散,易在混凝土内部形成缺陷。

(3)对于聚丙烯纤维加入混凝土中造成坍落度小、难于施工的混凝土拌合物,应合理采用减水剂,切不能盲目加水,盲目加水不但不能使和易性变好,而且会降低混凝土的强度增加混凝土的干燥收缩。

2.2 聚丙烯纤维混凝土的振捣与养护技术措施

(1)振捣

首先从振捣的难易程度来说,由于聚丙烯纤维加入普通混凝土后不吸水,不需要改变普通混凝土的配合比,结构中配置的钢筋数量也无需改变,所以不会给振捣带来额外的困难。其次从振捣工艺来说,因为加入纤维后稠度增加,为了确保密实,减小强度降低的可能应增加振捣的时间,并且施工时做好技术交底,采用插入式振捣时,振捣点间距不应大于0.5m,且振捣要达到使混凝土表面呈浮浆且不再下沉为止。在钢筋较密集的部位,应加强振捣,只有这样在混凝土终凝后聚丙烯纤维的作用才能最大体现。

(2)养护

虽然聚丙烯纤维混凝土能有效的抑制早期的开裂,但是不可放松警惕,仍然要按规范要求做好早期的养护。另外在抹面时,聚丙烯纤维混凝土的初凝与终凝时间较普通混凝土有所增加,在其初凝收浆后要及时抹平并在终凝前压光,对于不可避免的干缩裂缝要及时收光。此外,抹平时应注意避免把纤维从混凝土中带出,影响抹面的质量。

3 聚丙烯纤维混凝土工程应用经济效益分析

3.1 聚丙烯纤维混凝土在民用屋面板中应用

屋面楼板面积较大,是普通建筑物最容易出现裂缝的部位之一,如不采取措施容易在二次抹面前出现塑性裂缝,并且未参加聚丙烯纤维的楼板容易产生泌水,造成失水过快进一步加重裂缝的产生。屋面楼板一旦开裂,造成的后果很严重,由于平屋面直接暴露在阳光和空气中,开裂后容易使裂缝进一步发展,下雨时会导致严重的渗漏事故,并且降低屋顶层钢筋的耐久性,对住户造成严重影响,必须耗费大量金钱进行维修。

对于这类问题,国内已有很多采用聚丙烯纤维混凝土成功解决的案例,比如南宁市建筑安装工程有限责任公司四分公司职工住宅楼,邑宁县机关工作人员住宅小区3#标工程[4]。

图1-2 典型屋面板配筋图

图1-2为一块屋面板的典型配筋图,楼板厚度100mm,该图中为防裂而设置的构造钢筋和分布钢筋为81kg/m2,即使不考虑分布钢筋仅考虑构造钢筋,每平方米也有16.9kg,按照目前的工程经验使用聚丙烯纤维可降低此类钢筋15%左右,即2.53 kg/m2,那么不考虑钢筋的情况下,采用普通混凝土和聚丙烯纤维混凝土的屋面板的每平方米成本对比见下表,

表1-3 每平方米屋面成本

注:表中材料价格为2011年12月份北京地区平均价格,聚丙烯纤维掺量为1.0kg/m3

从表1-1可以看出,聚丙烯纤维的应用并没有使建造成本增加多少,每平方米仅增加1.7元,比普通混凝土提高了4.8%。这是在没有考虑钢筋的情况下,如果考虑钢筋的影响,按照每平方米节省2.53 kg/m2,以目前市场价4200元每吨计算,每平方米节省钢筋的价格为10.62元,这时使用聚丙烯纤维混凝土的屋面板造价甚至比普通混凝土还低8.92元每平方米。

3.2 聚丙烯纤维混凝土在道路工程中的经济效益分析

塑性开裂是路面桥面的早期主要缺陷之一,这是由道路施工的特点决定的,道面直接承受风、阳光、温差等环境因素的直接作用,很难保证不产生裂缝,当汽车通过时会加速裂缝的扩展,尤其是在交通压力越来越大,重载车辆多的路段,道路的铺装层出现开裂直至破碎的现象层出不穷,严重影响通行,这些混凝土的破损若发生在桥面还会使桥面渗水,加速桥梁的老化。为了解决这一问题,聚丙烯纤维混凝土在道路工程中已经有成功的应用。天津顺池立交桥的桥面就全部采用了掺量为0.9 kg/m3的聚丙烯纤维混凝土[5],取得了较好的效果,得到业主的好评。更多的工程实践表明,在道路工程中使用聚丙烯纤维混凝土能提高铺装层的抗裂性、抗冲击性和抗疲劳性。尽管聚丙烯纤维混凝土在道路工程中应用的优势已经得到普遍认可,但是由于认识的局限性,很多部门错误的认为其成本较普通混凝土高,使得聚丙烯纤维混凝土在路面用混凝土中的应用受限。本文将应用价值工程原理(VE)来说明在道路工程中使用聚丙烯纤维混凝土的经济价值。

价值工程是美国人Miles[6]在担任通用电气采购科长期间提出的,“得不到想要的材料,就想办法获得它的功能”。现在价值工程原理不仅用在开发新产品新工艺上,同样也可以用于建筑工程,特别是建筑工程的维修组织提高建筑工程的经济效果这一领域。价值工程要求以最低的寿命周期成本,实现产品的必要功能。在建筑工程领域,运用这一理论的要求就是在满足建筑物使用要求的前提下,使建筑物在全寿命周期所耗费的费用最小。恩格斯说,“价值是生产费用对效用的关系。价值首先是用来解决某种物品是否就应该生产的问题,即这种物品的效用是否抵偿生产费用的问题,如果两种物品的生产费用相等,那么效用就是确定它们的比较价值的决定因素”[7]。由此,

从式中可以看出,价值由功能和成本决定,目前在道路工程中的从业者只注重一味降低成本C,却忽略了功能F的提高,殊不知价值由这两者共同决定,造成了当前道路使用寿命短,使用效果差。下面通过价值工程原理以实例证明聚丙烯纤维混凝土的价值。某路段由于重载车辆多,破环严重,经多次维修得不到根本改善,当地公路局决定重新铺筑该路。重修时在接近市区的一段采用聚丙烯纤维混凝土,掺量为每立方米1.0kg,该路段厚240mm,按照当时聚丙烯纤维的市场价较普通混凝土成本上升了约3.2万元/千米。经过两年运营后,在远离市区的路段出现裂缝、错台等现象,维修费用达到8万元每千米,而在聚丙烯纤维混凝土路段虽然也出现了破损,但不严重仅需5万元每千米进行维修。在两年内,聚丙烯纤维混凝土路段的使用成本即与普通混凝土路段持平,并且聚丙烯纤维混凝土路段的使用效果更好。可以预见,在该道路余下的设计使用期内,聚丙烯纤维混凝土路段的维修费用将大大少于普通混凝土路段。

道路的全寿命周期的费用主要包括材料费用,施工费用和维护费用,只考虑材料费用,不考虑设计使用年限内的费用综合是不科学的,在道路工程中虽然聚丙烯纤维混凝土的成本较高,但其使用过程中的维护费用少,使用效果好,整个使用期内的费用比普通混凝土还要低。

4结论

考察聚丙烯纤维混凝土的经济效益应从工程的全寿命周期出发,不能仅看材料成本,在屋面工程中采用聚丙烯纤维混凝土的初始成本即低于普通混凝土8.92元每平米。在道面工程中运用价值工程原理发现,聚丙烯混凝土在整个道路的运营周期可降低工程总费用。总体来看,聚丙烯纤维混凝土用在抗裂需求高的工程中具有实用性和优越性。

参考文献:

[1]孙玉龙等. 聚丙烯纤维对混凝土韧性的影响研究[J]. 科技创新导报, 2007年32期

[2]阎培渝等.水泥水化反应与混凝土自收缩的动力学模型[J]. 铁道科学与工程学报,2006年1期

[3]郑欣.混凝土体积稳定性的测试方法[J]. 建筑技术,2005年4期

[4]傅春松.聚丙烯纤维对现浇混凝土楼板非荷载裂缝影响的试验研究(硕士学位论文).南宁:广西大学,2006

[5] 王梅.聚丙烯纤维混凝土在路面工程中的应用技术研究:(硕士学位论文).南京:东南大学,2003