HI,欢迎来到学术之家股权代码  102064
0
首页 精品范文 变频器论文

变频器论文

时间:2022-10-31 20:11:31

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇变频器论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

变频器论文

第1篇

一台施耐德变频器,频率只能上到20Hz,检查了各项参数,发现最高的频率上限均为50Hz,由此排除了参数的问题。再检查是不是给定方式不对,改成面板给定频率,变频器最高可运行到50Hz,因此,判断是模拟量输出电路出现了问题,检查后,发现一贴片电容损坏,更换后,变频器频率调节恢复正常。

2变频器过热

这几台使用不到一年的变频器,复位开车后还是可以正常的运行,只不过几个小时候又发生同样的故障,检查电动机没有发现问题,但注意到变频器的通风口风量很小,于是把变频器拆开检查,发现这几台变频器有的因为散热风扇烧坏,有的因为风扇保险烧坏,更换风机后,此类情况就没有在出现。4)过压和欠压。一台施耐德的变频器出现过压,总是在停机时跳“OU”,这个时候我们可以重点检查制动回路,测量放电电阻没有问题,测量制动管被击穿,把制动管换掉之后,便没有出现这个问题。出现欠压情况的DANFOSS变频器,在加负载后出现“DCLINKUNDERVOLT”,经过仔细检查问题不是特别的复杂,应该重点检查整流桥,经过检查整流桥发现有一路桥壁开路,更换后问题解决。

3故障出现的原因和应对方法

3.1不能调高频率的变频器

分析原因后得出结论,是因为电动机安装在外面,现场对于电动机保护不当,下雨时不能对电动机及时防雨,造成了电动机受潮,雨后也未能对电动机烘干,造成了电动机内部局部发生短路现象。这样的情况比较容易解决,只要做好对电动机的保护工作,增加电动机防雨系统,及时检查电动机,如有受潮的情况及时烘干。

3.2变频器频率上不去

变频器调频,发现频率调不上去时,首先看各项参数是否正常,如果参数问题排除,可以检查给定方式,如果都排除了,那么就知道是模拟量输出电路出现了问题,仔细检查模拟量输出电路,找出问题所在,排除问题。

3.3变频器过热

这个问题最终很显然是因为变频器的通风排热系统出现问题,散热风扇的质量过于粗制劣造,造成不必要的麻烦。应该选用正规厂家合格的有质量保证的变频器,及时的跟变频器厂家沟通散热排风扇的质量问题。

3.4过压和欠压

变频器过压和欠压是两个不同的故障,所以有不同的原因和应对方法。变频器过压报警,主要原因是因为减速的时间太短,或者制动单元出现了问题。变频器在减速的时候,电动机转子绕组切割旋转磁场的速度加快,转子的电流增大,电机从而处于发电的状态。这个时候,我们就要认真检查制动回路,发现问题,然后换掉出现问题的部分。欠压报警主要原因在于整流桥某一个部位的损坏,刚才也已经举了一个例子,是整流桥有一路桥臂开路。出现变频器欠压的问题,就要仔细检查整流桥,查看问题的部位并撤换掉。

3.5变频器的运行环境

在一些工厂内,空气中的粉尘和蒸汽含量很高,所以变频器一半在现场的控制柜中保护,为了更好的散热,就在控制柜上安装了冷却风扇[3]。变频器的各个部分的电缆都从控制柜的底部连接变频器,导致控制柜封闭不严,粉尘和蒸汽可以通过控制柜的底部进去到控制柜影响变频器。

4针对变频器出现故障的原因提出对策和建议

1)变频器的控制柜。建议把变频器的控制柜移到室内,把变频器的防护等级提高到IP54,防止粉尘和蒸汽进入到变频器内。2)变频器的选择。根据不同的负载选择恰当的变频器,保证变频器的正常运行。3)变频器电源柜的改变。可以把供电给变频器的电源柜改为馈电柜,从而可以避免操作人员对变频器进行多次强制复位,保护变频器不受人为破坏。4)关于长期不用的变频器和变频器电容器。长期用不到的变频器,要定期进行带电运行,这样可以对变频器内件进行充电式的保护。如果有时间和条件,对使用多年的变频器的电容器进行测试。

5结语

第2篇

关键词:变频器干扰抑制

Abstract:Theapplicationoftheinvertersintheindustrialproductionisbecomingmoreand

moreuniversal,anditsinterfaceisbeingpaidmuchattention.Thesourceandspreadingrouteinthe

applicationsystemoftheinverterareintroducedinthispaper,somepracticalresolventsareputforward,andtheconcretemeasuresinthesystemdesignandinstallmentareexpounded.

Keywords:InverterInterfaceRestrain

[中图分类号]TN973[文献标识码]B文章编号1561-0330(2003)06-00

1引言

变频器调速技术是集自动控制、微电子、电力电子、通信等技术于一体的高科技技术。它以很好的调速、节能性能,在各行各业中获得了广泛的应用。由于其采用软启动,可以减少设备和电机的机械冲击,延长设备和电机的使用寿命。随着科学技术的高速发展,变频器以其具有节电、节能、可靠、高效的特性应用到了工业控制的各个领域中,如变频调速在供水、空调设备、过程控制、电梯、机床等方面的应用,保证了调节精度,减轻了工人的劳动强度,提高了经济效益,但随之也带来了一些干扰问题。现场的供电和用电设备会对变频器产生影响,变频器运行时产生的高次谐波也会干扰周围设备的运行。变频器产生的干扰主要有三种:对电子设备的干扰、对通信设备的干扰及对无线电等产生的干扰。对计算机和自动控制装置等电子设备产生的干扰主要是感应干扰;对通信设备和无线电等产生的干扰为放射干扰。如果变频器的干扰问题解决不好,不但系统无法可靠运行,还会影响其他电子、电气设备的正常工作。因此有必要对变频器应用系统中的干扰问题进行探讨,以促进其进一步的推广应用。下面主要讨论变频器的干扰及其抑制方法。

2变频调速系统的主要电磁干扰源及途径

2.1主要电磁干扰源

电磁干扰也称电磁骚扰(EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的。变频器的整流桥对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,变频器的逆变器大多采用PWM技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声。因此,变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。另一方面,电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其他设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。

2.2电磁干扰的途径

变频器能产生功率较大的谐波,对系统其他设备干扰性较强。其干扰途径与一般电磁干扰途径是一致的,主要分电磁辐射、传导、感应耦合。具体为:①对周围的电子、电气设备产生电磁辐射;②对直接驱动的电动机产生电磁噪声,使得电动机铁耗和铜耗增加,并传导干扰到电源,通过配电网络传导给系统其他设备;③变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。下面分别加以分析。

(1)电磁辐射

变频器如果不是处在一个全封闭的金属外壳内,它就可以通过空间向外辐射电磁波。其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。变频器的逆变桥大多采用PWM技术,当根据给定频率和幅值指令产生预期的和重复的开关模式时,其输出的电压和电流的功率谱是离散的,并且带有与开关频率相应的高次谐波群。高载波频率和场控开关器件的高速切换(dv/dt可达1kV/μs以上)所引起的辐射干扰问题相当突出。

当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。

(2)传导

上述的电磁干扰除了通过与其相连的导线向外部发射,也可以通过阻抗耦合或接地回路耦合将干扰带入其它电路。与辐射干扰相比,其传播的路程可以很远。比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号将沿着配电变压器进入中压网络,并沿着其它的配电变压器最终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。

(3)感应耦合

感应耦合是介于辐射与传导之间的第三条传播途径。当干扰源的频率较低时,干扰的电磁波辐射能力相当有限,而该干扰源又不直接与其它导体连接,但此时的电磁干扰能量可以通过变频器的输入、输出导线与其相邻的其他导线或导体产生感应耦合,在邻近导线或导体内感应出干扰电流或电压。感应耦合可以由导体间的电容耦合的形式出现,也可以由电感耦合的形式或电容、电感混合的形式出现,这与干扰源的频率以及与相邻导体的距离等因素有关。

3抗电磁干扰的措施

据电磁性的基本原理,形成电磁干扰(EMI)须具备电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统等三个要素。为防止干扰,可采用硬件和软件的抗干扰措施。其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统对干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。

(1)隔离

所谓干扰的隔离是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是在电源和放大器电路之间的电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。

(2)滤波

设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源及电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器。为减少对电源的干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器,以免传导干扰。

(3)屏蔽

屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏。输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路及控制回路完全分离,不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。

(4)接地

实践证明,接地往往是抑制噪声和防止干扰的重要手段。良好的接地方式可在很大程度上抑制内部噪声的耦合,防止外部干扰的侵入,提高系统的抗干扰能力。变频器的接地方式有多点接地、一点接地及经母线接地等几种形式,要根据具体情况采用,要注意不要因为接地不良而对设备产生干扰。

单点接地指在一个电路或装置中,只有一个物理点定义为接地点。在低频下的性能好;多点接地是指装置中的各个接地点都直接接到距它最近的接地点。在高频下的性能好;混合接地是根据信号频率和接地线长度,系统采用单点接地和多点接地共用的方式。变频器本身有专用接地端子PE端,从安全和降低噪声的需要出发,必须接地。既不能将地线接在电器设备的外壳上,也不能接在零线上。可用较粗的短线一端接到接地端子PE端,另一端与接地极相连,接地电阻取值<100Ω,接地线长度在20m以内,并注意合理选择接地极的位置。当系统的抗干扰能力要求较高时,为减少对电源的干扰,在电源输入端可加装电源滤波器。为抑制变频器输入侧的谐波电流,改善功率因数,可在变频器输入端加装交流电抗器,选用与否可视电源变压器与变频器容量的匹配情况及电网允许的畸变程度而定,一般情况下采用为好。为改善变频器输出电流,减少电动机噪声,可在变频器输出端加装交流电抗器。图1为一般变频调速传动系统抗干扰所采取措施。

以上抗干扰措施可根据系统的抗干扰要求来合理选择使用。若系统中含控制单元如微机等,还须在软件上采取抗干扰措施。

(5)正确安装

由于变频器属于精密的功率电力电子产品,其现场安装工艺的好坏也影响着变频器的正常工作。正确的安装可以确保变频器安全和无故障运行。变频器对安装环境要求较高。一般变频器使用手册规定温度范围为最低温度-10℃,最高温度不超过50℃;变频器的安装海拔高度应小于1000m,超过此规定应降容使用;变频器不能安装在经常发生振动的地方,对振动冲击较大的场合,应采用加橡胶垫等防振措施;不能安装在电磁干扰源附近;不能安装在有灰尘、腐蚀性气体等空气污染的环境;不能安装在潮湿环境中,如潮湿管道下面,应尽量采用密封柜式结构,并且要确保变频器通风畅通,确保控制柜有足够的冷却风量,其典型的损耗数一般按变频器功率的3%来计算柜中允许的温升值。安装工艺要求如下:

①确保控制柜中的所有设备接地良好,应该使用短、粗的接地线(最好采用扁平导体或金属网,因其在高频时阻抗较低)连接到公共地线上。按国家标准规定,其接地电阻应小于4欧姆。另外与变频器相连的控制设备(如PLC或PID控制仪)要与其共地。

②安装布线时将电源线和控制电缆分开,例如使用独立的线槽等。如果控制电路连接线必须和电源电缆交叉,应成90°交叉布线。

③使用屏蔽导线或双绞线连接控制电路时,确保未屏蔽之处尽可能短,条件允许时应采用电缆套管。

④确保控制柜中的接触器有灭弧功能,交流接触器采用R-C抑制器,也可采用压敏电阻抑制器,如果接触器是通过变频器的继电器控制的,这一点特别重要。

⑤用屏蔽和铠装电缆作为电机接线时,要将屏蔽层双端接地。

⑥如果变频器运行在对噪声敏感的环境中,可以采用RFI滤波器减小来自变频器的传导和辐射干扰。为达到最优效果,滤波器与安装金属板之间应有良好的导电性。

4变频控制系统设计中应注意的其他问题

除了前面讨论的几点以外,在变频器控制系统设计与应用中还要注意以下几个方面的问题。

(1)在设备排列布置时,应该注意将变频器单独布置,尽量减少可能产生的电磁辐射干扰。在实际工程中,由于受到房屋面积的限制往往不可能有单独布置的位置,应尽量将容易受干扰的弱电控制设备与变频器分开,比如将动力配电柜放在变频器与控制设备之间。

(2)变频器电源输入侧可采用容量适宜的空气开关作为短路保护,但切记不可频繁操作。由于变频器内部有大电容,其放电过程较为缓慢,频繁操作将造成过电压而损坏内部元件。

(3)控制变频调速电机启/停通常由变频器自带的控制功能来实现,不要通过接触器实现启/停。否则,频繁的操作可能损坏内部元件。

(4)尽量减少变频器与控制系统不必要的连线,以避免传导干扰。除了控制系统与变频器之间必须的控制线外,其它如控制电源等应分开。由于控制系统及变频器均需要24V直流电源,而生产厂家为了节省一个直流电源,往往用一个直流电源分两路分别对两个系统供电,有时变频器会通过直流电源对控制系统产生传导干扰,所以在设计中或订货时要特别加以说明,要求用两个直流电源分别对两个系统供电。

(5)注意变频器对电网的干扰。变频器在运行时产生的高次谐波会对电网产生影响,使电网波型严重畸变,可能造成电网电压降很大、电网功率因数很低,大功率变频器应特别注意。解决的方法主要有采用无功自动补偿装置以调节功率因数,同时可以根据具体情况在变频器电源进线侧加电抗器以减少对电网产生的影响,而进线电抗器可以由变频器供应商配套提供,但在订货时要加以说明。

(6)变频器柜内除本机专用的空气开关外,不宜安置其它操作性开关电器,以免开关噪声入侵变频器,造成误动作。

(7)应注意限制最低转速。在低转速时,电机噪声增大,电机冷却能力下降,若负载转矩较大或满载,可能烧毁电机。确需低速运转的高负荷变频电机,应考虑加大额定功率,或增加辅助的强风冷却。

(8)注意防止发生共振现象。由于定子电流中含有高次谐波成分,电机转矩中含有脉动分量,有可能造成电机的振动与机械振动产生共振,使设备出现故障。应在预先找到负载固有的共振频率后,利用变频器频率跳跃功能设置,躲开共振频率点。

5结束语

以上通过对变频器运行过程中存在的干扰问题的分析,提出了解决这些问题的实际方法。随着新技术和新理论不断在变频器上的应用,变频器应用存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器不久也会面世。

参考文献

[1]韩安荣.通用变频器及其应用(第2版)[M].北京:机械工业出版社,2000

[2]吴忠智,吴加林,变频器应用手册[Z].北京:机械工业出版社,1995

[3]王定华等.电磁兼容性原理与设计[M].四川:电子科技大学出版社,1995

[4]电磁兼容性术语(GB/T43651995)[S].北京:中国标准出版社,1996

第3篇

变频器过电压主要是指其中间直流回路过电压,中间直流回路过电压主要危害在于:(1)引起电动机磁路饱和。对于电动机来说,电压主过高必然使电机铁芯磁通增加,可能导致磁路饱和,励磁电流过大,从面引起电机温升过高;(2)损害电动机绝缘。中间直流回路电压升高后,变频器输出电压的脉冲幅度过大,对电机绝缘寿命有很大的影响;(3)对中间直流回路滤波电容器寿命有直接影响,严重时会引起电容器爆裂。因而变频器厂家一般将中间直流回路过电压值限定在DC800V左右,一旦其电压超过限定值,变频器将按限定要求跳闸保护。

二、产生变频器过电压的原因

1.过电压的原因

一般能引起中间直流回路过电压的原因主要来自以下两个方面:

(1)来自电源输入侧的过电压

通常情况下的电源电压为380V,允许误差为-5%-+10%,经三相桥式全波整流后中间直流的峰值为591V,个别情况下电源线电压达到450V,其峰值电压也只有636V,并不算很高,一般电源电压不会使变频器因过电压跳闸。电源输入侧的过电压主要是指电源侧的冲击过电压,如雷电引起的过电压、补偿电容在合闸或断开时形成的过电压等,主要特点是电压变化率dv/dt和幅值都很大。

(2)来自负载侧的过电压

主要是指由于某种原因使电动机处于再生发电状态时,即电机处于实际转速比变频频率决定的同步转速高的状态,负载的传动系统中所储存的机械能经电动机转换成电能,通过逆变器的6个续流二极管回馈到变频器的中间直流回路中。此时的逆变器处于整流状态,如果变频器中没采取消耗这些能量的措施,这些能量将会导致中间直流回路的电容器的电压上升。达到限值即行跳闸。

2.从变频器负载侧可能引起过电压的情况及主要原因

从变频器负载侧可能引起过电压的情况及主要原因如下:

(1)变频器减速时间参数设定相对较小及未使用变频器减速过电压自处理功能。当变频器拖动大惯性负载时,其减速时间设定的比较小,在减速过程中,变频器输出频率下降的速度比较快,而负载惯性比较大,靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量处理单元或其作用有限,因而导致变频器中间直流回路电压升高,超出保护值,就会出现过电压跳闸故障。

大多数变频器为了避免跳闸,专门设置了减速过电压的自处理功能,如果在减速过程中,直流电压超过了设定的电压上限值,变频器的输出频率将不再下降,暂缓减速,待直流电压下降到设定值以下后再继续减速。如果减速时间设定不合适,又没有利用减速过电压的自处理功能,就可能出现此类故障。

(2)工艺要求在限定时间内减速至规定频率或停止运行。工艺流程限定了负载的减速时间,合理设定相关参数也不能减缓这一故障,系统也没有采取处理多余能量的措施,必然会引发过压跳闸故障。

(3)当电动机所传动的位能负载下放时,电动机将处于再生发电制动状态。位能负载下降过快,过多回馈能量超过中间直流回路及其能量处理单元的承受能力,过电压故障也会发生。

(4)变频器负载突降。变频器负载突降会使负载的转速明显上升,使负载电机进入再生发电状态,从负载侧向变频器中间直流回路回馈能量,短时间内能量的集中回馈,可能会中间直流回路及其能量处理单元的承受能力引发过电压故障。

(5)多个电机拖动同一个负载时,也可能出现这一故障,主要由于没有负荷分配引起的。以两台电动机拖动一个负载为例,当一台电动机的实际转速大于另一台电动机的同步转速时,则转速高的电动机相当于原动机,转速低的处于发电状态,引起了过电压故障。处理时需加负荷分配控制。可以把变频器输出特性曲线调节的软一些。

(6)变频器中间直流回路电容容量下降

变频器在运行多年后,中间直流回路电容容量下降将不可避免,中间直流回路对直流电压的调节程度减弱,在工艺状况和设定参数未曾改变的情况下,发生变频器过电压跳闸几率会增大,这时需要对中间直流回路电容器容量下降情况进行检查。

三、过电压故障处理对策

对于过电压故障的处理,关键一是中间直流回路多余能量如何及时处理;二是如何避免或减少多余能量向中间直流回路馈送,使其过电压的程度限定在允许的限值之内。下面是主要的对策。

1.在电源输入侧增加吸收装置,减少过电压因素

对于电源输入侧有冲击过电压、雷电引起的过电压、补偿电容在合闸或断开时形成的过电压可能发生的情况下,可以采用在输入侧并联浪涌吸收装置或串联电抗器等方法加以解决。

2.从变频器已设定的参数中寻找解决办法

在变频器可设定的参数中主要有两点:是减速时间参数和变频器减速过电压自处理功能。在工艺流程中如不限定负载减速时间时,变频器减速时间参数的设定不要太短,而使得负载动能释放的太快,该参数的设定要以不引起中间回路过电压为限,特别要注意负载惯性较大时该参数的设定。如果工艺流程对负载减速时间有限制,而在限定时间内变频器出现过电压跳闸现象,就要设定变频器失速自整定功能或先设定变频器不过压情况下可减至的频率值,暂缓后减速至零,减缓频率减少的速度。

3.通过控制系统功能优势解决变频器过电压问题

在很多工艺流程中,变频器的减速和负载的突降是受控制系统支配的,可以利用控制系统的一些功能,在变频器的减速和负载的突降前进行控制,减少过多的能量馈入变频器中间直流回路。如对于规律性减速过电压故障,可将变频器输入侧的不可控整流桥换成半可控或全控整流桥,在减速前将中间直流电压控制在允许的较低值,相对加大中间直流回路承受馈入能量的能力,避免产生过电压故障。而对于规律性负载突降过电压故障,可利用控制系统如SIEMENS的PLC系统的控制功能,在负载突降前,将变频器的频率作适当提升,减少负载侧过多的能量馈入中间直流回路,以减少其引起的过电压故障。

4.采用增加泄放电阻的方法

一般小于7.5kW的变频器在出厂时内部中间直流回路均装有控制单元和泄放电阻,大于7.5kW的变频器需根据实际情况外加控制单元和泄放电阻,为中间直流回路多余能量释放提供通道,是一种常用的泄放能量的方法。其不足之处是能耗高,可能出现频繁投切或长时间投运,致使电阻温度升高、设备损坏。

5.在输入侧增加逆变电路的方法

处理变频器中间直流回路能量最好的方法就是在输入侧增加逆变电路,可以将多余的能量回馈给电网。但逆变桥价格昂贵,技术要求复杂,不是较经济的方法。这样在实际中就限制了它的应用,只有在较高级的场合才使用。

6.采用在中间直流回路上增加适当电容的方法中间直流回路电容对其电压稳定、提高回路承受过电压的能力起着非常重要的作用。适当增大回路的电容量或及时更换运行时间过长且容量下降的电容器是解决变频器过电压的有效方法。这里还包括在设计阶段选用较大容量的变频器的方法,是以增大变频器容量的方法来换取过电压能力的提高。

7.在条件允许的情况下适当降低工频电源电压

目前变频器电源侧一般采用不可控整流桥,电源电压高,中间直流回路电压也高,电源电压为380V、400V、450V时,直流回路电压分别为537V、565V、636V。有的变频器距离变压器很近,变频器输入电压高达400V以上,对变频器中间直流回路承受过电压能力影响很大,在这种情况下,如果条件允许可以将变压器的分接开关放置在低压档,通过适当降低电源电压的方式,达到相对提高变频器过电压能力的目的。

8.多台变频器共用直流母线的方法

至少两台同时运行的变频器共用直流母线可以很好的解决变频器中间直流回路过电压问题,因为任何一台变频器从直流母线上取用的电流一般均大于同时间从外部馈入的多余电流,这样就可以基本上保持共用直流母线的电压。使用共用直流母线存在的最大的问题应是共用直流母线保护上的问题,在利用共用直流母线解决过电压的问题时应注意这一点。

变频器中间直流过电压故障是变频器的一个弱点,关键是要分清原因,结合变频器本身参数、控制系统状况和工艺流程等情况,才能制定相应的对策,只要认真对待,该过电压故障是不难解决的。

第4篇

关键词:变频调速恒压供水调速系统

1、回顾

一般规定城市管网的水压只保证6层以下楼房的用水,其余上部各层均须“提升”水压才能满足用水要求。以前大多采用传统的水塔、高位水箱,或气压罐式增压设备,但它们都必须由水泵以高出实际用水高度的压力来“提升”水量,其结果增大了水泵的轴功率和能量损耗。

自从通用变频器问世以来,变频调速技术在各个领域得到了广泛的应用。变频调速技术在各个领域得到了广泛的应用。变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,使我国供水行业的技术装备水平从90年代初开始经历了一次飞跃。恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。在实际应用中得到了很大的发展。随着电力电子技术的飞速发展,变频器的功能也越来越强。充分利用变频器内置的各种功能,对合理设计变频调速恒压供水设备,降低成本,保证产品质量等方面有着非常重要的意义。

新型供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论是设备的投资,运行的经济性,还是系统的稳定性、可靠性、自动化程度等方面都具有无法比拟的优势,而且具有显著的节能效果。恒压供水调速系统的这些优越性,引起国内几乎所有供水设备厂家的高度重视,并不断投入开发、生产这一高新技术产品。

目前该产品正向着高可靠性、全数字化微机控制,多品种系列化的方向发展。追求高度智能化,系列标准化是未来供水设备适应城镇建设成片开发`智能楼宇、网络供水调度和整体规划要求的必然趋势。

在短短的几年内,调速恒压供水系统经历了一个逐步完善的发展过程,早期的单泵调速恒压系统逐渐为多泵系统所代替。虽然单泵产品系统设计简易可靠,但由于单泵电机深度调速造成水泵、电机运行效率低,而多泵型产品投资更为节省,运行效率高,被实际证明是最优的系统设计,很快发展成为主导产品。

二、变频控制恒压供水控制方式

众所周知,水泵消耗功率与转速的三次方成正比。即N=KN3N:为水泵消耗功率;n:为水泵运行时的转速;K为比例系数。而水泵设计是按工频运行时设计的,但供水时除高峰外,大部分时间流量较小,由于命名用了变频技术及微机技术有微机控制,因此可以使水泵运行的转速随流量的变化而变化,最终达到节能的目的。实践证明,使用变频设备可使水泵运行平均转速比工频转速降低20%,从而大大降低能耗,节能率可达20%-40%。

目前国内各厂家生产的供水设备电控柜,除采用落后继电接触器控制方式外,大致有以下四类:

逻辑电子电路控制方式:

这类控制电路难以实现水泵机组全部软启动、全流量变频调节。往往采用一台泵固定于变频状态,其余泵均为工频状态的方式。因此控制精度较低、水泵切换时水压波动大、调试较麻烦、工频泵起动有冲击、抗干扰能力较弱。但成本较低。

单片微机电路控制方式:

这类控制电路优于逻辑电路,但在应付不同管网、不同供水情况时调试较麻烦,追加功能时往往要对电路进行修改,不灵活也不方便。电路的可靠性和抗干扰能力都不是很高。

带PID回路调节器和/或可编程序控制器(PLC)的控制方式:

该方式变频器的作有是为电机提供可变频率的电源,实现电机的无级调速,从而使管网水压连续变化。传感器的任务是检测管网水压。压力设定单元为系统提供满足用户需要的水压期望值。压力设定信号和压力反馈信号在输入可编程控制器后,经可编程控制器内部PID控制程序的计算,输出给变频器一个转速控制信号。还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由PID回路调节器在调节器内部进行运算后,输入给变频器一个转速调节信号。

由于变频器的转速控制信号是由可编程控制器或PID回路调节器给出的,所以对可编程控制器来计时,既要有模拟量输入接口,又要有模拟量输出接口。由于带模拟量输入/输出接口的可编程控制器价格很高,这无形中就增加了供水设备的成本。若采用带有模拟量输入/数字量输出的可编程控制器,则要在可编程控制器的数字量输出口另接一块PWM调制板,将可编程控制器输出的数字量信号转变为控制器的成本没有降低,还增加了连线和附加设备,降低了整套设备的可靠性。如果采用一个开关量输入/输出的可编程控制器和一个PID回路调节器,其成本也和带模拟量输入/输出的可编程控制器差不多。所以,在变频调速恒压给水控制设备中,PID控制信号的产生和输出就成为降低给水设备成本的一个关键环节。

新型变频调速供水设备:

针对传统的变频调供水设备的不足之处,国内外不少生产厂家近年来纷纷推出了一系列新型产品,如华为的TD2100;施耐德公司的Altivar58泵切换卡;SANKEN的SAMCO-I系列;ABB公司的ACS600、ACS400系列产品;富士公司的G11S/P11S系列产品;等等。这些产品将PID调节器以及简易可编程控制器的功能都综合进变频器内,形成了带有各种应用宏的新型变频器。由于PID运算在变频器内部,这就省去了对可编程控制器存贮容内部,这就省去了对可编程控制器存贮容量的要求和对PID算法的编程,而且PID参数的在线调试非常容易,这不仅降低了生产成本,而且大大提高了生产效率。由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试非常简单、方便。这类变频器的价格仅比通用变频器略微高一点,但功能却强很多,所以采用带有内置PID功能的变频器生产出的恒压供水设备,降低了设备成本,提高了生产效率,节省了安装调试时间。在满足工艺要求的情况下应优先采用。

三、供水专用变频器的功能

供水专用变频器=普通变频器+PLC,是集供水控制和供水管理一体化的系统。内置供水专用PID调节器,只需加一只压力传感器,即可方便地组成供水闭环控制系统。传感器反馈的水压信号直接送入变频器自带的PID调节器输入口,而压力设定既可以使用变频器的键盘设定,也可以采用一只电位器以模拟量的形式送入。每日可设定多段压力运行,以适应供水压力的需要。也可设定指定日供水压力的需要。也可设定指定日供水压力控制。面板可以直接显示压力反馈值(Mpa)。

系统供水有两种基本运行方式:变频泵固定方式和变泵循环方式。变频泵固定方式最多可以控制7台泵,可选择“先开先关”和“先开后关”(适用泵容量不用场合)2种水泵关闭顺序。变频泵循环方式最多可以控制4台泵,系统以“先开先关”的顺序关泵。灵活配置常规泵、消防泵、排污泵、休眼泵,便于实现供水泵房全面自动化。工作泵与备用泵不固死,可自动定时轮换。可以有效地防止因为备用泵长期不用时发生的锈死现象,提高了设备的综合利用率,降低了维护费用。工作小时自动累计功能,方便节能分析和设备状况维护。夜间供水量急剧减少时,可方便指定每日休眼工作的起始/停止时刻,并可设定休眼时的压力给定值。休眼期间,只有休眼水泵工作,变频器只监测管网压力,当压力低于设定压力时,系统自动唤醒。变频泵投入工作,当压力高于设定值时,系统再次进入休眠状态,只有休眠水泵运行。这样,能最大限度地节水节电功效。具有零星停机功能,在用户不用水的情况下会自动停机。故障泵退出功能,水泵出现损坏时,让故障泵自动退出工作。有消防信号外部输入接口,当有火警或消防信号到来时,系统能自动世换到消防模式,有多种消防工作模式可选,主要根据消防和生活管网是否共用,以及进水池是否共用等条件来进行选择。另有消防泵自动巡检功能,定时巡检周期可设定。

利用通讯功能,可实现联网控制。便于楼宇自动化和管理。

第5篇

拉丝机是电线电缆行业主要加工设备之一,主要是将铜线加工成各种规格细线,一般由放线、水冷、收线及排线等部分组成,其中电气传动部份主要由放线电机和收线电机及排线电机实现。随着变频技术的不断推广,变频器正日益被用于拉丝机设备。

二、变频控制原理及实现

1、拉丝机的主要电气构成

车一般拉丝机主要由放线电机与收线电机及排线电机构成驱动部分,随着收线卷径不扩大收线电机的转速应相应的减小,以保证线速恒定,在控制中常采用张力反馈装置来调节收线电机的速度。随着变频器功能不断增强、性能不断稳定,变频器也被使用于拉丝机,其中利用变频器控制收线电机与放线电机,而排线电机由于功率较小直接由电网电压来控制。变频控制示意图如下:

2、基本控制原理:

放线电机与收线电机分别由两台变频器控制(见图1),放线变频器通过外部电位器转速,收线变频器由放线变频器的模拟AM输出信号、张力平衡反馈信号经信号经PID调节器后控制收线变频器(见图2)。随着收线筒卷径的变化张力平衡杆的反馈信号也随着变化,张力杆反馈信号(由精密变阻器构成)经信号转换电路板转换为0—10V,这个信号与放线变频器模拟AM、AM-输出信号构成PID两路输入信号,经PID调节后控制收线变频器,使丝线保持一定的线速度。

变频器启动后由放线变频器OC输出控制信号启动排线电机,排线电机功较小直接通过两个接触器控制其正反运行,使铜线均匀地绕在收线筒上。

3、变频器参数设定

深圳康沃电气技术有限公司是一家集变频器研发、生产、销售为一体的公司,主要生产的变频器有通用型:G1/P1与G2/P2系列;高性能单相变频器S1系列;及注塑机专用变频器ZS、ZC系列(一体机)。根据拉丝机负载特性选用康沃通用恒转矩型G2系列。以CVF-G2-4T0370及CVF-G2-4T0110型为例,电机功率分别为37KW、11KW,4极。如图1

(1)放线变频器参数设定:

(2)收线变频器参数设定:

三、调试注意事项

在调试过程中主要应注意起动阶段与停车阶段应保持放线电机与收线电机同步起动。

1、启动阶段

变频器运行前将张力杆置于中间稍偏上位置,启动变频器缓慢升速,如启动时出现断线现象说明收线电机启动过快,可相应地调整收线电机的启动频率b-7、启动频率持续时间b-8及放线、收线变频器的加减速时间b-7、b-8几个相关参数。

2、停车阶段

停机时放线、收线电机由当前运行频率按减速时间减速,减速到设定频率时收线变频器的OC输出信号启动电磁刹车装置,使得放线、收线电机准确停车,这样便不会因为放线电机过快停车造成铜线拉断。如果在停机过程中出现断线可相应地调放线、收线变频器减速时间b-8,若接近停机时出现断线则可调整收线变频器的OC输出信号

第6篇

关键词:变频器谐波负载发热

Abstract:Thispaperanalyzedtheproblemofharmonicwave,matchingofloadand

calorificationforinvertersinrunning,andmadetherelativelythemeasure.

Keywords:inverterharmonicwaveloadingcalorification

1前言

自80年代通用变频器进入中国市场以来,在短短的十几年时间里得到了非常广泛的应用。目前,通用变频器以其智能化、数字化、网络化等优点越来越受到人们的青睐。随着通用变频器应用范围的扩大,暴露出来的问题也越来越多,主要有以下几方面:

①谐波问题

②变频器负载匹配问题

③发热问题

以上这些问题已经引起了有关管理部门和厂矿的注意并制定了相关的技术标准。如谐波问题,我国于1984年和1993年通过了“电力系统谐波管理暂行规定”及GB/T-14549-93标准,用以限制供电系统及用电设备的谐波污染。针对上述问题,本文进行了分析并提出了解决方案及对策。

2谐波问题及其对策

通用变频器的主电路形式一般由三部分组成:整流部分、逆变部分和滤波部分。整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。对于双极性调制的变频器,其输出电压波形展开式为:

(1)

式中:n—谐波的次数n=1,3,5……;

a1—开关角,i=1,2,3……N/2;

Ed—变频器直流侧电压;

N—载波比。

由(1)式可见,各项谐波的幅值为

(2)

令n=1,则得出变频器输出电压的基波幅值为:

(3)

从(1)、(2)、(3)式可以看出,通用变频器的输出电压中确实含有除基波以外的其他谐波。较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。

如前所述,由于通用变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。为了消除谐波,可采用以下对策:

①增加变频器供电电源内阻抗

通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越大,谐波含量越大。对于三菱FR-F540系列变频器,当电源内阻为4%时,可以起到很好的谐波抑制作用。所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。

②安装电抗器

安装电抗器实际上从外部增加变频器供电电源的内阻抗。在变频器的交流侧安装交流电抗器或在变频器的直流侧安装直流电抗器,或同时安装,抑制谐波电流。表一列出了三菱FR-A540变频器安装电抗器和不安装电抗器的含量对照表。

③变压器多相运行

通用变频器的整流部分是六脉波整流器,所以产生的谐波较大。如果应用变压器的多相运行,使相位角互差30°如Y-、-组合的两个变压器构成相当于12脉波的效果则可减小低次谐波电流28%,起到了很好的谐波抑制作用。

④调节变频器的载波比

从(1)、(2)、(3)式可以看出,只要载波比足够大,较低次谐波就可以被有效地抑制,特别是参考波幅值与载波幅值小于1时,13次以下的奇数谐波不再出现。

⑤专用滤波器

该专用滤波器用于检测变频器谐波电流的幅值和相位,并产生一个与谐波电流幅值相同且相位正好相反的电流,通到变频器中,从而可以非常有效地吸收谐波电流。

3负载匹配问题及其对策

生产机械的种类繁多,性能和工艺要求各异,其转矩特性是复杂的,大体分为三种类型:恒转矩负载、风机泵类负载和恒功率负载。针对不同的负载类型,应选择不同类型的变频器。

①恒转矩负载

恒转矩负载是指负载转矩与转速无关,任何转速下,转矩均保持恒定。恒转矩负载又分为摩擦类负载和位能式负载。

摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择那些具有恒定转矩特性,并且起动和制动转矩都比较大,过载时间长和过载能力大的变频器。如三菱变频器FR-A540系列。

位能式负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器。如三菱变频器FR-A241系列。

②风机泵类负载

风机泵类负载是目前工业现场应用最多的设备,虽然泵和风机的特性多种多样,但是主要以离心泵和离心风机应用为主,通用变频器在这类负载上的应用最多。风机泵类负载是一种平方转矩负载,其转速n与流量Q,转矩T与泵的轴功率N有如下关系式:

(4)

这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可。如三菱变频器FR-F540(L)系列。风机负载在实际运行过程中,由于转动惯量比较大,所以变频器的加速时间和减速时间是一个非常重要的问题,可按下列公式进行计算:

(5)

(6)

式中:tACC—加速时间(s);

tDEC—减速时间(s);

GD2—折算到电机轴上的转动惯量(N·m2);

g—重力加速度,g=9.81(m/s2);

TM—电动机的电磁转矩(N.m);

TL—负载转矩(N.m);

nAS—系统加速时的初始速度(r/min);

nAE—系统加速时的终止速度(r/min);

nDS—系统减速时的初始速度(r/min);

nDE—系统减速时的终止速度(r/min)。

从上式可以看出,风机负载的系统转动惯量计算是非常重要的。变频器具体设计时,按上式计算结果,进行适当修正,在变频器起动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况下,选择最短时间。

泵类负载在实际运行过程中,容易发生喘振、憋压和水垂效应,所以变频器选型时,要选择适于泵类负载的变频器且变频器在功能设定时要针对上述问题进行单独设定:

喘振:测量易发生喘振的频率点,通过设定跳跃频率点和宽度,避免系统发生共振现象。

憋压:泵类负载在低速运行时,由于系统憋压而导致流量为零,从而造成泵烧坏。在变频器功能设定时,通过限定变频器的最低频率,而限定了泵流量的临界点处的系统最低转速,这就避免了此类现象的发生。

水垂效应:泵类负载在突然断电时,由于泵管道中的液体重力而倒流。若逆止阀不严或没有逆止阀,将导致电机反转,因电机发电而使变频器发生故障报警烧坏。在变频器系统设计时,应使变频器按减速曲线停止,在电机完全停止后再断开主电路电,或者设定“断电减速停止”功能,这样就避免了该现象的发生。

③恒功率负载

恒功率负载是指转矩大体与转速成反比的负载,如卷取机、开卷机等。利用变频器驱动恒功率负载时,应该是就一定的速度变化范围而言的,通常考虑在某个转速点以下采用恒转矩调速方式,而在高于该转速点时才采用恒功率调速方式。我们通常将该转速点称为基频,该点对应的电压为变频器输出额定电压。从理论上讲,要想实现真正意义上的恒功率控制,变频器的输出频率f和输出电压U必须遵循U2/f=const协调控制,但这在实际变频器运行过程中是不允许的,因为在基频以上,变频器的输出电压不能随着其输出频率增加,只能保持额定电压,所以只能是一种近似意义上的恒功率控制。

4发热问题及其对策

变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热,通常采用以下方法:

①采用风扇散热:变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行。

②降低安装环境温度:由于变频器是电子装置,内含电子元、电解电容等,所以温度对其寿命影响比较大。通用变频器的环境运行温度一般要求-10℃~-50℃,如果能够采取措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。

我们采取两种方法:一种方法是建造单独的变频器低压间,内部安装空调,保持低压间温度在+15℃~+20℃之间。另一种方法是变频器的安装空间要满足变频器使用说明书的要求。

以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。当变频器发生非正常运行(如过流,过压,过载等)产生的损耗必须通过正常的选型来避免此类现象的发生。

对于风机泵类负载,当我们选择三菱变频器FR-F540时,其过载能为120%/60秒,其过载周期为300秒,也就是说,当变频器相对于其额定负载的120%过载时,其持续时间为60秒,并且在300秒之内不允许出现第二次过载。当变频器出现过载时,功率单元因其流过的过载电流而升温,导致变频器过热,这时必须尽快使其降温以使变频器的过热保护动作消除,这个冷却过程就是变频器的过载周期。不同的变频器,其过载倍数、过载时间和过载周期均不相同,并且其过载倍数越大,过载时间越短,请见表2所示:

对于变频器所驱动的电机,按其工作情况可分为两类:长期工作制和重复短时工作制。长期工作制的电机可以按其名牌规定的数据长期运行。针对该类负载,变频器可根据电机铭牌数据进行选型,如连续运行的油泵,若其电机功率为22kW时,可选择FR-F540-22k变频器即可。重复短时工作制电机,其特点是重复性和短时性,即电机的工作时间和停歇时间交替进行,而且都比较短,二者之和,按国家规定不得超过60秒。重复短时工作制电机允许其过载且有一定的温升。此时,若根据电机铭牌数据来选择变频器,势必造成变频器的损坏。针对该类负载,变频器在参考电机铭牌数据的情况下要根据电机负载图和变频器的过载倍数、过载时间、过载周期来选型。如重复短时运行的升降机,其电机功率为18.5kW,可选择FR-A540-22k变频器。

5结论

本文通过对通用变频器运行过程中存在问题的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。

6参考文献

(1)韩安荣.通用变频器及其应用.北京:机械工业出版社,2000

第7篇

关键词:伦茨变频器,常见故障,维护

 

伦茨变频器的应用十分广泛。科技论文。选择变频器首先要了解各类变频器的性能和质量,并应熟悉驱动设备的负载性质。使用变频器时,应了解并掌握其各类常遇故障的产生原因、判断方法和相关处理措施。下面在详细介绍上述两方面的技术基础上,对变频器的维护技术也进行了简要介绍。

LENZE变频器在使用中还是会碰到一些这样那样的故障,以下我们就较粗率地介绍了一些常见故障及分析,LENZE变频器的一些常见故障做一些探讨,LENZE变频器在性能上还是很有特点,像位置控制,同步控制都是它的优势所在,所以在应用上值得我们去研究的。此外从维修角度来说,LENZE变频器线路相对还是比较复杂,且PCB板有多层布线,对于维修人员的要求也就更高了,也希望变频器维修的同行们能够多多交流,解决更多的实际问题。

(1)伦茨变频器维修故障中的 OC5 故障 OC5 故障应该是我们在 8220/8240 系列变频器里面经常碰到一种故障现象。 OC5 为变频器过载,过载检测一般都是由传感器来完成的,通过检测 UV 两相的电流,再由两输入或门 COMOS 电路来判断变频器是否过载。

(2)伦茨变频器维修故障中的输出缺相 输出缺相也是我们经常会碰到的故障之一。我们都知道在缺相状态下是无法拖动三相交流异步电机的,在拖动电机的情况下还会出现过流报警,脱开电机后测量 3 相输出电压,往往是 3 相输出电压相差比较大。在 LENZE 8240 系列变频器中经常会碰到现象是驱动电路无电压。

(3)伦茨变频器维修故障中的开关电源故障 在 8200系列通用变频器的维修中我们会经常碰到开关电源损坏。故障点主要有开关电源控制电路的损坏,控制电路出现故障后修复相对比较复杂,此类型机器的控制电路元器件都是集成于绝缘陶瓷片上,不易更换,需要有一定的经验以及维修技巧。

(4)伦茨变频器散热引起的故障 散热板分离散热技术也是 LENNZE变频器的一个很大卖点,大家都知道常规变频器都是有冷却风扇散热,但有些场合使用了散热风扇后常常成为变频器的一个常见故障点。科技论文。这种现象主要在纺织工厂比较多见。纺织工厂空气中的棉絮和化纤常常堵塞风扇,引起变频器故障报警。而 LENZE变频器的散热板分离散热技术恰恰解决了这个问题。但我们也会碰到客户在使用一段时间后出现变频器带不起重载的现象,从我们的经验分析也有可能是由于变频器的散热问题引起的。

下面以PB2028-TH设备的伦茨变频器维修故障定实例来叙述其处理过程:

当操作面板上显示如下信息时( 变频器上绿灯灭红灯每秒闪一次)按照故障信息进行运行故障诊断并排除.

 

第8篇

【关键词】高压;变频器;故障诊断;日常维护

1.引言

随着电力电子技术的发展,现在对于电压、电源的控制要求也越来越高,相配套的高压或者低压变频器的结构越来越复杂,对于高压变频器而言,要保证其正常稳定可靠运行,必须要对高压变频器实施日常维护,同时要对日常发生的一些常见故障进行简单的故障诊断和故障处理,只有这样,才能够实现高压变频器服役寿命的最大化。

本论文主要结合目前主流的高压变频器的内部结构,对其进行详细的分析,给出常见的故障类型及其原因分析,并对日常维护给出具体的建议与措施,从而能够实现对高压变频器的有效维护和保养,延长其服役寿命,并以此和广大同行分享。

2.高压变频器概述

2.1 高压变频器结构

高压变频器是近几年逐渐发展起来的一种应用十分广泛的变频器,它和过去传统的采用液力耦合方式或者串级调速实现的电机调速方式是一样的,只是采用改变电机运行电源频率实现对电机调速的目的。目前,高压变频器不管是通用的还是专用的,其内部的结构都是相通的,主要包括三个部分:一是主电路接线端,包括接工频电网的输入端(R、S、T),接电动机的频率、电压连续可调的输出端(U、V、W);二是控制端子,包括外部信号控制端子、变频器工作状态指示端子、变频器与微机或其他变频器的通信接口;三是操作面板,包括液晶显示屏和键盘。

通用变频器由主电路和控制电路组成,其中,给异步电动机提供调压调频电源的电力变换部分称为主电路,主电路包括整流器、中间直流环节(又称平波回路)和逆变器等。

2.2 高压变频器工作原理

高压变频器内部主要是由整流器、逆变器、中间直流环节和控制电路等构成。高压变频器主要是通过改变电流的高压与低压的状态,从而改变电源频率达到电机调速的目的。因此,具体来说,高压变频器的工作原理可以按照其结构构成部件的工作原理来理解:

(1)整流器

电网侧的变流器为整流器,它的作用是把工频电源变换成直流电源。三相交流电源一般需经过压敏电阻网络引入到整流桥的输入端。压敏电阻网络的作用是吸收交流电网浪涌过电压,从而避免浪涌侵入,导致过电压而损坏变频器。

(2)逆变器

逆变器的作用与整流器相反,逆变器的主要作用是为了将直流功率转换为所需要的交流功率,通畅逆变器安置在负载侧;逆变器最常见的形式就是采用6个半导体开关器件组建成三相桥式逆变电路,从而完成从直流到交流的逆变过程。

(3)中间直流环节(平波回路)

中间直流环节,也称平波回路,其主要作用是使脉动的直流电压变得稳定或平滑,供逆变器使用;通过开关电源为各个控制线路供电;同时,可以配置滤波或制动装置以提高变频器性能。

(4)控制电路

控制电路主要是将变频器在整流、逆变及中间直流储能环节上的各种电压、电流信号传输给相应的整理器、逆变器、微机处理器以及其他电路部件等,通过对这些电气信号的采集、检测与控制,实现电路的开关作用或者对交流直流电压电流转换的控制作用,并能够依据这些控制信号实现对变频器的状态监测,从而提供故障诊断和保护的数据依据。

3.高压变频器日常维护建议与措施

3.1 常见故障分析

高压变频器在运行过程中,对于一些常见的故障是有必要掌握的,以便进行简单故障的快速排除。对于高压变频器而言,其常见的故障主要有以下几类:

(1)通电开机后不响应

高压变频器由于内部电压经过多重断路器、变频线圈,因此结构相对较为复杂,很容易引起一些无法察觉的细微故障,而通电后开机不响应就是最常见的故障之一。造成这类故障的主要原因是插头松动或者熔断丝烧坏,如果插头和熔断丝都没有问题,则需要进行细致检查,检查有无碰锡、碰线或者细小金属颗粒落在电源进线之间造成短路或者断路,同时还需要检查线路板是否有灰尘、水滴等常见故障导火索。

(2)变频器无法带负载启动

高压变频器空载工作时一切正常,但是一旦带负载则无法启动,造成这类故障的主要原因是由于采用了恒转矩负载启动方式,因此对变频器启动的加减速时间的设定是否有误,通畅选取合理的加减速时间即可解决这个故障。

(3)变频器功率已经上升,但是电机转速仍然很低

高压变频器启动后功率上升很快,但是电机输出转速很低,导致系统无法高速工作,通畅这是由于频率增益设定不合理导致的,只要适当改变频率增益即可排除故障。

(4)变频器重载过流

高压变频器往往在运行期间,负载突然加重,导致电机转速急剧下降,电流急剧增加,最终烧毁电机,损坏变频器。造成这一故障的原因主要是电机本身存在电气故障,如果确认电机不存在电气故障,则需要对电机与变频器之间的传动比进行修正,适当增大传动比,能够有效的提高变频器带重负载的能力,从而避免了出现变频器重载过流故障的出现。

(5)过电压停机故障

高压变频器在运行过程中,其直流母线上承载的电压最大,因此一旦此处的电压保护器损坏,则整个高压变频器就容易引起故障。要避免变频器由于过电压而发生停机故障,就要确保在直流母线上的过压保护器的正常工作,这可以通过并联反向钳位二极管实施保护,或者采用电容防击穿实现对过电压的保护。

3.2 日常维护建议与措施

第9篇

【关键词】 机调速 系统设计

为了便于监控变频器的运行状态并及时发现异常,应取出变频器的异常信号送到PLC的输入模块,以作为变频器的事故报警信号及安全制动。为了与变频调速系统配合,保证在启动力矩、低频转矩、过载能力等方面满足系统的要求,选用冶金起重专用变频电动机。变频电动机的电磁设计、结构设计和绝缘系统设计既考虑了对变频器电源供电和宽范围变频调速的适应能力,又体现了冶金及起重专用三相异步电动机过载能力大、机械强度高的特点。与变频调速良好的起、制动功能相结合,特别适用于采用变频调速,短时间或断续周期运行、频繁启动和制动的场合,既能保证电动机在高频时的过载能力,又能在低频时保持恒转矩输出。

1 变频调速主系统设计

变频调速单元采用森兰SB61系列SB61G110KW通用变频器,其变频调速系统主电路如图1所示。

2 变频器外部电路设计

绞车升降的运转具有较大惯性,四象限运行的特点,与其他传动机械相比对变频器有着更为苛刻的安全和性能上的要求,SB61G系列通用变频器是专为起重类负载而设计的专用变频器,该系列产品采用了最优的电机控制方法—矢量控制技术,它可以对所有交流电动机的核心变量进行控制,并把定子磁通、转矩作为主要控制变量。

变频器可以输出频率可调的交流电源,另外在变频器的加设有声光报警输出口及制动单元,能够实现变频器故障报警器和安全制动,更有效的对控制系统进行安全保护。

3 PLC控制部分设计

PLC是本控制系统中关键的一环,其主要控制电路如图2所示,主要的控制功能有如下几项:主令操作控制、保护监视控制。

4 调速控制系统保护措施

空气断路器短路保护应满足以下要求:(1)当电动机发生相间短路或在中性点直接接地系统中发生单相接地短路时,保护装置应能切断故障电路。(2)当电动机正常起动或制动时,保护装置不应动作。空气断路器可以用来频繁地起动电动机。并对电动机实现保护,由于有良好完备的灭弧装置,操作速度也由弹簧机构执行,迅速可靠。因此,用来控制电动机时,其额定电流(即指主触头的额定电流)选择得大于或等于电动机额定电流1.3~1.4倍即可。

5 结语

提升机变频调速控制系统的硬件电路实现,包括变频调速部分、PLC可编程控制器部分及安全保护和抗干扰部分。变频调速控制系统进行恒加速变频调速启动,恒减速变频调速停车及行程变频调速运行等。变频调速范围宽、调节精度高。采用变频调速后,电机可以实现真正意义上的软启动和平滑调速。变频器调速还可通过软件很方便地改变输出转矩(即调整转矩补偿曲线)和加减速时间、目标频率、上下限频率等。能够使提升机S形速度给定很好的得到实现。具有很好的应用和推广价值。

参考文献:

[1]李仪钰编著.矿井提升系统新技术及装备.北京:煤炭工业出版社,1999.

[2]王成元编著.电机现代控制技术.北京:机械工业出版社,2006.

第10篇

厂输煤系统使用的是5T龙门式装卸桥,跨度为40.5m,抓斗的提升、开闭机构由二台45KW绕线式异步电动机驱动,小车行走机构分别由二台22KW绕线式异步电动机驱动,大车行走机构分别由二台11KW绕线式异步电动机驱动。在抓斗的提升、开闭,大车及小车前进、后退的传动控制过程中,为了确保机械设备运行的平稳性,采用了绕线式异步电动机转子串接电阻的调速方式。在多年的使用过程中发现该控制方式中存在着很多难以解决的问题,比如调速性能差、接触器动作频繁致使经常更换接触器、串接电阻故障多、操作不规范造成电气回路及机械部件损坏等。

一、问题的提出

经现场实地查看,发现,该5T龙门式装卸桥的抓斗的提升、开闭以及小车的前进后退的调速性能均较差,而且使用按扭控制起停、主令开关设定速度段,这样就会有两种情况:1.绕线式异步电动机一起动很快达到设定的电机最大转速,速度太高以及变化太快容易造成电器、机械部件的损坏;2.如设定速度低则会延长等待时间,使生产效率降低。另外,针对抓斗的提升及下放也存在一些潜在的问题,即:当抓斗提升,但在空中停车再起动时,有可能致使抓斗出现“溜车”现象(轻微下滑),这时电机工作在反接制动状态,但是制动转矩小于负载转矩,电机电流非常大。当下放抓斗时,电机在重力与电动转矩的作用下以极快的速度运行在第四象限,电机工作在回馈制动状态,转速大于同步转速,停车时(抱闸),由于抓斗的惯性及下降速度太快停车效果差,非常危险。针对上述问题,现要采用变频调速技术予以解决。

二、抓斗的提升、开闭变频控制

抓斗有两台电机控制即抓斗开合电机、抓斗提升电机。抓斗抓煤时,仅有开合电机运转,抓满煤开始提升时,提升和开合两台电机均要工作,相互间需要有速度配合才可使系统稳定可靠运行。根据以往制作类似提升、下放重物变频控制装置的经验及查阅ABB公司起重专用变频器的相关技术资料,变频器采用制动单元和制动电阻后能够提供100%的制动转矩,使抓斗下放时,电机工作在制动状态,变频器的制动单元能够完全吸收掉这部分能量使电机稳定工作在第四象限,且转速连续可调。这些通过调整开合电机变频器及提升电机变频器的频率、

加速时间,使之相互配合,调整方便。

抓斗的提升、开闭机构采用SIEMENSS7-200系列PLC控制,其输入、输出均由继电器进行隔离。采用PLC控制后使系统的维护量大大减少,修改或调整控制关系灵活、方便。

三、大车、小车运行机构变频控制

该系统的大车、小车运行机构基本象似,都是由两台电机控制,只是电机的功率不一样,对两台电机分别采用两台相同的西门子MASTERDRIVES系列矢量控制型变频器进行起动及速度控制。由于两台电机是驱动的同一负载,为保证两台电机的同步运行,每台变频器均配置一块TSY型同步板来实现同步控制。每台变频器还需要加装直流母线上的制动单元实现四象限运行。

采用变频器调速时,每台变频器分别单独供电。设定一台变频器为启动变频器,另一台为工作变频器,两台变频器设置参数完全一致,在SIEMENSPLC(S7-200系列)的控制下,绕线电机的转子短接接触器吸合。在接受到起动按扭发出的起动命令及速度信号后,两台变频器同步工作,当需要快速停车或反向运转时,两台电机的能量回馈通过制动单元释放,达到快速起停的目的。

四、其它

原转子串接电阻调速方式的控制装置的电源和控制部分回路保持不变,变频控制与原控制系统可通过转换开关相互切换。四台变频器均采用矢量型变频器并配以制动单元、制动电阻以确保在机械失灵的情况下人身及设备的安全。由于变频器调速属高效调速系统,运行效率高,调速灵活、方便,系统反应速度快,所以采用变频器控制并没有影响龙门抓的抓煤量。

五、小结

该系统经改造后运行近一年来,未出现电器或机械部件损坏,操作简便,减少了操作人员操作强度,为我公司带来了可观的经济效益。需要补充的是如果有条件的话可在抓斗控制机械制动回路增加变频器故障跳闸联锁,变频器一旦故障机械制动立即动作,使之停车,这样龙门抓的运行可靠性将会得到大大提高。

参考文献:

[1].ABB公司.《ABB变频器操作手册(提升宏)》2001年

第11篇

关键词:变频器;维护;检查

中图分类号:TN77 文献标识码:A

1 变频器的维护

变频器由许多复杂的集成芯片、电子元器件等组成,使用过程中不可避免的会出现各种故障,正确的维护,简单的检修可保证生产生活的正常进行。

1.1 使用环境对变频器的影响

斗轮堆取料机长期处于多灰尘环境中,由于尘埃、湿度、振动、温度等使用环境的影响,很容易使变频器发生故障。

1.1.1 由于斗轮堆取料机处于长形料场中,需要往复折返工作,地面轨道的不连续直接影响整机的平稳性,振动就不可避免,这种振动会使变频器的接插件和接线端子产生松动现象,进而影响变频器的正常运行,例如电源输入端和输出端的端子松动,产生的接触不良,会使变频器时好时坏,端子发热直至烧毁。如果端子松动后掉线,将会酿成大事故,例如主回路直流电压偏低的最大原因就是电源输入端有接线掉落,进而出现低压报警停机;若掉落的接线落在另一根电源线上,就会产生电源短路的严重后果,导致电源配电柜内熔断丝烧断。另外,变频器最常见的故障就是缺相,这个故障起因大多是由于输出端接线掉落,导致变频器报警停机,如果掉落的接线落到另一根输出端上,会形成输出短路,还非常有可能损坏变频器的逆变模块,造成重大损失。

1.1.2 由于斗轮堆取料机处于多灰尘环境中,而变频器在长期运行过程中,冷却风机使用期限接近极限值,或积满尘埃等导致进风量严重减少。散热板堆积尘埃,影响进风量,也影响传导热量,这些问题都会导致变频器内部温度偏高,而温度又是运行变频器电子器件的寿命及可靠性的重要因素,特别是半导体器件,若结温超过规定值极易造成器件损坏,如果我们进行日常检查和定期维修,就能及早发现问题,消除隐患,避免故障的发生,减少不必要的维修和因停机而产生的经济损失。

1.2 元件老化对变频器的影响

斗轮堆取料机平均设计寿命大约为三十年,而且绝大多数时间都是在重载运行,故在其长期的运行过程中,电子器件的老化不可避免,而其中使用频率颇高的变频器尤为明显。

变频器由许多电子元件构成,它们都有一定的使用寿命,电解电容在这些易老化的器件中最显著,在使用过程中,其容量会持续不断的下降,一般认为,容量如果下降到85%及以下,它的使用寿命就接近于终止,不适合再继续使用了,应该立即更换,否则容易出现安全隐患。另外,在开关电源中的滤波电容如果也超过使用寿命后,可使控制回路、驱动回路无法正常工作,进而变频器出现故障停机。最后一个就是主回路的滤波电容超过使用寿命后,导致其充放电量不足,往往出现空载时正常运行,一旦重载运行,频率升到一定数值时,频繁因电压偏低报警而停止工作。

如果我们通过日常检查和定期检修,及时更换老化部件,就可以避免在正常生产过程中,因元器件老化变频器停机影响生产,遭受经济损失。

由此可见,变频器日常维护相当重要,使变频器长期稳定运行,进而提高整机工作效率和经济效益。

2 变频器的日常检查

2.1 检查面板是否正常。缺损、变浅或闪烁都代表面板已经出现潜在故障,应及时更换面板或检修。

2.2 检查电源电压、输出电压、直流电压是否正常。用万用表检查三相电源电压及单相电源电压是否正常。若三相不平衡或输出电压偏低,说明变频器存在故障危险,必须停机检修。

2.3 检查冷却风机和散热器是否正常。用红外线测温仪测试散热器温度,如果温度过高,应立即采取措施降低环境温度,若冷却风机使用时间过长或堆满灰尘,应尽快清洗或更换风机。

2.4 检查变频器是否有振动现象。直接用手抹变频器外壳,可发现严重的振动现象,用长柄螺丝刀一头接触变频器,耳朵贴紧螺丝刀刀柄,可以发现轻微的振动现象,这种振动通常是由电动机振动引起的共鸣,他可以造成电子器件的机械损伤。可以增加橡胶垫来减少或消除振动,另外也可以利用变频器跳跃的功能,避开机械共振点,这种做法应在确保控制精度的前提下进行,除非特殊情况,否则不建议轻易使用。

2.5 检查电源导线。接线端松动通常会导致输出导线发热、变形、烧坏,如果有此情况或者闻到变频器内部有异味,必须拧紧或更换导线。

3 变频器的定期检修

3.1 断电停机检修。这个过程一定要切断所有进线及出线端子,由于滤波电容在失去主电源后一段时间内仍会保持较高的直流电压,根据型号不同,通过电阻放电需要时间也不尽相同,所以必须等到变频器充电指示灯完全熄灭后才能进行下一步工作,通常是先清洗,重点是机壳底部,主回路元器件及冷风机,一般用吸尘器,严重的用软布蘸酒精擦拭,其中冷风机是重中之重,之后是主回路检修,包括滤波电容、限流电阻、继电器等等,先观察外表颜色变化,然后用万用表测量电容等方法均是有效的方法。

3.2 通电运行检查。在经过上阶段断电检修之后,通电试运行是必要的过程,即把输入输出电源、控制部分电路按正常模式连接好,用正常工作时的标准逐项检查变频器性能,如冷风机启动、输出电压是否正常等等,待所有检查项目都通过后,方可重新启用变频器进行重载工作。

4 变频器在斗轮堆取料机中的应用

DQL2000/2000.35臂式斗轮堆取料机是为印度reliance公司旗下电厂设计的,用于堆取高炉用煤。本系统具有八台7.5kW行走电机并要求行走速度可调。行走启动和停止以及调速过程中,设备平稳和安全。设计选用的是ABB公司ACS800变频器。 根据印度现场反馈,该设备自投入运行以来,平稳正常,控制效果非常理想。

结论

在斗轮堆取料机中正确地使用和维护变频器不仅可以使变频器使用寿命延长,重要的是大大提高了整机的生产效率,使控制更加安全可靠,提高经济效益。

参考文献

第12篇

关键词:变频控制 4-20mA信号 回落速度 二次方转矩

一、液化气装车泵控制现状及存在问题

液化气装车泵是为液化气装车管线提供压力和流量的动力设施,电机功率为90KW,电机采用全压启动,接触器控制。这种电气控制方式是通过调节管路中调节阀的开度和支路回流来控制装车泵出口流量和压力,这种调节压力的方式,电机一直保持连续全速运转,而且根据装车要求出口压力及流量是随机变化的,而且起伏较大。如果装气车辆多即开大调节阀确保装车系统所需压力,装气车辆少时关小调节阀满足装车系统所需压力,而剩余的液化气通过支路回流打循环回到罐内。

这种传统的控制方式设备全力矩启动,负荷变化较大,装气车辆多时,电机利用率高,装气车辆少时,电机利用率低;电机连续全速运转,容易发热,故障率高;而且管线压力和流量采用人工操作调节阀控制,耗电高,控制精度低,且压力过大时形成回流,浪费能源较严重。

二、液化气装车泵的变频控制改造

针对以上问题,我们对90KW液化气装车泵电机实施变频控制改造。给原系统加装施耐德ATV71HC11N4型变频器。

1、系统控制原理及功能

由装车泵的工作原理可知,电机的转速n与电源频率f成正比,因此改变电源频率,可改变电动机即装车泵的转速,从而达到调节泵出口流量和压力的目的。液化气装车泵变频控制系统框图如图1所示,我们采用开环控制方式,由DCS给定4-20mA控制信号,操作人员根据装气车辆多少,改变给定信号直接控制变频器,从而改变电机的转速,准确控制液化气装车泵的出口流量和压力,满足装气车辆的装车要求。

图1 变频器开环控制系统框图

液化气装车泵变频控制系统接线原理图如图2所示,LI1是变频器电源;R1是变频器故障(继电器正常加电,如有故障则断电);R2是变频器运行;AI2是4-20mA信号给定;SB1、SB2分别是现场停止和启动按钮。当SB2按钮闭合时,KA、KC线圈带电,KA、KC常开点闭合,变频器启动,KA常闭点断开,现场红灯亮绿灯灭。当有故障时R1继电器断开,KC线圈失电,故障指示灯亮,KC打开,控制回路断开,电机停止运行。

图2 变频器接线原理图

2、系统特点

(1)液化气装车泵使用的是南阳防爆电机90KW,根据节能降耗、可靠运行的原则,我们选用施耐德ATV71型110KW变频器。并且为减少主电源干扰,在变频器输入电路中安装电抗器。

(2)正常情况是DCS给定4-20mA信号控制电机转速,当4-20mA信号瞬间消失时,电机按照回落速度运行(回落速度根据工艺要求可设定在0-50HZ之间)。这样避免了由于DCS故障造成液化气装车泵停机。

(3)参数设定、功能选择方便、操作简单,保护功能完善。根据电机铭牌设定电机额定转速2980r/min、额定功率90KW、额定电流158A;设定DCS模拟给定信号AI2为4-20mA;根据负载情况设定加速时间40S,减速时间45S;设定最低频率10HZ,最高频率50HZ,确保电机在安全模式下运行;设定电机热保护电流158A,可检测出过载、过电流和过热等故障,并及时给出故障信息。

三、改造后效果分析

使用ATV71变频器控制液化气装车泵电机后,不管在节能降耗方面、还是在设备可靠运行方面,效果都非常显著。

1、节能效果分析

由于泵类负载属于二次方转矩负载,即转矩T与转速n的二次方成正比,T∝n2,而电机的输出功率P∝Tn,所以P∝n3,即电机的输出功率与转速的三次方成正比。又由于转速n与频率f成正比,即n=60f(1-s)/p。根据生产现状电机平均每天运行12小时,其中约6小时电机的运行频率为30HZ,根据公式计算出电机的实际转速为额定转速的60%,所以每月节约用电量=90×(1-0.63)×6×30=12700kwh,每月节约电费=12700*0.4=5080元。

2、设备故障率大大降低

改造后的液化气装车泵由于启动时电机转速的变化,消除了以前启动机泵时泵内压力剧增而造成轴承等机械部件磨损及机泵密封系统损坏的情况,机泵故障率降低,设备使用寿命延长,维护人员的工作量也明显减少。

3、实现了DCS操作

采用变频调节控制不需要人工去现场开动阀门,操作人员可在DCS室根据装车泵出口流量和压力的变化实时对变频器进行频率调整,在满足装气车辆的同时力求变频器运行在最佳经济状态。这种调节方式提高了设备自动化程度,而且控制精度高、响应速度快、运行可靠方便。

四、结束语

ATV71变频器在液化气装车泵节能改造中已得到成功应用,该系统投运以来,运行效果良好,既满足了生产工艺的要求,又实现了节能降耗,节电率在48%以上。同时降低了设备的故障率,延长设备使用寿命,提高了装车泵出口流量和压力的控制精度,其经济效益显著,达到了预期的目的。

参考文献: