时间:2022-03-24 13:04:08
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇脱硫工艺论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
关键词:除尘灰;返矿;铺底料;脱硫石膏;生石灰;熔剂
前言
随着2014年对标工作和降本增效工作的实施和考核,作为一名技术员深感约成本的重要意义,虽然创效困难程度很大,但是如何能够大幅度的降低成本,除了管理到位,我坚信依靠改变工艺和原材料将是最佳途径,作为一名老烧结技术员,当看到除尘灰在运输生产过程中、下料堵仓过程中产生的诸多不利因素和造成现场环境的二次污染以及给岗位工造成的巨大劳动强度后,我想到了型煤工艺,结合其他厂家的先进设备,我想将除尘灰、烧结矿返矿再粉碎后再惨加一些如焦沫、无烟煤等物质后,让其在一定的型煤设备上高压下就能造出直径30-40毫米左右的球状体,大家知道除尘灰、返矿在一定程度上是烧熟了的小粒度烧结矿,若将其做为铺底料,对生成的烧结矿成品质量影响不大,但是产量肯定是增加的,所以想采用除尘灰、返矿做铺底料工艺;另一方面,自从2013年我们龙钢烧结厂有了脱硫工艺后,每日就能产出200-300吨的脱硫石膏,而这些脱硫石膏被当作垃圾处理给环保公司,每车还需付装运费150元。根据自己多年的经验,我知道石膏的成分主要是二水硫酸钙,而二水硫酸钙在1400℃下加热就会产生出氧化钙和二氧化硫,在烧结工艺条件下,大约1250℃石膏就会分解成氧化钙和二氧化硫,大家知道:二氧化硫有95%被燃烧释放变成三氧化硫,随烟气排出,剩下的氧化钙就是我们理想的熔剂生石灰的主要成分。
一个大胆的设想用石膏替代生石灰的工艺就在我的脑子里成型,经过自己多次的私下制作的简易实验装备,用我们现用的混匀矿,加入一定的石膏配比,再经过制粒混匀,终于在台车上烧制出了碱度为1.97的54.5%的全铁品位烧结矿。虽然粒度组成中大于16毫米以上的比例较少仅占56-42%,转鼓强度仅达到58-75%,今后还需要继续探求更高烧结矿工艺技术指标。
1 理论、实践依据
大家知道:压球机主要用于有色和黑色金属矿粉的制球造块,使其直接进炉冶炼,提高附加值。凡是冶金行业废料,辅料需上炉的,都需要用压球机来完成。例如:郑州威力特机械设备有限公司研发生产的型煤压球机、干粉压球机、脱硫石膏压球机等压球机系列产品技术先进、质量可靠、一机多用。同时具有成型压力大、主机转数可调、结构紧凑、便于维修、配有螺旋送料装置特点。适合大、中、小型企业建立具有一定生产规模的生产线。
成功案例:冶金企业把粉状物料压成球团,回炉冶炼,扩大了物料的使用范围;耐火材料企业把粉料压成球团,煅烧后提高了物料的纯度;化肥企业利用粉煤压成球团制造气型煤,达到降耗增收;这些都是各类企业利用球团技术的范例。样品球如图1。
结论:综上所述,可见将除尘灰、返矿压制成20-40mm球状体是可行的。
2 将脱硫石膏烧制成生石灰的理论研究
2.1 脱硫石膏介绍
脱硫石膏是烟气脱硫中石灰石粉末与二氧化硫反应产生的工业副产物,主要成分是二水硫酸钙,其特点是:纯度高、成分稳定、粒度小、粉状、游离水约12-17%,颗粒大小、粒径分布均匀,级配较差,标稠用水量大,含有一定量的碳酸钙和较多的水溶性盐,根据燃烧的煤种和烟气除尘效果的不同,脱硫石膏从外观上呈现不同的颜色,一般我们视角看到的都是灰黄色或灰白色,质量优良的脱硫石膏是纯白颜色。但实际呈现的是灰色、黄色、灰褐色、红褐色等。
粉状脱硫石膏在运输和生产中有诸多不便,由于其含水分比较大,运输成本高,其次也是最主要问题,湿基脱硫石膏粘结性强,直接生产线上应用很容易粘堵输送装置、料斗、球磨机,无法正常生产。若能把湿基脱硫石膏成球、烘干就可以解决以上问题。
2.2 将脱硫石膏制成球状体不成问题
2.2.1 脱硫石膏压球机简介
根据石膏性能,巩义市曙光机械厂已开发出新型高效节能压球机,产量在5~30吨/时,脱硫石膏压球机能将脱硫石膏粉末一次性压制成球,产量大、成球率高。该设备能将脱硫石膏粉末,在不需要添加任何粘合剂情况下一次性压制成球,且成球率在95%以上,压出来的球硬度很强,搬运装卸不宜破碎。
2.2.2 脱硫石膏压球机工作原理
脱硫石膏压球机成型机的主要机型是对辊成型机(人们常说的压球机),它有一对轴线相互平行、直径相同、彼此间有一定间隙的圆柱形型轮,型轮上有许多形状和大小相同、排列规则的半球窝,型轮是成型机主部件。在电动机的驱动下,两个型轮以相同速度、相反方向转动,当物料落人两型轮之间在结合处开始受压,此时原料在相应两球窝之间产生体积压缩;型轮连续转动,球窝逐渐闭合,成型压力逐渐增大当转动到两个球窝距离最小时成型压力达到最大。然后型轮转动使球窝逐渐分离,成型压力随着迅速减小。当成型压力减至零之前,压制成的脱硫石膏就开始膨胀脱离。
2.2.3 脱硫石膏在生产上的应用可能性
龙钢有155m3石灰竖窑5座,如果将脱硫石膏当做30-40mm的石灰石放在
155m3石灰竖窑上进行煅烧(窑体设计上需要增加一套烟气脱硫设施、温度需要提高到石膏分解温度范围内),这样一来,用石膏完全可以生产出替代品石膏灰,成分含量理论上应差别不大。考虑到脱硫石膏负成本,那么用石膏灰替代生石灰(300元/吨),其理论效益相当可观。
3 从专家、教授发表的学术论文看石膏加热分解成生石灰氧化钙也是可行的
3.1 上海华东理工大学著名教授高玲、唐黎华等教授联名发表过论文《不同气氛下硫酸钙高温分解热力学分析》,在此文中明显指出在氧化气氛下,温度达到1700℃,硫酸钙很难分解,但在石墨弱还原气氛下、氢气气氛下硫酸钙的起始温度均低于1000℃。特别是在氢气气氛下,硫酸钙完全分解的最高温度不超过1300℃,再加压条件下44分钟后就可100%转化分解。
3.2 教授卢平、章静在论文《脱硫石膏还原分解特性的实验研究》中提出了850-1050℃硫酸钙分解的可行性。
3.3 教授韩翔宇、陈浩侃、李保庆联名在论文《硫酸钙氢气气氛下的热重研究》中指出在氢气气氛下、加压条件下1000℃以前,硫酸钙分解出的产物主要是硫化钙,1000℃以后,硫酸钙和硫化钙之间发生固相反应会生成氧化钙。
4 作者的实验过程
总结以上所述,在理论上和实践上,前辈们都给我们指明了方向,经过多次努力,做了实验如下:
4.1 将石膏用一定的简易设备加压将其压制成型为20-40毫米的石膏半球-球体(此设备及工艺已经成熟应用在河南、山东等地);
4.2 将其放在实验室的马弗炉中进行烧灰实验,经过多次的温度控制和加入一定的催化剂气体,最终在适当的温度下终于烧成了氧化钙含量为40%的熟石灰(其成分和生石灰的基本一样)。
4.3 用现场的含铁混匀矿垛料,加上多次设置的配比制成烧结混合样,在经过人工混匀制粒后,将其200kg放到400m2台车上布料、调温,经过多次操作终于在台车上烧制出了碱度为1.97的全铁品位为54.5%的烧结矿(其他成分基本符合要求,除过硫含量3.0%)。这样从理论到实践上证明了所想的工艺的可行性。兴奋之余,作者将想法告诉现任的上级技术领导:科长、调度长、技术厂长,希望得到他们的支持和进行下一步较大规模的实践,却被他们以不成熟搁浅了,实践到此为止。
4.4 思考
4.4.1 实验做出的含硫3.0%的烧结矿成品样,对炼铁生产来讲是不符合生产需要的,在实验条件下,其烧结矿中的硫还未能完全分解掉,在化验室中烧成的氧化钙只有40%这一点可以证明还未烧透,或者还只是半成品硫化钙,只有当氧化钙含量化验数据在80%左右时才算试验成功。故还需要做进一步的实验研究;
4.4.2 当采用石膏大量替代生石灰后,龙钢烧结烟气脱硫系统中的二氧化硫含量将不再是1500-2000mg/m3,有可能增加到3000-5000mg/m3,这将会增加脱硫设备的负货。
5 结束语
(1)用除尘灰、返矿制作成20-40mm的铺底料这一工艺,本身就是一大胆创新,完善它并将其应用于烧结工艺中很有现实意义:增加产量、变粉为块,增强烧 结透气性、降低成本,这一点领导是认同的,但需要增加新设备投资,然而在可行性操作实验上,分厂领导不支持,使得计划只得停留。
(2)用石膏部分代替或全部代替生石灰工艺更是一次革命:因为石膏没成本、粒度满足混合料要求、且水分适中。而生石灰的市场价在300元以上。按每月消耗现在665m2烧结机产能需要生石灰84000吨计算,年节约在3亿余元以上;从环保角度讲,变废为宝,还能减少生石灰的制造、拉运方面的人、财、物的投资消耗,其社会效益将会更加巨大;石膏替代生石灰在烧结工艺中还可减少给配料环境造成的污染。由于我厂还未能将石膏沫状变成球状体、在石灰窑上烧制出石膏灰的现实,加上我厂领导还担心混合料的温度有所下降以及用此新工艺不成熟有风险。虽然我坚持解释到:生石灰理论上能提高料温10-15℃,实际上能提高10℃左右 ,就按10℃的热量我们完全可以用增加焦沫配比1-2%来彻底解决料温问题,再综合计算成本,烧结矿的成本还可再降50元以上,其效益也是相当可观的;
(3)考虑到此工艺若能够被推广或普及到全社会,这将是一次工业化革命,其意义将不可估量。非常期待看到或得到全社会各行专家教授关于此工艺方面的更工业化的实验研究结果,更希望同行们对分析研究给予批评指正和提出宝贵意见。
参考文献
[1]高玲,唐黎华,等.不同气氛下硫酸钙高温分解热力学分析[A].上海市化学化工学会2010年度学术年会论文集[C].2010.
论文摘要:简要介绍了炉内掺烧脱硫剂固硫和炉外烟气FGD湿法脱硫相结合的二段式脱硫方式的工艺流程。针对电石泥脱硫工艺进行了分析,论证了电石泥应用于烟气脱硫的可行性。
0 引 言
我国是世界上的燃煤大国,由燃煤产生的二氧化硫(SO2)和酸雨污染已成为我国大气污染的主要特征。近年来,我国政府对环境治理非常重视,治理的力度也在不断加大。一九九八年国务院曾以国函[1998]5号文批复了国家环保局制定的“酸 雨控制区和二氧化硫污染控制区划分方案”,明确提出了对于新建、扩建、改建火电项目,其燃煤含硫量大于1%的必须建设脱硫设施,现有电厂燃煤含硫量大于1%的在2010年前必须分期 分批建成脱硫设施或采取减排二氧化硫措施,环保正成为优先于企业发展的前提。
目前,传统的脱硫方式,脱硫效率低,设备成本高,运营费用大,节能减排效果不理想。顶峰热电公司因地制宜,最终决定利用集团公司盐化工的生产废电石泥作脱硫剂,以废治废来达到烟气脱硫的目的。本文就此作粗浅探讨。
1 我厂脱硫工艺流程:
结合我厂实际,我厂脱硫工艺采用了炉内掺烧脱硫剂(电石泥)固硫,和炉外烟气FGD湿法脱硫相结合的二段式脱硫方式。生成副产物未氧化的亚硝酸钙(CaSO31/2H2O)与自然氧化产物石膏(CaSO42H2O)的混合物直接抛弃。
1.炉内脱硫:
过程:用电石泥作固硫剂,煤泥经刮板机进入下仓,在下仓投入电石泥,与煤泥按一定比例混掺,由预压螺旋送至搅拌仓,再次搅拌均匀后由浓料泵送至锅炉本体内进行燃烧,达到固硫的效果。
优点:炉外脱硫设施前SO2浓度可以降至500-800mg/m3,电石泥的固硫率在30%左右。
无需添加任何其他设备即可进行,节约成本及设备投入。
炉内固硫过程示意图
2.炉外脱硫:
过程:整个炉外脱硫系统主要由脱硫剂制备系统、吸收循环系统、副产物处理系统、配电及自动控制系统四大部分组成。
电石泥投入化灰池,清水泵开启注入清水,然后进入搅拌池,搅拌均匀使之与水充分混合,制备成为电石浆液。加浆泵经管道将浆液送至脱硫塔。首先烟气与浆液直接接触脱硫,然后4台浆液循环泵分别将电石浆液打入脱硫塔上部的喷淋装置,电石浆液经雾化后再次与烟气中的SO2反应,进一步除去烟气中的SO2。脱硫过程中所产生的未氧化的亚硝酸钙(CaSO31/2H2O)与自然氧化产物石膏(CaSO42H2O)的混合物经排渣系统排至沉灰池。
优点:整个脱硫系统位于烟道末端,除尘系统后,其脱硫过程的反应温度适中;
湿法烟气脱硫反应是气液反应,脱硫反应速度快,脱硫效率高,钙利用率高;
系统可利用率高、运行费用低、维护简单、运行人员少、能确保人员和设备的安全、能有效地节约和合理利用能源;
系统位于锅炉引风机之后,且有旁通烟道,脱硫系统相对独立,运行不会影响主体设施,且维护检修方便;
炉外脱硫过程示意图
2 电石泥脱硫机理
在燃烧过程中,燃煤中的硫可以分为有机硫和黄铁矿硫两大部分,硫分在加热时析出,如果环境中的氧浓度较高,则大部分被氧化为SO2而很少部分残存于炉渣中。电石泥的主要成分是Ca(OH)2。
1. 反应机理
Ca(OH)2+ SO2= CaSO3.1/2H2O+1/2H2O
CaSO3 .1/2H2O+3/2H2O+1/2O2=CaSO4+ H2O
影响循环流化床锅炉脱硫效率的主要影响因素:(1)Ca、S摩尔比的影响。Ca、S摩尔比被认为是影响脱硫效率和SO2排放的首要因素,根据试验表明,Ca、S摩尔比为1.5~2.5时,脱硫效率最高,而继续增加Ca、S摩尔比或脱硫剂量时,脱硫效率增加的较小,而且继续增加脱硫剂的投入量会带来其他副作用,如增加物理热损失,影响燃烧工况等。(2)床温的影响。床温的影响主要在于改变了脱硫剂的反应速度、固体产物分布。从而影响脱硫效率和脱硫剂的利用率。有关文献表明,床温控制在850~900℃时,能够达到较高的脱硫效率。(3)脱硫剂粒度的影响。
2.计算用量
根据电石泥脱硫理论,按照给煤含硫量1.6%,Ca、S摩尔比2.5,电石渣中含水、杂质比例45%(其中含水40%,杂质5%),其余成分Ca(OH )2,07年我厂全年总耗煤约为耗煤量104253吨量计算,
(Ca的摩尔质量40,O的摩尔质量16,H的摩尔质量1)
进行理论计算
我厂每年产S量:
104253×1.6%=1668.048(吨)
每年需Ca量:
2.5×40×1668.048/32=5212.65(吨)
每年需Ca(OH)2量:
(5212.65/40) ×74=9643.4025(吨)
理论需要消耗电石泥量:
9643.4025/(65%)=14836(吨)
3.脱硫试验
为了验证脱硫效果,对加电石渣进行脱硫加以记录(一小时中4次记录值)
表1为脱硫试验的有关数据统计(本数据来自烟气在线检测系统显示值)
表1
4.数据分析
按照一定的比例加入电石泥,脱硫效率可以达到90%,能够将二氧化硫的排放浓度降到国家环保要求的480mg/m3以下。
5.存在问题
由于煤泥中搅拌添加电石泥,添加比例不好控制,搅拌不均匀,导致煤泥打空,容易出现个别点排放量超标。
6.建议
增加电石泥给料和输送设备,确保掺烧比例及掺烧均匀。
3 结 论
(l) 我厂采用炉内掺烧脱硫剂(电石泥)固硫,和炉外烟气脱硫FGD湿法脱硫相结合的二段式脱硫方式脱硫取得成功,脱硫效果能够达到国家环保要求。
(2)按照每年用煤炭10万t计算,可以消耗近1.4万t电石废渣。不仅减少了这些废渣对环境的污染,而且为以废治废开辟了新的途径。
(3)利用废电石渣作为脱硫剂,不再采购石灰石大大地节省了运行费用。
(4)系统维护简单、运行人员少、能确保人员和设备的安全。
4参考文献
《电石渣干粉在电厂烟气脱硫工艺中的应用》---作者:史红
关键词:天然气;集输;处理;工艺;
一、 概述
由于天然气矿场集输系统是天然气集输配系统的子系统,是整个系统的源头部分。所以这篇论文在全面总结现有天然气矿场集输及处理生产实践经验的基础上,扼要介绍了目前天然气矿场集输管网以及矿场集输工艺流程,着重介绍了天然气集输与处理的主要内容之一即天然气净化,并对生产过程所使用净化技术的原理、工艺流程及应用做了比较全面的叙述。希望通过此论文的总结能使即将从事天然气工业各个领域的我们比较系统的了解一些天然气工业方面的常用工艺技术。
二、 天然气集输与处理
1 天然气矿场集输
天然气的集输包括采集和输送两部分,这儿主要介绍气田内部集输管网和集输工艺流程。集输工艺技术水平的高低,对降低天然气生产成本、提高安全、平稳供气的可靠性及保护环境都有直接的影响。因此,它在天然气工艺中的作用十分重要。
2 集输工艺流程
在井场里,最主要的装置是采气树,它是由闸阀、四通(或三通)等部件构成的一套管汇。在采气树节流阀之后,接有控制和测量流量及压力、温度的仪表,以及用来处理气体中的凝液和机械杂质的设备,构成了一套井场流程。在这种流程中,所有用来调节气井工作、分离气体中杂质、计量气量和凝析油量、防止水合物形成等的设备和仪表,都直接布置和安装在距井口不远的地方。
天然气自井中采出经针型阀节流降压、水套加热炉加热,再经二级节流降压后进入分离器,在分离器中分离游离水、凝析油和机械杂质,气体通过计量后进入集气干线。从分离器分离出的液体经计量、油水分离后,水可回注入地层,液烃输至炼油厂处理。
这种井场单井常温分离工艺流程一般适用于气田建设初期气井少、分散、压力不高、用户近、供气量小、不含硫(或甚微)的单井气处理。其缺点是井口须有人值守,造成定员多,管理分散,污水不便于集中处理等困难。但对井间距离远、采气管线长的边远井,这种集气方式仍然是适宜的。
(2) 常温分离的集气站流程
对于凝析油含量不多的天然气,只须在矿场集气站内进行节流调压和分离计量等操作就可以了。在这种情况下,可以采用常温分离的集气站流程,以实现各气井来的天然气的节流调压和分离计量等操作。下面介绍常用的集中常温分离流程。
对于气体基本上不含固体杂质和游离水(或者是在井场已对气体进行初步处理)的情况下,可采用二级节流、一级加热、一级分离的流程。任何一口井的天然气到集气站,首先经过一级节流,把压力调到一定的压力值(以不形成水合物为准),再经过换热器加热天然气使其温度提高到预定的温度,然后进行二级节流,把压力调到规定的压力值。尽管天然气中饱和着水汽,但由于经过换热器的加热提高了天然气的温度,所以节流后不会形成水合物而影响生产。经过节流降压后的天然气,再通过分离器,将天然气中所含的固体颗粒、水滴和少量的凝析油脱除后,经孔板流量计测得其流量,通过汇管送入输气管线。而从分离器下部将液体(水和凝析油)引入计量罐,分别量得水和凝析油数量后,再将水和凝析油分别送至水池和油罐。
对于气体中含有固体杂质和游离水较多的情况,可采用二级节流、一级加热、二级分离的流程。从气井来的天然气经一级节流降压后进入一级分离器,将气体中含有的游离水和固体杂质分离掉,以免堵塞换热器和增加热负荷。气体经换热器把温度提高到预定的值后,再进行二级节流,降到规定的压力值,然后进入二级分离器,将天然气中含有的凝析液和机械杂质等分离掉。最后,气体经过流量计到汇管集中,再输入输气干线。从分离器下部分出的液体(水和凝析油)引入计量罐,分别测得其数量后,再将水和凝析液引至水池和油罐。
3. 天然气净化
进入长输管道的商品天然气必须达到以下3个方面的要求:
(1)经济效益的要求。天然气作为商品的经济效益主要体现在燃烧过程中的发热量(热值)。显然,其中存在过多的二氧化碳或氮气就不能满足发热量的要求。尽管世界各国的气质标准中对天然气发热量的规定有所不同,但均作出明确的要求,否则就不能作为商品供应。
(2)环境保护的要求。商品天然气中所有的含硫组分在燃烧中将转化为二氧化硫而排入大气,是导致酸雨的主要污染源之一,因而必须按气质标准加以脱除。
可见,为使粗天然气能经济而有效地输送与利用,必须根据有关气质标准的规定脱除其中若干杂质组分,此工艺过程即称为天然气净化。
一般认为,天然气净化工艺包括天然气脱硫脱碳、脱水、硫磺回收及尾气处理4类工艺。天然气脱硫脱碳及脱水是为了达到商品天然气的质量指标;硫磺回收及尾气处理则是为了综合利用和满足环保要求。国外也常将天然气净化称为天然气处理,有时还称为天然气调质。
参考文献
[1] 苏建华,许可方,宋德琦.天然气矿场集输与处理[M].石油工业出版社,2004:8-18.
[2] 张良鹤.天然气集输工程[M].石油工业出版社,2001:67-75.
关键词:脱硫废水处理系统;有机污染物;厌氧+好氧组合工艺;营养平衡;节水零排放 文献标识码:A
中图分类号:X703 文章编号:1009-2374(2015)23-0083-03 DOI:10.13535/ki.11-4406/n.2015.23.043
1 概述
火电厂脱硫废水来源于湿法脱硫(FGD)工艺产生的废水,脱硫废水污染严重,排水温度在40℃~50℃之间,悬浮物、含盐量、重金属等杂质的含量极高。现有国内电厂脱硫废水的处理基本采用加药处理的物化方法,主要是针对其中的悬浮物以及重金属离子予以去除,处理出水执行标准有《污水综合排放标准》(GB 18466-2005)、《火电厂水质石灰石-石膏湿法脱硫废水水质控制指标》(DL/T 997-2006)。
在实际的运行过程中,因脱硫废水水质成分主要为第一类污染物和第二类污染物,在药剂的物化反应下,脱硫废水中的重金属离子和悬浮物、pH值等指标能达到排放要求,但废水中的有机污染物(COD等)指标因工艺流程未对其进行专门的处理设计,只是在药剂反应过程中随其他污染物排除一部分,其出水参数很不稳定,多数情况下无法达到排放标准,有机污染物难于去除,已成为众多电厂脱硫废水处理排放的一大难题,困扰了很多电厂。
目前,国内环保形势严峻,在节水和节能环保的大形势下,很多电厂顺应国家环保形势对脱硫废水处理提出了零排放处理回用的要求,因此,脱硫废水中的有机污染物COD指标的去除成为了脱硫废水处理必须克服的难题。本论文主要针对脱硫废水中有机污染物的去除进行分析,研究一种应用于脱硫废水有机污染物去除的处理
工艺。
2 脱硫废水的特性
电厂脱硫工艺产生的脱硫废水主要特征是呈现弱酸性,pH值5~6;主要特点是高悬浮物、高浊度、高黏度、高含盐量以及难降解有机物,并含有Hg、Pb、Ni、Hs、As、Cd、Cr等重金属离子和氟化物,有机污染物COD的含量一般为150~400mg/L,其中有机污染物来源于燃煤过程及脱硫过程脱硫剂的一些产物,具有难于降解、处理难度高的特点。基于脱硫废水的高含盐、有机物难降解等特性,并考虑处理过程中系统运行的稳定性,主要考虑采用最利于有机污染物处理的生物处理方法去除脱硫废水中的该指标。
3 生物处理方法
综合分析现有的生物处理方法,适用于脱硫废水特性的生物处理工艺主要有以下五种:
3.1 传统活性污泥法
活性污泥法是以活性污泥为主体的污水处理技术,它采用人工曝气的手段使活性污泥均匀分散并悬浮于反应器中,与废水充分接触,并在有溶解氧的条件下对废水中所含的有机物进行微生物的合成和分解等代谢活动。而脱硫废水盐度对活性污泥法的影响较大,因此,对活性污泥进行驯化培养出具有良好有机物降解性能的耐盐微生物是处理高盐废水的重要前提。
3.2 厌氧处理系统
近几十年来,由于厌氧生物技术发展迅速,出现了一大批高效厌氧反应器,这些反应器中生物固体浓度很高、泥龄很长,处理能力大大的提高,在高浓度的废水中得以大量应用。高浓度的Na+或CL-会对厌氧生物产生抑制作用,但是厌氧或兼氧微生物对盐的适应性和其他离子产生的拮抗作用会减轻盐对微生物的毒害作用,因此厌氧法可应用于高含盐废水处理系统。
3.3 好氧颗粒污泥
好氧颗粒污泥技术是将生物自絮凝原理应用于好氧反应器,使好氧絮状污泥在一定工艺条件下实现好氧颗粒化。好氧颗粒污泥具有沉降性好、抗负荷冲击能力强、持留生物量高以及脱氮除磷效果好等优点,而且它还能集好氧、厌氧和兼氧微生物于一体,因此好氧颗粒污泥能够有效处理各种难降解的废水。
3.4 嗜盐菌
嗜盐菌作为一类新型的、极具应用前景的微生物资源,近年来受到人们的广泛关注,它们具有极为特殊的生理结构和代谢机制,同时还产生了许多具有特殊性质的生物活性物质,因此被广泛地应用于含盐量高的废水处理。
3.5 好氧-厌氧组合工艺
由于单独的好氧和厌氧工艺在处理废水时受到许多限制,单一的系统往往不能将有机污染物彻底去除,尤其是难降解的废水系统,因此为了更好地处理高盐脱硫废水,往往结合好氧以及厌氧的组合工艺,以达到更好的效果。
本文脱硫废水生物处理工艺将采用好氧-厌氧的组合工艺进行处理,针对废水中的悬浮物、重金属指标的处理不做论述,生物处理所处理的脱硫废水是经预处理系统去除此类指标后的废水。
4 好氧-厌氧的组合工艺处理技术
脱硫废水中的COD等有机污染物主要来自煤(主要成分为有机质)、石灰石以及脱硫反应生成物中的亚硝酸盐、亚硫酸盐等还原性物质,而BOD则主要是污水中的氮氧化物。经过预处理处理后,废水的pH值、悬浮物、重金属离子、氟化物等污染指标被去除,但废水中的COD、硫酸根等指标还未得到去除,需采用生物处理方法进一步处理。而硫酸根、氯根等盐的高含量对废水生化存在一定的抑制作用,使脱硫废水难于生化,因此为提高其可生化性,在生化处理过程,需投加成分均衡的营养物质保证生化处理微生物所需的各类营养指标,而在电厂,基本都有生活污水处理系统,其水量不大,多在5~15t/h之间,这股水进入脱硫废水系统可以很好地解决营养平衡问题,且可以提高水的回收量,将电厂生活区的生活污水引入脱硫废水系统进行综合处理,将同时实现两股水的节水目标,并保证了脱硫废水生物处理的基本营养条件。
脱硫废水生物处理系统采用厌氧+好氧的组合处理工艺,厌氧采用EGSB厌氧系统,而好氧则采用BAF曝气生物滤池好氧系统。EGSB厌氧系统通过培养SRB厌氧细菌病通过其代谢作用去除废水中的SO42-、残余重金属离子及部分COD等,而通过BAF曝气生物滤池的生化作用将COD、氮等进行硝化处理,达到处理要求,经该系统处理后,废水可进入后续除盐或其他指标处理系统,进一步处理而获得高品质回用水,脱硫废水生物处理流程图如图1所示:
EGSB厌氧系统适用于低浓度有机污染物处理系统,运行过程培养适于脱硫废水环境的SRB厌氧细菌来处理污染物,SRB厌氧细菌是一类能通过异化作用进行硫酸盐还原的一类细菌,这种厌氧细菌虽然生长缓慢,但具有极强的生存能力且分布很广泛,SRB厌氧细菌已经成功地应用在了与脱硫废水极类似的多种水处理系统中,它的代谢利用硫酸根作为最终的电子受体,将有机污染物作为细胞合成的碳源和电子供体,同时将硫酸根还原为硫化物,使废水中的硫酸盐得以去除。而产生的溶解态的S2-则与废水中残余的重金属离子反应形成金属硫化物沉淀,可进一步去除重金属离子,此外SRB厌氧细菌在代谢过程中分解有机硫以二氧化碳气体的形式
排出。
经过厌氧反应后,废水中的一些重大生化抑制指标得以去除,废水的可生化性提高,因此,废水进入好氧生物系统进行进一步处理,好氧生物反应系统采用BAF曝气生物滤池处理系统,并接种引入主体处理微生物:嗜盐菌,适应脱硫废水的高含盐环境,曝气生物滤池是固定化生物反应器的一种,近年来被广泛应用于各类高含盐废水的处理。曝气生物滤池能够通过固定化保护微生物,降低其在极端环境中所受的伤害,提高系统对有毒有害物质及环境冲击负荷的耐受力,使系统保持较高的稳定性。研究表明,曝气生物滤池在高含盐环境中能保持较高的有机物去除率。
因脱硫废水中的盐分含量过高,会对微生物的活动带来一定的难度,而曝气生物滤池接种培养的核心处理载体,嗜盐菌是专门在高盐环境下生长的细菌,由于嗜盐菌在高盐环境下能够在细胞内聚集钾离子和小分子极性物质,调节细胞渗透压,维持细胞内外渗透压的平衡,帮助从高盐环境获取微生物活动所需的水,并且这些极性分子可以迅速合成和失去,快速适应外界的环境变化。嗜盐菌的蛋白质中含有过量的酸性氨基酸和非极性的残余物,过量的酸性物质需要阳离子平衡附近的负电荷,所以嗜盐酶只有在高盐环境下才能保持活性。基于嗜盐菌的反应机理,废水中的有机污染物得以去除。
经试验研究,在模拟脱硫废水水质情况下,通过盐度的不断提高和变化,曝气生物滤池的有机污染物去除率绘制成曲线,盐度和COD的去除效果关系如图2所示:
从图2中可看出,在脱硫废水含盐所属的10000~24000mg/L的范围内,COD的去除率可稳定维持在94%~96%之间,在这个脱硫废水的盐度范围内,嗜盐菌能维持其生理代谢的良好活性,对废水中的有机污染物有较强的降解能力。
经曝气生物滤池处理后,废水中的有机污染物等指标得以去除,脱硫废水可进入下一阶段处理流程。
5 结语
脱硫废水中有机污染物的处理是国内外各大火力发电厂普遍面临的难题,要实现脱硫废水系统节水回用,必须对脱硫废水中的有机污染物进行处理,才能进行后续的膜处理或离子交换系统的除盐处理,脱硫废水中有机污染物处理技术的研究成功将成为克服脱硫废水节水回用难点的一个突破,也将成为脱硫废水实现零排放生物指标处理工艺的一种可靠选择。
参考文献
[1] 陈泽峰,冯铁玲.电厂脱硫废水处理[J].工艺水处理,2006,26(3).
[2] 高廷耀,顾国维.水污染控制工程[J].高等教育,1999,(5).
[3] 陈涛,陈薇薇,孙成勋.硫酸盐还原菌(SRB)厌氧生物技术处理脱硫废水的可行性探讨[J].中国农村水利水电,2014,(2).
关健词:煤矸石;烧结砖;污染源;治理
中图分类号:F270文献标志码:A文章编号:1673-291X(2010)01-0189-02
引言
煤矸石烧结多孔砖、空心砖生产技术是中国综合利用煤矸石的一项成熟技术,自20世纪80年代末,中国在消化吸收国外先进生产技术的基础上,研究开发出适合中国国情的煤矸石烧结多孔砖、空心砖生产技术。利用煤矸石生产烧结多孔砖、空心砖,达到了节能、保护耕地、保护环境的良好效果,同时也取得了较好的经济效益和巨大的社会效益。但由此也产生了一些污染问题,现以淮北双林煤矸石烧结砖厂为例,探讨煤矸石生产烧结砖产生的污染及治理方案。
一、煤矸石化学成分
该厂为利用煤矸石自身能源焙烧产品,生产能力为年产5 000万标块煤矸石烧结砖。煤矸石年用量为14.5万吨。原料用临涣选煤厂的矸石,该煤矸石的发热量为2 472 kJ/kg(干基),主要化学成分(见表1)。
表1 原料化学成分表(%)
二、工艺流程及产污节点图
整个工艺流程由四部分组成:原料制备;成型及切坯;干燥与焙烧;成品检验与堆放。具体工艺流程及排污节点如下(见下页图1):
三、污染源治理方案
从下页产污节点图可以看出,该厂在运行的过程中会有废气、噪声和固体废物产生,固体废物主要为切条及切坯工序产生的废泥坯、出窑时产生的废砖及除尘灰等。切条及切坯工序产生的废泥坯及除尘灰,可返回生产工序,废砖经破碎后也回用于生产工序。噪声治理通过将破碎机、搅拌机、空压机、真空机等机械噪声比较大的设备基础底座上安装减振垫,加装隔声罩,风机安装消声器,经过治理后,对厂界噪声影响较小。破碎车间的粉尘可以通过袋式除尘器处理,其除尘效率≥95%,收集下来的粉尘可以进行回收利用作为制砖的原料。
主要污染源来自于焙烧窑废气。焙烧窑正常燃烧后是利用原料本身的热值就能够满足生产过程中的热能消耗,不需添加其他燃料,产生的污染物主要有烟尘、SO2。
淮北市是一座以煤为主要能源结构的工业城市,SO2的总量控制指标已经接近饱和,对于该厂,根据淮北市产品质量监督检验所提供的检验报告,煤矸石中硫的含量为0.256%,煤矸石砖中残留的硫含量为0.16%,每年需要用煤矸石14.5万吨,如果不进行烟气治理,经计算,SO2产生浓度407mg/m3,SO2产生量为278.4t/a,烟尘产生浓度为42.9mg/m3,产生量为32.5t/a。烟气必须进行除尘脱硫。
隧道窑烟气经干燥窑及烟道降尘,污染物被坯垛过滤、吸附、沉降后,尾气采用脱硫除尘器处理。
脱硫除尘采用双碱法,当炉、窑尾气由引风机牵引进入一级反应室与钠型碱雾得以充分混合、碰撞,反应室液气比达2L/m3,尾气中的粉尘颗粒以及二氧化硫被碱溶液充分吸收,其反应方程式:
SO2+H2OH2SO3,H2SO3+Na(OH)2NaSO3+H2O
然后被碱雾充分混合的尾气在通过立式文丘里管时被充分压缩,细小的粉尘湿颗粒以及反应的产物相互碰撞、混合而结合成粒径相对增大的颗料,质量也相应增加,通过文丘里管后进入到脱硫除尘器内的二级置换反应室,进入置换反应室后混合烟气与石灰浆溶液发生混合反应,细小的颗粒进一步增大,二氧化硫与碱溶液进一步反应,钠盐溶液与氢氧化钙溶液也产生反应,其方程式 :
Na2SO3+Ca(OH)2CaSO3+ CaSO4+NaOH
H2SO3+Ca(OH)2CaSO3+H2O
酸碱反应沉淀物、废气中的颗料以及湿烟气从置换反应室进入到分离反应室,干净烟气进入脱水室经二级脱水后外排,颗粒与沉淀物进入初沉池沉淀反应。整个过程由于NaOH最终被置换出来,故消耗量很少。主要脱硫剂为石灰Ca(OH)2,生成物为稳定的硫酸钙及亚硫酸钙。经过双碱法进行脱硫除尘处理后,烟气排放中除尘效率达到50%以上,脱硫效率达到80%以上,烟气林格曼黑度
隧道窑烟气经脱硫除尘后,烟尘排放浓度为21.5mg/m3,排放量为16.25t/a,烟(粉)尘排放量为23.65t/a。放浓度为81.4mg/m3,排放量为55.7吨/年。这样,SO2的一年排放量减少了222.7吨,符合了达标排放和总量控制的要求。
结束语
采用煤矸石生产烧结砖,是有利于城市环境和生态的好项目,通过对固体废物的利用,既消除了污染源,又节约了烧砖用的耕地和煤,但生产中产生的SO2会严重污染环境空气,因此,只有通过切实可行的治理措施,才能做到达标排放并符合总量控制的要求。为企业的可持续发展也奠定了良好的基础,同时也为同类型的企业烟气治理提供了有益的借鉴,具有较好的环境效益和社会效益。
参考文献:
针对各废弃性质和特点,专家提出了解决污染的技术:吸收法、吸附法、冷凝法、催化转化法、燃烧法、生物净化法、膜分离法和稀释法。由此技术延伸的废气处理技术,其主要目的是除去排放废气中有毒有害物质及烟尘,使其处理后达标排放,减少大气污染,净化空气。
防治大气污染要从多方面入手,它是长期需要治理的过程。要充分考虑到地区环境特征,对有影响的因素进行全面系统分析。在此基础上制定最优化防治措施,充分发挥环境自净能力,达到控制区域大气环境质量目的。
低温等离子体-光催化系统集成废气处理技术及装备
项目简介:利用其在太阳光下分解有害气体的作用净化大气和室内空气的特性,可以应用于城市建筑玻璃,起到城市“森林”作用。利用其自洁防雾性能,可以应用于城市建筑玻璃,起到易清洗的功能;可以应用于浴室玻璃、眼镜、仪表镜头等,起到防雾功效。利用其自洁杀菌抗菌特性,可以应用于餐具等器皿上,起到杀菌作用。利用其亲水性,通过淋水形成水膜,用作建筑物上,可以起到降温作用,起到建筑节能的效果。将光催化与低温等离子体技术集成,用作室内空气净化装置,有相当大的应用空间,可广泛应用于家庭、娱乐场所、办公室、医院消毒、生产车间等不同尺度空间,也可应用于汽车、火车、飞机等交通工具内,还可与中央空调连用,应用于办公场所、住宅、工厂等建筑物内。
所处阶段:初期阶段
有害气体光催化分解的新型纳米催化剂
项目简介:该课题研究目的是寻找金属离子掺杂改性二氧化钛新方法来提高光催化剂催化活性,并进行机理探讨,为光催化在有害气体光催化处理和自洁薄膜应用提供理论依据。二氧化钛需要改性使之提高光生空穴和电子性能,同时,光生电子与空穴的电荷分离能力是影响光催化活性主要因素。基于这种思路提出了金属离子非均匀掺杂改性二氧化钛的新方法。
意义:采用金属离子非均匀掺杂改性改性二氧化钛光催化剂,其光催化活性得到了明显的提高,提出了光生载流子分离增强光催化活性的理论。高活性的光催化剂薄膜具有很好的超亲水性。非均匀掺杂这种方法和效果,在国内外均为领先水平。
烟气脱硫及硫回收系统技术开发研究
项目简介:该项目研究开发一种湿法烟气脱硫技术,可以处理含硫燃料燃烧后烟气中的酸性气体(SO_2),其原理是通过碱性脱硫剂溶液与烟气中的二氧化硫反应,达到净化烟气的目的,脱硫剂为可再生循环利用的亚硫酸钠溶液。
该工艺采用纯碱(Na_2CO_3)为初始吸收液,吸收液在吸收塔内与二氧化硫后反应生成亚硫酸钠溶液,亚硫酸钠近一步吸收二氧化硫生成亚硫酸氢钠。在吸收塔外面设有吸收剂再生装置,需再生的吸收液与一定浓度的石灰乳(Ca(OH)_2)反应产生亚硫酸钠,从而实现脱硫剂再生循环利用。工艺系统中的低温耐腐蚀换热器,可以利用脱硫前高温烟气加热脱硫后低温洁净烟气,能回收烟气余热。
所处阶段:中期阶段
意义:该烟气脱硫工艺运行过程中吸收系统不结垢,管道、设备不堵塞,脱硫效率高,液气比低,整个系统运行成本低。项目开发的烟气脱硫技术可以广泛应用于火电企业烟气脱硫,同时还可以用于工业燃煤炉窑尾气二氧化硫净化。
工业废气的生物处理方法
项目简介:生物法处理工业废气是一种经济有效方法,生物滤池和生物滴滤池是两种最常用的生物处理系统,适于处理多种挥发性有机物(VOCs)和许多工业废气中的无机蒸气物质,介绍了生物滤池和生物滴滤池处理废气系统的特点,原理和应用实例。
意义:该研究为基础理论性论文,提出了用生物处理的方法对工业废气的有效治理,有深远意义。
大型、中高压可燃气回收方法及其装置
项目简介:该项目采用一种可以向压缩腔内喷入液体进行压缩过程冷却、密封转子啮合间隙和端面间隙的湿式螺杆压缩机;采用一种迷宫密封、缓冲气密封和集装式双端面机械密封或浮环密封的组合密封组;采用一种密封失效后保证压缩介质安全性的手段;采用一种带同步齿轮的湿式螺杆压缩机,保证转子之间总保持一定的啮合间隙而不相互接触;采用特殊的轴承结构;针对不同介质的各自特点采取了不同的工艺流程;完成产品的系列化。研制的设备流量≥2400Nm3/hr,出口压力≥1~2.5MPa,无故障运行周期在8000小时左右,具有效率高,能耗低特点。
所处阶段:成熟应用阶段
化学实验室废气净化吸附板
及其制备方法
项目简介:该发明公开了一种化学实验室废气净化吸附板及其制备方法。所述的吸附板是由承载板和其上固定载有TiO#-[2]或改性TiO#-[2]光催化剂的活性炭纤维织物构成,或该吸附板是由单一活性炭纤维制成的,其上载有TiO#-[2]或改性TiO#-[2]光催化剂蜂窝板结构。所述的制备方法是将TiO#-[2]或改性TiO#-[2]光催化剂载于活性炭纤维织物中,其过程是采用锐钛矿型TiO#-[2]或改性TiO#-[2]光催化剂分散在水中,制得浆料 1,在上述浆料中再溶入水溶性粘合剂,制得浆料2。用喷枪将浆料1均匀地喷在活性炭纤维织物表面,然后接着在其表面均匀地喷上浆料2,最后将其置于鼓风干燥箱中干燥。将载有光催化剂的活性炭纤维织物固定在承载板上,制成吸附板。
该发明优点在于,净化吸附降解后不再产生二次污染,运行成本低。
所处阶段:成熟应用阶段
虹彩塑料废气治理的
调查研究
项目简介:该课题研究从该废气处理前后中污染物的浓度检测、分析入手,进而达到对处理废气达标与否进行定量分析和准确判断,同时,为目前使用ECOLO制剂这一高效、简单、实用的异味废气处理新技术在此类废气中的应用提供科学依据,若ECOLO制剂不能系统地对废气中各种污染物进行达标处理,则提出真正实现经济、高效解决有毒异味废气的典型技术,建立示范装置。
意义: 该项目为软科学,调查研究发表的论文对塑料废气的治理有着积极推动意义。
脱除废气中一氧化氮方法
项目简介:该发明采用脱氮洗涤液为亚铁螯合剂溶液,还原剂为金属铁。用亚铁螯合剂与一氧化氮发生络合反应,形成亚铁亚硝酸络合物,使废气中不溶于水的一氧化氮进入水溶液,用金属铁与亚铁亚硝酸络合物发生反应,将与螯合铁结合的一氧化氮还原为N_2,从而实现脱氮。
所处阶段:成熟应用阶段
用于汽车尾气处理复合介孔催化材料及制备方法
项目简介:该研究利用介孔材料所具有的高的比表面积和有序的孔道结构,采用合适的制备工艺,将少量的贵金属及其他活性组分均匀地分散于具有良好热稳定性的介孔氧化锆基体材料的孔道中或掺杂于其骨架结构中,可以最大限度地提高这类材料的催化活性,特别是低温活性;同时能有效减少贵金属用量,从而有望成为一种优良的可用于汽车尾气净化用的催化剂材料。
所处阶段:初期阶段
废气净化器
项目简介:该项目产品废气净化器包括壳体、进气管、水浴装置、喷淋装置、水循环过滤装置、收水装置及出气口,对废气进行水浴和水幕喷淋连续二级净化处理,增加了气液接触的面积及时间,大 大提高了气体净化的效果,而且对高温、高湿、高比阻、易燃、易爆的含尘气体具有较高的效率,去除气体中的水蒸汽及某些有毒有害的气态污染物。相比同类型的干式除尘器,除尘效率高。同时采用了循环过滤装置,澄清的水可反复利用,节约水资源。主体结构选用玻璃钢,不锈钢等防腐材料制造,耐高温、耐腐蚀。
所处阶段:成熟应用阶段
铝电解烟气净化技术优化与应用
关键词:湿法烟气脱硫;吸收塔串联; 高硫煤; 高效率;电耗低。
中图分类号:TF704.3 文献标识码:A 文章编号:1 前言
我国煤的硫份变化范围较大,从0.1%到10%都有。从总体上看,我国属于硫煤储量较多的国家,据统计,我国煤炭资源中有大约30%的煤硫含量在2%以上,尤其西南地区有些煤田含硫量高达10%。目前我国所采煤炭中约1/6为高硫煤,中、低硫类开采较大,有些优质低硫煤煤田已面临资源枯竭,如:著名的大同煤田,优质低硫煤最多只能开采15年。因而,我们随着时间的推移,不得不越来越多的面临中、高硫煤的使用。
SO2是造成大气污染的主要污染物之一,有效控制工业烟气中SO2是当前刻不容缓的环保课题。我国2011年全国二氧化硫排放量高达2217.9万吨,已成为世界SO2排放第一大国。由此造成的经济损失超过5000亿元人民币。我国每年排入大气的87%的SO2来源于煤的直接燃烧。其中大约一半来自于火力发电厂,随着我国工业化进程的不断加快,SO2的排放量也日渐增多。为降低排入大气的SO2总量,GB13223-2011《火电厂大气污染物排放标准》已经实施,新建电厂SO2排放标准更加严格,要求排放不大于100mg/Nm3 。
由上可知。中国未来脱硫行业的发展趋势时,随着燃用煤种含硫量的越来越高,火电厂大气污染物排放标准也会越来越严格,如此,将会要求烟气脱硫系统的脱硫效率也随之越来越高。
2 目前国内脱硫系统现状
当前世界上已开发的并已稳定运行的湿法烟气脱硫技术和干法循环流化床技术、以及半干法烟气脱硫技术。据有关统计表明,湿法烟气脱硫技术占世界上已经安装并稳定运行的电厂烟气脱硫装机总容量的85,尤其日本占98%,美国占92%。我国20万千瓦机组以上的大中型电厂,湿法脱硫也占脱硫总装机容量的90%,60万千瓦以及以上的大型机组脱硫,至今全部采用湿法烟气脱硫技术。
脱硫系统在去除烟气中SO2的同时,也需要消耗很大部分的能源,如水、气、石灰石、电等,煤种含硫量越高,需要的脱硫效率也越高,同时消耗的能源也越高,国内目前湿法脱硫效率在95%左右,普遍采用单吸收塔,采用的脱硫工艺以石灰石石膏-湿法脱硫工艺为主。
湿法脱硫工艺在所有脱硫工艺中,系统运行时的电耗最高,通常占发电量的0.6~1%左右,高硫煤机组可高到3%以上,随着煤的含硫量升高以及脱硫效率的增加,脱硫系统的耗电也会随之增加,在湿法脱硫系统中,主要的大型耗电设备为:脱硫升压风机、吸收塔浆液循环泵、石灰石球磨机、石膏脱水真空泵以及氧化风机等,其中脱硫升压风机、吸收塔浆液循环泵运行电耗占整个脱硫系统运行电耗的60%左右。
3单塔和串连吸收塔的电耗性能比较
湿法脱硫系统设置单个吸收塔和设置两个吸收塔串联运行,在整个脱硫系统而言,主要的区别在于吸收塔设置不一样,所以所牵涉到的电耗上有区别的设备仅仅包含吸收塔浆液循环泵电耗以及克服烟气通过吸收塔造成的压力损失造成的脱硫升压风机电耗增加的不同,以单台600MW机组为例,其烟气成份条件如下:
烟气量:2200000Nm3/h (标态、湿基、实际O2)
烟气排烟温度:125 ℃
入口烟气成份:H2O:7.5 Vol%(标态、湿基、实际O2)
O2:5.55 Vol%(标态、湿基、实际O2)
入口烟气SO2含量:10000Nm3/h (标态、干基、6 Vol%O2),相当于4.2%的煤含硫量。
满足环保排放,脱硫效率不低于99%。
按照单个吸收塔设置,吸收塔的脱硫效率不得低于99%,如果按照2个吸收塔串联配置,每个吸收塔脱硫效率按照不低于90%,整体效率为90%+(1-90%)×90%=99%,其最终脱硫效率是同等的。
3.1 按照单个吸收塔设置
吸收塔脱硫效率的高低与许多因素有关,但其根本影响因素是浆液循环量的大小,就是循环浆液量和烟气流量的比值,俗称液气比,液气比越高,脱硫效率也越高,下表是根据MHI公司开发的吸收塔(液柱塔)脱硫性能计算软件,在同等条件下,浆液循环量(m3/h)同脱硫效率的关系曲线:
通过上曲线发现,脱硫效率随着浆液循环量的增加而提高,但是随着浆液循环量增加的比例越来越大,脱硫效率提高的比例却越来越小。在浆液循环量增加的同时,吸收塔浆液喷嘴的背压和烟气通过吸收塔的产生的压力损失也同时增加。
由于吸收塔喷嘴的个数和尺寸相同,每个喷嘴需要的背压与通过喷嘴的浆液流速v2成正比,喷嘴流速为v=Q/n×s,其中Q为浆液循环量,n为喷嘴个数,s为单个喷嘴截面积,由此可得出吸收塔背压的增加与浆液循环量的平方成正比。烟气流经吸收塔喷淋区时,受到吸收塔内喷淋浆液的阻挡,产生阻力,烟气压力损失浆液循环量成正比。但是在实际工况中,考虑到喷淋管道和喷嘴的特殊结构产生的影响,吸收塔喷嘴背压和烟气流经吸收塔阻力随循环浆液量增加时产生的变化要复杂一些,根据MHI公司开发的吸收塔(液柱塔)脱硫性能计算软件计算:
脱硫效率在99%时,浆液循环量为93000m3/h,吸收塔喷嘴背压为25.5mH,烟气流经吸收塔阻力为2790Pa。脱硫效率在90%时,浆液循环量为50800m3/h,吸收塔喷嘴背压为8.4mH,烟气流经吸收塔阻力为1520Pa。
吸收塔循环浆液泵一般为离心泵,负责将浆池中的石膏浆液送至喷嘴,并在喷嘴处产生一定的背压,使得浆液通过喷嘴形成喷淋层达到吸收SO2的目的。
浆液循环泵的轴功率为:N=Q×H×ρ×g÷η
其中 Q:为浆液泵额定流量,单位:m3/s,
H:扬程,单位:米
ρ:浆液密度,单位:1000Kg/m3,对于液柱塔 ,30%浓度浆液的密度为1250 Kg/m3.
η:离心浆液泵效率(本示例取85%)
浆液泵扬程H=吸收塔喷嘴背压+管道压力损失(一般取3mH)+喷嘴净高差压(本示例取6.9mH)
循环泵运行电耗P=N÷ηl÷ηd
其中 P: 循环泵运行电耗
ηl:离心浆液泵联轴器传动效率(1、直联取1;2、联轴器联接取0.95~0.98;本示例取98%)
ηd:离心浆液泵电机效率(本示例取95%)
脱硫效率在99%时,循环泵运行电耗:
P=93000÷3600×(25.5+3+6.9) ×1.25×9.8÷0.85÷0.98÷0.95=14156KW
脱硫效率在90%时,循环泵运行电耗:
P=50800÷3600×(8.4+3+6.9) ×1.25×9.8÷0.85÷0.98÷0.95=3997KW
脱硫升压风机一般为轴流风机,用以克服烟气流经脱硫系统产生的压力损失。
升压风机的轴功率为:N=Q×p÷(3600×1000×η0)Q—风量,m3/s;p—风机的全风压,Pa;η0—风机的效率;
Q=Q0×(273+T) ÷273
Q0—标准状态下风量,Nm3/s;
T—实际烟气温度
升压风机运行电耗P=N÷ηl÷ηd
其中 P: 升压风机运行电耗
ηl: 升压风机联轴器传动效率(1、直联取1;2、联轴器联接取0.95~0.98;本示例取98%)
ηd: 升压风机电机效率(本示例取95%)
脱硫效率在99%时,升压风机为克服烟气流经吸收塔阻力需要的运行电耗:
P=2200000×(273+125)÷273×2790 ÷(3600×1000×0.85)÷0.98÷0.95=3141KW
脱硫效率在90%时,升压风机为克服烟气流经吸收塔阻力需要的运行电耗:
P=2200000×(273+125)÷273×1520 ÷(3600×1000×0.85)÷0.98÷0.95=1711KW
通过以上计算分析,在设置单个吸收塔时,当脱硫效率在99%时,循环泵运行电耗与升压风机为克服烟气流经吸收塔阻力需要的运行电耗总和为14156+3141=17297KW;
3.2 按照双吸收塔串联设置
为保证脱硫系统整体脱硫效率达到99%,双塔串联时,一级吸收塔脱硫效率为90%时,二级吸收塔脱硫效率不得低于90%,按照单个吸收塔脱硫效率在90%时,浆液循环泵运行电耗与升压风机为克服烟气流经吸收塔阻力需要的运行电耗总和为3997+1711=5708KW;如二级吸收塔设置同一级吸收塔相同,按照双塔串联设置总脱硫效率在99%时,循环泵运行电耗与升压风机为克服烟气流经吸收塔阻力需要的运行电耗总和为5708×2=11416KW;远低于单级吸收塔总电耗17297KW。
在实际工况时,二级吸收塔入口烟气温度经过一级吸收塔冷却后大大降低,而且入口烟气SO2含量只有一级吸收塔入口10%,相当于燃用超低硫煤,其达到90%脱硫效率时的液气比要远远小于一级吸收塔,按照MHI公司开发的吸收塔(液柱塔)脱硫性能计算软件,在同等条件下,二级吸收塔浆液循环量(m3/h)同脱硫效率的关系曲线:
根据软件计算:二级吸收塔脱硫效率在90%时,浆液循环量为21000m3/h,吸收塔喷嘴背压为4.4mH,烟气流经吸收塔阻力为520Pa。
二级吸收塔脱硫效率在90%时,循环泵运行电耗:
P=21000÷3600×(4.4+3+6.9) ×1.25×9.8÷0.85÷0.98÷0.95=1291KW
二级吸收塔脱硫效率在90%时,升压风机为克服烟气流经吸收塔阻力需要的运行电耗(考虑双塔串联时烟道走向复杂,需要增加200Pa的烟道压损):
P=2200000×(273+125)÷273×(520+200)÷(3600×1000×0.85)÷0.98÷0.95=811KW
3.3 比较分析
如此实际上按照双塔串联设置总脱硫效率在99%时,循环泵运行电耗与升压风机为克服烟气流经吸收塔阻力需要的运行电耗总和为5708+1291+811=7810KW;比单级吸收塔总电耗低9487KW。由此可见,双塔串联虽然设置了两级吸收塔,总耗电量反而大大降低。这是因为虽然脱硫效率随着浆液循环量的增加而提高,但是随着浆液循环量增加的比例越大,脱硫效率提高的比例却越来越小,当脱硫效率超过97%时,随着浆液循环量增加,脱硫效率提高已经非常困难。这就造成了,当采用双塔串联时电耗反而会远远降低。
4 双塔串联在实际工程中的应用
国内外有许多工程燃用高硫煤种,为满足环保排放,需要非常高的脱硫效率,其脱硫系统均采用双塔串联,尤其U型双液柱塔串联,由于液柱塔外形为方形,在整体布置中具有极大的优势,其双塔浆液池可以非常方便的结合成一个浆液池,对于石膏浆液的氧化和后续处理非常容易,大唐桂冠合山发电厂#3机组脱硫系统,燃煤含硫量最高达到5.2%,该机组采用U形液柱塔,双塔串联,总体脱硫效率高达98.4,该机组已于2011年成功投入商业运行,在满负荷工况下,脱硫效率不低于设计值,脱硫系统设计电耗不到9950KW,实际运行不超过9900KW,按等量烟气量、等量SO2浓度、等量脱硫效率相同的系统配置,#3脱硫U型塔技术比其它同类脱硫技术运行电耗要少近6000KW,约占整个机组发电量的1%,可以说双塔串联设置的经济性是其最突出的闪光点,也是其它单塔脱硫技术望尘莫及的。这一技术的推广,将会给大机组、高硫煤、高效率的等同类脱硫机组带来巨大的经济效益,大大降低整体行业的电能消耗。
5 结论
目前国内燃煤机组仍然以燃烧低硫煤为主,随着低硫煤炭资源的逐渐消耗,燃用中高硫煤中是未来不可避免的国情,按照上文分析的实例中,燃用高硫煤种,按照一年运行5500h,电价为0.35元,单塔比双塔一年运行电费要高出1800万,由此可见,当燃用高硫煤中时,为满足环保排放要求,必须达到比较高的脱硫效率,选用单个吸收塔运行已经非常的不经济,造成巨大的能源浪费,与脱硫系统环保宗旨严重向背,采用双塔串联运行是未来脱硫系统必然的趋势。
参考文献:
[1] 国家环境保护总局科技标准司.《燃煤锅炉烟气除尘脱硫设施运行与管理》.北京出版社,2012. .
[2] 王志轩.我国燃煤电厂二氧化硫排放控制问题分析.火电厂环境保护综合治理技术研讨会论文集,2006. 31-39.
[3] 《小型热电站实用设计手册》.中国电力出版社,1995.
关键词 石膏浆液
中图分类号:P619文献标识码: A
一、沧东公司石膏脱水系统简介
我公司2台1、2号600MW燃煤机组一期脱硫装置自2006年陆续投运后一直稳定运行。但由于工况变化,自2011年5月份开始,1、2号脱硫相继出现石膏脱水问题,石膏含水率增大,最高达到20%多,已经严重影响脱硫系统正常运行,下面首先介绍一下影响石膏品质的各种因素,然后分析沧东公司石膏品质差的主要原因。
二、石膏性质
(1)石膏的质量标准如下。
(2)石膏品质差的形式
石膏品质差主要表现为以下四种方式:1、石膏中含水量超标(>10%)。2、石膏中未反应的CaCO3和MgCO3含量超标(>3%)。3、石膏中可溶性Cl-、F-、Mg2+含量或总可溶性盐(杂质)含量超标(>3%)。4、石膏中CaSO3•1/2H2O含量超标(>0.4%)。影响石膏品质的因素很多,综述来说,主要为浆液品质差、烟气杂质含量多和脱水系统设备问题三种原因。
三、浆液品质的影响
(1)浆液pH值的影响 浆液pH值的大小对石膏品质的影响起到决定性的作用。过高的pH值会使CaCO3的溶解度降低,未溶解的CaCO3随石膏浆液排出会影响石膏的品质还会堵塞真空皮带机滤布,造成脱水困难。
(2)石灰石纯度的影响 合格的石灰石其CaCO3含量要大于90%,石灰石中的Al2O3、Fe2O3、Mn3O4及SiO2等酸不溶物为石灰石中的主要杂质,石膏中的杂质含量一般要控制在3%以下,因为这些杂质直接影响石膏的粒度和纯度,不利于石膏结晶。
(3)氧化空气量的影响 如果氧化空气量不能满足设计需要,将会导致浆液中的CaSO3•1/2H2O无法被充分氧化,石膏浆液中的CaSO3•1/2H2O含量会升高,影响石膏的品质。
(4)浆液密度和过饱和度的影响 随着烟气与浆液的反应,CaSO4•2H2O的含量逐渐上升,导致浆液密度逐渐增大,会促使石膏在现有的晶种上结晶,使晶体长大,有利于石膏形成,同时石膏浆液中CaCO3含量减少,有利于提高石膏品质。但当密度过高时,晶体的生长速率会成倍增加,会产生许多新的晶体颗粒,此时产生的石膏会是许多细小的颗粒,通过旋流器浓缩后,浆液浓度达不到40%,真空皮带机上滤饼的厚度不够而漏空,直接影响到真空度,不利于脱水。
(5)浆液的搅拌强度的影响 浆液的搅拌强度也会对石膏的形状造成影响,搅拌强度过大,会使石膏晶体尖角部分的晶束从晶体中脱落,不易于脱水,搅拌力度不够又会使石膏晶体形成针状、片状,也不易于脱水。
四、烟气杂质含量的影响
(1)氯离子含量的影响 氯离子的主要来源是烟气中的氯化氢气体,其次是工艺水中的氯离子。氯离子的危害主要表现为:(1)浆液中的氯离子会与浆液中的钙离子反应生成性质稳定的六水氯化钙,锁住石膏中的水分,使石膏中水分增加。(2)石膏晶体分子间的氯化钙,阻止了游离水与石膏晶体的分离,使石膏无法高效脱水。
(2)烟尘的影响 随烟气进入吸收塔的飞灰,大部分会留在浆液中,排出时,一部分会进入废水系统,其余的将会进入石膏,影响石膏品质。
五、脱水系统设备的影响
(1)真空皮带机真空度的影响 真空皮带机是石膏浆液二级脱水的主要设备,主要原理是利用真空把石膏中的水分去除,正常运行的设备能把含水40%的石膏浆液脱水至10%以下。
(2)石膏旋流站运行状况的影响 石膏旋流站是石膏浆液一级脱水的主要设备,它能使石膏浆液中的水份从80%下降至40%左右。但由于长时间运行磨损、运行控制方式改变等原因造成石膏旋流站旋流子口径变化、入口压力改变等均会影响脱水效果。
(3)石膏膏体厚度的影响 石膏浆液经过给料系统落在真空皮带机上,石膏膏体的厚度由皮带机的转速和进料门开度的大小控制。石膏厚度过薄会造成部分滤布没有覆盖石膏,造成真空度下降,影响石膏含水量;石膏过厚又会造成水份脱除不彻底,增加石膏含水量。
六、实际问题研究及对策
经过我们深入研究,发现烟气中的烟尘浓度较以前有大幅上升,原因为1、2011年初将1号、2号机组电除尘器改造为节能运行方式,虽然节能运行仍能满足除尘率,但一定程度上使除尘效果不如以前。2、1号机组电除尘器2、3电场部 分收尘区存在虚 接短路情 况,造成二 次参数较低,基本上处于无 效收尘状 态。2号机组C除尘 器三四电场阴极螺 旋线断 裂等原因,造成后两级电 场均不能正常收 尘运行。3、由于两台机组浆液通过脱水系统后的滤液水而混和,导致一台脱硫浆液品质恶化会“传染”至另一台脱硫。
另外,运行人员为了提高脱硫效率加入大量的石灰石浆液,最终导致浆液中CaCO3含量过剩,经化验,石膏中的CaCO3含量、杂质含量、氯离子含量均已超标,滤布已经堵塞,造成石膏无法有效脱水,导致石膏含水量增大。
所以,这次石膏的问题其本质主要是随着锅炉工况的变化(掺烧石炭煤或高硫煤)、石灰石品质的降低、电除尘设备故障等综合因素的影响,导致吸收塔浆液品质发生了本质的变化,使得吸收塔中的浆液致盲。其中电除尘设备运行方式改变和部分设备故障是导致问题发生的主要问题。
应对措施:首先通过对电除尘设备的维修;对电除尘运行参数的调整;暂停石灰石浆液的加入,待pH值下降至4.0左右时,人工计算石灰石浆液的加入量,使pH值逐步上升,最后一边向吸收塔内补充新鲜的石灰石浆液和工艺水,一边外排吸收塔浆液至事故浆液箱进行置换,同时加强废水排放,降低吸收塔中的氯离子含量和重金属含量直至石膏品质符合再利用要求。
为了预防石膏品质差,需要长期做的具体工作为:1、保证石灰石纯度。2、控制浆液pH值不要剧烈波动。3、控制浆液密度不要过大、过小。4、保证足够的氧化空气量。5、浆液的搅拌强度不要过大。6、保证电除尘系统高效运行,严密监测烟气中烟尘含量。7、严格控制浆液中氯离子含量,定期化验,谨防超标。8、保证石膏旋流站稳定运行并定期检测。9、严密监测真空皮带机真空度。10、严格控制真空皮带机上石膏膏体厚度。11、滤饼冲洗水流量和安装位置要合理。
七、结束语
影响石膏脱水问题的因素还有很多,还有待我们更加深入的去研究各个因素以及更加合理的处理方法,通过这些研究,不断提升石膏产品的质量,提高我们设备可靠性和准确性。
参考文献
顾圣秋,俞利强.石灰石一石膏湿法脱硫中吸收塔浆液泡沫过多问题探讨.上海电气技术,2010,03
徐铮.脱硫石膏品质控制技术及其资源化研究:[硕士学位论文].保定:华北电力大学环境工程,2007
关键词:哈氏合金(HastelloyC-276)、焊接、氩弧焊
Abstract: According to the metallic Hastelloy its welding method and welding technology research, ensure the welding quality.
Keywords: Hastelloy (HastelloyC-276), welding, TIG
中图分类号:P755.1文献标识码:A文章编号:2095-2104(2013)
一、概况
在经济高速发展的今天,人类在追求经济发展的同时,越来越重视环境的保护。在中国火力发电厂这一领域也不例外,锅炉尾气中含有大量的SO2 气体,对空气环境造成极大的污染,因此对锅炉烟气的处理——脱硫工艺应运而生。本论文主要着重于脱硫工艺中工作环境最恶劣的部分烟道与吸收塔相接处(在施工现场称为入口烟道)所用哈氏合金材料(HastelloyC276)对接以及哈氏合金材料(HastelloyC276)与Q235B钢材异接的焊接工艺研究。
二、C276材料性能
(1)材料成分
美国Hastelloy公司研制的牌号为C276的钢材属于Ni-Cr-Mo系三元镍基合金(主要化学成分见表1),也称为NS334合金。
表1、标准HastelloyC-276材料以及现场所用HastelloyC276材料化学成分
(2)物理性能
超低碳型镍基哈氏合金(C276)具有硬度高、熔点高、耐腐蚀、机械性能优良的物理性能。C276材料的物理性能见表2、力学性能见表3。
表2C276的物理性能
(3)化学性能
C276材料具有良好的耐点腐蚀、缝隙腐蚀和应力腐蚀性能。合金中所加入的Cr、Ni与空气中氧发生反应,表面形成一层非常致密的含合金元素的复合氧化薄膜。这层薄膜在许多腐蚀介质中具有很高的稳定性,从而防止金属被空气或其他腐蚀介质腐蚀。Cr溶入铁基固溶体后,可使其电极电位提高,起到防腐效果。C276合金中所添加的大量Mo可与C结合,形成MoC,这类化合物溶于铁素体中,能强化基体,提高耐蚀的能力。而降低C含量可以减少合金中碳化物的析出数量,减少晶间腐蚀。降低Si含量可减少金相间的沉淀数量,提高合金耐晶间腐蚀的目的。
(4)焊接性能及焊接的主要问题
C276合金具有面心立方晶格结构,其基体为面心立方点阵的固溶体,在其固溶度范围内添加Cr、W、Mo等元素提高原子间结合力产生点阵畸变,降低堆垛层错能,以提高再结晶温度来强化固溶。它与焊接碳素钢相比具有低熔透性的特点。在焊接时容易出现以下问题:
1)气孔:C276材料焊接前坡口处理不干净有油污等杂物残留、焊接时空气潮湿或者焊接过程中保护气体未能保护熔池,很有可能将导致氢、氮等非可溶性气体渗入熔池。由于合金固、液相温度间距小,流动性偏低,非可溶性气体在熔池凝固时来不及排出而残留在焊缝中,导致气孔的产生。
2)未熔合、未焊透:由于C276材料镍基合金焊缝金属不能像钢焊缝那样容易润湿展开。即使增大焊接电流也不能改进焊缝的流动性。这是镍基耐腐蚀合金的固有特性。由于其流动性能差,易造成未熔合和未焊透。
3)热裂纹:当采用高热输入焊接时,在热影响区产生一定程度的退火和晶粒长大。有可能在结晶时形成低熔共晶物,易形成方向性强的单相奥氏体,促使杂质偏析,并且合金膨胀系数比较大,在焊接时产生较大的焊接应力,有可能引起热裂纹。
三、 C276焊接工艺
(1)焊接方法
钨极气体保护焊能很好的控制热输入,这种焊接方法的焊接质量高。而钨元素对形成焊接热裂纹无直接影响,在该工程中采用铈钨丝(WCe20)电极。铈钨丝的电子发射能力强,引弧电压低,电弧稳定性好。用氩气作保护气体,用直流正极性,高频引弧以及电流衰减的收弧技术进行焊接。因为直流钨极氩弧焊时,钨极发热量小,不易过热,同样大小直径的钨极可采用较大电流,焊接效率高。
本次焊接使用ZX7-400N型逆变焊机,现场所采用氩弧焊丝为ERNiCrMo-4(焊丝化学成分见表4),2.0;氩气纯度≥99.95%;钨极选用铈钨极WCe-20,2.5mm;瓷嘴直径为8mm。
表4 ERNiCrMo-4化学成分
焊接时,应注意以下方面:
焊前清理。坡口两侧各10-15mm内应清除油、污、垢、锈等,并打磨至露出金属光泽。
2)防止焊接时母材被氧化,在防止未熔合、未焊透的前提下,应快速焊接。
3)焊接时应严格控制热输入,热输入过大容易造成热裂纹;为防止热裂纹,在焊接时采用电弧不摆动或者小摆动的多层多道焊,严格控制层间温度在100℃以下。
(2)焊接工艺评定
1)焊接试件制作及焊前清理。
2)焊接工艺及其参数(详见表5、表6、表7)。
表5 焊接工艺
表6 电(火)特性 C276与C276
表7 电(火)特性 C276与Q235B
焊后对C276与C276对接焊接试件以及C276与Q235B异接焊接试件的焊缝进行外观检测,均符合焊接规程要求;对其焊缝进行内部的金相检验,未发现裂纹、气孔、夹渣、未熔合、未焊透等常见焊接焊缝缺陷,试件焊缝金相检测合格。
四、结论
(1)C276与C276、C276与Q235B焊接采用ERNiCrMo-4焊材均可以满足焊接要求。
(2)通过对C276材料性能的分析,在焊接时,根据C276材料的特点,采取相应的预防措施,按照工艺评定的焊接参数,严格落实焊接方法的各项注意事项,焊缝可以达到焊缝外观成型好、内部无气孔、无夹渣、无裂纹、无未熔合、无未焊透等焊接规范要求。
参考文献:
[1]火力发电厂焊接技术规程DL/T869—2012.
[2]火力发电厂金属技术监督规程DL/T438—2009.
[3]金相检验.上海科学普及出版社.2003年5月第1版.
关键词:降磷;铁矿石;技术现状
中图分类号:TB
文献标识码:A
文章编号:1672-3198(2010)15-0348-01
铁矿石中的磷主要以磷灰石或碳氟磷灰石形态与其它矿物共生,浸染于氧化铁矿物的颗粒边缘,嵌布于石英或碳酸盐矿物中,少量赋存于铁矿物的晶格中。且磷灰石晶体主要呈柱状、针状、集晶或散粒状嵌布于铁矿物及脉石矿物中,粒度较小,有时甚至是在2微米以下,不易分离,属于难选矿石。针对不同的矿石性质,近年来国内外进行了较为深入的铁矿石脱磷工艺研究。主要工艺有:反浮选、选择性聚团、酸浸、高梯度磁选、氧化焙烧一酸浸、微生物脱磷。
1 高磷铁矿石提质降磷技术现状
1.1 反浮选脱磷或磁选一反浮选联合工艺
随着新型高效浮选药剂的不断出现,反浮选仍然是目前最主要的铁矿石脱磷方法。为了降低反浮选成本或进一步降低含磷量,磁选一反浮选联合降磷已显示出优势。例如:长沙矿冶研究总院以RA-3巧捕收剂,采用反浮选工艺,对美国Toshi公司提供的Tilden高磷铁矿综合样进行了实验室小型试验研究。以Cα2+为石英活化剂,淀粉为铁矿物抑制剂,RA-3巧为捕收剂进行磷硅混合反浮选,取得了铁品位65.50%,含磷0.030%,铁回收率79.67%的闭路试验指标;梅山铁矿与马鞍山矿山研究院采用浮选(脱硫)一磁选一浮选(脱磷)工艺流程处理梅山铁矿高磷磁铁矿取得了较好的工业试验指标,可将磷降至0.25%以下。试验以H-907为捕收剂,水玻璃为抑制剂,浮磷作业铁回收率可达96.45%。
1.2 选择性聚团分选
由于磷灰石等杂质矿物嵌布粒度极细,为使其单体解离,往往需要细磨,从而使常规方法捕集困难,回收率低。近年来,迅速发展起来的选择性聚团分选工艺为微细粒矿物分离提供了更为广阔的前景。选择性聚团分选工艺主要有:高分子絮凝分选、疏水聚团分选、磁团聚与磁种聚团分选以及复合聚团分选。自1964年开始,选择性聚团分选工艺曾用于加拿大斯奈克雷文矿床的高磷铁矿石脱磷研究。该矿床铁矿石储量达300亿吨,平均铁品位44.0%,含磷0.34%。该研究中的试样为铁品位54.6%。含磷0.39%的富矿,其主要工艺流程如图1.3所示。经过这样的两段聚团分选,得到含铁68.9%,二氧化硅5.3%、含硼低于0.02%的铁精矿,铁回收率为85%。
1.3 酸浸
我国鄂西“宁乡式”鲡状赤铁矿资源丰富,约占全国铁矿储量的4%左右。但由于矿石性质复杂。含磷高(平均1%左右),难选难冶,至今尚未有效地开发利用。由于矿石性质复杂,用机械选矿方法脱磷,目前尚未完全过关。
卢尚文等采用解胶浸矿方法对宁乡式高磷铁矿石进行了较为深入的脱磷试验研究。通过浸出,可脱除胶磷鲡状铁矿石中40-50%磷,提高4-5个百分点的铁品位。
石原透等应用超声波酸浸脱磷工艺对美国内华达出产的高磷磁铁矿和赤铁矿进行了脱磷研究。试验中磁铁矿样含磷0.671%,粒度为-28目(0.589Inln),超声波频率ZOkHz,酸浓度5%,浸出时间巧han,最终结果为:使用硫酸时含磷0.07%(为机械搅拌酸浸的1/14),使用盐酸时含磷为0.06%(为机械搅拌酸浸的1/7),铁回收率为95%以上。
1.4 高梯度磁选
新型高梯度磁选机的研制较大幅度地降低了有效分选粒度下限,较好地解决了堵塞与夹杂问题,为高磷铁矿石脱磷提供了一条新途径。
赣州有色冶金研究所与中南工业大学联合研制了S10n系列立环脉动高梯度湿式磁选机已用于工业生产。它的鼓膜脉动结果使高梯度磁选效率得到明显提高,有效分选粒度下限达10卜m。slon-1500立环脉动高梯度磁选机用于梅山铁矿精矿脱磷工业试验中的强磁选作业,取得了较好的试验结果。在原矿(二次溢流)含铁52.89%、含硫2.04%、含磷0.44%的条件下,获得铁精矿含铁58.31%、含硫0.223%、含磷0.2235%,铁的作业回收率为91.79%。不但较大幅度地降低了铁精矿中的磷、硫含量,而且降低了铁精矿粘性,为后续作业(运输、过滤等)通畅打下了基础。
1.5 氯化焙烧―酸浸
该方法是将矿石与氯化钙混合后在900-1000℃条件下焙烧,然后用无机酸浸出磷。所用酸的种类不同,磷的浸出率各异,一般情况下,硝酸的浸出率最高,其次是盐酸,硫酸浸出率最低。
早在四五十年代,美国矿山局等单位对阿帕勒契恩区高磷红铁矿石脱磷进行了深入地研究。结果表明,包括浮选、焙烧磁选等在内的物理选矿不能有效地去除该矿区钙质红铁矿石中的磷。从技术上看,氯化焙烧一酸浸工艺从红铁矿中脱磷则较为成功,磷脱除率可达90%以上,但因成本高而无法应用。昆明理工大学工学硕士学位论文1.3.6微生物脱磷
近年来,利用微生物处理矿产资源的研究非常活跃,仅就溶磷方面而言,就已经发现很多种细菌、真菌、放线菌都具有溶磷作用。它们主要通过代谢产酸降低体系的PH值,使磷矿物溶解。同时,代谢产酸还会与ca2+、Mg2+、川3+等离子形成络合物,从而促进磷矿物的溶解。研究表明,有的细菌具有过量摄磷的特性,这也是微生物脱磷的机理之一。氧化亚铁硫杆菌(Tf)是应用最广泛,适应性最强的工业菌种,已成功地应用于处理贫、细、杂等难处理的硫化矿,该菌属于嗜酸性化能自氧菌,以COZ为碳源,在低PH值条件下,利用氧化Fe2+,s等释放的能量生长,02为最终电子受体。中科院钟慧芳等的试验表明,氧化亚铁硫杆菌氧化黄铁矿产生硫酸,使体系的PH值降低到0.9,这为生产低成本酸性浸出液提供了有效途径。东北大学的何良菊等利用梅山铁矿矿石中含有部分黄铁矿,先用T噶氧化黄铁矿生产酸性浸出液,然后用浸出液进行浸出液矿脱磷。脱磷率可达76.89%,铁损率为3.87%,为高磷铁矿石脱磷提供了新途径。
2 高磷铁矿石脱磷工艺研究方向
经过国内外学者的共同努力,高磷铁矿石脱磷工艺研究取得了突破性进展,特别是在反浮选脱磷方面,出现了一批新型高效分选药剂,并进行了较为系统深入的研究。但是,从整体情况看,高磷铁矿石脱磷工艺研究仍然存在脱磷率低,方法单一等缺点。随着科学技术水平的不断发展,相关领域学科不断交叉渗透,以及新理论、新材料和新试验测试方法的不断出现,铁矿石脱磷工艺研究将得到不断完善。
参考文献
[1]杨龙.铁精矿选矿降磷工艺优化研究[D].西安建筑科技大学,2003.
论文摘要:依据学校环境工程专业的培养目标,提出了《大气污染控制工程》课程建设应从理论教学和实践教学两个环节着手,体现为火力发电行业培养环保人才的专业特色。可供其他院校环境工程专业制定培养目标及进行课程建设时参考。
环境工程学是环境科学的一个分支,又是工程学的一个重要组成部分。环境工程专业肩负着培养能运用环境科学、工程学和其他有关学科的理论与方法,保护和合理利用自然资源,控制和防治环境污染,以改善环境质量,使人们得以健康和舒适的生存的专门人才的重任。环境工程学科是一门新兴的、综合的学科。
比较中外环境工程教育的历史和现实,我们不难发现:没有特色就没有优势,也谈不上生命力。环境工程本科专业应在坚持“统一性”的基础上,注意发展“特殊性”,突出“个性”。
专业开办之初,学校就确立了在遵循环境工程专业统一培养规格和基本要求的前提下,根据我校立足火电行业的学科优势,办出我校环境工程专业的特色。在这样一个指导思想下,我校的环境工程专业定位为“培养面向以电力企业为代表的能源动力类行业中的工业废水及废气的污染排放控制及监测与评价,兼顾声、固体废物等污染防治的工程应用型人才”。
《大气污染控制工程》是环工专业的主干专业课,为体现我校环工专业特色,切实实现培养目标,应从以下几方面进行本课程的建设。
1.优化理论教学内容、教学手段,体现立足电力行业的专业特色
环境工程学科具有涵盖面广的特点,其主干专业课程《大气污染控制工程》的教材也同样涵盖了各行业大气污染控制的基本理论、方法、技术、设备及流程等内容。为体现我校环境工程特色,激发学生学习兴趣,应从合理设计教学内容与教学手段两方面做起。
(1)教学内容的确定,应围绕火力发电行业的大气污染防治进行
①教材的选取。一本合适的教材,是教师讲好这门课,学生学好这门课的基础。目前,《大气污染控制工程》教材,主要有:高等教育出版社出版,郝吉明与马广大编著的《大气污染控制工程》;化学工业出版社出版,郭静与阮宜纶主编的《大气污染控制工程》;化学工业出版社出版,姜安玺等编著的《空气污染控制》,前两本教材的体系基本相同,后一本内容较为宽泛,教材的编写是依据大气污染源进行,除了烟尘、SOX、NOX等常规大气污染物外,还涉及有二恶英、恶臭、室内空气污染与控制内容。通过比较,作者认为郝吉明与马广大编著的《大气污染控制工程》更适合我校环境工程专业选做教材,另两本书可作为指定参考书,供学生课后阅读,扩大知识面。
②教学内容的取舍。在选定了适合的教材之后,教师切忌照本宣科,讲授过程中应做到有重点、有概括、有启发。如有关大气环境质量标准的内容,应及时查找新标准,并把《火电厂大气污染物排放标准》(GB13223-2003)作为讲解重点,其他相关标准可提供网址,让学生自己查阅;除尘装置部分应以火电厂主要应用的电除尘器和袋式除尘器为重点讲解内容,其他类型的除尘器作一概述,提出问题让学生通过自学来解答;关于火电厂燃煤烟气脱硫(FGD),由于该项技术是火力发电厂目前采用的主要的脱硫技术,而且该项技术发展非常迅猛,因此教师应及时跟踪先进技术,传授给学生最新、最实用的知识。另外,火力发电厂CO2排放问题也日益受到重视,关于它的生物处理方法也有很多的研究报道,可通过课堂教学引导学生关注这个领域的动态。
(2)采用先进的教学手段和多样的教学方法,激发学生学习兴趣和提高学习效率
利用网络资源、已有的素材库、PPT软件制作《大气污染控制工程》多媒体课件,实现该课程的多媒体教学。通过形象生动的图片、动画、视频等形式激发学生的学习兴趣,提高学习效率。
在课堂教学中要摈弃那种“满堂灌”的教学方法,代之以讨论式,启发式的教学方法,通过采用“发现问题—提出问题—分析问题—解决问题—发现新问题”的教学模式,使学生从被动接受知识转变为主动建立自己的知识和能力体系。教学过程中多给学生提出问题,引导思路,启发思维,让学生通过查阅参考书、资料及与教师讨论获取知识,使学生在探讨中学习,享受到获取知识的乐趣,并逐渐养成一个良好的学习习惯。
2.重视实践教学环节建设,实现工程应用型人才的培养目标
实践教学环节是学生由理论到实践再认识的过程,是培养学生主动正确地运用理论知识解决复杂的实际问题的能力的重要环节,抓好这一环节是提高学生工程能力的关键,也为实现“工程应用型本科”的培养目标打下了坚实的基础。《大气污染控制工程》课程实践教学环节包括认识实习、基础实验和课程设计三个环节。
(1)强化实习环节教学,培养学生的专业认同感
在学习《大气污染控制工程》课程之前,学生要进行认识实习。认识实习是学生明确专业培养方向、服务行业状况的重要一环,是培养学生的专业认同感的有效环节。对于认识实习应防止流于形式,在进入实习场地之前,对实习场地的相关情况,涉及到本课程内容的基本原理、设备、系统、流程做概括性的讲解(最好采用多媒体手段进行),使学生进入实习场地后做到心中有数,把应该关注的内容筛选出来,对日后课程的学习是一个好的开端。
目前,我们主要以太原第一热电厂为有关大气污染控制内容的实习基地。在学生进入基地前,应将该厂电除尘装置的布置位置、型式、基本原理、除尘效率、运行概况给同学做一讲解;对该厂采用的高速平流简易石灰石-石膏湿法烟气脱硫工艺做概括性的讲解,并把相关脱硫技术也做一概括(要用图片配合),通过这样的积极准备,学生的认识实习一定会达到事半功倍的效果。(2)加强实验室建设,为课程实验提供保证
基础实验是《大气污染控制工程》课程实践教学环节的核心环节。要使实验能够满足教学要求,应从实验场地、实验装置、实验指导教师的建设与培养等方面做起。《大气污染控制工程》是一门实践性很强的课程,需要加强实验室建设。可采用购置实验装置、退役装置,也可采用仿真手段进行实验。内容应包括:袋式除尘器、电除尘器、吸收法脱硫、吸附法脱硫、燃烧中脱氮等。
随着教学改革的深化,设计型实验已受到了普遍的重视。《大气污染控制工程》基础实验建设时就应考虑设计型实验的实施。比如:给定某烟气的组分及浓度,让同学自己设计烟气流程,使出口烟气可实现达标排放且技术经济合理。设计完后再通过将不同类型的除尘器与烟气吸收实验装置进行组合进行效果验证。通过这样的实验一方面增强了学生解决实际问题的能力,另一方面也提高了学生的学习兴趣。
(3)重视课程设计指导工作,加强工程基本技能训练《大气污染控制工程》课程在专业教学计划中设置了两周的课程设计时间,分为除尘装置设计和脱硫工艺设计两块内容。课程设计是学生对所学知识进行巩固、提高的综合性的重要环节,要使学生受到工程基本技能的训练,包括工程计算、设备选型、流程设计、技术经济分析、绘图等,具体可从以下几方面实施:
a.科学编写《课程设计任务书》、《课程设计指导书》;
b.设计题目的选取应来源于火力发电厂大气污染防治生产实际或具有一定应用价值的模拟题目;
c.设计过程中应采用“少讲、多练、勤思维、多讨论”的原则,放手让学生自己去干,教师加强启发指导;
d.考核过程中,教师只要把握学生是否掌握了正确的设计思想即可,应鼓励学生交出多种设计方案,并针对不同方案进行点评。
3.结束语
课程建设是一项复杂的系统工程,特别是对于大气污染控制工程这一类涉及面广、内容多的专业课,更具有难度大、周期长的特点。随着课程教学的进行,一定还会发现需要改进、完善的内容。我们将本着实现专业培养目标、体现专业特色、增强学生竞争力的思想,进一步探索《大气污染控制工程》课程建设的新内容。
参考文献:
[1]蒋展鹏.环境工程学[M].北京:高等教育出版社,1992.
本文针对供热锅炉中的脱硝技术的应用,阐述一些关于如何减少氮氧化物对大气环境污染的方法。
关键词:烟气脱硝技术;SCR工艺技术;尿素热解制氨技术
中图分类号:TU995文献标识码: A 文章编号:
探讨治理集中供热排放烟气中氮氧化物的意义
集中供热系统在我国已经成为城市基础设施的一种部分,集中供热主要是通过分析热负荷特点来建设区域性的锅炉房,一方面能够有效地减少分散采暖的各类污染物的排放数量,提高采暖热效率,另一方面降低了区域内燃料消耗和建设投资,由于这些相对明显的优越性,集中供热已经成为我国北方主要地区优先考虑的供暖方式。
集中供热锅炉的烟气脱硝技术的应用是以适应我国大气污染的减排力度为要求的,将大型燃煤电厂的选择性催化还原脱硝的技术和工艺应用在集中供热领域当中。结合集中供热自身的特点,在集中供热锅炉的烟气脱硝的实施过程当中,必须解决SCR脱硝技术如何适应炉温变化及持续稳定运行等一系列问题。
锅炉本体二次设计在烟气脱硝中的运用
改造锅炉本体是有效实施集中供热锅炉烟气脱硝技术的前提。锅炉改造的主要方式是改进锅炉的结构和锅炉的受热面的布置以保证SCR装置系统的入口烟气的温度得以达到具体工作情况的需求,从而进一步实现SCR装置的连续高效运行。
对于锅炉本体结构的调整,在实施时必须重新对炉体受热进行详细的研究和计算,对锅炉的低负荷进行明确说明,并且要把锅炉的低负荷作为基本的标准,以保证SCR装置在这种低负荷水平达标的范围之内的烟气的温度达到正常的水平,所谓正常的水平就是是脱硝入口的排除烟气温度处在脱硝温度的标准区间之间,这样做的目的是保证脱硝工作的正常运行并且保证锅炉出力和锅炉的热效率。
对集中供热锅炉烟气脱硝技术中的SCR工艺技术进行优化
为保证SCR脱硝技术能够适应集中供热的特性,我们就一定要优化SCR工艺装置,这样才能保证SCR脱硝技术在集中供热锅炉当中发挥有效作用,从而实现烟气脱硝的目的。
(一)SCR工艺技术的原理探讨
SCR工艺作为目前应用范围最广泛并且效果最明显的烟气脱硝技术,主要采用的原理还是选择性催化还原的化学方式进行脱硝作业的。在具体操作过程和反应过程当中,集中供热锅炉烟气中含有的氮氧化物在催化剂的作用之下,自身作为还原剂,在进行离子交换的氧化还原反应之后产生不会污染大气的氮气和水。在这个反应的过程当中,作为还原剂的氮氧化物会有选择性的和烟气当中残留的部分氧气发生反应。根据上诉反应原理, SCR脱硝工艺又被称作选择性催化还原反应法。
在SCR脱硝工艺当中,对催化剂的适当选择也是很关键的一个步骤,如果选择的催化剂比较适当,这就能把烟气脱硝反应的外部环境控制在一定的范围内,而温度对集中供热锅炉的烟气脱硝效果也会产生很重要的影响。
(二)物料平衡在SCR脱硝工艺中作用
SCR工艺系统当中的物料平衡是作为SCR工艺技术的设计优化的一种可靠依据的,这也要求模拟和研究集中供热锅炉的整个脱硝的过程,在维持物质平衡,能量平衡以及化学平衡的虚构的工程模型的平台基础上,按照基本的设立条件和规定,计算装置在不一样的负荷以及工作状况之下的消耗状况以及系统物料平衡情况。
(三)优化SCR装置以及进行SCR装置的数值模拟
氮氧化物以及还原剂必须掺拌良好并且保持匀速进入供热锅炉才能保证集中供热锅炉烟气脱硝的效果和效率,这种匀速混合也有利于保证催化剂体积的适量以及合理的选择。保持烟气中氮氧化物和还原剂的混合的本质就是要对各种符合条件下的烟气流通速度以及氨的分布变化情况进行有效分析。要让设定的目标在任何工作环境下都得以实现,就需要计算变负荷条件下的流畅数值可以促进烟道以及导流叶片的布置优化。
一般集中供热锅炉的SCR脱硝装置都安装在锅炉尾部后,根据SCR工艺技术装置的本身特点和影响,加上供热锅炉中过高的烟气温度,要实现高效率的脱硝,对整个脱硝过程中的速度、烟气的氮氧化物与还原剂的混合,飞灰的负载分布等各个重要工艺步骤的要求都十分严格。因而要适应这种严格的环境,就要对SCR技术装置进行优化,而要对SCR技术装置进行优化,就必须改变传统,改造出新的设计方法。
在工艺上,在继承SCR反应器和与锅炉连接烟道试验调试的基础之上,结合现场的测试结果,验算以及修改一些计算的数值,从而建立出一套合理科学的SCR装置的设计理论以及方法:
首先要运用有限体积法计算出 数值的模拟SCR反应器和链接烟道,从而采取一些改进烟道的布置、形状,以及增设导流叶片的措施。
再者是要计算出数值,以获得喷氨格栅上的每一个位置上的开孔喷出来的氨的流动轨迹和迁徙规律,然后对装置进行开孔位置和大小的优化设计。
在一些符合标准不同的基础之上,必须分析在不同工作环境下,过滤的烟气的速度分布和氨扩散规律。
在分析飞灰在SCR装置运动规律的时候,理论上可以确定可能发生积灰现象的位置,确定位置之后,可以有针对性地采取一些方法,例如振打装置法,声波吹灰法,增设灰斗等等一系列有效措施。
四、液体吸收法在集中供热锅炉烟气脱硝中的应用
液体吸收法这种脱硝工艺中经常用的吸收剂主要有水、碱溶液、稀硝酸、浓硫酸等。按吸收剂的种类和净化原理可将液体吸收法分为水吸收法、酸吸收法、碱吸收法、氧化-吸收法、吸收-还原法及液相配合法等。由于NO难溶于水和碱液,因而常采用氧化、还原或配合吸收的办法以提高NO的净化效率。工业上应用较多的是碱吸收法和氧化-吸收法。液体吸收法作为集中供热锅炉烟气脱硝的后处理,也有一定的作用,不过购买化学吸收制剂的价格比较高,很难完全普及。
五、低温等离子脱硝法在集中供热锅炉烟气脱硝技术中的应用
根据电子束法的特点,提出用几万伏以上的脉冲电源代替电子加速器来产
生低温等离子体,这就是脉冲电晕低温等离子体法。低温等离子体脱硝法作为继干法、半干法、湿法等经典脱硝方法之后的一个全新的高科技脱硝( 脱硫) 方法,以其投资少、占地面积小、运行费用低、工艺过程为干式、没有设备腐蚀、没有二次污染等诸多特点,已经成为国际上公认的具有极大市场潜力和良好应用前景的烟气脱硝( 脱硫) 新工艺。但是这种新工艺设备费用比较昂贵,前期的支出比较大,我国政府也没有给供热部门作出应有的指示和支持,因此还难以得到推广。
因此可见,在我国目前最有潜力发展并推广成为锅炉烟气脱硝技术的普及技术的是SCR脱硝工艺技术,这种技术既能降低投资和运行的成本,也能提高脱硝效率。因此,国家和相关部门企业应该大力支持对脱硝技术的研究,推动我国烟气脱硝技术的发展,让我国的环境保护政策得到更有效地实施。
参考文献:
[1]国家环境保护部. 火电厂烟气脱硝工程技术规范 - 选择性催化还原法,HJ562 -2010,2010. 02.
[2]国家环境保护部. 火电厂烟气脱硝工程技术规范 - 选择性非催化还原法,HJ563 -2010,2010. 02.
[3]胡亚才,石玲,范利武,俞自涛. 煤的低 NOx燃烧技术及其发展[A],可再生能源规模化发展国际研讨会暨第三届泛长三角能源科技论坛论文集[C]; 2006.