HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 支护技术论文

支护技术论文

时间:2022-08-17 00:47:11

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇支护技术论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

支护技术论文

第1篇

某土木工程项目基坑平面尺寸116.47m×117.3m,基坑施工整平地面标高为19.0m,地下室底板垫层底绝对标高5.95m,基坑开挖深度约13.05m,核心筒范围局部加深7.05m,加深段平面尺寸26.5m×23.184m。该土木工程基坑支护原设计为“预应力锚索+排桩抗侧向土压力支护结构体系”+“高压旋喷桩止水帷幕”。然而综合考虑现场实际情况、试桩取芯效果、施工工期安排、对周边地块影响等方面的因素,将“预应力锚索+排桩抗侧向土压力支护结构体系”优化为“钢筋混凝土内支撑+排桩抗侧向土压力支护结构体系”,将“高压旋喷桩止水帷幕”优化为“三轴水泥土搅拌桩止水帷幕+支护桩间高压旋喷桩”。

2边坡内支撑支护类型比选

目前现场排桩已基本施工完成。由于基坑四周均为待开发地块,尤其是东侧为地铁已确定开发用地,南侧为工商银行用地,使用锚索将对周边地块的开发造成严重障碍,所以建议本基坑支护结构下部采用排桩+内支撑体系。根据基坑的平面形状和目前施工现状,对以下3种内支撑体系的布置进行了比选。

2.1对撑+角撑布置体系

(1)优点:在环境保护要求较高的情况下,利于控制墙移。(2)缺点:①支撑混凝土用量较多。②核心筒范围内的立柱桩与工程桩冲突严重,影响核心筒施工效率和施工质量。③由于十字交叉桁架与核心筒平面位置重合,核心筒地下三层以上部分的结构必须等到整个地下室地下三层施工完成,混凝土支撑拆除后方可施工,对整个工期有制约作用。

2.2圆形环梁布置体系

(1)优点:①方便挖土和主体结构施工。②支撑混凝土用量较小。(2)缺点:①由于基坑南侧和东侧地势较高,北侧和西侧地势较低,虽采取了基坑上部放坡的措施,但仍存在一定的坑周荷载不均匀的情况,对支撑体系整体稳定不利。②须等到基坑的整个环梁体系施工完成后,方可进行大面积土方开挖。③对中间环梁的施工要求较高。(3)角撑布置体系:①优点:方便挖土和主体结构施工、施工方便。②缺点:与圆形环梁布置体系相比,混凝土用量较多。由于本项目工程进度和基坑安全都必须确保,而对撑+角撑布置体系对塔楼施工进度制约太大,因此不采用;圆形环梁布置体系不仅对土方开挖进度有一定制约,而且现场地势情况不利于该体系的整体稳定,因此亦不采用。综上分析,最终选择采取角撑布置体系。

3边坡支护技术优化

3.1支撑竖向布置

原设计排桩标高为13.0m,改为内支撑后,为避免混凝土支撑与主体结构下二层板冲突,将原设计排桩标高调高0.3m,即13.3m,经初步计算分析,基坑上部采用放坡,下部排桩+一道混凝土支撑。

3.2基坑止水帷幕

根据高压旋喷桩试桩取芯效果显示,砂砾层与岩层交界面芯样不是很理想,为了保证深基坑的止水效果,确保深基坑开挖的安全性,将外排高压旋喷桩改为三轴深层水泥搅拌桩,内排高压旋喷桩保留。

3.3坑中坑支护结构

坑中坑局部加深7.05m,加深段平面尺寸26.5mx23.184m。根据地层条件,并结合核心筒桩基承台的施工统一考虑,采用放坡开挖的方式。施工顺序要求:(1)放坡后,先施工深坑结构底板及侧墙。(2)然后在深坑侧墙外侧回填土,至桩基承台底。(3)最后施工桩基承台和大基坑底板。

4结语

第2篇

1.1确定深基坑支护结构类型受基坑周边环境、开挖深度、工程地质与水文地质、施工作业设备和施工季节等具体因素的影响,深基坑支护结构类型也不是唯一的。选择适当的支护结构对于工程整体的安全性和施工质量都具有重要意义。常见的深基坑支护结构包括排桩、地下连续墙、水泥土墙、逆作拱墙、土钉墙、原状土放坡等多种类型,实际工作中也会有上述多种型式的组合的情况出现。地下连续墙优点较多,具有挡土、防水抗渗及承重三种功能,能够适用于多种地质条件下的基坑支护施工,现已广泛应用于地下车库,地下铁道、泵站、电站,以及水坝防渗等地下工程。地下连续墙具有的优点包括:(1)适用范围广,可适用于各种地质条件。(2)具有在建筑物密集区域和复杂施工条件下施工的能力,对周边建筑及环境影响微弱。(3)刚度大,侧压力承受力强,耐变形能力强,基坑开挖后引发的地面沉降不明显,对周边建筑物影响很小。(4)施工时产生的噪声较小,对于市中心等噪声要求高的地方具有较强的适用性。(5)防渗性好。采用不同的施工工艺和接头构造,可以在一定范围内调整地下连续墙的防渗性能。对于基坑外地下水位没有要求,特殊情况除外。(6)可以使用逆作法施工。

1.2支护桩施工支护桩是基坑支护系统中的关键部位,负责承载外力,支撑整个支护结构。要实现支护系统的安全保障功能,必须保证支护桩的施工质量。通常情况下,支护桩分为人工挖孔桩和钢筋混凝土护臂两个部分。在实际工作中要采用吊桶的方法进行灌注桩桩孔挖掘施工,并严格控制钢筋笼安装、混凝土灌注和成孔等关键工序的施工质量。上述环节的施工质量直接关系到支护结构的整体支护能力,必须要予以高度重视,确保满足各项技术要求。

1.3土方开挖土方开挖指的是将建筑的基坑开挖出来,创造地面以下施工空间的过程。在这个工序中,除了开挖土方外,还包含将挖出的土方运离施工现场及清理施工现场于运输路线散落土方的内容,是建筑施工环境保护的重要内容之一。在挖掘过程中,要防止挖掘对地下设施的损伤,如有挖到异物或地下管线等情况发生,要立即中止挖掘工作,由专业单位进行处理,处理完成后才能继续挖掘。

1.4排桩加环撑排桩是以某种桩型按队列式布置组成的基坑支护结构。在具体施工中,排桩要与支护配合使用,从而实现房屋建筑深基坑的支护功能。施工时,先按照一定规则排布钢筋混凝土钻孔灌注桩和挖孔桩以及工字钢桩或H型钢桩,形成工程基础,然后再进行地下层级的施工,最终形成的支护结构为圆形结构,可以有效保障整个支护结构的稳定性。

1.5基坑支护监测安全性是深基坑支护工程的最基本也是最核心的要素。在深基坑支护施工过程中,要切实做好安全监测工作。通过建立全面的监测体系,施工队伍能够充分掌握支护施工全过程的发展变化,及时调整施工步骤。结构的完整性、强度、变形及位移情况等是监测工作的重点,通常情况下,从基坑开发之日起,定期对施工现场进行全面监测,监测周期一般为2至3天。如果发现问题,要立即予以解决,同时提高监测频率,需要的情况下要监测频率调整为每天一次,以保证基坑施工始终处于控制之中。

1.6环撑的拆除及换撑环撑的施工要紧跟地下墙体施工进行,即先进行墙体施工,再进行上一层的环撑拆除施工。环撑拆除前要完成换撑工程。要严格遵循环撑施工工艺,换撑强度合格后方能进行环撑的拆除工作。在环撑拆除的过程及换撑的施工过程中,要做好监测工作,排除环撑拆除和换撑过程中的安全隐患和不利因素。

1.7当支护载荷较大时,可以使用地下连续墙代替桩基础、沉井或沉箱基础。

2基坑施工技术控制要点

2.1房建深基坑施工的技术控制深基坑施工在安全性和稳定性等方面的标准很高,从而给施工细节提出了更高的要求。在实际工作中,要对施工细节予以严格管控,每一道工序完成后都要由专人检查,未能达到技术要求的一律不能进入下道工序。施工单位要成立项目管理机构,统一协调管理整个施工过程中的各项事宜,保障工程施工符合设计要求和技术规范,保证施工进度符合工期。

2.2深基坑周围的防水与止水处理由于深基坑深入地面以下,其施工过程和工程质量受地下水影响很大。一般情况下深基坑施工要选择在当地旱季进行,以防治降水对工程施工的影响。此外,在地下水量丰富的地区,要做好施工防水、排水措施,根据施工前期的调研资料制定符合施工实际条件、切实可行的防水、排水方案。

3结束语

第3篇

【关键词】深基坑,施工技术,支护施工,分析探讨

中图分类号:TU74 文献标识码:A 文章编号:

前言

在建筑工程施工过程中,为保证房屋建筑基础及地下室的正常施工和周围建筑物、地下管线不受损害,需对地面以下开挖的土体所进行的一系列勘察、设计、施工和检测等工作,统称为深基坑工程。作为建筑施工过程中的一个重要组成部分,确保深基坑的施工质量具有重要意义。

二、深基坑施工技术要点分析

1、转变传统深基坑工程设计理念

我国的深基坑技术经过长时间的不断实践和发展,已经取得了一定的成效,初步摸索出变化支护结构实际受力的规律,为建立健全深基坑支护结构设计的新理论和新方法打下了良好的基础。但对于深基坑支护结构的实际设计和施工方法仍处于摸索和探讨阶段,到目前为止,我还对于支护结构的设计上还没有统一的标准和规范。还沿用一些传统的计算理论,从而造成计算结果与实际工程施工中的受力差别较大,在很大程度上增加了支护结构的不安全性,因此我们应彻底改变传统的设计观念,逐步建立以施工监测为主导的信息反馈动态设计体系,从而促进我国深基坑工程的健康发展。

2、重视变形观测, 并注意及时补救

深基坑支护结构变形观测的内容包括:基坑边坡的变形观测、及周围建筑物及地下管线变形观测等。通过对监测数据可以及时分析并及时了解土方开挖及支护设计在实际应用中的情况,分析其存在的偏差便可以及时的了解基坑土体变形状况以及土方开挖影响的沉降情况还有地下管线的变形情况等。对设计中存在的偏差,在下部施工中及时校正设计参数,对已施工的部位采取恰当的补救和控制措施,为此,要求现场变形观测的数据必须准确、可靠、及时,要求变形观测人员严格按照预定设计方案精心测量、认真负责,保证观测质量。如果在实际测量中确实发现异常情况,就需要即时研究采取措施以防止其恶化。而一旦出现大的变形或滑动,立即分析主要原因,做出可靠的加固设计和施工方案,使加固工作快速而有效,防止变形或滑动继续发展。研究和应用已有的基坑工程行业的和地区性规范以及当地的工程经验。对于重大复杂的基坑工程目前国内采用专家论证的形式,对保证工程安全、降低造价是有效和现实的一种方法。

3、深基坑过程的信息化

基坑工程实施阶段必须采用信息化施工,实时跟踪监测基坑支护结构和地下水治理系统的工作性状以及周围环境的动态变化,并及时采取有效应变应急措施,确保环境安全。基坑工程施工过程中必须进行监测,制定切实可行的详细的监测方案,并通过监测数据指导基坑工程的施工全过程。

三、建筑基坑支护施工技术探讨

1、逆作法技术

逆作法技术,主要是指在地下室基坑周围预先安置若干混凝土钻孔灌注桩或人工钻孔桩,在此基础上,逐层向下开展施工工作。就目前来说,逆作法工程施工技术是建筑基坑支护施工中比较先进成熟的施工技术。它采用平行立体操作的方法,对气候环境依赖性较小,能够充分的利用地下空间,最大限度的缩短工程期限。土方开挖和上部施工交替进行,很大程度上降低了由上部荷载造成土体持力层的压力。一般来说,在建筑工程基坑较大的情况下,要优先考虑逆作法技术施工,这样一来,能够使地下室的结构主体得到充分的利用,最终实现支护目的。但是,在使用逆作法技术时,其支撑位置的设置会受到一定的限制,使建筑工程开挖工作变得复杂。

2、土钉和复合土钉墙

土钉在加固和锚固建筑施工现场土体的杆件中发挥着重要的作用,一般来说,土钉墙包括加固后的原位土体、密排的土钉、防水部分和混凝土喷射表层等。土钉主要凭借土体受力变形时产生的被动粘结力或摩擦力来发挥支护作用。

建筑基坑支护施工局限于场地的大小,不利于进行放坡,当建筑基坑附近有可供施工利用的土体,施工区域的地下水位较低或给排水条件好的情况下,应采用土钉和复合土钉墙支护施工技术。土钉和复合土钉墙支护技术变形小、施工方便、对周围环境影响小、工作量小、节省原料、工程工期短等优点。区域地下水位以上或经过降水处理之后的砂土粉、质土、粘土等土体较适合采用土钉和复合土钉墙支护技术。

一般来说,土钉和复合土钉墙具体的施工过程是:首先,在工程施工的土体中进行预制钻孔。其次,在其中嵌入钢筋,然后采用低压或高压灌浆对土体进行水平孔灌浆,如果属于擦用重力灌浆则进行倾斜孔灌浆钻孔灌浆,如果施工需要,要进行二次高压灌浆,保证土钉的承载力。最后,将钢筋网片覆在表层,进行混凝土工作喷射,分层开挖土方。

3、排桩支护技术

在建筑基坑支护施工技术的应用中,桩排支护技术是其中较为常用的技术。桩排支护技术主要利用混凝土灌注桩或钢桩支撑施工土体,在土体的内部安置支撑构件或锚杆配合桩体对土地进行支护。一般来说,在具体的建筑工程中,应该根据工程施工的实际情况灵活选用内撑式支护结构、锚杆式支护结构、悬臂式支护结构和拉锚式支护结构等。在进行排桩支护时,对于钢桩来说,其承载力高,能够二次利用,但成本相对较高;而混凝土灌注桩具有施工方便,布置简单,造价经济等优点,在施工中应用较广。

在建筑施工过程中,应用排桩支护技术,一般来说,根据施工沉桩的方式,钢桩预制桩可以分为单独打入法钢桩和围檩打入法钢桩。根据施工成孔的类型,灌注桩可以分为干作业成孔灌注桩、套管成孔灌注桩和泥浆护壁钻孔灌注桩。混凝土灌注桩对钻孔质量、钢筋放置、混凝土灌注等要求较高,在工程施工时注意桩位偏差、桩底余渣、桩身完整性等情况的监测。而预制桩则要桩身挠曲度、位置、桩身表面缺陷、桩的尺寸等情况进行监测。建筑基坑施工中,使用排桩支护技术的工程,要等支护工作施工完成之后,才可以进行开挖工作。如果排桩处于的含有地下水土层时,一定要采用适当的隔水、止水措施,确保施工现场基坑内部和周围建筑的安全。在建筑基坑深度过大的情况下,要采用排桩和锚杆相结合的支护方式,在排桩墙上安置锚杆以增强土体承载力。

4、放坡开挖技术

通常,按照规定的角度对建筑基坑支护结构进行放坡施工,就是我们平时所说的放坡开挖。在建筑基坑支护施工技术中,放坡开挖技术经济方便。该技术在工程施工过程中需要许多挖好的土方,如果建筑工程所处的位置地下水位较低、给排水条件好、使用范围较广、地质条件优越,那么在项目工程中实施放坡开挖对周围的建筑物就不会造成较大的影响。

在具体的项目工程实施中,必须结合具体的施工情况选择恰当的类型。在工程放坡开挖时如果边坡太大,很可能会导致土体不稳,引起土体塌方;相反,若是边坡的坡度过小,那么就会导致施工人员的工作量增加和土体空间的浪费,还会给周围建筑物埋下安全隐患。所以,在建筑基坑支护施工中,要高度重视边坡的大小。

四、结束语

深基坑是整个建筑工程施工的重要内容,加强对施工技术的控制,严格采取合理的支护措施,并做好基坑的排水施工,有助于提高整个工程的安全性和稳定性,也有助于提升工程质量,实现较好的社会经济效益。

参考文献:

[1]吴光水; 徐文彬 论深基坑施工技术相关特点要点[期刊论文] 科技创新导报2010/15

[2]杜婧 对建筑深基坑施工技术的几点看法[期刊论文] 中华民居(下旬刊)2013/04

[3]张海江大型深基坑施工技术及环境保护[期刊论文] 建筑安全2011/0

[4]宋楠桥梁深基坑施工技术探讨[期刊论文] 科技创新导报2010/34

第4篇

关键词:引水工程 基坑支护

1、引水工程基坑支护的特点

引水工程在基坑支护方面的工作与其他建筑方面的基坑支护的工作还存在着一定的差别,引水工程基坑支护的过程中有着自身的独特特点,是一般基坑支护工程所不存在的。这主要是因为引水工程所采用的是一些输水管道,并且一般引水工程所输送的水量都比较大,因此引水工程所采用的输水管道的管径一般都很大,因此在引水工程基坑支护过程中要根据具情况进行支护工作。一般的引水工程基坑支护有以下几个普遍的特点:①从基坑的设计规模来说,引水工程基坑的设计规模与城市的一些中高层建筑所挖掘的基坑的规模相比还是比较小的;②从基坑施工的持续时间来说,引水工程基坑支护的施工远远的比中高层建筑基坑支护施工持续的时间短,一般引水工程基坑施工过程持续的时间大概为14―21 d;③从基坑的受力情况来看,引水工程基坑的施工过程中所采用的起重机等设备与中高层建筑施工中所采用的起重机等设备有所不同,引水工程基坑在施工过程所采用的起重机的类型是大型履带式的,因此引水工程基坑周边的载荷在计算时要根据实际的基坑情况来进行计算。

2、引水工程基坑支护的主要形式

基坑支护所采用的形式多种多样,根据基坑规模的大小以及设计要求来确定采用相对应的支护形式。下面对其常用的基坑支护形式进行简单介绍。基坑支护所采用的形式大概分为8种:①基坑边坡在进行支护的过程中如果采用拉森Ⅳ钢板桩l型需要满足的条件是基坑的深度

3、深基坑支护设计中的注意事项

3.1彻底转变传统的设计理念

近十几年来,我国在深基坑支护技术上已经积累很多实践经验,收集了施工过程中的一

些技术数据,已初步摸索出岩土变化支护结构实际受力的规律,为建立深基坑支护结构设计

的新理论和新方法打下了良好的基础。但是,对于深基坑支护结构的设计,国内外至今尚没有一种精确的计算方法,多数是处于摸索和探讨阶段。我国也没有统一的支护结构设计规范。土压力分布还按库伦或朗肯理论确定,支护桩仍用“等值梁法”进行计算。其计算结果与深基坑支护结构的实际受力悬殊较大,既不安全也不经济。由此可见,深基坑支护结构的设计不应再采用传统的“结构荷载法”,而应彻底改变传统的设计观念,逐步建立以施工监测为主导的信息反馈动态设计体系。这是设计人员需要加强科研攻关的方向。

3.2建立变形控制的新的工程设计方法

目前,设计人员用的极限平衡原理是一种简便实用的常用设计方法,其计算结果具重要

的参考价值。但是,将这种设计方法用于深基坑支护结构,只能单纯满足支护结构的强度要求,而不能保证支护结构的刚度。众多工程事故就是因为支护结构产生过大的变形而造成的,由此可见,评价一个支护结构的设计方案优劣,不仅要看其是否满足强度的要求,而且还要看其是否产生环境问题,关键在于其变形大小。鉴于上述实际,在建立新的变形控制设计法时,应着重研究支护结构变形控制的标准、空问效应转化为平面应变和地面超载的确定及其对支护结构的影响等问题。

3.3大力开展支护结构的试验研究

正确的理论必须建立在大量试验研究的基础上。但是,在深基坑支护结构方面,我国至今尚未进行科学系统的试验研究。一些支护结构工程成功了,也讲不出具体功之处;一些支护结构工程失败了,也说不清失败的真实原因。在支护工程施工的过程中积累的技术资料很丰富。但缺少科学的测试数据,无法进行科学分析,不能上升到理论的高度,这是―个很大的缺陷。开展支护结构的试验研究(包括实验室模拟试验和工程现场试验),虽然要耗费部分资金,但由于深基坑支护工程投资巨大,如经过科学试验再进行设计时,肯定会节省可观的经费。因此,工程现场试验是非常必要的。通过工程实践积累大量的测试数据,可对同类工程的成功打好基础,为理论研究和建立新的计算方法提供可靠的第一手资料。

3.4探索新型支护结构的计算方法

高层建筑的飞速发展绘深基坑支护结构带来一场技术革命。在钢板桩、钢筋混凝土板桩、

钻孔灌注桩挡墙、地下连续墙等支护结构成功应用后,双排桩、土钉、组合拱帷幕、旋喷土锚、预应力钢筋混凝土多孔板等新的支护结构型式也相继问世。但是,这些支护结构型式的计算模型如何建立、计算简图怎样选取、设计方法如何趋于科学,仍是当前新型支护结构设计中急需解决的问题。目前,深基坑支护结构正在向着综合性方向发展,即受力结构与水结构相结合、临时支护结构与永久支护结构相结合、基坑开挖方式与支护结构型式相结合。这几种结合必然使支护结构受力复杂。所以,建立新型支护结构的计算方法,已成为深基坑工程技术的当务之急。

参考文献:

第5篇

关键词:边坡开挖;支护;水利水电工程;施工;应用

中图分类号:TV文献标识码: A

一、工程的施工准备

1.做好工程的施工安全因素剖析。就目前我国水利工程施工的情况看,边坡开挖和支护工程的施工影响的主要安全因素主要有以下几方面

(1)水利工程边坡上部岩体的结构不够稳定,导致在工程施工过程中的一些安全隐患问题,所以未来在确保下部施工安全下, 工作人员需要在施工的过程中妥善做好一定的加固处理。

(2)在边坡施工过程中,应该充分考虑到岩石各种指标和其本身的性能,必须要认真分析它的岩抗风化的能力、抗软化的能力以及硬度,还应充分考虑到强度、透水性和组成等方面指标。

(3)水利工程的岩层结构相对于水利工程高边坡在施工质量上影响也是及其重要的,必须要综合的考虑岩体节理裂隙以及发育程度和岩体结构基本分布的情况。

(4)在施工区域水文环境以及气候对于高边坡施工的影响也是巨大的。其五,施工地区本身地质地貌和坡度对于施工的质量应用也占有很重要的一部分。

(5)对于施工过程中风化作用影响,也是不容忽略重要因素之一。

2.做好工程的施工道路布置。在水利工程施工的过程中,道路布置对工程施工效率影响是非常重要的,特别是对于高边坡施工的过程,组织好工程道路,就会大大提高施工的效率。一般情况下,应该布置选择最少是两条施工的道路,左、右岸要各布置一条,如果存在临时施工工程,还应该另外新增设两条其它的线路。

二、水利工程边坡开挖施工技术的分析

1.水利工程边坡的开挖流程。就目前我国的水利工程边坡施工的情况看,通常情况下所采取的是自上而下开挖的挖掘原则和顺序,从具体流程上看,通常情况下应该按照如下的顺序进行:即表面植清除――土方来开挖――石方来开挖的原则,需要注意的是,在挖掘过程中,必须完成了上一步挖掘项目,才可以进行下面的施工。

2.水利工程边坡开挖的施工说明

(1)植被的清理

在对于边坡的施工前,必须要对其施工的地区来进行一定的清理,通常情况下,施工范围应涵盖在开挖线外五米的距离左右的位置,这样才能够避免一些杂物进入到施工的区域。

(2)土方的开挖。上文我们提到在土方开挖过程中,应该采用按照自上而下顺序来进行,这样不仅利于工程的施工区域下地表水的排水,还能够有效避免在施工的过程中因为雨水的冲刷所导致边坡施工质量的不合格。

(3)石方的开挖。在高边坡施工的过程中,石方开挖的施工主要包括内容主要是左岸坝的肩石方开挖、河床石方的开挖和右岸的坝肩石方的开挖三个部分,下文将结合实际的工作经验,逐一的进行分析。首先,左岸坝肩石方的开挖。因为左岸坝肩石方的开挖施工特点决定了该选用露天液压钻的CM351钻机与ZQ100D的潜孔钻钻孔式设备来作为主要施工的设备,并且还可根据工程实际岩体的结构来选择手风钻式作为辅助。在左岸的石方挖掘过程当中,仍旧采用的是分层方式进行, 避免因此开挖与爆破所导致岩体的结构破裂,从而所导致的工程安全方面的问题。其次便是右岸坝肩石方的开挖。一般是和左岸坝肩的石方开挖比较相似的是,在右岸坝肩石方的开挖过程当中,仍然需要采用露天液压钻的CM 351式钻机与ZQ100D的潜孔钻式设备为主,采用以手风钻式钻孔为辅原则。但是要注意的是,在石方的开挖过程中,应采用自卸车方式将挖掘出来的废料与岩碴依照相关指定线路运送至工程上游所制定弃碴的场地。

三、水利工程边坡的支护施工与技术分析

1.支护前各项准备工作

(1)在边坡支护之前,应该根据地质的条件、工艺的要求,结构的形式以及岩体暴露的时间等因素来编制施工的方案,再制定详细施工作业的指导书,并向施工的作业人员来进行交底工作。

(2)作业人员应该根据施工的作业指导书要求,及时的进行支护。

(3)在作业前,应该认真的检查施工区边坡的稳定情况,需要的时候应首先进行安全的处理。

(4)对于一些不良的地质地段临时进行支护,应结合永久性的支护来进行,即为在不拆除或是对一部分拆除临时的支护条件下,来进行永久性的支护。

2.锚喷支护的施工说明。锚喷支护在施工时应该做好以下几个方面工作:

(1)在施工前,首先应该通过现场的试验或者依工程的类比法,来确定合理锚喷支护的参数。

(2)锚喷作业机械的设备,应该布置在安全的地段。

(3)注浆器和喷射机等设备,应该在使用之前做好安全的检查工作。

(4)喷射的作业面,应该采取综合的防尘措施来降低粉尘的浓度,可以采用湿喷的混凝土。

(5)在岩石渗水比较强的一些地段,在喷射混凝土前应该设法把一些渗水集中的排出。在喷后来钻排水孔,以 防止喷层来脱落伤人。

(6)当凡锚杆孔直径如大于设计所规定数值时,就不应该安装锚杆。

(7)砂浆锚杆在灌注浆液时,应该遵守下列的规定

在作业前应该检查注浆罐、注浆管和输料管是否完好。

注浆 罐的有效容积不应该小于0.02m,耐力要不小于0.8MPa,在使用前应该进行耐压的试验。

在作业开始时,采用水或者是0.5―0.6 的水灰比纯水来泥浆的注浆罐和其管路。

注浆的工作压力应该逐渐升高。

注浆的作业应该连续进行,罐内的储料应该保持罐体容积约三分之一处左右。

喷射机、水箱、注浆器以及油泵等设备,应安装使用压力表与安全阀,在使用的过程中如果发现有破损或者是失灵时,应该立即的更换。

在施工期间应该经常的检查输料管、注浆管和喷头等管路连接的部位,如果发现有磨薄、连接不牢或击穿等现象,应该立即处理。

四、案例分析

下面便是以某水利水电工程施工的过程为例来讲述边坡的支护及开挖。

通过一定的科学分析认证而知,某工程所需要的开挖及支护的工程量相对较大,所需要进行明挖的土方量为24.62万立方米,进行明挖的石方量为6.09万立方米,所用于护坡混凝土的量为0.83万立方米,此外还需要一些不同种类的锚筋,总根数大概在0.5万。

依据水利工程施工的设计图而知这个水利工程的边坡所需要开挖最大度可以达到120米,但是在实际的施工过程当中,所需要开挖最大度是140米,这便就需要做好较为科学的计划及预算,这样才能确保施工环节顺利的进行。电站的厂房建设主要形式一般为靠近岸边地面厂房的类型,所有的厂房基本位置通常都是位于钢筋混凝土结构石坝的右岸,施工的现场大概要布置了4台水轮发电机组,发电机组的容量达880MW,根据水利工程的陡边坡的具体施工情况以及地质的特点布置爆破的实施步骤,要严格的控制爆破的技术,确保开挖的质量。边坡支护以及开挖当中的爆破技术的具体程序应该包括以这几个方面:

1.要做好网络工程的准备工作

这个工程所使用到的爆破网络一般为非电雷管孔间的并且具有微差顺序特征爆破的网络,且预裂孔起爆的时间要求在75m/s到100m/s之间,拱坝建基面的预裂孔单响药量通常在小于20kg为最佳,在离建基面30米以外的单响药量务必要控制在小于100kg,若是15米以内的就要控制在小于25kg,此外还应该考虑到质点的振动速度大小,这样才可以确保施工的质量。

2.在钻孔的时候主要所使用的为液压钻,二者的钻孔位置都要保持平衡,水平距离要控制在1m到1.5m,此外爆破孔孔底同预裂面的垂直距离要控制在大于2.5米。在通常情况下,缓冲孔的药卷直径一般要控制在50毫米左右,装药的方式通常为连续不耦合的两段式,堵塞段的长度要设置在1.0m到1.5m之间,通常线装药的密度为2.0 kg/m3到2.8kg/m3,第二段要封堵孔口,第一段要封堵中部。

3.要控制预裂孔尺寸以及爆破的标准。预裂孔一般有两种类型,其中包括着马道水平的预裂孔以及坡面的预裂孔,这两种的钻孔所使用的机械是不相同的,在尺寸方面的控制要得当。在马道的水平预裂孔的钻孔的过程当中通常要使用的机械为YT28型的手风钻,孔深一般要控制在2米左右,每一个孔间的距离要控制在小于50厘米,将孔口堵塞的深度要控制在小于0.5米。对于坡面的预裂孔来说,孔径大小通常要控制在小于90厘米,在钻孔时一般采用的是XZ-30潜孔钻,预计深度为17.28米,超深在0.5米左右,各个间的距离控制在60cm到80cm之间。

结语

边坡的开挖以及支护工程施工部分作为水利工程在施工过程中的重要一个环节,边坡的开挖和支护工程施工的质量会直接决定和影响整个水利工程的施工质量,因此,对于水利工程的高边坡开挖和支护工程施工技术的研究分析有着重要的现实意义。

参考文献

[1]. 莫达钟 浅谈水利工程高边坡开挖与支护技术 [期刊论文] 《城市建设理论研究(电子版)》.2013年

第6篇

关键词:深基坑支护;施工质量;控制

中图分类号:TU74文献标识码:A

一、深基坑支护的特点

深基坑支护主要应用于房屋建筑、地下工程、桥梁工程等基础设施。它的作用是确保主体工程基础部分的顺利实施,而支护的成功与否直接影响工程经济效益、工程进度、施工安全。深基坑支护是为完成建筑产品而采取的临时措施之一。一旦完成了基础工程后,也就完成了它的使命,施工成本高。支护下程一般都是按恳臂构件来考虑的,随着深度的增加悬臂的长度也增加或者是在中间部分增加内撑。受地质条件、地下水的情况、岩土成份的不同也会直接影响支护丁程的造价。它的施工技术有:桩基工程、喷射砼技术、锚杆技术、钢筋砼、多层支撑换撑、土方开挖、基坑排水、地基土处理等。

二、目前深基坑支护存在的问题

(一)支护结构设计中土体的物理力学参数选择不当

深基坑支护结构所承担的土压力大小直接影响其安全度,但由于地质情况多变且十分复杂,要精确地计算土压力目前还十分困难,至今仍在采用库伦公式或朗肯公式。关于土体物理参数的选择是一个非常复杂的问题,尤其是在深基坑开挖后,含水率、内摩擦角和粘聚力三个参数是可变值,很难准确计算出支护结构的实际受力。

在深基坑支护结构设计中,如果对地基土体的物理力学参数取值不准,将对设计的结果产生很大影响。土力学试验数据表明:内磨擦角值相差5。,其产生的主动土压力不同;原土体的内凝聚力与开挖后土体的内凝聚力,则差别更大。施工工艺和支护结构形式不同,对土体的物理力学参数的选择也有很大影响。

(二)基坑土体的取样具有不完全性

在深基坑支护结构设计之前,必须对地基土层进行取样分析,以取得土体比较合理的物理力学指标,为支护结构的设计提拱可靠的依据。一般在深基坑开挖区域内,按国家规范的要求进行钻探取样。为减少勘探的工作量和降低工程造价,不可能钻孔过多。

(三)基坑开挖存在的空间效应考虑不周

深基坑开挖中大量的实测资料表明:基坑周边向基坑内发生的水平位移是中间大两边小。深基坑边坡的失稳,常常以长边的居中位置发生。这足以说时深基坑开挖是一个空间问题。传统的深基坑支护结构的设计是按平面应变问题处理的。对一些细长条基坑来讲,这种平面应变假设是比较符合实际的,而对近似方形或长方形深基坑则差别比较大。所以,在未进行空间问题处理前而按平面应变假设设计时,支护结构要适当进行调整,以适应开挖空间效应的要求。

三、基坑支护施工阶段的质量控制措施

施工阶段是项目实施的关键阶段。监理上程师应根据地质勘探资料和当地水文气候条件,结合当地深基坑下程施工的经验和条件。确定工程的关键项目,要求施工单位制定专项施工方案报监理机构审核,‘并强调要制定突发事件的应急预案。

(一)深基坑工程的施工

深基坑工程包括挖土、挡土、围护、防水等环节,是一项复杂的系统工程,任何一个环节的失误都有可能导致施工失败,甚至造成事故。施工单位要严格按照施工规程、经批准的施工组织设计及相关的技术规范组织施工,对各施丁要点要制定施工方案,并加强过程控

制。例如,确定土方开挖方案时,应对地质勘测报告、周围建筑物及地下设施情况等信息进行分析,对特殊土质需精心组织施工,膨胀土地区不宜在雨季开挖,软土地区分层开挖的深度不宜太大。

(二)深基坑周围土体止水效果的控制

在地下水位较高的地区,地下水对深基坑工程施工带来的危险程度是相当高的。由于水的来源复杂,在制定止水方案时应从深基坑工程的防水、降水和排水三个方面考虑,根据地质勘察部门提供的地质资料。深入分析地下水的成因。了解深基坑周围环境,不能仅靠长时间不问断地抽水来降低地下水位,否则会导致基坑周围土体流失,周围建筑物不均匀沉陷,甚至发生坑底流沙、管涌等现象,增大了处理难度,拖延了工期。

在止水帷幕施工时要注意以下几点:

1.保证桩体质量。确定合理的水泥浆掺加量,保证桩体搅拌均匀、桩长达到设计深度,避免桩头出现搅而无浆的情况,特别是在土层情况变异较大的地区,因搅拌桩的桩径不易控制,容易导致止水失效。

2.保证桩的搭接长度和密实度,杜绝空洞、蜂窝及桩头开叉的现象。

3.不得随意在基坑支护结构上开工,否则会影响支护结构的安全。也破坏了止水帷幕,导致地下水的渗入。

(三)深基坑支护的信息化管理

基坑支护结构信息化管理的主要手段。是安排专业施工监测人员对基坑现场及周围建筑物进行监测,根据基坑开挖期间监测到的基坑支护结构或岩土变位等情况,比照勘察、设计的预期性状,动态分析监测资料,全面掌握位移变化的大小、方向、变化频率,对照报警标

准。预测下一阶段工作的动态,及时对施工中可能出现的险情进行预报,超过位移设定的预警值时,应及时采取有效的应对措施,确保工程安全。

深基坑支护结构工程监测的主要内容有:支护结构顶部水平位移;支护结构沉降和裂缝;临近建筑物、道路的沉降、倾斜和裂缝;基坑底隆起的观测等。以上监测除每天进行目测之外,一般每8~10m设一个监测点。关键部位适当加密,开挖后每3—5d监测一次,位移大时应适当加密。观测结果要真实反映所测目标的动态趋势。并绘出变化曲线图,以传递险情前兆信息,找出险情发生的必要条件,如地质特性、支护结构、临近建筑物、地下设施等,结合相关的诱发条件,根据基坑支护结构的稳定性计算结果进行科学决策。以排除险情。开挖较深的基坑时。还应测试支撑的内应力,当应力值达到设计值的90%(或支撑变形达10mm)时,要及时采取防范措施。

参考文献:

第7篇

关键词:基坑支护;复合土钉;安全监测;经济技术分析

随着城市建设的不断发展,城市用地日趋紧张,充分开发和利用地下空间是解决问题的重要方向之一。其中基坑工程就是一个利用地下空间的大分支,目前深基坑支护的方法比较多,而土钉墙支护是其中之一。但是纯土钉墙不适用于松软土层也不宜用于淤泥质土或饱和软土中,这主要是由于软弱土层的抗剪抗拉强度较低,且成孔困难,不能为土钉提供有效的抗拔力。为了解决这些问题,扩大土钉支护应用的范围,复合土钉支护应运而生。

1 花式锚管复合土钉墙支护的优点

2 工程实例

2.1 工程地质条件

2.3 方案选择

在反复研究该工程的地质、水文条件、环境因素的基础上,在确保基坑及周边建筑物的稳定性、安全性的前提下确定该基坑采取土钉+花管+放坡复合支护。

3 基坑支护方案设计

3.1 土钉杆体的选择

3.2 土钉间距的确定

根据本工程的勘察报告,在基坑开挖土层中以粉质粘土和粉土为主。综合考虑,决定采取土钉的水平间距为相对较小值,故取土钉水平间距SH=1.5m。土由于中间采取花管代替土钉,因此顶层土钉垂直间距与水平间距相同即取1.5m,顶层以下应适当加大尺寸故取1.6m。

3.3 土钉长度确定

3.4 土钉与水平面夹角的确定

考虑到本基坑的土层条件,决定土钉的入射角度为α=10°

3.5 锚固体直径的确定

本工程采用钻孔注浆型土钉方案,钻孔直径一般为100~200mm,综合考虑各种因素及经验,决定选为钻孔直径d0=110mm。

4 本工程中花式锚管的施工

4.1 花管构造

4.2 花管注浆施工

花管注浆是将注浆管通过钻孔入地层,分段注浆,使浆液在压力条件下,均匀地进入地层,以达到浆液在地层中分段可控、均匀扩散的目的。注浆时设置注浆外管,注浆外管将永久留在土体中。注浆外管每隔一定间距预留出浆孔,在出浆孔处加截止阀,注浆时,将带封堵装置的注浆内管置入注浆外管内,形成上图所示的倒刺。

4.3 钢筋混凝土面层施工

5 施工监测与结果

在整个基坑施工过程中,设置4个监测基准点,均设置在基坑边线35m以外;基坑坡顶位移监测点沿基坑上口线布置,每隔20m布置一个;基坑底沿开挖底线每隔20m布置一个变形观测点以观测坑底变形。通过实测结果表明坡顶水平位移和垂直位移及基坑周围地表沉降均没有超出允许的范围。

6 结论

土钉+花管+放坡联合使用,使土钉墙的工作性能发生了很大变化,对地基承载力的要求较低,大大减低了结构地基处理的费用。特别是在城区狭窄地带,还可节省现场施工场地,减少基坑放坡开挖的土方量,与传统的支护方式相比造价较低,施工简便,易于掌握,且缩减工期,是一种很好的基坑支护形式。

参考文献:

[1] 钟昌云.土钉墙技术及其发展前景.重庆工业高等专科学校学报,2005.

第8篇

关键词:截污管道,HDPE双壁缠绕管,定向钻牵引法,施工技术

 

1、工程概况:

中山大道污水管工程,管道总长度3560m,管径分别为DN700、DN600、DN500、DN400,管材为HDPE双壁缠绕管,其中有一段DN管道约1300m,原计划采用明挖施工,采用密扣拉森钢板桩支护形式。论文参考,截污管道。根据地质报告,该段地质情况复杂,且地下水丰富。论文参考,截污管道。管道所处位置土层从上而下分别为人工填土及淤泥、淤泥质土,边坡稳定性差。管道埋深约5m。刚好处于砂层,砂层含水量较为丰富,为强透水层,极易产生管涌和透水流沙等现象。一旦基坑外侧出现水土流失,必使离基坑边不到5m的城市主干道路面下沉、开裂,造成不可估量的损失。经多方论证,决定采用且具有非开挖、对周边土体影响小,施工工期短等优点的定向钻牵引法施工。

2、施工要点

定向钻牵引法又称导向钻进施工,是非开挖敷设地下管线技术的一种,其主要施工流程如下:

2.1、管道检查

HDPE双壁缠绕管具有抗外压能力强,是能承受较大拉应力的管材;具有较好的柔韧性,能较好适应沉降,从而提高管道的抗震能力;单位重量轻,在牵引过程中减少与孔壁的摩擦力,提高施工效率和节约成本,非常适用牵引施工等特点。为确保工程质量,管道规格、环刚度、弯曲受拉极限等必须满足设计要求,管材进入工地时要仔细检查。

2.2、钻杆轨迹设计

该段管为重力流截污管,必须按设计流水位标高、流水坡度进行埋设,故钻杆的钻进轨迹设计必须按管道纵剖布置图进行设计。钻杆的钻进轨迹包括两个部分,造斜段和铺设段。造斜段是钻杆进入敷设管道深度的过渡段,直线段是管道穿越障碍物的敷设段。

钻杆轨迹的形态取决于穿越起点A与穿越终点B,敷设深度h、造斜段曲率半径R1(取1200d(钻杆直径取mm),故R1=m)。论文参考,截污管道。如下图示:

2.3、工作坑施工方案

每段管道牵引需要挖掘2个工作坑,包括入口工作坑、出口工作坑。均采用机械挖掘,采用密扣钢板桩支护。

入口工作坑是为了检测钻杆的钻进角度和旋转扭动等工作状态而设的工作坑。在钻机前面6~10m处挖掘。尺寸为宽×长=1.5×6m,挖深由地面渐变到深4.5m。

施工工序为:破除路面→打钢板桩支护→挖土→清运余泥→工作坑围蔽。

人工挖泥过程注意不要损坏人行道的地下管线。

出口工作坑是回拖时提供排水管入洞工作坑,出口工作坑尺寸和施工方法与入口工作坑相同。

2.4、钻进技术方案

导向钻机的主要部件为:轮式钻机、操作系统、动力站、液压系统、钻头、钻杆等,对照安装使用规范进行安装。

钻机运到现场必须先锚固稳定,钻机如果锚固不稳,将会发生功率损失或者功率作用在机器身上,造成机器和人的伤害。钻机是依靠地锚座和后支承与地基固定的,安放钻机前应先平整场地,根据预先设计的的钻机倾斜角度进行调整,依靠钻机动力将锚杆打入土中,使后支承和前底座锚与地层固结稳定。论文参考,截污管道。

导向钻进原理:钻机的钻头的一侧为斜面的鸭舌形状,钻头通入高压水射流切割土体,若钻头旋转和加压钻进同时进行,由于四周受力方向均一,钻头呈直线钻进;若只加压钻进而钻头不旋转,由于受到斜面的反作用力,钻头则朝斜面法线反方向钻进,实现造斜钻进。

钻杆轨迹的第一段是造斜段,控制钻杆的的入射角度和钻头斜面的方向,缓慢给进而不旋转钻头,就能使钻头按设计的造斜段钻进。钻头到达造斜段完成处,接下来的是排水管流水段的钻进。旋转钻头,并提供给进力,钻头就能沿水平直线钻进,由于在钻头位置安装了最先进的探测仪器,在钻进过程中通过地面精密接收仪器,通过接收仪器数据调整钻头角度,使得钻进按照流水线标高路线前进。到达出口工作坑,完成钻孔工序。

2.5、回拉敷设管道

扩孔成功到1000mm后,可以进行回来管道工序。在回拖前要进行管线连接的工序,用热熔法将双壁缠绕管连接成与成孔长度相当的管道。准备好后,将管道与扩孔器相连,回拉将管道牵引进孔洞内。论文参考,截污管道。

2.6、检查井

对于每一牵引管道段内的检查井采用竖井人工挖孔护壁作业法进行砌筑。论文参考,截污管道。放样放出检查井位置后,采用逆作法,每一节段的高度控制在1m以内,开挖到管道位置后再进行砌井施工。井壁和护壁之间空隙用中粗砂灌水填充。

3、结束语

现在社会正处于高速发展阶段,为满足社会发展的各市政功能要求,每年需敷设、修复大量的公用管道(如雨、污排水管道、通讯光纤、供水管道、电力电缆等),这些管道往往沿着城市现有道路敷设,如采用传统的明挖敷设法,必对人们的日常生活和生产造成严重的影响。随着人们环境保护意识的增强,定向钻牵引等非开挖敷设地下管线的工艺将得到大力的运用与发展。

本工程成功采用了HDPE双壁缠绕管定向钻牵引施工技术,不但保证了工期,确保了工程的安全,更最大限度减少了工程对周边道路的影响,取得了良好的社会和经济效益。

参考文献:

[1].赵明华,卢华峰,秦双乐,定向钻穿越施工控制方法[J].武汉工程大学学报.2009.(05)

[2].贾向英.排水工程水平定向钻非开挖施工技术[J].山西建筑.2009.(02)

第9篇

论文摘要:土钉墙支护是通过土钉技术的加固使其成为一个复合挡土结构。尽管该技术应用较为广泛,但其理论研究却落后于工程实践,特别是对于土钉支护软弱岩质边坡工程的研究则更少,因此,本文通过分析土钉墙支护的特点,针对边坡支护的机理,从施工材料及机具的准备,到施工工艺及质量控制的相关技术进行探讨,以期充分发挥土体的空间支护作用,使边坡位移和变形及时得到约束限制。

1 土钉墙支护的特点

土钉墙支护法,以尽可能保持、显著提高、最大限度地利用基坑边壁土体固有力学强度,变土体荷载为支护结构体系一部分。喷射混凝土在高压气流的作用下高速喷向土层表面,在喷层与土层间产生“嵌固效应”,并随开挖逐步形成全封闭支护系统;喷层与嵌固层同具有保护和加固表层土,使之避免风化和雨水冲刷、浅层坍塌、局部剥落,以及隔水防渗等作用。土钉的特殊控压注浆可使被加固介质物理力学性能大为改善并使之成为一种新地质体,其内固段深固于滑移面之外的土体内部,其外固端同喷网面层联为-体,可把边壁不稳定的倾向转移到内固段及其附近并消除。钢筋网可使喷层具有更好的整体性和柔性,能有效地调整喷层与土钉内应力分布。

2 土钉墙边坡支护的机理

土钉墙加固与传统的护坡和挡土墙支撑机理不一样,土钉墙在边坡的一定范围内形成了一个加固区,由于很密的土钉锚杆的作用,滑移面不可能出现在加固区,只能产生于非加固区,从而使滑移面远离边坡,达到稳定边坡的目的,加固区的整体稳定,包括加固区抗倾覆与抗滑移问题,用增加加固区的宽度和底排土锚杆打成向下倾斜穿过滑移面等措施来解决,土钉墙通过下述几个方面的综合作用使边坡周边土体形成加固区。

2.1 锚固作用

密布的锚杆与砂浆柱体相结合对周围土体产生有效的锚固作用,限制了砂浆柱体周围的土体变形。①土钉不需要施加预应力,而是在土体发生变形后使其承受拉力工作;②土钉支护在边坡中比较密集,起到了加筋的作用,提高了土的强度,为被动受力机制。由于土钉在全长范围内与土体接触,其荷载传递沿整个土体进行。

2.2 土钉浆孔对土体的挤密作用

由于土钉锚杆的密度比较大,挤密作用的影响也较大,使加固区的土体比非加固区土体密度大。密集的土钉与土钉之间土形成复合土体,其结构类似重力式挡土墙,个别土钉的破坏不会使整个结构的功能完全丧失。

2.3 护坡作用

土钉墙的面层不是主要受力结构,其主要作用在于保持土体的局部稳定性。在公路边坡治理中,土钉墙的面层还起到防止冲刷、防止雨水渗入坡体影响边坡稳定性的重要作用。

2.4 土钉受力及规模

一般锚杆长度在15~45m之间,直径较大,锚杆所承受的荷载可达400kN以上,某些预应力锚索设计荷载更可达3000kN。其端部的构造较土钉复杂,以防止面层冲切破坏;而土钉长度一般为3~10m,浆体直径100 mm左右,一般不提供很大的承载力。单根土钉受荷一般在100kN以下,面层结构较简单,利用小尺寸垫板及挂网喷射混凝土即可满足要求。

目前国内土钉支护结构主要用在建筑基坑支护上,用于公路边坡支护的较少。这主要是因为基坑深度不大,一般不超过20m。但是山区,道路路堑边坡很高,原来的力学平衡破坏严重,产生的滑坡推力每延米可达1000kN以上,采用土钉支护结构则难以满足要求。对于一些滑坡推力小的土石质路堑边坡,仍可采用土钉支护,既节省投资,也能缩短工期,具有明显的优势。一些缺乏稳定性的高路堤或挡土墙也可以采用土钉支护加固,但还有待于我们改进土钉支护技术,使其优点发挥在整个边坡支护中。

3 土钉墙边坡支护的施工材料及机具

3.1 原材料

土钉钢筋使用前应拉直、除锈、涂油;选用P·032.5普通硅酸盐水泥;采用干净的中粗砂,含泥量小于5%;采用干净的圆砾,粒径2~4 mm;使用速凝剂,应做与水泥相容性试验及水泥浆凝结效果试验。

3.2 施工机具

土钉成孔机具根据土质和现场环境条件选用(冲击钻、螺旋钻、风枪或洛阳铲等)能完成设计要求的有效机具;注浆泵选用孔口压力大于0.1MPa的泥浆泵;混凝土喷射机应密封良好,输送连续均匀,输送水平距离不小于60m,垂直距离不小于10m;空压机应满足喷射机工作压和耗风量的要求;搅拌方法采用现场人工拌和或混凝土搅拌机搅拌。

4 土钉墙边坡支护的施工工艺

土钉墙的施工流程为:挖土整理坡面初喷打孔眼插杆灌注挂网复喷。

4.1 开挖整理坡面

土钉支护是分层进行的,因此挖土深度不能超过设计深度,同时要保证坡角达到设计要求的78°~80°,坡面平整光滑,坡角未达到设计要求的则要进行专门修整。

4.2 初喷

为使挖好的坡面不产生垮塌,凡挖好的坡面需立即进行混凝土喷射,以使表层固结。其混凝土材料的配合比为水泥:石子=1.5:1.5,水灰比=0.5~0.6。

4.3 钻孔

采用人工机械一起作用的方法,钻孔下倾角度为15°~25°,采用风钻的方法进行,人工挖工用的是洛阳铲,两人一组。

4.4 插杆与灌浆

成孔后按设计要求插入直径中22mm加筋杆,加筋杆每1.5m焊接直径110mm的扶正环,起导正作用。在插筋的同时,用加筋杆将注浆管(直径1.5in)带进离孔底0.3m的地方,然后进行灌注,注浆材料的配合比为水泥:砂子=1:2。水灰比=0.4~0.5。孔内一定要灌满,不能形成空洞和孔隙。

4.5 挂网

上道工序完工后,按设计要求,将直径中6mm的钢筋,按30cm×30cm的网距焊接,固定于坡面之上;同时,在危险坡上的土钉之间用金属件(如槽钢等)连接在一起,以进一步加强支护强度。

4.6 复喷

挂网后,整个坡面复喷混凝土,其喷射厚度达到设计要求。

5 土钉墙边坡支护的施工质量控制

5.1 原材料控制

采购的各种材料必须满足规范及设计要求,必须选择清洁、坚硬、耐久的材料,禁止使用含有达到有害量的废物、泥、盐类、有机物等的不合格材料;选择的混合剂不能对水泥的凝固、水化作用产生有害的影响。

5.2 施工工艺控制

土钉孔眼的位置必须根据受喷面实际情况和设计布置。作土钉用的钢筋,使用前须除锈矫直,安装位置距孔眼中心,钢筋插入深度不得小于设计要求的90%,安装后不得敲击、碰撞。灌浆用的砂浆应拌和均匀,随用随拌,孔眼在灌浆前用风吹净,灌浆时从孔底开始,连续均匀的进行。挂钢筋网前必须将坡面清理平顺使钢筋网紧靠坡面钢筋网与土钉的联接必须牢固可靠。喷射混凝上的配合比必须经试验确定喷射混凝上宜随拌随用。分层喷射混凝土时后层混凝土应在前层混凝土终凝后进行,如超终凝1小时以上时,则受喷面必须用水、风清洗;喷头应与受喷面垂自其间距以0.6-1.2m为宜。喷头应连续、缓慢横向移动喷射厚度应均匀。喷射混凝土施工终凝2h后及时进行湿润养护,养护时间不得少于l4天。

结束语

土钉墙施工成功解决了基坑边坡的强度及稳定性问题,保证了施工的安全。此外,由于土钉墙能充分利用土体的自承能力的特点,与喷锚支护相比,其造价低,施工方便。因此在条件允许的情况下,采用土钉墙支护,可以大大节省投资。土钉墙施工周期短,与挖土同时进行,很少占用独立工期。挖土与土钉支护都分层分块施工,充分发挥土体的空间支护作用,并在开挖后几个小时内封闭,使边坡位移和变形及时得到约束限制。

参考文献

第10篇

关键词:煤巷;综掘;临时支护

DOI:10.16640/ki.37-1222/t.2017.04.068

1 引言

随着社会经济发展速度的加快,综掘工作面的生产能力与推进速度也随之得到迅速提升。但在生产能力与推进速度得到大幅度提升的同时,矿井中开始出现了采掘接替紧张现象的发生。那么如何有效防治这一问题,确保生产的顺利进行成为重中之重。支护与采准巷道的机械化的快速掘进成为有效解决这一问题,并实现生产高效性与安全性的最有效手段之一。从综掘机掘进情况来看,其工作具有一定的连续性,所耗费的工序较少,效率较高、速度很快,并且具有很强的安全性,正是由于这些优越的特点使之得到了较为广泛的应用。但是在支护技术上,由于传统支护技术中支护速度相关过慢,对挖掘速度的逐步提升形成了阻K,由此可见,传统支护技术已然不能更好的适应综掘机快速施工的要求。因此,改善传统支护技术,采用快速临时支护施工装备是推动快速掘进实现的重要手段,也是当前施工人员应开展的首要工作。

2 综掘机载临时支护装备研制的必要性

综合机械化掘进巷道临时支护一般采用窜管前探梁方式。该临时支护方式为被动支护,存在护顶力小、支护面积小、安全效能低等问题;同时该支护方式工效低,难以实现一掘多锚,锚杆钻机拖出拖进的次数频繁,严重制约掘进速度。该临时支护方式不可靠,已导致多起人身伤亡事故的发生。研发的综掘机临时支护装置, 可替代目前使用的临时支护方式,属主动支护方式,支护面积大,安全效能高;在施工锚杆支护时工人有安全保障,可有效约束顶板沉降和变形,减少冒顶事故发生;同时将大大缩短煤矿机掘巷道锚杆支护的辅助时间,提高机掘巷道综合月进尺,缓和目前煤矿普遍存在的采掘失调的矛盾。

3 临时支护机的原则

通过对综掘机性能的掌握以及对巷道支护工艺特点的深入了解可以得知,临时支护机包括以下几点原则:

(1)临时支护机可以起到为顶板施加预支撑力的作用,这种施加力量应十分得当,为了避免顶板遭到破坏,这种力量不可过大,不可太小。另外,在支护顶板的同时,还要担负着保护施工安全,确保施工顺利开展的关键作用。(2)在支护装置的支护高度不协调时,可以对支护高度进行适当的调整以便支护装置可以适应不同形状的巷道,如拱形、梯形或矩形等等。(3)临时支护机在操作过程中具有一定的平稳性,操作简捷方便,安全性能强,机械化程度较高,可以实现与掘进机的平行作业。(4)临时支护机拥有全液压控制,这样可以实现对机器的自我保护。这种控制模式在结构上十分紧凑,且布局十分合理,方便接替,同时在进行安装、维修与拆卸上也较为方便。

4 支架安全操作的注意事项

操纵阀组对液压支架进行安全操作的关键点,换句话说,要实现对液压支架的各项功能的安全操作应该通过操纵阀组来实现,这一操作是通过使主进、回液管路之内所存液体分别流入到系统中每个不同的分支管路、元件和执行机构内,这样可以保证对液压支架的安全操作。值得注意的是,在进行支架的安全操作中应该注意一下几点:

(1)在进行液压支架的相关操作中,应该由那些受到过专业培训,具有娴熟的操作技能的相关工作人员进行支架的操作,而且现场应该配有跟班队长进行现场指挥,以便可以保证液压支架的安全操作。另外,在操作之前还应对周围活动区域环境进行仔细的检查,查看该活动范围内是否有人存在,并且将其他安全隐患排除在外。

(2)在对移架进行操作过程中,工作人员应实现动作的快速与准确,一次成功。同时还要根据现场情况对支架进行随时调整,确保支架在移动后能与底板呈现垂直角度。当移架过程中,若发现存在较大阻力,应该及时探明原因,明确阻力过大的原因所在,并采取相应的措施,在此过程中切勿强制移动。若在临时支护时,顶板存在较大压力,甚至发出响声,此时应立刻停止工作,将工作面人员进行撤离,在顶板稳定后在由里向外进行逐步施工,确保施工人员安全。

(3)在对轻型单体液压支柱进行临时支护过程中,应确保3人将顶网托起,1人进行升柱,在升支护架时,一定要确保初撑力达到相应标准,这样才可以实现对顶板的支撑。同时,操作人员还应站在已经被永久支护号的巷道顶板的平行处,以便确保后路的畅通。

(4)应将指示图标进行及时的清理,以保证所留标识足够清晰,可以方便操作人员进行辨认,防止由于看错图标而产生的不必要的事故。在及时清理图标的同时,还要对底座推移空间进行及时清理,保证该空间的清洁卫生,这样可以保证移架工作的顺利完成。同时,要在支架前移过程中防止支架的倾斜与倒塌。

(5)在进行操作过程中,身体各个部位绝对不允许触碰或者进入顶梁与顶板之间以及底座与底板之间,一旦进入,则势必会造成人员伤亡。另外,在进行移架之间以及移架过程中,工作人员要对其工作范围内是否存在安全隐患进行精准判断,在确定无问题的情况下方可继续开展工作,以免发生事故,造成人身、财产安全的损失。

5 结论

伴随煤矿开采规模与范围的逐步提升,煤矿生产的安全性与高效性也成为煤矿企业管理人员关注的重要问题。在煤矿安全生产过程中,顶板的管理是其重要环节之一,而如何实现对顶板的科学管理,提升煤巷综掘工作面临时支护技术成为了加强管理、消除巷道顶板事故的核心与关键。因此,在巷道综掘工作中,科学选取合理的临时支护方式,对于加强管理、保证安全生产具有重要意义。一旦实现了机械化与自动化,综掘工作的效率会大为提升,促使工作人员从繁重的体力劳动中解放出来,营造一个安全、舒适的工作环境。

参考文献:

[1]常文青,车民,李芳廷.掘进头超前支护的研究与应用[J].煤炭技术,2007(07):68-69.

[2]马莉萍,陈三磊.掘进工作面不同支护条件下临时支护浅谈[J].中州煤炭,2010(05):69-71.

[3]徐志广.单体柱式临时支护技术改进及应用[J].煤矿安全,2013,44(10):97-99.

第11篇

论文摘要:在建筑基坑施工时,为确保施工安全,防止塌方事故发生,必须对开挖的建筑基坑采取支护措施,本文分析了当前深基坑支护存在的安全问题,提出了深基坑支护设计中的注意事项和预防措施。

一、 问题的提出

在建筑基坑施工时,为确保施工安全,防止塌方事故发生,必须对开挖的建筑基坑采取支护措施。建筑基坑支护设计与施工应综合考虑工程地质与水文地质条件、基坑类型、基坑开挖掘深度、降排水条件、周边环境对基坑侧壁位移的要求,基坑周边荷载、施工季节、支护结构使用期限等因素,做到合理设计、精心施工、经济安全。

近几年来,高层建筑的迅速兴起,促进了深基坑支护技术的发展。各地在深基坑开挖和支护技术方面积累了丰富的设计和施工经验,新技术、新结构、新工艺不断涌现。但是,现在的城市建筑间距很小,有的基坑边缘距已有建筑仅十几米、甚至几米,给基础工程施工带来很大的难度,给周围环境带来极大威胁,也相应地增加了施工工期和施工费用。另外,原来的深基坑支护结构的设计理论、设计原则、运算公式、施工工艺等,已不符合深基坑开挖与支护结构的实际情况,导致一些基坑工程出现事故,造成巨大的损失。因此,深基坑支护的安全问题工程技术人员应予以高度重视。

二、深基坑支护存在的问题

(一)支护结构设计中土体的物理力学参数选择不当

深基坑支护结构所承担的土压力大小直接影响其安全度,但由于地质情况多变且十分复杂,要精确地计算土压力目前还十分困难,至今仍在采用库伦公式或朗肯公式。关于土体物理参数的选择是一个非常复杂的问题,尤其是在深基坑开挖后,含水率、内摩擦角和粘聚力三个参数是可变值,很难准确计算出支护结构的实际受力。

在深基坑支护结构设计中,如果对地基土体的物理力学参数取值不准,将对设计的结果产生很大影响。土力学试验数据表明:内磨擦角值相差5°,其产生的主动土压力不同;原土体的内凝聚力与开挖后土体的内凝聚力,则差别更大。施工工艺和支护结构形式不同,对土体的物理力学参数的选择也有很大影响。

(二)基坑土体的取样具有不完全性

在深基坑支护结构设计之前,必须对地基土层进行取样分析,以取得土体比较合理的物理力学指标,为支护结构的设计提拱可靠的依据。一般在深基坑开挖区域内,按国家规范的要求进行钻探取样。为减少勘探的工作量和降低工程造价,不可能钻孔过多。因此,所取得的土样具有一定的随机性和不完全性。但是,地质构造是极其复杂、多变的、取得的土样不可能全面反映土层的真实性。因此,支护结构的设计也就不一定完全符合实际的地质情况。

(三)基坑开挖存在的空间效应考虑不周

深基坑开挖中大量的实测资料表明:基坑周边向基坑内发生的水平位移是中间大两边小。深基坑边坡的失稳,常常以长边的居中位置发生。这足以说时深基坑开挖是一个空间问题。传统的深基坑支护结构的设计是按平面应变问题处理的。对一些细长条基坑来讲,这种平面应变假设是比较符合实际的,而对近似方形或长方形深基坑则差别比较大。所以,在未进行空间问题处理前而按平面应变假设设计时,支护结构要适当进行调整,以适应开挖空间效应的要求。

(四)支护结构设计计算与实际受力不符

目前,深基坑支护结构的设计计算仍基于极限平衡理论,但支护结构的实际受力并不那么简单。工程实践证明,有的支护结构按极限平衡理论设计计算的安全系数,从理论上讲是绝对安全的,但有时却发生破坏;有的支护结构安全系数虽然比较小,甚至达不到规范的要求,但在实际工程中却满足要求。

极限平衡理论是深基坑支护结构的一种静态设计,而实际上开挖后的土体是一种动态平衡状态,也是一个土体逐渐松弛的过程,随着时间的增长,土体强度逐渐下降,并产生一定的变形。所以,在设计中必须充分考虑到这一点。

三、深基坑支护设计中的注意事项

(一)彻底转变传统的设计理念

近十几年来,我国在深基坑支护技术上已经积累很多实践经验,收集了施工过程中的一些技术数据,已初步摸索出岩土变化支护结构实际受力的规律,为建立深基坑支护结构设计的新理论和新方法打下了良好的基础。但是,对于深基坑支护结构的设计,国内外至今尚没有一种精确的计算方法,多数是处于摸索和探讨阶段,我国也没有统一的支护结构设计规范。土压力分布还按库伦或朗肯理论确定,支护桩仍用“等值梁法”进行计算。其计算结果与深基坑支护结构的实际受力悬殊较大,既不安全也不经济。由此可见,深基坑支护结构的设计不应再采用传统的“结构荷载法”,而应彻底改变传统的设计观念,逐步建立以施工监测为主导的信息反馈动态设计体系。这是设计人员需要加强科研攻关的方向。

(二)建立变形控制的新的工程设计方法

目前,设计人员用的极限平衡原理是一种简便实用的常用设计方法,其计算结果具重要的参考价值。但是,将这种设计方法用于深基坑支护结构,只能单纯满足支护结构的强度要求,而不能保证支护结构的刚度。众多工程事故就是因为支护结构产生过大的变形而造成的,由此可见,评价一个支护结构的设计方案优劣,不仅要看其是否满足强度的要求,而且还要看其是否产生环境问题,关键在于其变形大小。鉴于上述实际,在建立新的变形控制设计法时,应着重研究支护结构变形控制的标准、空间效应转化为平面应变和地面超载的确定及其对支护结构的影响等问题。

(三)大力开展支护结构的试验研究

正确的理论必须建立在大量试验研究的基础上。但是,在深基坑支护结构方面,我国至今尚未进行科学系统的试验研究。一些支护结构工程成功了,也讲不出具体功之处;一些支护结构工程失败了,也说不清失败的真实原因。在支护工程施工的过程中积累的技术资料很丰富,但缺少科学的测试数据,无法进行科学分析,不能上升到理论的高度,这是一个很大的缺陷。

开展支护结构的试验研究(包括实验室模拟试验和工程现场试验),虽然要耗费部分资金,但由于深基坑支护工程投资巨大,如经过科学试验再进行设计时,肯定会节省可观的经费。因此,工程现场试验是非常必要的。通过工程实践积累大量的测试数据,可对同类工程的成功打好基础,为理论研究和建立新的计算方法提供可靠的第一手资料。

(四)探索新型支护结构的计算方法

高层建筑的飞速发展给深基坑支护结构带来一场技术革命。在钢板桩、钢筋混凝土板桩、钻孔灌注桩挡墙、地下连续墙等支护结构成功应用后,双排桩、土钉、组合拱帷幕、旋喷土锚、预应力钢筋混凝土多孔板等新的支护结构型式也相继问世。但是,这些支护结构型式的计算模型如何建立、计算简图怎样选取、设计方法如何趋于科学,仍是当前新型支护结构设计中急需解决的问题。

目前,深基坑支护结构正在向着综合性方向发展,即受力结构与水结构相结合、临时支护结构与永久支护结构相结合、基坑开挖方式与支护结构型式相结合。这几种结合必然使支护结构受力复杂。所以,建立新型支护结构的计算方法,已成为深基坑工程技术的当务之急。

结束语

建筑基坑的开挖与支护结构是一个系统工程,涉及工程地质、水文地质、工程结构、建筑材料、施工工艺和施工管理等多方面。它是集土力学、水力学、材料才学和结构力学等于一体的综合性学科。支护结构又是由若干具有独立功能的体系组成的整体。正因如此,无论是结构设计还是施工组织都应当从整体功能出发,将各组成部分协调好,才能确保它的安全可靠、经济合理。

参考文献

1 建筑基坑支护技术规程(JGJ120—99).北京:中国建筑工业出版社,1999

2 余志成,施文华.深基坑支护设计与施工. 北京:中国建筑工业出版社,1998

3 龚晓南. 深基坑工程设计施工手册. 北京:中国建筑工业出版社,1998

第12篇

论文关键词:地铁施工事故,风险评价,控制区间和记忆(CIM)模型

 

0 引言

为缓解城市空间容量不足、城市交通拥挤的状况,国内很多城市相继投资修建地铁。地铁施工具有隐蔽性、复杂性和不确定性等特点,由于建设规模庞大、发展迅速,技术和管理力量难以充分保证,造成地铁工程施工安全风险加大。[1]近年来,我国地铁工程相继发生了很多安全事故,造成很严重的人员伤亡和财产损失。因此,对地铁工程施工的安全风险进行分析和评价风险评价,并指导工程实践就显得尤为重要。

本文首先对我国近年来发生的地铁施工事故进行了统计分析,针对地铁施工安全风险因素复杂且具有评估模糊性和发生随机性的特点,建立了地铁施工安全风险CIM评估模型,最后运用这一模型对大连地铁一号线一期工程102标段进行施工安全风险评估。

1 我国地铁施工事故统计分析

近年来,国内地铁施工事故频发,给社会和国家造成不必要的重大损失和不可估量的社会负面影响。我国近年地铁施工事故统计如表1。

表1 地铁施工安全事故统计表[2]

 

序号

事故时间

事故地点

事故类型

事故原因

1

2009.1.12

南京地铁2号线大行宫站

坍塌

异常荷载

2

2009.1.11

 

  上海地铁11号线曹杨路车站

火灾

  安全管理制度缺失

3

2009.1.8

  上海轨道交通9号线小南门站工地

机械伤害

  人的不安全行为

4

2009.1.2

西安地铁二号线钟楼站

火灾

人员技术不熟练

5

2008.11.15

  杭州地铁1号线湘湖站工程

坍塌

  安全管理制度缺失

6

2008.11.8

南京地铁1号线南延线第15标段

坍塌

异常荷载

7

2008.07.13

上海地铁10号线杨浦区四平路

机械伤害

  人安全意识差

8

2008.6.26

深圳地铁3号线

坍塌

降排水

9

2008.6.11

港铁九龙南线工程

坍塌

地质

10

2008.5.30

  南京地铁二号线大行宫施工区间

坍塌

  地下水

11

2008.4.20

  沙坪坝区三峡广场轻轨施工

坍塌

  地下管线

12

2008.4.1

  深圳市地铁3号线荷坳段工地

坍塌

  支护

13

2008.3.22

深圳布吉地铁3号线

水害

地下水

14

2008.3.18

西安地铁2号线北大街站

其他伤害

地下管线

15

2008.3.11

上海地铁4号线宜山路

坍塌

支护

16

2008.01.31

  广州地铁5号线中山八路与南岸路交界处

坍塌

  降排水

17

2008.1.18

  广州地铁5号线中山八路与南岸路交界处

坍塌

  施工组织混乱

18

2008.01.17

  广州地铁5号线大西盾构区间